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We analyze the possible effects arising from the Planck scale regime upon the interference pattern of two
noninteracting Bose-Einstein condensates. We start with the analysis of the free expansion of a condensate,
and have taken into account the effects produced by a deformed dispersion relation, suggested in several
quantum-gravity models. The analysis of the condensate free expansion, in particular, the modified free
velocity expansion, suggests in a natural way, a modified uncertainty principle that could lead to new
phenomenological implications related to the quantum structure of space-time. Finally, we analyze the
corresponding separation between the interference fringes after the two condensates overlap, in order to
explore the sensitivity of the system to possible signals caused by the Planck scale regime.
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I. INTRODUCTION

Recently, the use of many-body systems as theoretical
tools in searching some possible Planck scale manifesta-
tions has become a very interesting line of research [1–6].
In particular, due to its quantum properties, and also to its
high experimental precision, Bose-Einstein condensates
become an excellent tool in the search for traces from
Planck-scale physics, and has produced several interesting
works in this direction [4–11], and references therein.
First of all, in Refs. [1,2], for instance, it was argued that

a modified uncertainty principle could be used to explore
some properties of the center of mass motion of macro-
scopic bodies, which could lead to observable manifes-
tations of Planck scale physics in low energy earth-based
experiments. However, in Ref. [3], it was suggested that the
extrapolation of Planck scale quantization to macroscopic
bodies is incorrect, due to the fact that these possible
manifestations would be more weak for macroscopic
bodies than for its constituents. This last conclusion comes
from the fact that the corrections caused by the quantum
structure of space-time, on the properties associated with
the center of mass motion of the macroscopic body, seems
to be suppressed by the number of particles N, composing
the system. In other words, as it was argued in Ref. [3], this
simple analysis suggests that the possible signals arising

from Planck scale quantization are more weak for macro-
scopic bodies than for its own constituents.
Nevertheless, the argument exposed in Ref. [3] seems to

be not a generic criterion, at least for some properties
associated with Bose-Einstein condensates. For instance, in
Refs. [5,6] it was demonstrated that the corrections arising
from the quantum structure of space-time, characterized by
a deformed dispersion relation, on some relevant properties
associated with a Bose-Einstein condensate scale as a
nontrivial function of the number of particles.
As it wasmentioned, the use of Bose-Einstein condensates

opens an alternative scenario in searching some possible
Planck scale signals, through a deformed dispersion relation
in low-energy earth-based experiments. In fact, the analysis
of some relevant properties associated with a homogeneous
condensate, i.e., a condensate in a box, for instance, the
corresponding ground state energy, and consequently the
pressure and the speed of sound [4], present corrections
caused by the quantum structure of space-time, which scales
as a nontrivial function of the number of particles.
Additionally, it is quite remarkable that the inclusion of a
trapping potential improves the sensitivity to Planck scale
signals, compared to a condensate in a box [6]. These facts
suggest that the properties associated with many-body
systems, in particular some properties associated with a
Bose-Einstein condensate could be used, in principle, to
obtain representative bounds on the deformation parameters
[4,8–10] or to explore the sensitivity for these systems to
Planck scale signals [5–7,12]. Thus, it is quite interesting to
explore the sensitivity to Planck scale signals on certain
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properties of the condensate, in which the corrections caused
by the quantum structure of space-time can be amplified,
instead of being suppressed.
On another matter, it is generally accepted that the

dispersion relation between the energy ϵ and the modulus
of momentum p of microscopic particles should be modi-
fied due to the quantum structure of space-time [13–16].
Such modifications are a general feature of quantum-

gravity models, for instance, loop quantum gravity [17,18]
or noncommutative geometries [19–21]. Further, it is also of
great relevance in the general context of Lorentz-symmetry
breaking [22]. Quite generally, a deformed dispersion
relation can be written in ordinary units as follows:

ϵ2 ¼ p2c2 þm2c4 þ fðp;m; c;MpÞ; ð1Þ
where ϵ is the corresponding single particle energy, p the
momentum, m the mass of the particle, c the speed of light
and fðp;m; c;MpÞ a model dependent function of the
Planck mass Mpð≃2.18 × 10−8 KgÞ.
We must mention that if we take the limit where the

Planck mass is removed then we recover the usual
relativistic form of the dispersion relation, assuming also
that mc2 is still the rest energy. In other words, the function
fðp;m; c;MpÞ → 0 when the momentum p → 0 and the
Planck mass Mp → ∞ [16].
Initially, attempts to constrain the functional form of the

function fðp;m; c;MpÞ were in analyses of astrophysical
context where particles are in the ultrarelativistic regime,
p ≫ mc [23].
In this limit the deformation in the dispersion relation

can be parametrized quite generally, regardless of the
explicit model under study. Due to the extremely large
value of Mp a series expansion of the function
fðp;m; c;MpÞ in inverse powers of the Planck mass might
prove useful along with the leading term in 1=Mp as a first
approximation. Thus, according to [15,16] the function
fðp;m; c;MpÞ takes the following form:

fðp;m; c;MpÞ ≈
η1

2Mp
p2 þ η2

2Mp
mcpþ η3

2Mp
m2c2; ð2Þ

where η1; η2; η3 are real parameters associated with the
expansion. As mentioned above, analysis in astrophysical
data could be sensitive to the leading order deformation
with jη1j≲ 1 [23–27].
Finally, the form of the deformed dispersion relation was

recently constrained in the nonrelativistic limit p ≪ mc
[15,16] based on ultraprecise cold-atom-recoil-frequency
experiments. In this scenario the form of the deformed
dispersion relation can be expressed in ordinary units as
follows [15,16]:

ϵ≃mc2 þ p2

2m
þ 1

2Mp

�
ξ1mcpþ ξ2p2 þ ξ3

p3

mc

�
: ð3Þ

The three parameters ξ1, ξ2, and ξ3, are model dependent
[14,15], and should take positive or negative values close
to 1. There is some evidence within the formalism of
loop quantum gravity [15,16,28,29] that indicates a
nonzero value for the three parameters, ξ1; ξ2; ξ3, and
particularly [28,30] that produces a linear-momentum
term in the nonrelativistic limit. Unfortunately, as it is
usual in a possible quantum gravity phenomenology, the
possible bounds associated with the deformation param-
eters open a wide range of possible magnitudes, which is
translated to a significant challenge.
Indeed, the most difficult aspect in searching experi-

mental hints relevant for the quantum-gravity problem is
the smallness of the involved effects [31,32]. If these kinds
of deformations are characterized by some Planck scale,
then the quantum gravity effects become very small for a
single particle [14,15]. It is precisely in this direction that
some many-body properties associated with Bose-Einstein
condensates could be helpful to improve the sensitivity of
possible effects caused by the quantum structure of
space-time.
It is noteworthy to mention that one of the more

interesting phenomena related to Bose-Einstein conden-
sates is the interference pattern when two condensates
overlap [33,34]. The interference pattern is a manifes-
tation of the wave (quantum) nature of these many-body
systems, and could be produced even when the two
condensates are initially completely decoupled. Then,
after switching off the corresponding traps, this allows
the systems to expand, overlap, and eventually produce
interference fringes. Such an interference pattern was
observed in the experiment mentioned in Ref. [34],
among others, where interference fringes with a period
of ∼15 × 10−6 m were observed after switching off the
trapping potential and letting the condensates expand for
40 ms and overlap. Indeed, several experiments asso-
ciated with the interference pattern of condensates in
different situations has been made, see for instance
[35–37] and references therein. Let us remark that when
the trapping potential is turned off, the free velocity
expansion of the cloud corresponds, approximately, to
the velocity predicted by the Heisenberg’s uncertainty
principle [33,34].
In this aim, we explore the free velocity expansion of the

condensate and consequently, the corresponding interfer-
ence pattern when two of these systems overlap, assuming
that the single particle energy spectrum is given by Eq. (3),
taking into account only the leading order deformation, i.e.,
setting ξ2 ¼ ξ3 ¼ 0. Additionally, we are not interested
here in the relative phase between the two condensates,
which is a nontrivial topic and also deserves deeper
analysis. Thus, we restrict ourselves on the analysis of
the free expansion of the condensate together with the
separation of the interference fringes when two of these
systems overlap.
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II. ANOMALOUS DISPERSION RELATION AND
FREE EXPANSION OF THE CONDENSATE

In order to explore the properties of the condensate under
free expansion, let us propose the following modified
energy associated with the system:

EðψÞ ¼
Z

dr

�
ℏ2

2m
j∇ψðrÞj2 þ VðrÞjψðrÞj2

þ 1

2
U0jψðrÞj4 þ ℏαjψðrÞj

ffiffiffiffiffiffiffiffiffi
j∇j2

q
jψðrÞj

�
; ð4Þ

where ψ is the wave function of the condensate or the so-
called order parameter, VðrÞ ¼ mω2

0r
2=2 is the external

potential, which we will assume for simplicity as an
isotropic harmonic oscillator. The term U0 ¼ 4πℏ2

m a depicts
the interatomic potential, being a the s-wave scattering
length i.e., only two-body interactions are taken into
account. Notice also that we have included in the total
energy of the cloud, the leading order modification in the
deformed dispersion relation (3), through the linear oper-
ator j

ffiffiffiffiffiffiffiffiffi
j∇j2

p
j, as in Ref. [6], where α ¼ ξ1

mc
2Mp

, assuming as

mentioned above that ξ2 ¼ ξ3 ¼ 0. If we set α ¼ 0, we
recover the usual expression associated with the total
energy of the cloud [33].
An accurate expression for the total energy of the cloud can

be obtained employing, as usual, an ansatz of the form [33]

ψðrÞ ¼ N1=2

π3=4R3=2 expð−r2=2R2Þ expðiϕðrÞÞ; ð5Þ

where N is the corresponding number of particles and R is a
characteristic length, which is interpreted as the radius of the
system.
Notice that Eq. (5) corresponds to the solution of the

Schrödinger equation associated with noninteracting sys-
tems, where the phase ϕ can be associated with particle
currents [33]. Thus, by inserting the ansatz (5) in the energy
functional (4) we are able to obtain the corresponding
energy,

E ¼ EF þ ER; ð6Þ
where EF is the kinetic energy associated with particle
currents,

EF ¼ ℏ2

2m

Z
drjψðrÞj2ð∇ϕÞ2: ð7Þ

Additionally, ER can be interpreted as the energy associated
with an effective potential, which is equal to the total
energy of the condensate when the phase ϕ does not vary in
space. The term ER contains the contributions of the ground
state energy (E0), the harmonic oscillator potential (EP),
and the contributions due to the interactions among the

particles within the condensate ðEIÞ. Notice that we have
inserted also the contribution Eα caused by the deformation
parameter α:

ER ¼ E0 þ EP þ EI þ Eα; ð8Þ

where

E0 ¼
ℏ2

2m

Z
dr

�
djψðrÞj
dr

�
2

; ð9Þ

EP ¼ 1

2
mω2

0

Z
drr2jψðrÞj2; ð10Þ

EI ¼
1

2
U0

Z
drjψðrÞj4; ð11Þ

Eα ¼ ℏα
Z

dr

�
djψðrÞj2

dr

�
: ð12Þ

Consequently, ER can be written as follows:

ER ¼ 3

4

ℏ2

mR2
N þ 3

4
mω0

2R2N

þ U0

2ð2πÞ3=2R3
N2 − α

2ℏffiffiffi
π

p
R
N; ð13Þ

where we have used the trial function (5) together with
Eqs. (9)–(12) in order to obtain the above expression.
The equilibrium radius of the system, let us say R0, can

be obtained by minimizing the total energy (6).
Additionally, the contribution of the kinetic energy (7) is
positive definite, and is zero when the phase ϕ is
constant [33].
However, when the radius R differs from its equilibrium

condition, after the external potential VðrÞ ¼ mω2
0r

2=2 is
turned off at, let us say t ¼ 0, there is a force that changes R
and produces an expansion of the cloud. In order to
determine an equation for the dynamics of the system,
we must deduce the corresponding kinetic energy EF in
function of time, through its dependence on the radius R.
Changing R from its initial value to a new value ~R amounts
to a uniform dilation of the system, since the new density
distribution jψðrÞj2 ¼ nðrÞ may be obtained from the old
one by changing the radial coordinate of each atom by a
factor ~R=R, see Ref. [33] for details. Thus, the velocity of a
particle can be expressed as follows:

vðrÞ ¼ r
_R
R
; ð14Þ

where the dot stands for derivative with respect to time.
Consequently, the kinetic energy ðEFÞ is given by
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EF ¼ mN
2R2

R
drnðrÞr2R
drnðrÞ

_R2; ð15Þ

where the ratio between the integrals is a mean-square
radius of the condensate [33].
Then, it is straightforward to obtain the kinetic

energy EF by using the ansatz Eq. (5), with the result
EF ¼ 3 _R2Nm=4. Moreover, assuming that the energy is
conserved at any time, we obtain the following energy
conservation condition associated with our system:

3m _R2

4
þ 3ℏ2

4mR2
þ U0

2ð2πÞ3=2R3
N − α

2ℏffiffiffi
π

p
R

¼ 3ℏ2

4mR2
0

þ U0

2ð2πÞ3=2R3
0

N − α
2ℏffiffiffi
π

p
R0

; ð16Þ

where R0 is the radius of the condensate at time t ¼ 0,
which is approximately equal to the oscillator length
aho ¼ ðℏ=mω0Þ1=2 in the noninteracting case. R is a
function of time which corresponds to the radius at time
t. Equation (16) must be solved numerically, even in the
case α ¼ 0. However, if we neglect interparticle inter-
actions, i.e., setting U0 ¼ 0 then, we are able to obtain an
analytical solution for the above equation, with the result

1

β2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2R2 þ 2ℏαffiffiffi

π
p R −

3ℏ2

4m

s

−
ℏαffiffiffi
π

p
β3

ln

� β2Rþ ℏαffiffi
π

p

β2R0 þ ℏαffiffi
π

p þ
�� β2Rþ ℏαffiffi

π
p

β2R0 þ ℏαffiffi
π

p

�2

− 1

�
1=2

�

¼
ffiffiffiffiffiffiffi
4

3m

r
t; ð17Þ

where we have defined

β2 ¼ 3ℏ2

4mR2
0

−
2ℏαffiffiffi
π

p
R0

: ð18Þ

A rough approximation for the modified width of the
packet which is valid for large expansion times and α ≪ 1
renders the following solution:

R2
αðtÞ ¼ R2

0 þ
�

ℏ2

m2R2
0

− α
8

3
ffiffiffi
π

p ℏ
mR0

�
t2 þ � � � ; ð19Þ

which also is equivalent when α ≪ 1 for Rα ≫ R0. If we set
α ¼ 0 then, we recover the usual solution [33]

R2ðtÞ ¼ R2
0 þ

�
ℏ

mR0

�
2

t2: ð20Þ

Notice that in the usual case, α ¼ 0, v0 ¼ ℏ
mR0

is defined
as the velocity expansion of the condensate, corresponding

to the velocity predicted by the Heisenberg’s uncertainty
principle for a particle confined within a distance R0 [33].
Thus, in the usual case α ¼ 0, the width of the cloud at time
t can be written in its usual form R2ðtÞ ¼ R2

0 þ ðv0tÞ2.
Here it is appropriate to analyze the role played by the

interactions among the components of the system compared
to the corrections caused by Planck scale physics. Notice
that Eq. (16) must be solved numerically when interactions
are taken into account even in the case α ¼ 0. However, the
asymptotic behavior for t → ∞ can be calculated by using
the energy conservation condition Eq. (16).
In this context, we obtain from the energy conservation

condition Eq. (16) that the final velocity, t→∞, is given by

ðv2∞Þα ≈
�

ℏ
mR0

�
2

þ 4
ffiffiffi
π

p
ℏ2Nffiffiffiffiffi

18
p

m2R3
0

a − α
8ℏ

3
ffiffiffi
π

p
mR0

; ð21Þ

if we set α ¼ 0 the usual result is recovered. Additionally,
in this scenario the initial radius R0 must be corrected due
to interactions. If we assume that the initial radius corre-
sponds to the result for an isotropic trap [33]

R0 ¼
�
2

π

�
1=10

�
Na
aho

�
1=5

aho; ð22Þ

then, when t → ∞ the system expands according to the
following expression:

�
RαðtÞ
R0

�
2

≈
�
2

3
ω2
0 − α

�
mω6

0

ℏ

�
1=5 1

ðNaÞ3=5
�
t2; ð23Þ

which is valid when interactions dominate the final
velocity. Consequently, when t → ∞, the condition to be
fulfilled for the contributions of Planck scale regime reads

ω0 ∼ 1031
�
m2

Na

�
3=4

; ð24Þ

assuming ξ1 ∼ 1. In this scenario, a mass of order 10−25 kg,
N ∼ 106 and a ∼ 10−6 m, lead to frequencies of order
ω0 ∼ 1010 Hz, i.e., 4 orders of magnitude bigger that
typical frequencies of MHz. Conversely, if ω0 ∼ 102 Hz
together with N ∼ 104 then, a ∼ 10−12 m. In other words if
the interactions dominate the final velocity then, higher
frequencies are required. In other case, for small frequen-
cies the systemmust evolve deeper in the linear regime, i.e.,
almost in the noninteracting case. However, the evolution
of the system under free expansion must be analyzed from
the numerical point of view at any time. This topic will be
presented elsewhere [38].
In the case when the interactions are neglected we are

able to define from Eq. (19), the square modified velocity
expansion ðvα0Þ2 as follows:
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ðvα0Þ2 ¼
ℏ2

m2R2
0

− α
8

3
ffiffiffi
π

p ℏ
mR0

; ð25Þ

which is well defined, since the deformation parameter α
has dimensions of velocity. The modification caused by α is
quite small, then the following expansion is justified:

ðvα0Þ ¼
ℏ

mR0

−
4

3
ffiffiffi
π

p αþOðα2Þ: ð26Þ

Here, let us remark that the presence of the deformation
parameter α suggests a modification to the Heisenberg’s
uncertainty principle, which appears in a natural way, just
by looking up to the predicted modified velocity ðvα0Þ. If we
define a new deformation parameter α0 ¼ α 4m

3
ffiffi
π

p , together

with R0 ¼ x, then the resulting modified uncertainty
principle seems to be

ΔxΔp ≥
ℏ
2
− α0xþOðα2Þ: ð27Þ

Notice that the leading order modification obtained from
the analysis of the free expansion of the condensate is
apparently linear in the position which, as far as we know,
has not been reported in the literature, see for instance
Refs. [39–41] and references therein. If so, this fact would
open some new phenomenological implications concerning
the quantum structure of space-time. Additionally, it is
clear that the parameters ξ2 and ξ3 also contribute to the
functional form of the modified uncertainty principle. This
scenario is a nontrivial topic which also deserves deeper
investigation, which we will present in [38].
In order to obtain a bound for the deformation parameter

ξ1, let us appeal to the measurements of the kinetic energy
of an atom recoiling due to absorption of a photon using an
interferometric technique called “contrast interferometry,”
as it was reported in the experiment (Ref. [42]) for a sodium
Bose-Einstein condensate.
First, notice that the quantity h=m is related to the

velocity v0 by the de Broglie equation

h
m

¼ λv0; ð28Þ

where λ is the corresponding wavelength. Consequently,
the photon recoil frequency (ωr) can be related to the
velocity v0 through the quantity h=m as follows:

ωr ¼
ℏ
2m

k2; ð29Þ

where k is the wave vector of the photon absorbed
by the atom, whose value is accurately accessible [43].
In the experiment reported in Ref. [42], a measurement
of the photon recoil frequency leads to ωr ¼ 2π ×
24.9973 kHz ð1� 6.7 × 10−6Þ.

Finally, let us add that the form of the energy dispersion
relation (3), was constrained by using high precision atom-
recoil frequency measurements [15,16]. In such a scenario,
bounds for the deformation parameters of order ξ1 ∼
−1.8� 2.1 and −3.8×109< ξ2<1.5×109 were obtained.
However, in order to analyze an alternative procedure

compared to those used in Refs. [15,16], i.e., by using the
modified free expansion velocity of the condensate
Eq. (26), we are able to obtain the following modified
de Broglie equation associated with our system:

2πℏ
m

¼ R0

�
v0 − α

8

3
ffiffiffi
π

p
�
: ð30Þ

Consequently, the modified photon recoil frequency ωðαÞ
r is

given by

ωðαÞ
r ¼ R0

4π

�
v0 − α

8

3
ffiffiffi
π

p
�
k2; ð31Þ

where we have assumed that the wave vector ~k of
the photon absorbed by an atom is independent of the
deformation parameter α.
Therefore, the relative shift ðωðαÞ

r − ωrÞ=ωr ≡ ΔωðαÞ
r =ωr

caused by the deformation parameter α is given by the
following expression:

ΔωðαÞ
r

ωr
¼ α

4R0m

π3=2ℏ
: ð32Þ

The value ωr ¼ 2π × 24.9973 kHz ð1� 6.7 × 10−6Þ
obtained in Ref. [42] together with Eq. (32) allows us to
obtain a bound for the deformation parameter ξ1, under
typical laboratory conditions. In such a case we are able to
obtain an upper bound up to jξ1j ∼ 1, by using the relative
shift Eq. (32) through its dependence on the modified
velocity expansion Eq. (26), which is compatible with the
upper bound reported in Refs. [15,16].

III. INTERFERENCE PATTERN OF TWO
CONDENSATES AND PLANCK SCALE SIGNALS

Finally, let us analyze the interference pattern of two
overlapping Bose-Einstein condensates, in order to explore
some possible Planck-scale signals in such a phenomenon.
If there is coherence between two condensates, the state
may be described by a single condensate wave function,
which has the following form:

ψ1;2ðr; tÞ ¼
ffiffiffiffiffiffi
N1

p
ψ1ðr; tÞ þ

ffiffiffiffiffiffi
N2

p
ψ2ðr; tÞ; ð33Þ

where N1 and N2 correspond to the number of particles
within each cloud. After the free expansion, the two
condensates overlap and interfere. If the effects of
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interactions are neglected in the overlapping region, the
particle density at any point is given by

n1;2ðr; tÞ ¼ jψ1;2ðr; tÞj2 ¼ N1jψ1ðr; tÞj2 þ N2jψ2ðr; tÞj2
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p
Re½ψ1ðr; tÞψ�

2ðr; tÞ�: ð34Þ

The third right-hand term of expression (34) corresponds to
an interference pattern, caused by the overlap of the two
condensates. In order to obtain the corrections caused by
the deformation parameter α, on the properties of the
interference pattern of two condensates, let us appeal as
usual to the following time dependent condensate wave
functions [33]:

ψ1ðr; tÞ ¼
eiϕ1

ðπR2
αðtÞÞ3=4

exp

�
−
ðr − d=2Þ2ð1 − iℏt=mR2

0Þ
2R2

αðtÞ
�
;

ð35Þ

ψ2ðr; tÞ ¼
eiϕ2

ðπR2
αðtÞÞ3=4

exp
�
−
ðrþ d=2Þ2ð1 − iℏt=mR2

0Þ
2R2

αðtÞ
�
;

ð36Þ
where ϕ1 and ϕ2 are the initial phases for each condensate,
R0 is the initial radius of the cloud, which is approximately
equal to the oscillator length aho ¼ ðℏ=mω0Þ1=2.
Additionally, RαðtÞ is the width of a packet at time t,
given by Eq. (19). If we set α ¼ 0 in Eqs. (35) and (36),
then we recover the usual expressions [33].
The interference term in Eq. (34) thus is given by

Re½ψ1ðr; tÞψ�
2ðr; tÞ� ¼

e
− r2

R2αðtÞe
− d2

4R2αðtÞ

½πR2
αðtÞ�3=2

× cos

�
ℏ
m

r · d
R2
0R

2
αðtÞ

tþ ϕ

�
: ð37Þ

Notice that the phase shift ϕ ¼ ϕ1 − ϕ2 is measurable,
although the individual phases ϕ1 and ϕ2 are not [44]. Here
the prefactor expð−r2=Rα

2ðtÞÞ depends slowly on r but the
cosine function can give rise to rapid spatial variations.
We can notice also from Eq. (37) that planes of constant
phase are perpendicular to the vector between the centers of
the two clouds. The positions of the maxima depend on the
relative phase of the two condensates, and if we take d to lie
in the z direction, the distance between maxima is given by

zðαÞ ¼ 2π
mR2

αðtÞR2
0

ℏtd
: ð38Þ

If the expansion time is sufficiently large, i.e., the cloud has
expanded to a size much greater than R0 then, as mentioned
before,R2

αðtÞ is given approximately by Eq. (19). Therefore,
the distance between maxima associated with the interfer-
ence fringes is given by the following expression:

zðαÞ ≈ 2π

�
ℏ
md

−
8αR0

3
ffiffiffi
π

p
d

�
t: ð39Þ

When α ¼ 0, we recover the usual result [33,34]. In the
usual case, α ¼ 0, the separation between maxima is
typically of order 10−6 m [34]. From relation (39), we
are able to obtain the sensitivity of our system to Planck
scale signals upon the fringes separation. Under typical
laboratory conditions, i.e., ω0 ∼ 10 Hz and a typical mass
of order m ∼ 10−26 kg, d ¼ 40 × 10−6 m, together with a
free expansion time of order t ¼ 40 × 10−3 s, the correc-
tion caused by the deformation parameter α can be inferred
up to jξ1j × 10−11 m, i.e., 5 orders of magnitude smaller
than the typical distance between the maxima reported in
Ref. [34], when jξ1j ∼ 1.
In order to obtain a more accurate description for the

possible measurement of the contributions caused by the
quantum structure of space-time, let us analyze the exper-
imental scenario in this context. If the contributions of
Planck scale physics could eventually be measured, this
implies that the usual term in Eq. (39) must be known more
accurately than the size of the correction associated with the
deformation parameter α.
Unfortunately, the corresponding experimental error

associated with the interference fringes separation is not
reported in the literature, at least, in the literature known by
the authors. In this attempt, let us analyze the error
propagation in the measure of the fringes separation, when
α ¼ 0, in order to obtain experimental conditions that could
allow one to detect possible signals arising from the Planck
scale regime. In other words, in the most unfavorable case
this entails

Δzðα¼0Þ ¼
����� ∂zðα¼0Þ

∂m
����Δmþ

���� ∂zðα¼0Þ
∂h

����Δhþ
���� ∂zðα¼0Þ

∂d
����Δd

�
t;

ð40Þ

where Δzðα¼0Þ depicts the experimental error as usual,
and so on. Notice that for simplicity, we have reabsorbed
the 2π factor in the definition of the Planck constant h.
Additionally, the expansion time t can be interpreted here,
without lost of generality, as an evolution parameter. The
above expression leads to the following error associated
with the fringes separation Δzðα¼0Þ in the usual case α ¼ 0,

Δzðα¼0Þ ¼ zðα¼0Þ

�
mdΔhþ hdΔmþ hmΔd

mhd

�
t; ð41Þ

where zðα¼0Þ is the usual value when α ¼ 0. The corre-
sponding uncertainties Δm ¼ 0.17 ppb in atomic mass
units for 23Na, and Δh ¼ 20 ppb in SI units reported in the
experiments [45] and [46] respectively, can be used to
calculateΔzðα¼0Þ. Unfortunately, as far as we know, there is
not uncertainty reported for the corresponding initial

E. CASTELLANOS AND J. I. RIVAS PHYSICAL REVIEW D 91, 084019 (2015)

084019-6



separation d. In this situation we obtain an error for the
fringes separation of order Δzðα¼0Þ ∼ ð10−18 þ 1.5 ×
10−2ΔdÞ for the usual case α ¼ 0 with t ¼ 40 × 10−3 s.
As mentioned above, the order of magnitude associated
with α can be inferred up to jξ1j × 10−11 m. This fact
implies, in principle, that uncertainties for the distance d of
order Δd ∼ 6.67 × 10−10 m for expansion times of order
10−3 s are necessary (assuming jξ1j ∼ 1) to obtain a
possible detection of Planck scale signals under typical
laboratory conditions. However, large expansion times up
to 4 s can be achieved, for instance, in interference free fall
experiments [37]. In these circumstances, we obtain
Δd ∼ 2.5 × 10−9 m. In other words, large expansion times
implies better precision in knowing the initial separation d.
Notice also that Δzðα¼0Þ and Δd are basically the same
order of magnitude in the cases described above.
In the same spirit, we are capable to calculate the

corresponding experimental error (Δzα) associated with
the deformation parameter α, i.e., the second term in
Eq. (39) assuming that Mp and c are constants, together

with ξ1 ∼ −1.8� 2.1 [15,16] and R0 ¼
ffiffiffiffiffiffiffi
ℏ

mω0

q
.

We assume also that the uncertainty corresponding to
typical frequencies is of orderω0 ¼ 21� 4 MHz in the case
of magneto-optical traps [47]. Under these conditions, the
corresponding uncertainty can be inferred here up to Δzα∼
10−14 m for t¼ 40×10−3 s, assuming Δd∼10−10 m.
Conversely, we obtainΔzα ∼ 10−11 m for t ¼ 4 s, assuming
Δd ∼ 10−9 m. The corresponding errorsΔzα¼0 andΔzα can
be used as a criterion to discriminate how precise the
eventual measurement of the correction term caused by α
with respect to the usual term is. In fact the above results
indicate that if the corrections caused by α wants to be
measured, then better precision is needed, compared with
the usual term.
The uncertainties obtained for Δzα¼0 can be also used as

a criteria to optimize the value of d. For instance, assuming
that Δzðα¼0Þ ∼ 10−10 m, corresponding to expansion times
of order of 40 × 10−3 s, together with the corrections
caused by α in Eq. (39), this leads to initial separations
of order d ∼ 6.8 × 10−8 m. Conversely, if Δzðα¼0Þ ∼
10−9 m for t ¼ 4 s, this implies d ∼ 1.15 × 10−10 m. In
other words, according to our results, an optimal value for
the initial separation d seems to be between 10−8

and 10−10 m.
Finally, let us analyze the relative shift on the fringes

separation caused by the deformation term α. The relative
shift can be expressed as follows:

zðαÞ − zðα¼0Þ
zðα¼0Þ

¼ −
4

3
ffiffiffi
π

p ξ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m3c2

ℏω0M2
p

s
; ð42Þ

where zðαÞ is given by expression Eq. (39) and zðα¼0Þ is the
usual result, setting α ¼ 0. We notice that the relative shift

is apparently independent of the initial separation d. The
relative shift in Eq. (42) can be inferred under typical
laboratory conditions up to ξ1 × 10−6 for ω0 ∼ 103 Hz,
which is approximately the same order of magnitude as the
usual fringes separation when α ¼ 0, and apparently
impossible to be measured. However, let us mention that
such a shift can be improved for small ω0. For instance, if
ω0 ∼ 10 Hz, then the relative shift is of order ξ1 × 10−4, for
a typical mass m of order 10−26 kg, i.e., 2 orders of
magnitude bigger than the typical fringes separation, which
is notable.

IV. CONCLUSIONS

We have analyzed the free expansion of a condensate,
and also its properties when two of these systems overlap,
assuming as a fundamental fact a deformed dispersion
relation. We have proved that the free velocity expansion is
corrected as a consequence of a possible quantum structure
of space-time. Additionally, the predicted modified velocity
expansion endows in a natural way a modification in the
Heisenberg’s uncertainty principle, which indeed opens the
possibility to explore some phenomenological conse-
quences in other systems and clearly deserves deeper
investigation.
We have explored possible traces arising from Planck

scale physics upon the properties associated with the
interference fringes when two condensates overlap, and
also we have analyzed the experimental scenario under
typical laboratory conditions. Here it is important to
mention that the contribution caused by interactions among
the constituents of the system are expected to be also
bigger, evidently, than the contributions caused by the
deformation parameter α. However, as was recently
reported in experiment, Ref. [37], the nonlinear evolution
of the condensate occurs at very short times (< 30 ms).
This fact suggests that possible Planck scale signals could
be measured in principle, for times larger than 30 ms, in
which the system operates deeper in the linear regime i.e.,
almost in the noninteracting case. In fact, free fall experi-
ments could account for Planck scale signals in this context,
in which expansion times of order 4 s can be achieved [37].
Nevertheless, the scenario presented in this paper must be
extended to more realistic situations, in which the con-
tribution caused by the interactions among the constituents
of the condensate could be representative, together with the
presence of a gravitational field. This is a not a trivial topic
that we will present elsewhere [38]
Finally, we must add that the possible detection of these

corrections could be out of the current technology.
However, it is remarkable that an adequate choice of the
initial conditions in the free expansion of the condensates
opens the possibility of planning specific scenarios that
could be used to obtain possible traces or signals caused
by the quantum structure of space-time in low-energy earth-
based experiments.
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