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We consider the structure of the magnetic fields inside the neutron stars in Eddington-inspired Born-
Infeld (EiBI) gravity. In order to construct the magnetic fields, we derive the relativistic Grad-Shafranov
equation in EiBI and numerically determine the magnetic distribution in such a way that the interior
magnetic fields should be connected to the exterior distribution. Then, we find that the magnetic
distribution inside the neutron stars in EiBI is qualitatively similar to that in general relativity, where the
deviation of magnetic distribution in EiBI from that in general relativity is almost comparable to uncertainty
due to the equation of state for the neutron star matter. However, we also find that the magnetic fields in the
crust region are almost independent of the coupling constant in EiBI, which suggests a possibility of
obtaining the information about the crust equation of state independent from the gravitational theory via the
observations of the phenomena associated with the crust region. In any case, since the imprint of EiBI
gravity on the magnetic fields is weak, the magnetic fields could be a poor probe of gravitational theories,
considering the many magnetic uncertainties.
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I. INTRODUCTION

The magnetic field is one of the principal properties in
the phenomena of astrophysical objects. In fact, it is
believed that magnetic fields can play an important role
during supernova explosions, gamma-ray bursts, jets from
active galactic nuclei, and so on. The existence of strongly
magnetized neutron stars, the so-called magnetars, is also
suggested via the measurements of spin period and its down
rate of the central objects in soft gamma repeaters and
anomalous x-ray pulsars. According to the magnetic dipole
model, the strength of the surface magnetic fields of the
magnetars is considered to be as large as 1014–1015 G [1,2].
From the soft gamma repeaters, sporadic radiations of γ and
x rays are observed, while fierce flare activities called giant
flares are also detected on rare occasions. In particular,
the quasiperiodic oscillations discovered in the afterglow
of giant flares provide evidence for the oscillations of
magnetized neutron stars [3]. To theoretically explain the
quasiperiodic oscillation frequencies, there are many
attempts in terms of crustal oscillations [4–8] and/or
magnetic oscillations [9–13]. In any case, in addition to
the equation of state (EOS) for neutron star matter, the
structure of magnetic fields inside the neutron star is crucial
to understanding such phenomena.
On the other hand, the gravitational theory must also be

imperative in discussing the relativistic objects. General
relativity is a mathematically beautiful theory of gravity,
and its validity has been probed through a lot of experi-
ments and astronomical observations. However, most of

the verifications of general relativity have been done in a
weak field regime, such as the Solar System [14], while the
tests in a strong field regime are very poor. Perhaps, the
gravitational theory describing the astronomical phenom-
ena in a strong field regime might differ from general
relativity. This is a reason why modified theories of gravity
are proposed. Since the observable properties could depend
on gravitational theory, one would see the imprint of
gravitational theory as an inverse problem [15]. In fact,
the science technology is developing increasingly, which
will enable us to observe the relativistic objects and the
phenomena around such objects with high precision.
The gravitational waves radiating from such a system
are probably also one of them. Through these observations,
it is possible to probe gravitational theory [16–18].
As a modified theory of gravity, Eddington-inspired

Born-Infeld (EiBI) gravity has recently drawn attention in
the context of the avoidance of big bang singularity [19,20].
This theory was originally proposed by Bañados and
Ferreira [21], based on the gravitational action proposed
by Eddington [22] and on the nonlinear electrodynamics of
Born and Infeld [23]. EiBI was developed according to a
Paratini approach, where the connection is considered as an
independent field because the field equations contain
ghosts in the metric approach [24]. The deviation of
EiBI from general relativity can be seen only when matter
exists, i.e., EiBI in vacuum is completely equivalent to
general relativity, and the deviation becomes significant in a
high density region. Thus, the compact objects are good
candidates to display such a deviation. To date, compact
objects in EiBI have been discussed on several occasions
and have shown a deviation in stellar properties from the*sotani@yukawa.kyoto‑u.ac.jp
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expectations of general relativity [25–31]. Perhaps, via the
direct observations of such stellar properties, one would
distinguish EiBI from general relativity. We remark that in
EiBI the curvature singularity can appear at the stellar
surface for polytropic EOSs [32], which presents a problem
to solve even though this theory is attractive.
However, in spite of the importance of magnetic effects

in astronomical phenomena, the magnetic fields on the
neutron stars in EiBI have not been considered. There are
solely the considerations of electrically charged black
holes in EiBI [21,33,34]. Thus, in this paper, we consider
the magnetized relativistic stellar models in EiBI. This
discussion could serve as a first step in examining the
phenomena associated with neutron stars in EiBI. Actually,
there are many uncertainties regarding the magnetic proper-
ties, such as their geometry and the currents supporting
them, even for a given fixed EOS. So, it must be quite
difficult to see the imprints of gravitational theory on the
magnetic properties if neutron stars would have different
magnetic geometry and/or crust properties irrespective of
the theory of gravity. In this paper, to see how magnetic
fields depend on gravitational theory, we focus especially
on the axisymmetric dipole configuration of magnetic fields
because such a configuration could be dominant in old
neutron stars. Additional factors in determining magnetic
properties should be taken into account, but we neglect such
effects here to simplify the problem. In this paper, we adopt
the geometric units c ¼ G ¼ 1, where c and G denote the
speed of light and the gravitational constant, respectively,
and the metric signature is ð−;þ;þ;þÞ.

II. MAGNETIZED STELLAR MODELS IN EiBI

Before considering the stellar models in EiBI, we briefly
mention EiBI. This gravitational theory is obtained from
the action S given by

S ¼ 1

16π

2

κ

Z
d4x

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgμν þ κRμνj

q
− λ

ffiffiffiffiffiffi
−g

p �
þ SM½g;ΨM�;

ð1Þ

where g and jgμν þ κRμνj denote the determinants of the
physical metric gμν and ðgμν þ κRμνÞ, Rμν is the Ricci tensor
constructed from the connection Γμ

αβ, and SM denotes the
matter action depending on the metric gμν and the matter
field ΨM. That is, the matter field is assumed to minimally
couple to the metric tensor, gμν; i.e., the matter action
depends on gμν, independent from the connection Γ.
This theory also has a dimensionless constant λ and the
Eddington parameter κ, which are related to the cosmo-
logical constant as Λ ¼ ðλ − 1Þ=κ. Since we especially
focus on the asymptotically flat solutions (Λ ¼ 0) in this
paper, hereafter we take λ ¼ 1. On the other hand, κ is
constrained from observations of the Solar System, big
bang nucleosynthesis, and the existence of neutron stars

[21,25,35,36]. The existence of neutron stars can give us
a strong constraint on κ, i.e., jκj≲ 1 m5 kg−1 s−2 [25].
Recently, the possibility of constraining κ with the terres-
trial measurements of the neutron skin thickness of 208Pb
and the astronomical observations of the radius of the
0.5M⊙ neutron star has also been suggested [30]. In this
paper, we adopt a normalized coupling constant such as
8πκεs, where εs denotes the saturation density, i.e.,
εs ¼ 2.68 × 1014 g=cm3. We remark that 8πκεs becomes
a dimensionless parameter.
EiBI is characterized by two independent fields, i.e., the

physical metric gμν and the connection Γ
μ
αβ. So, varying the

action with respect to Γμ
αβ and gμν, one can obtain the field

equations for λ ¼ 1:

qμν ¼ gμν þ κRμν; ð2Þ
ffiffiffiffiffiffi
−q

p
qμν ¼ ffiffiffiffiffiffi

−g
p

gμν − 8πκ
ffiffiffiffiffiffi
−g

p
Tμν; ð3Þ

where q is a determinant of qμν and qμν is an auxiliary
metric associated with the connection as Γμ

αβ ¼
qμσðqσα;β þ qσβ;α − qαβ;σÞ=2. Tμν denotes the energy-
momentum tensor, which is given by Tμν ¼ ðδSM=δgμνÞ=ffiffiffiffiffiffi−gp

. Equation (3) shows that the auxiliary metric qμν
becomes equivalent to the physical metric gμν if Tμν ¼ 0.
That is, EiBI without matter reduces to general relativity in
vacuum [21]. In addition to the above field equations, the
energy-momentum tensor should satisfy the conservation
law, i.e., ∇μTμν ¼ 0, where the covariant derivative ∇μ is
defined by gμν. As far as we know, unfortunately, there is no
explicit proof that the conservation law of ∇μTμν ¼ 0 is
directly derived from field equations (2) and (3). However,
since the matter field is minimally coupled to the metric gμν,
the conservation law might be obtained as in Ref. [37] if
the argument in [37] is applicable even for a bimetric theory
like EiBI.
Now, we consider the neutron star models in EiBI.

In general, magnetized neutron stars could deform due to
nonspherically symmetric magnetic pressure. However, the
magnetic energy in the neutron star is much smaller than
the gravitational binding energy even for a magnetar, which
is a strongly magnetized neutron star. That is, the defor-
mation due to the magnetic pressure is quite small and
the shape of the star is almost spherically symmetric.
Thus, in this paper, we neglect the stellar deformation
induced by the existence of a magnetic field. Under such
an assumption, the equilibrium stellar model can be
determined as a solution of Tolman-Oppenheimer-Volkov
equations in EiBI [25–30]. The metric describing the stellar
models is given by

gμνdxμdxν ¼ −eνðrÞdt2 þ eλðrÞdr2 þ fðrÞdΩ2; ð4Þ

qμνdxμdxν ¼ −eβðrÞdt2 þ eαðrÞdr2 þ r2dΩ2; ð5Þ
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where dΩ2 ¼ dθ2 þ sin2θdϕ2. In this paper, we consider
stellar models composed of perfect fluid, i.e., Tμν ¼
ðεþ pÞuμuν þ pgμν, where ε, p, and uμ are the energy
density, the pressure, and the four velocity of matter given
by uμ ¼ ðe−ν=2; 0; 0; 0Þ. Then, one can show that abf ¼ r2

from Eq. (3), where a and b are given by a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8πκε

p
and b ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 8πκp
p

, respectively [30]. In addition to the
Tolman-Oppenheimer-Volkov equations, one needs to
prepare the EOS for neutron star matter to construct the
stellar models. In particular, we adopt the Friedman-
Pandharipande-Skyrme (FPS) [38] and SLy4 EOSs [39],
which are based on the Skyrme-type effective interaction
(see also [40] for the adopted EOSs). Figure 1 shows the
neutron star models constructed with the FPS EOS, where
the left panel corresponds to the stellar mass as a function
of the central density normalized by εs, while the right
panel corresponds to the stellar mass as a function of the
stellar radius. In this figure, the solid line denotes the results
in general relativity and the other lines denote the results in
EiBI with various values of 8πκεs. From this figure, one
can easily observe that the mass and the radius of neutron
stars depend strongly on the coupling constant in EiBI,
even if the EOS of neutron star matter is fixed. In fact, the
stellar radii of 1.4M⊙ neutron stars in EiBI become 9.3%
smaller for 8πκεs ¼ −0.02, 7.6% larger for 8πκεs ¼ 0.02,
and 16.5% larger for 8πκεs ¼ 0.05 compared to that in
general relativity.
On such a neutron star model, we consider an axisym-

metric magnetic field generated by a four currency Jμ,
adopting an ideal magnetohydrodynamics approximation.
The electromagnetic field is governed by the Maxwell
equations with the physical metric gμν,

F½μν;α� ¼ 0; ð6Þ

Fμν
;ν ¼ 4πJμ; ð7Þ

where Fμν is the Faraday tensor and the covariant derivative
would be calculated with the physical metric gμν.

Equation (6) automatically holds by introducing a vector
potential, Aμ, associated with Fμν as Fμν ¼ Aν;μ − Aμ;ν. In
order to determine the geometry of the magnetic field, one
also needs the equations of motion in addition to Eq. (7),
which is obtained by projecting Tμν

;ν ¼ 0 onto the hyper-
surface normal to uμ. With the ideal magnetohydrodynam-
ics approximation, the equations of motion becomes

ðεþ pÞuμ;νuν þ p;μ þ uμuνp;ν ¼ FμνJν: ð8Þ

Now, assuming the appropriate gauge condition, Aμ can be
described as Aμ ¼ ð0; Ar; 0; AϕÞ. In general, Aϕ can be
expanded, such that

Aϕðr; θÞ ¼ alðrÞ sin θ∂θPlðcos θÞ; ð9Þ

where Plðcos θÞ is the Legendre polynomial of order l.
Furthermore, we focus particularly on the dipole magnetic
field, i.e., l ¼ 1, because the dipole fields could be
dominant in the neutron stars. Then, in the same way as
in Refs. [41,42], one can derive the equation to determine
the vector potential a1:

a001 þ
�
ν0

2
−
λ0

2

�
a01 þ

�
ζ2e−ν −

2

f

�
eλa1 ¼ −4πeλj1; ð10Þ

where the prime denotes partial derivative with respect
to r, j1 ¼ c0fðεþ pÞ, and c0 is constant. We remark that
the constant ζ in Eq. (10) is associated with the radial
component of the vector potential, i.e., Ar ¼
ζe−ν=2þλ=2alPl. The procedure on how to derive
Eq. (10) is detailed in the Appendix. Consequently, since
the magnetic field can be given by Bμ ¼ εμναβuνFαβ=2, the
components of the magnetic field Bμ are expressed as

Br ¼
2a1
f

eλ=2 cos θ; ð11Þ

Bθ ¼ −a01e−λ=2 sin θ; ð12Þ

FIG. 1 (color online). Neutron star models in EiBI with FPS EOS. The left panel corresponds to the stellar mass as a function of the
central density normalized by the saturation density, while the right panel corresponds to the stellar mass as a function of the stellar
radius. The solid line denotes the result in general relativity (κ ¼ 0) and the other lines denote the results in EiBI with various normalized
coupling constant 8πκεs.
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Bϕ ¼ −ζa1e−ν=2sin2θ; ð13Þ

where εμναβ denotes the totally antisymmetric tensor and
εtrθϕ ¼ ffiffiffiffiffiffi−gp

. From these expressions, one can see that the
constant ζ corresponds to the strength of the toroidal
magnetic field. Additionally, the tetrad components of
the magnetic fields are given by

B½r� ¼ 2a1f−1 cos θ; ð14Þ

B½θ� ¼ −a01f−1=2e−λ=2 sin θ; ð15Þ

B½ϕ� ¼ −ζa1f−1=2e−ν=2 sin θ: ð16Þ

Since we consider that the exterior region of the star
is in vacuum, as mentioned before, the spacetime outside
the star becomes the same as that in general relativity,
which can be described as the Schwarzschild metric. In
such a spacetime, the poloidal magnetic field (ζ ¼ 0) is
analytically given by

aðexÞ1 ¼ −
3μbr2

8M3

�
ln

�
1 −

2M
r

�
þ 2M

r
þ 2M2

r2

�
; ð17Þ

where μb is the magnetic dipole moment observed at
infinity [43]. Thus, at the stellar surface, the interior
solution determined from Eq. (10) should be connected
to the exterior solution [Eq. (17)] in such a way that a1 and
a01 become continuous. In practice, from Eq. (10), one can
show that the behavior of a1 in the vicinity of the stellar
center is expressed as a1 ¼ α0r2 þOðr4Þ, where α0 is an
arbitrary constant. So, the arbitrary constants α0 and c0,
which is a constant in the four currency j1, are determined
so that a1 and a01 should be continuous at the stellar surface.

III. NUMERICAL RESULTS

The magnetic field strength B is calculated by B ¼
ðBμBνgμνÞ1=2, which can be expressed as

B ¼ f−1½4a21cos2θ þ a021 fe
−λsin2θ þ ζ2a21fe

−νsin2θ�1=2:
ð18Þ

Thus, one can show that the magnetic field strength at the
stellar center is B0 ¼ 2α0a0b0, where a0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8πκε0

p
and b0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8πκp0

p
, while ε0 and p0 denote the central

values of ε and p. In the limit of κ ¼ 0, this expression
reduces to that in general relativity [44]. The concrete
structure of magnetic fields is discussed below, where we
separately examine pure poloidal magnetic fields (ζ ¼ 0) in
Sec. III A and mixed magnetic fields (ζ ≠ 0) in Sec. III B.

A. Pure poloidal magnetic fields (ζ ¼ 0)

First, one can show that the magnetic distribution is scaled
by the magnetic field strength at the stellar surface of the
poles (θ ¼ 0), Bp, if the stellar model is fixed. That is, the
distributions of B½i�=Bp for i ¼ r, θ, and ϕ are independent
from Bp for each stellar model. In Fig. 2, we show the
distributions of B½r�=Bp on the symmetry axis (θ ¼ 0) in the
left panel and B½θ�=Bp on the equatorial plane (θ ¼ π=2) in
the right panel for the stellar models with M ¼ 1.4M⊙
contractedwithFPSEOS,where the solid line corresponds to
the result in general relativity and the other lines correspond
to the results in EiBI with various values of 8πκεs. From this
figure, one can observe that the magnetic distributions in
EiBI are qualitatively the same as that in general relativity.
In fact, the deviation between the results in general relativity
and in EiBI is not much. In Fig. 3, we show the relative
deviation ofB½r�=Bp in EiBI from that in general relativity for
the stellar models with M ¼ 1.4M⊙ constructed with FPS
EOS. From this figure, we find that the deviation from
general relativity is, at most, 10% from the coupling constant
in EiBI adopted in this paper. In particular, the magnetic
distribution in the crust region depends weakly on the
coupling constant in EiBI, which is less than 0.5%. That
is, apart from the gravitational theory, one might be able to
discuss themagnetic properties in the crust region of neutron
stars. In addition, we show the magnetic configurations on

FIG. 2 (color online). For the stellar models withM ¼ 1.4M⊙ for FPS EOS, the tetrad components of the pure poloidal magnetic fields
are plotted as a function of r=R, where the left and right panels correspond to the radial component on the symmetry axis (θ ¼ 0) and the
θ component on the equatorial plane (θ ¼ π=2), respectively. The both components are normalized by Bp, which is the magnetic field
strength at the stellar surface of the poles. The solid line corresponds to the result in general relativity, while the broken and dotted lines
correspond to the results in EiBI with various values of 8πκεs. The vertical lines denote the position of the stellar surface.
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the meridional plane for the stellar models withM ¼ 1.4M⊙
for FPSEOS inFig. 4,where themiddle panel corresponds to
that in general relativity (κ ¼ 0), while the left and right
panels correspond to those in EiBI with 8πκεs ¼ −0.02 and
0.05. The magnetic field strength is normalized by the

magnetic dimple moment. As shown in Fig. 2, the magnetic
configurations in EiBI are quite similar to that in general
relativity. As with Fig. 2, we also show the magnetic
distributions for the stellar models with M ¼ 1.4M⊙ con-
structed with SLy4 EOS in Fig. 5. Comparing Figs. 2 and 5,
we find that the dependence of magnetic distribution on the
coupling constant in EiBI is comparable to that on EOS for
neutron star matter.
Moreover, the magnetic field strength at the stellar

center can be also scaled by Bp for each stellar model,
such that

B0 ¼ βBp; ð19Þ

where β is a proportionality constant [44]. In Fig. 6, we
show the proportionality factor β as a function of the stellar
mass with various values of the coupling constant in EiBI,
where the left and right panels correspond to the results for
the stellar models constructed with FPS and SLy4 EOSs,
respectively. From this figure, one can see that the value of
β is almost independent of the adopted EOS for neutron star
matter, which is ∼5. Additionally, for the stellar models
whose masses are smaller than a critical value depending

FIG. 3 (color online). Relative deviation of B½r�=Bp in EiBI
from that in general relativity for the stellar models with M ¼
1.4M⊙ constructed with FPS EOS, which corresponds to the left
panel in Fig. 2. The labels in the figure denote the values of the
coupling constant in EiBI.

FIG. 4. Magnetic configurations on the meridional plane for the stellar models with M ¼ 1.4M⊙ for FPS EOS in general relativity
(middle panel) and in EiBI with 8πκεs ¼ −0.02 (left panel) and 0.05 (right panel). The magnetic field strength is normalized by the
magnetic dipole moment μb.

FIG. 5 (color online). Similar to Fig. 2, but for the stellar models constructed with SLy4 EOS.
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on the adopted EOS, β for the fixed stellar mass is almost
proportional to the coupling constant in EiBI, at least in the
range adopted in this paper. This statement is clear from
Fig. 7, where the proportionality factor in Eq. (19) for the
fixed stellar mass is shown as a function of the coupling
constant in EiBI. From this figure, such a critical stellar
mass would be around 1.2M⊙ for FPS EOS and 1.4M⊙ for
SLy4 EOS. Furthermore, from this figure, we find that β for
each coupling constant 8πκεs depends weakly on the EOS
for neutron star matter if the mass of the neutron star is very
low, for instance M ≃M⊙.

B. Mixed magnetic fields (ζ ≠ 0)

As in the case of the pure poloidal magnetic fields shown
in the previous subsection, the distribution of the mixed
magnetic fields is also scaled by Bp, and the profiles of
B½i�=Bp for i ¼ r, θ, and ϕ are independent of the strength
of Bp for each stellar model. For reference, we first show
the magnetic distributions in general relativity for the stellar
models with M ¼ 1.4M⊙ constructed with FPS EOS in
Fig. 8. In this figure, the left, middle, and right panels
correspond to B½r�=Bp on the symmetry axis (θ ¼ 0),

FIG. 6 (color online). The proportionality factor β for the stellar models with various values of coupling constant in EiBI are shown as
a function of the stellar mass, where the left and right panels correspond to the results for FPS and SLy4 EOSs, respectively. The labels in
the figure denote the values of the coupling constant in EiBI.

FIG. 7 (color online). The proportionality factor β as a function of the coupling constant in EiBI for the fixed stellar mass, where the
left and right panels correspond to the results for FPS and SLy4 EOSs, respectively.

FIG. 8 (color online). For the stellar models in general relativity with M ¼ 1.4M⊙ constructed with FPS EOS, the tetrad components
of the mixed magnetic fields normalized by Bp are plotted as a function of r=R, where the left, middle, and right panels are B½r�=Bp on
the symmetry axis (θ ¼ 0), B½θ�=Bp on the equatorial plane (θ ¼ π=2), and B½ϕ�=Bp on the equatorial plane, respectively. The different
lines in the figure correspond to the magnetic field distributions with different values of ζR, and the labels in the figure denote the value
of ζR.
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B½θ�=Bp on the equatorial plane (θ ¼ π=2), and B½ϕ�=Bp on
the equatorial plane, respectively. The solid line denotes the
magnetic distribution for the pure poloidal field, while the
other lines denote those for the mixed fields. As mentioned
before, the toroidal magnetic component is characterized
by the parameter ζ, as in Eq. (16). In Fig. 8, we show the
magnetic distributions with the variable values of ζ nor-
malized by 1=R because ζ is a parameter with the
dimension of inverse of length and ζR then becomes a
dimensionless parameter. From this figure, one can observe
that the distributions of B½r�=Bp and B½θ�=Bp are also
changed due to the existence of the toroidal magnetic
field, where the central field strengths of B½r�=Bp and
B½θ�=Bp decrease with the value of ζ. This result suggests
the existence of the maximum of ζ where the central values
of B½r�=Bp and B½θ�=Bp become zero. Hereafter, such a
maximum of ζ denotes ζmax, and ζmaxR ¼ 3.30 for the case
of the neutron star model in Fig. 8. In practice, with ζ more
than ζmax, the direction of the magnetic field can be
opposite inside the star [41,42]. Additionally, from
Fig. 8, one can see that the position where jB½ϕ�=Bpj
becomes maximum is shifting outward with the value
of ζ.

On the other hand, the magnetic distributions of B½r�=Bp,
B½θ�=Bp, and B½ϕ�=Bp for the stellar models in EiBI with
various coupling constants are shown in Fig. 9, where the
upper, middle, and lower panels correspond to the results
with 8πκεs ¼ −0.02, 0.02, and 0.05, respectively.
Comparing this figure with Fig. 8, one can see that the
profiles of the magnetic distributions in EiBI are basically
similar to that of general relativity, where the distributions
of B½r�=Bp and B½θ�=Bp depend strongly on that of B½ϕ�=Bp.
We also find that, as the coupling constant becomes
smaller, the magnetic distributions are more sensitive to
the value of ζR. For example, for ζR ¼ 3, one can see that
B½r�=Bp and jB½θ�=Bpjwith 8πκεs ¼ −0.02 in the vicinity of
the stellar center become smaller than in general relativity.
As a result, it is expected that the value of ζmaxR for the
stellar model with a smaller coupling constant in EiBI
could be smaller. In fact, we find that ζmaxR ¼ 3.07, 3.30,
3.41, and 3.51 for the stellar models with M ¼ 1.4M⊙
constructed with FPS EOS with 8πκεs ¼ −0.02, 0, 0.02,
and 0.05, respectively.
Furthermore, in Fig. 10, we show the values of ζmaxR

for the stellar models with various stellar masses from
M ¼ M⊙ up to the maximummass, where the left and right

FIG. 9 (color online). Similar to Fig. 8, but in EiBI with various coupling constants. Upper, middle, and lower panels correspond to the
results in EiBI with 8πκεs ¼ −0.02, 0.02, and 0.05, respectively.
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panels correspond to the results for the stellar models
constructed with FPS and SLy4 EOSs, respectively, and the
labels in the figure denote the values of the coupling
constant in EiBI. From this figure, one can see that the
value of ζmaxR for the low-mass neutron star model is
almost independent of not only the EOS but also the
coupling constant in EiBI. On the other hand, the magnetic
fields for the stellar models with canonical mass are more or
less dependent on both the EOS and the coupling constant
in EiBI. That is, an uncertainty due to the EOS for neutron
star matter is degenerate into that due to the coupling
constant in EiBI. Thus, only the measurement of the
magnetic properties for the neutron star with canonical
mass might be insufficient to observationally distinguish
EiBI from general relativity. In any case, the additional
observations of the relativistic objects must become impor-
tant in probing the gravitational theory in the strong field
regime.

IV. CONCLUSION

We consider the magnetic fields in the neutron stars in
EiBI, where we especially focus on the dipole magnetic
fields because such fields must be dominant in old neutron
stars. To construct magnetic fields inside the neutron star,
we derive the relativistic Grad-Shafranov equation in EiBI.
Since the spacetime in vacuum in EiBI is equivalent to that
in general relativity, i.e., the Schwarzschild spacetime, the
magnetic field in EiBI outside the star is also equivalent to
that in general relativity. In such a way that the interior
magnetic fields should be connected to the exterior sol-
ution, the structure of magnetic fields is determined. Then,
we find that the magnetic geometry inside the neutron stars
in EiBI is qualitatively similar to that of general relativity.
The deviation of magnetic fields in EiBI from that in
general relativity is not much, which is almost comparable
to the uncertainty due to the EOS for neutron star matter.
Therefore, it might be difficult to distinguish EiBI from
general relativity by only using the observations of the
magnetic properties in neutron stars. However, the mag-
netic fields in the crust region for the neutron star with

canonical mass depend weakly on the coupling constant in
EiBI, while the crust properties such as the crust thickness
depend strongly on the EOS for neutron star matter [9].
That is, independent from gravitational theory, one might
be able to see the information about the EOS in the crust
region through the observations associated with the phe-
nomena in the crust region, such as the stellar oscillations.
In any case, there are many uncertainties regarding mag-
netic properties even in general relativity, such as the
magnetic geometry and the current distribution supporting
the fields, although we consider only dipole magnetic fields
in this paper. Compared to such uncertainties, the imprint of
EiBI gravity on magnetic fields is weak, which suggests
that the magnetic field could be a poor probe for gravita-
tional theories.
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APPENDIX: DERIVATION OF EQ. (10)

According to Refs. [41,42], we briefly show in this
appendix how to derive Eq. (10), which is the equation for
determining the distribution of the magnetic field inside the
star. One can obtain the following equations from Eq. (7):

4πJr ¼ −
1

f
e−λ

�
Ar;θθ þ Ar;θ

cos θ
sin θ

�
; ðA1Þ

4πJθ ¼ 1

f
e−λ

�
Ar;θr þ Ar;θ

�
ν0

2
−
λ0

2

��
; ðA2Þ

4πJϕsin2θ ¼ −
1

f
e−λ

�
Aϕ;rr þ Aϕ;r

�
ν0

2
−
λ0

2

��
−

1

f2
Aϕ;θθ

þ 1

f2
cos θ
sin θ

Aϕ;θ; ðA3Þ

while from Eq. (8),

FIG. 10 (color online). Maximum value of ζ allowed for the stellar models with various coupling constants in EiBI are shown as a
function of the stellar mass, where the left and right panels correspond to the results for FPS and SLy4 EOSs, respectively. The labels in
the figure denote the values of the coupling constant in EiBI.
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−Ar;θJθ þ Aϕ;rJϕ ¼ ðεþ pÞ ν
0

2
þ p0; ðA4Þ

Ar;θJr þ Aϕ;θJϕ ¼ 0; ðA5Þ

Aϕ;rJr þ Aϕ;θJθ ¼ 0. ðA6Þ

Equation (A6) with Eqs. (A1) and (A2) can be written as

−η;θAϕ;r þ η;rAϕ;θ ¼ 0; ðA7Þ

where η≡ eν=2−λ=2Ar;θ sin θ. Thus, η should depend only
on Aϕ, as η ¼ ζAϕ with a constant ζ. As a result, Ar is
expressed as Ar ¼ ζe−ν=2þλ=2alPl if Aϕ is expanded as
in Eq. (9).
On the other hand, Eqs. (A4) and (A5) become

χ;r ¼ Aϕ;rJ ; ðA8Þ

χ;θ ¼ Aϕ;θJ ; ðA9Þ

where χ and J are defined as

χ;r ¼ ðεþ pÞ ν
0

2
þ p0; ðA10Þ

J ¼ 1

fðεþ pÞsin2θ
�
Jϕ −

ζ2

4π
e−νAϕ

�
: ðA11Þ

Owing to the relation χ;rθ ¼ χ;θr with Eqs. (A8) and (A9),
one can obtain

Aϕ;rJ ;θ − Aϕ;θJ ;r ¼ 0: ðA12Þ

Therefore, J also depends only on Aϕ, i.e., J ¼ −c0−
c1Aϕ, where c0 and c1 are constants. That is,

Jϕ ¼ ζ2

4π
e−νAϕ − ðc0 þ c1AϕÞfðεþ pÞsin2θ: ðA13Þ

Finally, substituting Eqs. (9) and (A13) into Eq. (A3), one
can obtain Eq. (10), which describes the function of a1. We
remark that the term c1 in Eq. (A13) is neglected because
we focus on the dipole (l ¼ 1) magnetic distribution in this
paper and the term c1 can contribute as the multipole higher
than l ¼ 3 [41,42].
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