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We provide an invariant characterization of the physical properties of the Kerr spacetime. We introduce
two dimensionless invariants, constructed out of some known curvature invariants, that act as detectors
for the event horizon and ergosurface of the Kerr black hole. We also show that the mass and angular
momentum can be extracted from local measurements of the curvature invariants, which in the weak field
limit could be used to approximate the total angular momentum and mass of a system of merging black
holes. Finally, we introduce a dimensionless invariant that gives a local measure of the “Kerrness” of the
spacetime.
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I. INTRODUCTION

In this paper we present a new approach to analyze and
extract physical properties of spacetimes around rotating
black holes using curvature scalar invariants. This builds on
earlier work [1–3]. However, in this paper we go beyond
visualization, and use the invariants, and only the invari-
ants, to locate the horizon and ergosurface, then calculate
the mass and angular momentum of the Kerr black hole.
One of the main applications would be in the analysis of

numerical relativity simulations. Currently, extracting
information about the mass and angular momentum of
black holes in numerical simulations requires finding the
event horizon of the black hole, calculating the area and
angular momentum of the horizon, then using the relation-
ship between the area, mass, and angular momentum in
order to calculate the mass [4].
In Sec. II, we state the five curvature invariants on which

we base the entire calculations that follow. Furthermore, out
of the five curvature invariants, we construct and introduce
three new dimensionless invariants. These dimensionless
invariants serve as detectors for the horizon and ergosurface
of the Kerr black hole.
In Sec. III, we present a global approach to analyze the

Kerr spacetime and provide a method to extract its mass
and angular momentum. First, we show how some dimen-
sionless invariants can be used to locate the event horizon
and ergosurface. Next, the area of these two surfaces can be
calculated, and this in turn leads to the angular momentum
and mass of the black hole. It is also possible to locate the
inner event horizon using one of the dimensionless invar-
iants. Therefore, this could provide an alternative technique

to find a region to excise around the singularity to be used
in the excision method in numerical relativity.
In Sec. IV, we present a procedure to calculate the mass

and angular momentum locally. In general, the goal and
approach we take in this section are similar to the ones in
[5–8], but the choice of invariants used to carry out the
calculations differs. The invariants we use are of degree 2
(i.e. the contractions involve up to 2 factors of the curvature
tensor), and order 3 (i.e. up to the 3rd derivative of the
metric tensor). On the other hand, the objects used in the
references above are of degree 3 and order 3. We present
the procedure for the Kerr metric in general, then derive the
simplified expressions for the Schwarzschild black hole
(i.e. zero angular momentum), and in the weak field limit
with angular momentum. Furthermore, as a by-product of
the calculation of the mass and angular momentum locally,
it is possible to produce the Boyer-Lindquist (BL) coor-
dinates at each point.
The intermediate steps of the procedures are not unique,

and it is possible to take a different approach at each step.
However, after tedious trial and error, the steps presented
here are the ones we found to complete the calculation in
the least amount of steps, with the simplest expressions
algebraically. However, we show some alternative steps in
the Appendix.
In Sec. V we construct the “Kerrness” invariant that serves

as an invariant local measure of the spacetime deviation from
Kerr. It is a dimensionless invariant that ranges from 0 to 1,
where a value of 1 indicates a perfect Kerr spacetime locally.
A set of invariants was proposed to achieve the same goal in
[9], but was based on a different choice of invariants.
Finally, in Sec. VI we discuss the possible applications of

the results we present here in the analysis of exact and
numerical spacetimes. It is worth noting that the three
different procedures presented in Secs. III, IV, and V are
complementary but independent. In other words, each
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procedure can be performed and completed separately. The
only common steps between them are the initial ingre-
dients, which are the invariants presented in Sec. II.

II. THE CURVATURE INVARIANTS OF KERR

Constructing a minimal list of independent curvature
invariants that characterize a spacetime is still an active
research field [10,11]. In Kerr spacetime, all of the Ricci
scalars vanish since it is a vacuum solution, and it has been
shown that for the Kerr metric there are at most four
independent invariants [12]. Nonetheless, we consider the
following seven invariants in this paper1:

I1 ≡ CαβγδCαβγδ; ð1Þ

I2 ≡ C�
αβγδCαβγδ; ð2Þ

I3 ≡∇μCαβγδ∇μCαβγδ; ð3Þ

I4 ≡∇μCαβγδ∇μC�αβγδ; ð4Þ

I5 ≡ kμkμ; ð5Þ

I6 ≡ lμlμ; ð6Þ

and

I7 ≡ kμlμ; ð7Þ

whereCαβγδ is theWeyl tensor,C�
αβγδ its dual, kμ ≡ −∇μI1,

and lμ ≡ −∇μI2. The explicit expression of these invariants
for the Kerr spacetime is given in the Appendix in a
compact form.
Only four of the above seven invariants are actually

independent. Most importantly, the calculations in the next
two sections to locate the horizon, and calculate the mass
and angular momentum are carried out with five of the
invariants only, without the need for I3 and I4. However, we
present them here for completeness, and in order to explore
the three syzygies, or constraining equations, in Kerr
spacetime between the full set of the seven nonvanishing
invariants in Sec. V.

We introduce and define the following three dimension-
less invariants constructed entirely out of the five curvature
invariants I1, I2, I5, I6, and I7 stated in Eqs. (1), (2),
and (5)–(7)2

Q1 ≡ 1

3
ffiffiffi
3

p ðI12 − I22ÞðI5 − I6Þ þ 4I1I2I7
ðI12 þ I22Þ9=4

; ð8Þ

Q2 ≡ 1

27

I5I6 − I72

ðI12 þ I22Þ5=2
; ð9Þ

and

Q3 ≡ 1

6
ffiffiffi
3

p I5 þ I6
ðI12 þ I22Þ5=4

: ð10Þ

It is worth noting that the term ðI12 þ I22Þ is positive
definite in Kerr spacetime, and it is used in the denominator
simply to make the invariants Q1, Q2, and Q3 dimension-
less. The significance of Q1 and Q2 will become evident
below, as they represent the long sought after invariant
detectors for the Kerr black hole ergosurface and event
horizon respectively [17,18]. Q3 will be used in the
calculation of the spin of the black hole locally, but it is
redundant since the same calculation could be done with
Q2. Nonetheless, we introduce Q3 for the simplicity of the
resulting expressions.

III. GLOBAL APPROACH FOR LOCATING
THE HORIZON AND CALCULATING

THE MASS AND SPIN

In this section we present a global approach to calculate
the mass and angular momentum in the Kerr spacetime
completely based on curvature invariants. To start, we use
the invariants to locate two uniquely defined 2D submani-
folds. Afterwards, calculating their areas leads us to the
mass and spin parameter of the black hole.

A. Locating the horizon and ergosurface

The two submanifolds we consider here are the outer
horizon and outer ergosurface. After evaluating and sim-
plifying Q1, which was defined in Eq. (8), in BL coor-
dinates we get

Q1 ¼
ðr2 − a2cos2θÞðr2 − 2mrþ a2cos2θÞ

mðr2 þ a2cos2θÞ3=2 : ð11Þ

1The first two invariants are often discussed in the literature as
the real and imaginary parts of the complex Weyl invariant. In
vacuum solutions such as the Kerr metric, Cαβγδ ¼ Rαβγδ, where
Rαβγδ is the Riemann tensor. Therefore, in this case I1 equals the
Kretschmann scalar. Furthermore, I1 and I2 can be expressed in
terms of invariants in the Newman-Penrose formalism, and in
the Kerr spacetime I1=48 ¼ ℜðΨ2Þ2 − ℑðΨ2Þ2, and I2=48 ¼
−2ℜðΨ2ÞℑðΨ2Þ. For a thorough review of the relationship
between many curvature invariants in different notations in
general see [13]. The differential invariants I3 and I4 were first
introduced and analyzed in [14] and often referred to as the
Karlhede invariants, and the differential invariants I5, I6, and I7
were first introduced in [15]. The gradient fields kμ and lμ for the
Kerr metric were thoroughly analyzed in [2].

2An earlier preprint version of this manuscript required the use
of I3 and I4 in the definition of Q1 and Q2. Those earlier
definitions are presented here in the Appendix Eqs. (A21) and
(A22). However, we are grateful to Don Page for pointing out two
additional syzygies between the seven invariants that we pre-
viously missed [16], which completely eliminated the need for I3
and I4, and simplified the definitions to the ones we present here
in Eqs. (8) and (9).
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Therefore, Q1 vanishes when r ¼ �a cos θ, and at the
ergosurfaces where r ¼ m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2 cos2 θ

p
. Most

importantly, Q1 is strictly positive outside the outer
ergosurface, vanishes at the ergosurface, then becomes
negative as soon as we cross it. Therefore, it is a very
convenient invariant to use to detect the ergosurface in Kerr
spacetime. Note that Q1 also vanishes at the inner ergo
surface, and at r ¼ �a cos θ. However, these surfaces lie
strictly within the outer ergosurface regardless of the values
of m and a. Therefore, these additional roots of Q1 do not
affect its power to detect the outer ergosurface. We should
also note that I3 alone has been proposed as a detector for
the outer ergosurface, since it does actually vanish at that
surface [14]. However, I3 has many additional roots (nine
roots in addition to the outer ergosurface), and some of
these roots define surfaces that lie outside the ergosurface,
some are inside it, and some actually cross it depending on
the values of m and a [15]. Therefore, it is very difficult to
rely on I3 alone as a detector of the outer ergosurface.
Similarly, after evaluating and simplifying Q2, which

was defined in Eq. (9), in BL coordinates we get

Q2 ¼
a2sin2θðr2 − 2mrþ a2Þ

m2ðr2 þ a2cos2θÞ : ð12Þ

Therefore, Q2 vanishes on the axis of rotation (θ ¼ 0), and
on the horizon where r ¼ m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
. Most impor-

tantly, Q2 is strictly positive outside the outer horizon
(except for on the axis of symmetry where it vanishes, but
clearly never switches signs crossing the axis), vanishes at
the outer horizon, then becomes negative as soon as we
cross it. The invariant vanishes again at the inner horizon,
and switches signs to positive inside the inner horizon.
Therefore, Q2 is a very convenient invariant to use for
detecting the horizons in Kerr spacetime. The ability to
locate the inner horizon efficiently could be exploited for
the excision method in numerical relativity, providing an
alternative approach to choose a region around the black
hole singularity that is required to be located within the
outer event horizon.
An earlier preprint version of this manuscript required

the use of I3 and I4 in the definition Q2, which we present
in Eq. (A22). It was recently noted by Page and Shoom [16]
that the numerator of Q2 in Eq. (A22), which dictates its
roots, can be written as I5I6 − I72 ¼ ðk · kÞðl · lÞ − ðk · lÞ2.
In other words, the invariant Q2 vanishes when the two
gradient fields kμ and lμ are parallel. This led them to
propose a generalization of Q2, and introduced an invariant
that vanishes on Killing horizons in stationary spacetimes
in general [16].
In the case of zero angular momentum (a ¼ 0), the Kerr

solution reduces to the Schwarzschild metric. Note that in
this case, Q2 vanishes everywhere, since I6 ¼ I7 ¼ 0 in
Eq. (9), or a ¼ 0 in Eq. (12). However, Q1 does not vanish
and it serves as the horizon detector since the ergosurface

coincides with the horizon in Schwarzschild spacetime,
where it reduces to Q1 ¼ I5=ðI1Þ5=2. However, I1 is
positive definite in Schwarzschild, so it is simply the
invariant I5 that vanishes and switches signs at the
horizons, and only at the horizons. The same is true for
the Karlhede invariant I3 which was first observed in [14],
and the connection between the two invariants is easy to see
since I5 ¼ 12

5
I1I3 in Schwarzschild, which is a syzygy that

will be explored in detail in Sec. V.

B. Calculating the mass and spin

In this subsection we present a method to extract the
mass and angular momentum of the Kerr black hole based
on the curvature invariants presented above. Once the outer
horizon and outer ergosurface are found using the invar-
iants Q1 and Q2, their surface areas can be measured
directly, based on the geometry of the spacetime. However,
the surface area of the outer horizon AH is also determined
by its mass and angular momentum, and it is given by

AH

8πm2
¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − A2

p
; ð13Þ

where A≡ a=m is the dimensionless spin parameter. The
surface area of the outer ergosurface AErgo is also deter-
mined by the mass and angular momentum, and can be
evaluated using

AErgo

8πm2
¼

Z
π

0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2θð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − A2cos2θ

p
þ A2sin2θÞ

4ð1 − A2cos2θÞ

s

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − A2cos2θ

p
Þ

q �
dθ: ð14Þ

The above formula can be expressed in a closed form using
elliptical functions, and a thorough analysis of the ergosur-
face can be found here [3].
The ratio between the two areas, AErgo=AH, is a one-to-

one, strictly increasing function of A, which is plotted in
Fig. 1. Therefore, once AH and AErgo have been measured
from the geometry of the spacetime, we can find A directly
from the ratio AErgo=AH. Once A is found, we can
substitute its value into Eq. (13), and then solve for m
to find the value of the mass.
It is worth emphasizing the point that the details of this

procedure to extract the mass and spin of the Kerr black
hole are not unique, and could be implemented in many
ways. In principle, it is possible to construct dimensionless
invariants other than Q1 and Q2 such that their roots
uniquely define two other surfaces (other than the outer
horizon and ergosurface). However, any other two invar-
iants would only be useful for this application if the ratio
between the resulting two surface areas is a strictly
increasing or decreasing function of the spin parameter
A. After that, similar steps can be followed as we describe
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above, where the areas can be measured based on the
geometry of the spacetime; then A and m can be extracted
from the areas and their ratio.

IV. LOCAL APPROACH FOR CALCULATING
THE MASS AND SPIN

In this section we present another approach to calculate
the mass and spin of the Kerr black hole, still within the
context of using curvature invariants alone. However, in
contrast to the method presented in the previous section,
here we calculatem and A based solely on knowing the five
invariants (I1, I2, I5, I6, and I7) locally at any point in the
spacetime. One of the advantages of this approach is that it
does not require locating the black hole or its event horizon.
Therefore, it could be used to find the total mass and
angular momentum of a 2-body system before the merger
by applying it in the weak field limit relatively far away
from the rotating masses.
We present here the minimal steps needed to carry out

the calculations, and include the derivation in the
Appendix. To start, we define the dimensionless parameter
p1 ≡ a cos θ=r, and calculate it using

p1 ¼ − tan

�
5

2
tan−1

�
I2
I1

�
− tan−1

�
2I7

I5 − I6

��
: ð15Þ

Next, we introduce a second dimensionless parameter
p2 ≡ r=m, and calculate it using

p2 ¼
2

1þ p2
1

þQ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

1

p
1 − p2

1

: ð16Þ

The mass m can now be found using

mKerr ¼
2

ffiffiffi
34

p

p2
3=2ð1þ p1

2Þ3=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I12 þ I22

8
p ; ð17Þ

and the dimensionless spin parameter A can now be found
using

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2½1þQ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p1

2

q
− p2ð1 − p1

2Þ=2�
r

: ð18Þ

As it was in the case of the global approach, again the
details of this method are not unique. In principle, the steps
in Eqs. (15)–(18) used to calculate p1, p2, mkerr, and A
could be done in many alternative ways based on the same
invariants, and we include some examples in the Appendix.
However, the steps we present here were the simplest we
could achieve from an aesthetic point of view.
The resulting equations for A andm above are coordinate

independent by definition as they were constructed from
scalar invariants. However, we can still extract, for exam-
ple, the BL coordinates as a by-product of the calculations.
More specifically, using the definitions of p1 and p2, we
can calculate the BL radius and polar angle:

r ¼ mp2; ð19Þ

and

cosðθÞ ¼ p1r=a ¼ p1p2=A: ð20Þ

A. Special case 1: The Schwarzschild
spacetime (a ¼ 0)

In the Schwarzschild black hole (i.e. a ¼ 0), four of the
seven invariants we started the calculation with vanish: I2,
I4, I6, and I7. This leads to a simple and exact expression
for the mass

mSchw ≡ 2
ffiffiffi
34

p

ð2þ I5
3
ffiffi
3

p
I15=2

Þ3=2 ffiffiffiffi
I14

p : ð21Þ

Also the expression for the BL radius in Schwarzschild
spacetime (i.e. the areal radius, which we refer to as r̄ here)
simplifies to

r̄≡ 2
ffiffiffi
34

p

ð2þ I5
3
ffiffi
3

p
I15=2

Þ1=2 ffiffiffiffi
I14

p : ð22Þ

Alternatively, the two equations above can be expressed
in terms of the Karlhede invariant I3 instead of I5, by
substituting I5 ¼ 12

5
I1I3, which is a syzygy that will be

explored in Sec. V.

FIG. 1 (color online). The ratio between the area of the outer
ergosurface to the area of the outer horizon (AErgo=AH) for
the Kerr black hole as a function of the dimensionless spin
parameter A.
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B. Special case 2: Weak field limit (r=m ≫ 1)

In the weak field limit where p2 ¼ r=m ≫ 1, we have
ð1=p2Þ ≪ 1 and jp1j ≪ 1, since p1 ¼ A cos θ=ðr=mÞ.
To leading order in p1 we find that p1 ≅ I2=6I1. Also,
to leading order in p1, Eq. (17) simplifies to

mKerr ≅
2

ffiffiffi
34

p

ð2þ I5−I6
3
ffiffi
3

p
I15=2

Þ3=2 ffiffiffiffi
I14

p : ð23Þ

The expression for the BL radius in Eq. (19) simplifies to

r ≅
2

ffiffiffi
34

p

ð2þ I5−I6
3
ffiffi
3

p
I15=2

Þ1=2 ffiffiffiffi
I14

p : ð24Þ

Furthermore, the expression for the dimensionless spin
parameter A found in Eq. (18) simplifies to

A ≅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2þ I5 − I6

3
ffiffiffi
3

p
I15=2

��
I6I1 −

8

7
I2I7

�	 ffiffiffiffiffiffiffiffiffiffiffi
27I17

qs
: ð25Þ

The equation above might be the most relevant to the field
of numerical relativity, since it can provide a simple and
direct way to approximate the total angular momentum of a
binary black hole system when evaluated relatively far
away from the system before they merge in the weak field
limit. Alternatively, the three equations above can be
expressed in terms of I3 instead of I5 − I6, and I4 instead
of I7, since in the weak field limit I5 − I6 ≅ 12

5
I1I3, and

I7 ≅ 21
10
I1I4 as a result of the syzygies that will be explored

in the next section.
In a recent paper, a procedure to calculate special

relativistic linear and angular momentum based on curva-
ture invariants was proposed [19]. The procedure requires
defining two quantities, M and r, based on similar
invariants we use here. These quantities resemble the
zeroth order approximation of mSchw and r̄ found in
Eqs. (21) and (22). However, using Eqs. (23) and (24)
for M and r instead might improve the accuracy of the
procedure proposed in [19].

V. INVARIANT SYZYGIES
AND “KERRNESS” INVARIANT

Only four of the seven invariants introduced in Sec. II are
independent. There are three syzygies, or constraining
equations, between the invariants:

I6 − I5 þ
12

5
ðI1I3 − I2I4Þ ¼ 0; ð26Þ

I7 −
6

5
ðI1I4 þ I2I3Þ ¼ 0; ð27Þ

and

4I1I2I3ðI12 − I22ÞðI32 − 3I42Þ
¼ I4ð3I32 − I42ÞðI14 − 6I12I22 þ I24Þ: ð28Þ

The first syzygy, Eq. (26), was discovered by accident, and
the other two, Eqs. (27) and (28), along with a simple way
to derive the syzygies were pointed out to us by Don Page
[16], and we include that derivation in the Appendix.
These syzygies can be exploited to construct a geometric

invariant measure of the “Kerrness” of a spacetime locally.
For example, consider the dimensionless invariant χ
defined as

χ ≡ I6 − I5 þ 12
5
ðI1I3 − I2I4Þ

ðI12 þ I22Þ5=4
: ð29Þ

In Kerr spacetime, evidently χ ¼ 0 everywhere as a
result of Eq. (26). Furthermore, if we find that χ ≠ 0 at
some point, this indicates that the local geometry deviates
from that of Kerr. However, it is difficult to get an intuitive
feel of the scale of this deviation from Kerr directly from
the value of χ. Therefore, we construct another dimension-
less invariant K based on χ, defined as

K ≡ e−sχ
2

; ð30Þ

where the constant s is an arbitrary positive number and can
be thought of as a sensitivity parameter. By construction,
contour levels ofK are also contour levels of χ, and both are
dimensionless. However, K ranges from 0 to 1. It provides

FIG. 2 (color online). Contour plot of the Kerrness invariant K,
which is defined in Eq. (30), in the Curzon-Chazy spacetime. In
this plot s ¼ 5, and the contour levels are 0.01, 0.1, 0.5, 0.85, and
0.96. The lowest contour region (i.e. 0 < K < 0.01) is red (or
lighter gray around the center), and the highest contour region
(i.e. 0.96 < K < 1) is blue (or darker gray in the outer region).
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an intuitive measure of how close the spacetime is to the
Kerr metric locally, where a value of 1 indicates a perfect
Kerr spacetime. The specific value of K is of no real
significance, as it is meant to be used in a relative sense,
comparing two different points of the spacetime. For
example, it can be used to produce what could resemble
a heat map of the spacetime, where the regions with the
highest values indicate that they are closest to Kerr. We
call K the “Kerrness” invariant, and propose using it as a
spacetime analysis and visualization tool for both exact
solutions and numerical relativity simulations.
As an example, we show in Fig. 2 the contour plot of K

for the Curzon-Chazy spacetime [20,21]. This spacetime is
believed to be a vacuum spacetime containing a nonrotating
singular ring. For a detailed analysis of the Curzon-Chazy
solution and its curvature invariants see [22] and references
within.

VI. DISCUSSION AND CONCLUSION

We have presented an invariant characterization of the
Kerr spacetime. The physical properties of a rotating
black hole such as its mass, angular momentum, event
horizon, and ergosurface can be defined and described in a
coordinate-independent and observer-independent formu-
lation based only on curvature invariants.
The dimensionless invariants introduced in Sec. II serve

as convenient detectors of the black hole’s event horizons
and ergosurfaces. This can provide an alternative approach
to locate black holes in numerical relativity, and choose an
appropriate region to excise around the singularity in the
excision method by locating the inner horizon.
Furthermore, the area of the outer ergosurface, along

with the area of the outer horizon, provide an alternative
method to calculate the mass and angular momentum of
rotating black holes as explained in Sec. III. In contrast with
current methods used in numerical relativity analysis, this
method is completely path independent, and does not
require finding the Killing field on the horizon.
Another approach was presented in Sec. IV, where the

mass and spin parameter can be calculated locally. This
procedure could be useful in numerical relativity as well,
but will only be reliable in the regions of the spacetime
dominated a single Kerr black hole. In numerical simu-
lations of black hole mergers, we expect this procedure to
be most reliable near each black hole, where the gravita-
tional field is dominated by one of them, and very far from
the system, where the spacetime asymptotically approaches
Kerr again but representing the combined mass and angular
momentum of the system. However, in the region in
between the black holes, the calculations could produce
unphysical values of the spin parameter outside the range of
0 to 1, or imaginary numbers. Nonetheless, one of the main
advantages of this method is that it does not require finding
the horizon, or calculating any surface areas. Therefore,
when it is applied in the weak field limit in numerical

simulations of black hole mergers, we expect it to give
reliable results for the combined mass and angular momen-
tum of the system even before merging.
The Kerrness invariant was introduced in Sec. V, and it

can be used in the analysis of exact and numerical space-
times. For example, it can be used to produce what could
resemble a heat map of the spacetime, where the regions
with the highest values indicate that this region is closest to
Kerr. This provides an invariant and intuitive method to
compare and visualize spacetimes. Furthermore, it can be
used in combination with local calculations of the mass and
spin, as it can indicate the regions where the calculations
can be trusted.
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APPENDIX: DERIVATION

In BL coordinates and using natural units (G ¼ c ¼ 1),
the Kerr metric can be expressed as [24]

ds2 ¼ −
�
1 −

2mr
r2 þ a2cos2θ

�
dt2 −

4mrasin2θ
r2 þ a2cos2θ

dtdϕ

þ
�
r2 þ a2cos2θ
r2 − 2mrþ a2

�
dr2 þ ðr2 þ a2cos2θÞdθ2

þ
�
r2 þ a2 þ 2mra2sin2θ

r2 þ a2cos2θ

�
sin2θdϕ2; ðA1Þ

where m is the mass, and a ¼ J=m is the angular moment
per unit mass, or spin parameter. The seven invariants we
start with in Sec. II can be written explicitly—for the Kerr
spacetime—in a compact form as the real and imaginary
parts of three complex invariants, and one purely real
invariant as follows

W1 ≡ I1 þ iI2 ¼
48m2

ðrþ ia cos θÞ6 ; ðA2Þ
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W2 ≡ I3 þ iI4

¼ −720m2ðr2 − 2rmþ a2cos2θÞ
ðr2 þ a2cos2θÞðrþ ia cos θÞ8 ; ðA3Þ

W3 ≡∇μW1∇μW1

¼ I5 − I6 þ i2I7

¼ 21034m4ðr2 − 2rmþ a2cos2θÞ
ðr2 þ a2cos2θÞðrþ ia cos θÞ14 ; ðA4Þ

and

W4 ≡∇μW1∇μW1

¼ I5 þ I6

¼ 21034m4ðr2 − 2rmþ 2a2 − a2cos2θÞ
ðr2 þ a2cos2θÞ8 ; ðA5Þ

where Wi is the complex conjugate of Wi.
Note that the dimensionless invariants Q1, Q2, and Q3,

which were defined in Eqs. (8)–(10), can be written in a
compact form using the complex invariants above as

Q1 ¼
ℜððW1Þ2W3Þ
3

ffiffiffi
3

p jW1j9=2
; ðA6Þ

Q2 ¼
ðW4Þ2 − jW3j2

108jW1j5
; ðA7Þ

and

Q3 ¼
W4

6
ffiffiffi
3

p jW1j5=2
: ðA8Þ

In order to find the parameter p1 ≡ a cos θ=r, we
calculate and simplify the complex invariant W5

W5 ≡ ðW1Þ5=2W3

¼ �220313=2m9rðr2 − 2rmþ a2cos2θÞ
ðr2 þ a2cos2θÞ16 ð1 − ip1Þ:

ðA9Þ

Therefore, p1 ¼ − tanðφ5Þ, where φi is the argument of
Wi. However, from the definition of W5, we get
φ5 ¼ 5

2
φ1 − φ3. This leads to

p1 ¼ − tan

�
5

2
φ1 − φ3

�
; ðA10Þ

which leads to Eq. (15) after writing the arguments
in terms of the invariants since φ1 ¼ tan−1ðI2I1Þ and

φ3 ¼ tan−1ð 2I7
I5−I6

Þ.

Next we substitute a cos θ ¼ rp1, and introduce a second
dimensionless parameter p2 ≡ r=m into Q1, which was
evaluated in Eq. (8); then we solve for p2, and we
obtain Eq. (16).
Next, we evaluate and simplifyQ3, which was defined in

Eq. (10). We find

Q3 ¼
r2 − 2rmþ 2a2 − a2cos2θ

2m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2cos2θ

p ; ðA11Þ

and also observe that

I12 þ I22 ¼ jW1j2 ¼
2832m4

ðr2 þ a2cos2θÞ6 : ðA12Þ

Finally, we substitute r ¼ mp2, and cos θ ¼ rp1=a ¼
p1p2=A, into Eq. (A12), then solve for m, which produces
Eq. (17). We do the same for (A11), then solve for A, which
produces Eq. (18). This completes the derivation of the
general case.
In the Schwarzschild case (a ¼ 0), four of the seven

invariants vanish: I2 ¼ 0, I4 ¼ 0, I6 ¼ 0, and I7 ¼ 0.
Therefore, the formulas simplify significantly, and we
get p1 ¼ 0 which is clear from the definition of p1, or
by using Eq. (15) with I2 ¼ 0 and I7 ¼ 0. Since p1 ¼ 0,
Eq. (16) simplifies to

p2−Schw ¼ 2þ I5
3

ffiffiffi
3

p
I15=2

: ðA13Þ

Furthermore, substituting p2−Schw from Eq. (A13) into
Eq. (17) produces Eq. (21). Multiplying p2−Schw from
Eq. (A13) by the mass from Eq. (21) leads to Eq. (22).
In the weak field limit where p2 ¼ r=m ≫ 1, we have

jp1j ¼ jA cos θ=ðr=mÞj ≪ 1. To leading order in p1 we
have I2=I1 ≅ −6p1. Therefore, p1 ≅ −I2=6I1, and Eq. (16)
simplifies to

p2 ≅ 2þ I5 − I6
3

ffiffiffi
3

p
I15=2

: ðA14Þ

Furthermore, substituting p2 from Eq. (A14) into Eq. (17)
produces Eq. (23) to leading order in p1. Multiplying p2

from Eq. (A14) by the mass from Eq. (23) leads to Eq. (24).
However, we need to proceed with caution for the weak

field limit of A. We need to include up to second order
terms in p1 (i.e. keep I22=I12 terms) in the intermediate
calculations, and cancel them in the final expression. Up to
leading order in p1, Eq. (18) simplifies to

A ≅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2þ I5 − I6

3
ffiffiffi
3

p
I15=2

�	 ffiffiffiffiffiffiffiffiffiffiffi
27I19

qs

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðI22I5 þ I12I6 − 2I1I2I7Þ

q
: ðA15Þ
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We can further simplify the above equation by noting that
up to leading order in p1 in the weak field limit we have
I2I5=I1I7 ≅ 6=7, which leads to Eq. (25).
The syzygy presented in Eq. (26) was discovered

accidentally. However, Don Page pointed out a simple
derivation which led to discovering two additional inde-
pendent syzygies of the Kerr spacetime [16], and we
include their derivation here. Note that from the definition
of the complex invariants Eqs. (A2)–(A4), we have

W3 ¼
12

5
W1W2: ðA16Þ

The real and imaginary parts of the equation above are the
syzygies in Eqs. (26) and (27) respectively. Furthermore,
we have

ðW1Þ4ðW2Þ3 ¼
7203484m14ðr2 − 2rmþ a2cos2θÞ

ðr2 þ a2cos2θÞ27 ;

ðA17Þ

which is a purely real expression. Therefore,

ℑððW1Þ4ðW2Þ3Þ ¼ 0; ðA18Þ

which is the syzygy in Eq. (28). It is possible to produce
more syzygies, but they would not be independent from
the ones mentioned. For example, we can produce another
syzygy between the invariants I1, I2, I5, I6, and I7 directly
by noting that the expression

ðW1Þ7ðW3Þ3 ¼
258319m26ðr2 − 2rmþ a2cos2θÞ

ðr2 þ a2cos2θÞ45 ðA19Þ

is a purely real expression. Therefore,

ℑððW1Þ7ðW3Þ3Þ ¼ 0; ðA20Þ

which produces yet another syzygy that can be written in a
compact form as 7φ1 ¼ 3φ3.
Finally, we would like to reiterate the fact that the steps

to calculate p1, p2, m, and A can be done in many
alternative ways. For example, using the syzygy expressed
in Eq. (A16), we can replace the use of I5, I6, and I7 by the
invariants I3 and I4 in the definition of the dimensionless
invariants Q1 and Q2. By substituting Eq. (A16) into
Eqs. (A6) and (A7) we obtain

Q1 ¼
4ℜðW1W2Þ
5

ffiffiffi
3

p jW1j5=2
¼ 4

5
ffiffiffi
3

p I1I3 þ I2I4
ðI12 þ I22Þ5=4

; ðA21Þ

and

Q2 ¼
ðW4Þ2 − 12

5
jW1W2j2

108jW1j5

¼ ðI5 þ I6Þ2 − ð12=5Þ2ðI12 þ I22ÞðI32 þ I42Þ
108ðI12 þ I22Þ5=2

: ðA22Þ

The mass can also be found by substituting r ¼ mp2, and
cos θ ¼ p1p2=A, into jW3j2 instead of jW1j2, then solving
for m. Similarly, A can be found by performing the same
substitution into Q2 instead of Q3, then solving for A.
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