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The aim of this paper is to clarify the distinction between homoclinic and standard (global) Bondi-type
accretion solutions in the Schwarzschild–anti–de Sitter space-time. The homoclinic solutions have recently
been discovered numerically for polytropic equations of state. Here I show that they exist also for certain
isothermal (linear) equations of state, and an analytic solution of this type is obtained. It is argued that the
existence of such solutions is generic, although for sufficiently relativistic matter models (photon gas,
ultrahard equation of state) there exist global solutions that can be continued to infinity, similarly to
standard Michel’s solutions in the Schwarzschild space-time. In contrast to that global solutions should not
exist for matter models with a nonvanishing rest-mass component, and this is demonstrated for polytropes.
For homoclinic isothermal solutions I derive an upper bound on the mass of the black hole for which
stationary transonic accretion is allowed.
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I. INTRODUCTION

In a series of 3 papers [1–3] Karkowski, Malec, and I
have discussed stationary, Bondi-type accretion flows in
Schwarzschild–de Sitter and Schwarzschild–anti–de Sitter
space-times. We derived analytic solutions for three “iso-
thermal” equations of state of the form p ¼ ke, where p is
the pressure, and e denotes the energy density, with
k ¼ 1=3, 1=2, and 1. For polytropic equations of state of
the form p ¼ KρΓ, where ρ is the baryonic density and K
and Γ are constant, we have computed numerical solutions.
While in the sector of the positive cosmological constant

Λ all these solutions behave in a similar fashion, their
behaviors differ significantly for negative Λ. In particular,
isothermal transonic solutions with k ¼ 1=3, 1=2, and 1
cover the entire space outside the black hole horizon; i.e.,
they can be continued to arbitrarily large radii (similarly to
standard Bondi-type solutions in the Schwarzschild case
[4,5]). The situation is different for polytropic solutions,
and this behavior is illustrated in Figs. 2 and 3 of [2]. When
a polytropic solution is continued outwards, one encounters
a finite radius r, where the derivative of the radial velocity
component ∂rur diverges.
This behavior corresponds to the existence of homoclinic

orbits in the phase diagram of the radius r versus the radial
component of the velocity ur. Given the equations describ-
ing stationary Bondi-type accretion one can construct a
dynamical system with the phase portrait consisting of the
graphs of different solutions urðrÞ describing the accretion
flow [6]. The homoclinic orbit of this dynamical system
consists of two transonic solutions—the solutions that pass
through a saddle-type critical (fixed) point, at which the
local value of the speed of sound is equal to the modulus of
the three-velocity of the fluid (the so-called sonic point).

Given the above examples, one could have an impression
that those homoclinic solutions are somehow essentially
related to the assumed polytropic equation of state (as
opposed to the isothermal form). This is not quite true, and
the aim of this paper is to clarify these issues.
It is possible to show, and I do that in Sec. III of this

paper, that for isothermal equations of state a power-law
asymptotic behavior is admitted only if k ≥ 1=3. This
suggests the existence of homoclinic solutions also for
isothermal equations of state with k < 1=3, and indeed an
analytic example of such a solution can be given for
k ¼ 1=4 (Sec. IV).
On the other hand, one can show (Sec. VI) that global

(extending to infinity) solutions do not exist for polytropic
equations of state, irrespective of the assumed values of
the speed of sound. Interestingly, such solutions are not
permitted due to the term in the expression for the specific
enthalpy that represents the contribution from the rest mass
of gas particles.
The above observations suggest an analogy with the

properties of radial timelike and null geodesics in the
Schwarzschild–anti–de Sitter space-time [7]. For timelike
geodesics the term proportional to r2 in the effective
potential forbids the motion of a particle with a finite
energy to infinity. In contrast to that, a massless particle can
travel to arbitrary large radii.
It seems quite plausible that the occurrence of homo-

clinic solutions is generic, and it is characteristic for
nonrelativistic matter, where the energy density has a
nonvanishing contribution from the rest mass of the gas
particles.
Somewhat on the margin of the above considerations I

show that for isothermal equations of state with k < 1=3
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transonic accretion solutions exist only for sufficiently
small black holes. The appropriate limit on the mass of
the black hole is derived in Sec. V.
Relativistic Bondi-type accretion flows were investi-

gated in many recent papers. For instance, self-gravitating
flows were analyzed in [8,9], and also in [10]. Radiation
transfer was included in [11,12]. Among very recent
developments one should also notice [13]. There are also
papers dealing with Schwarzschild–anti–de Sitter space-
times. In [14] Amani and Farahani discussed phantom
accretion onto Schwarzschild–anti–de Sitter black holes,
basing on the idea presented in [15]. Accretion onto
Schwarzschild–anti–de Sitter black holes is also considered
in [16].

II. NOTATION AND EQUATIONS

In this paper I assume the gravitational system of units
with c ¼ G ¼ 1, and the signature of the metric tensor
ð−;þ;þ;þÞ.
The Schwarzschild–anti–de Sitter metric in standard

polar coordinates ðt; r; θ;ϕÞ has the form

ds2 ¼ −
�
1 −

2m
r

−
Λ
3
r2
�
dt2 þ dr2

ð1 − 2m
r − Λ

3
r2Þ

þ r2ðdθ2 þ sin2θdϕ2Þ; ð1Þ

where the cosmological constant Λ is negative, and m
denotes the mass of the black hole. Alternatively, one can
work in suitably chosen Eddington-Finkelstein-type coor-
dinates, that are regular at the horizon. An interested reader
is referred to [2].
The horizon of the black hole is located at

rh ¼
2ffiffiffiffiffiffijΛjp sinh

�
1

3
ar sinh ð3m

ffiffiffiffiffiffi
jΛj

p
Þ
�

(a real positive root of the equation 1 − 2m=r − Λr2=3 ¼ 0).
The motion of the fluid is described by the conservation

laws

∇μTμν ¼ 0; ∇μðρuμÞ ¼ 0; ð2Þ

where

Tμν ¼ ðeþ pÞuμuν þ pgμν

is the energy-momentum tensor. Here e, p, and ρ denote
the energy density, the pressure, and the baryonic density,
respectively. In what follows we introduce the specific
enthalpy h ¼ ðeþ pÞ=ρ [note that the specific enthalpy is
sometimes defined as h ¼ ðeþ pÞ=ρ − 1, which is differ-
ent from the convention used in this paper]. The symbol gμν

denotes the components of the metric tensor; uμ are the
components of the four-velocity of the fluid.

For spherically symmetric and stationary flows
uθ ¼ uϕ ¼ 0, and all quantities appearing in Eqs. (2) are
functions of r only. Assuming that the solution is smooth,
one can integrate Eqs. (2). This yields

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m
r

−
Λ
3
r2 þ ðurÞ2

r
¼ const; r2ρur ¼ const:

ð3Þ
The above equations constitute a starting point for the
discussion of the Bondi-type accretion solutions.
In this work I deal with two classes of equations of state.

The isothermal equations of state p ¼ ke, where 0 < k ≤ 1
is a constant [17], and polytropic equations of state
p ¼ KρΓ, where K > 0 and Γ > 1 are constant. In both
cases ρ, e, h, and p are related by simple formulas,
provided that the flow of the gas is smooth; i.e., there
are no shock waves or contact discontinuities. For the
isothermal equations of state one has

e ¼ C1ρ
1þk; h ¼ ð1þ kÞC1ρ

k; ð4Þ
where C1 is a constant. In the case of the polytropic
equation of state, it is easy to show that

e ¼ C2ρþ
K

Γ − 1
ρΓ; h ¼ C2 þ

Γ
Γ − 1

KρΓ−1: ð5Þ

The choice of the constant C2 is subject to the physical
interpretation. In the following I assume standard normali-
zation with C2 ¼ 1. By setting C2 ¼ 0 one can recover
Eq. (4).
It is also important to stress that the conservation law

∇μðρuμÞ ¼ 0 in Eqs. (2) is, de facto, the definition of ρ.
This quantity can have different physical interpretations,
depending on the context. For the gas of a conserved
number of massive particles, the density ρ can be expressed
as the number density of the particles times the mean rest
mass of the particle. On the other hand, the dynamics of the
photon gas with the equation of state p ¼ e=3 is described
by equations∇μTμν ¼ 0 only. In this case it is also possible
to introduce a function ρ satisfying the conservation law
∇μðρuμÞ ¼ 0, provided that the flow of the gas is smooth.
Such a function has a natural interpretation of the specific
entropy (note that it is not conserved across possible
discontinuities in the flow).
By differentiating Eq. (3) with respect to r one can obtain

the following expression for dur=dr:

dur

dr
¼ 2ur

r

c2s ½1 − 2m
r − Λ

3
r2 þ ðurÞ2� − m

2r þ Λ
6
r2

ðurÞ2 − c2s ½1 − 2m
r − Λ

3
r2 þ ðurÞ2� ;

where dh=dρ ¼ hc2s=ρ, and c2s is the speed of sound. One
has c2s ¼ k for isothermal equations of state, and c2s ¼
ðΓ − 1Þð1 − 1=hÞ for polytropes. Formally, this constitutes
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a “step backwards” in the process of finding of solutions,
but it gives an insight into their structure. Let l ¼ lðrÞ be a
parameter such that

dr
dl

¼ r

�
ðurÞ2 − c2s

�
1 −

2m
r

−
Λ
3
r2 þ ðurÞ2

��
≡ f1ðr; urÞ: ð6Þ

Then

dur

dl
¼ 2ur

�
c2s

�
1 −

2m
r

−
Λ
3
r2 þ ðurÞ2

�
−
m
2r

þ Λ
6
r2
�

≡ f2ðr; urÞ: ð7Þ

Equations (6) and (7) can be treated as a dynamical system,
whose phase portrait consists of the graphs of ur versus r,
or more precisely, the graphs of urðrÞ belong to the orbits of
Eqs. (6) and (7).
The dynamical system defined by Eqs. (6) and (7)

has critical (fixed) points ðr�; ur�Þ where f1ðr�; ur�Þ ¼
f2ðr�; ur�Þ ¼ 0, that is

ður�Þ2 − c2s�

�
1 −

2m
r�

−
Λ
3
r2� þ ður�Þ2

�
¼ 0; ð8Þ

c2s�

�
1 −

2m
r�

−
Λ
3
r2� þ ður�Þ2

�
−

m
2r�

þ Λ
6
r2� ¼ 0: ð9Þ

Here, and in what follows, the quantities referring to the
critical point will be denoted with an asterisk.
In order to find critical points one has to specify the

equation of state. It is, however, clear that

ður�Þ2 ¼
m
2r�

−
Λ
6
r2�; ð10Þ

and also

c2s� ¼
m
2r�

−
Λ
6
r2�

1 − 3m
2r�

− Λ
2
r2�
:

Thus, one can easily show that at the critical point

c2s� ¼ ðgrrvrvrÞ� ¼ ðvrvrÞ�;

where vr ¼ ur=ut is the radial component of the three-
velocity. Thence it is common to use the term “sonic point”
instead of “critical point.” For Λ ¼ 0, i.e., in the
Schwarzschild case, and for standard equations of state,
ðr�; ur�Þ is a saddle point. Thus, there is an accretion
solution passing through the sonic point. In the following
I will reserve the term “sonic point” for a critical saddle
point, as opposed to other types of critical points.

The existence and number of critical points will be
discussed in Sec. V for the isothermal equations of state.

III. ASYMPTOTIC BEHAVIOR OF
ISOTHERMAL SOLUTIONS

It is quite illuminating to start with an analysis of
the asymptotic behavior of isothermal solutions.1 For
isothermal equations of state Eq. (3) yield

1 −
2m
r

−
Λ
3
r2 þ ðurÞ2 ¼ Ar4kjurj2k; ð11Þ

where A is a positive constant. Let us assume an asymptotic
expansion of the form ur ≃ Brα. One gets

1 −
2m
r

−
Λ
3
r2 þ B2r2α ¼ AB2kr2kð2þαÞ:

There are two ways in which this equation can be satisfied
in the leading order for r → ∞. In both cases the term on
the right-hand side has to cancel with the leading term at the
left-hand side. If the leading order term on the left-hand
side is −Λr2=3, then 2kð2þ αÞ ¼ 2, and 2 > 2α (the
condition that the term B2r2α is not the leading one). If
the leading order term is B2r2α, we have 2kð2þ αÞ ¼ 2α,
and 2α > 2. These two possibilities lead to α ¼ ð1 − 2kÞ=k
and α ¼ 2k=ð1 − kÞ, respectively. In either case k > 1=3.
For k ¼ 1=3 the two asymptotics coincide; one has
α ¼ 1. It can be seen from the examples given in [2] that
the two exponents α correspond to the branches of the
solution that are asymptotically subsonic and supersonic
respectively [note that for 1=3 < k < 1 we have
ð1 − 2kÞ=k < 2k=ð1 − kÞ]. If k ¼ 1=3, the two branches
still exist, but with the same asymptotic behavior.
It is clear that for k < 1=3 asymptotic behavior of the

form ur ≃ Brα is not admitted. This suggests that for
k < 1=3 global solutions do not exist. The following
example confirms this expectation.

IV. SOLUTION FOR p ¼ e=4

An explicit homoclinic solution can be found for the
equation of state p ¼ e=4. For this equation of state
Eq. (11) can be written as

1 −
2m
r

−
Λ
3
r2 þ ðurÞ2 ¼ Ar

ffiffiffiffiffiffiffi
jurj

p
; ð12Þ

Here I will be mainly interested in transonic solutions. In
this case the value of A should be determined by requiring
that the solution passes through the sonic point [a saddle
critical point of the dynamical system defined by Eqs. (6)
and (7)]. The location of the sonic point r� is given by

1A part of the analysis presented in this section was pointed to
me by Jerzy Knopik.
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m
2r�

−
Λ
6
r2� ¼

1

4

�
1 −

3m
2r�

−
Λ
2
r2�

�

or

Λr3� þ 6r� − 21m ¼ 0

(cf. Sec. V). The above polynomial equation has real
positive solutions only for m2 ≤ 32=ð441jΛjÞ, i.e., when
its discriminant is not positive. This follows from a very
simple reasoning; it is presented in Sec. V without
restricting to k ¼ 1=4 only. For m2 ≤ 32=ð441jΛjÞ the
location of the sonic point is given by

r� ¼
2
ffiffiffi
2

pffiffiffiffiffiffijΛjp cos

�
π

3
þ 1

3
arc cos

�
21m

ffiffiffiffiffiffijΛjp
4
ffiffiffi
2

p
��

:

The square of the radial component of the velocity at the
sonic point is given by Eq. (10); the value of the constant A
appearing in Eq. (12) that corresponds to transonic sol-
utions can be expressed as

A ¼ A� ≡ 4

r�

�
m
2r�

−
Λ
6
r2�

�3
4

: ð13Þ

Equation (12) is a quartic polynomial equation in
ffiffiffiffiffiffiffijurjp

,
and it can be solved exactly. Let

Δ ¼
�
Ar
4

�
4

−
1

33

�
1 −

2m
r

−
Λ
3
r2
�

3

;

where A ¼ A� is given by Eq. (13). The domain of the
transonic solution is given by the condition Δ ≥ 0. Let R
denote the largest root of the equation Δ ¼ 0, and let us set

X� ¼ y
2

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Arffiffiffi
2

p
y
3
2

− 1

s !
2

;

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Ar
4

�
2

þ
ffiffiffiffi
Δ

p
3

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Ar
4

�
2

−
ffiffiffiffi
Δ

p
3

s
;

where in the expression for ywe choose real roots. Then the
two branches of the transonic solution can be written as

jurj ¼
�
Xþ; 0 < r ≤ r�;

X−; r� ≤ r < R

(this branch is subsonic outside r�) and

jurj ¼
�
X−; rh < r ≤ r�;

Xþ; r� ≤ r < R;

for the branch that is supersonic outside r�. For values of
the constant A other than that given by Eq. (13) the
expressions X� give remaining accretion solutions, that
are not transonic.
Once the expressions for ur are found, all other quan-

tities can be trivially computed. The density ρ is given by
the second equation in Eq. (3). The expressions for e and h
are obtained from Eq. (4).
Examples of solutions for the equation of state p ¼ e=4

are depicted in Fig. 1. Here m ¼ 1, Λ ¼ −5=100, and the
solutions are plotted for A0 ≡ A=A� ¼ 0.98, 1, and 1.02,
respectively.

V. CRITICAL POINTS IN THE
ISOTHERMAL CASE

The discussion of the asymptotic behavior of isothermal
solutions given in Sec. III and the solutions shown in Fig. 1
suggest that for isothermal equations of state p ¼ ke with
0 < k < 1=3 one should expect the existence of two critical
points on the phase diagram of ðr; urÞ, at least for a certain
range of parameters. These should be a saddle point
belonging to the homoclinic orbit, and a center enclosed
by this orbit. I will now argue that this is indeed the case. In
addition, a simple reasoning gives a restriction on the mass
of the black hole allowing for transonic accretion.
For isothermal equations of state p ¼ ke Eqs. (8) and (9)

yield

m
2r�

−
Λ
6
r2� ¼ k

�
1 −

3m
2r�

−
Λ
2
r2�

�
;

which is equivalent to the cubic equation

Λ
2

�
1

3
− k

�
r3� þ kr� −

3

2
m

�
kþ 1

3

�
¼ 0:

0 2 4 6 8 10 12 14
r

0.0

0.5

1.0

1.5

2.0

ur 

A 1

A 1.02

A 0.98

FIG. 1 (color online). Solutions obtained for the equation of
state p¼e=4 and sample metric parametersm ¼ 1, Λ ¼ −5=100.
The solid line depicts transonic solutions. The vertical line
denotes the position of the horizon of the black hole. The graph
shows solutions for A0 ¼ A=A� ¼ 0.98, 1, and 1.02.
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Dividing by Λ
2
ð1
3
− kÞ one can write the above equation as

fðr�Þ≡ r3� þ 3pr� þ 2q ¼ 0; ð14Þ
where

p ¼ 2k
Λð1 − 3kÞ ; q ¼ −

3mð3kþ 1Þ
2Λð1 − 3kÞ :

For Λ < 0 and 0 < k < 1=3 the above equation has a
real negative root. This is a trivial consequence of the
fact that fð0Þ ¼ 2q > 0 and limr�→−∞fðr�Þ ¼ −∞. Thus, a
real and positive root can exist only if the discriminant
W ¼ q2 þ p3 is nonpositive. A straightforward calculation
shows that this condition is equivalent to

m2 ≤
32k3

9ð1 − 3kÞð1þ 3kÞ2jΛj ; ð15Þ

which can be interpreted as an upper bound on the black
hole mass allowing for the transonic accretion. In this case
Eq. (14) has three real roots, two of them being positive.
This last statement follows directly from the analysis of the
complex roots in the Cardano formula

r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−qþ i

ffiffiffiffiffiffiffi
jWj

p
3

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−q − i

ffiffiffiffiffiffiffi
jWj

p
3

q
:

Conversely, for k > 1=3 and Λ < 0 the discriminant
W is always positive, and there is just one real root. This
root is positive: in this case fð0Þ < 0 and, of course,
limr�→∞fðr�Þ ¼ þ∞.
In principle, the analysis of the critical points can be

pursued further by computing the Jacobians of the right-
hand side of Eqs. (6) and (7), i.e.,0

BB@
∂f1
∂r

∂f1
∂ur

∂f2
∂r

∂f2
∂ur

1
CCA ð16Þ

at critical points, and analyzing their eigenvalues. This can
be easily done, say with Wolfram Mathematica. One can
show that the critical points are either a saddle [Jacobian
(16) has real eigenvalues with different signs] or a center
[eigenvalues of (16) are imaginary]. More precisely, it can
be shown that the eigenvalues are of the form� ffiffiffiffi

Y
p

, but the
resulting expression for Y is lengthy, and the sign of Y is not
immediately clear. A case-by-case study shows that the
critical point with smaller r� is a saddle point (Y > 0), and
the critical point with larger r� is a center (Y < 0), as
expected. For the data depicted in Fig. 1, i.e., k ¼ 1=4,
m ¼ 1, and Λ ¼ −5=100, the critical points are located at
r� ¼ 4.05608 and r� ¼ 8.34795. In the first case the
eigenvalues of (16) are �0.391511. In the second they
are �0.68955i.

The mass limit (15) is illustrated in Fig. 2. It shows a
sequence of transonic solutions obtained for increasing
values of the black hole mass and the equation of state
p ¼ e=4. The solid line in this graph depicts the limiting
case with the mass m ¼ mL ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

32=ð441jΛjÞp
. Note that

the “homoclinic loop” gets smaller and smaller with the
increasing mass, and it disappears for m ¼ mL.

VI. POLYTROPIC SOLUTIONS

Sample numerical solutions with polytropic equations of
state were given in [2], exhibiting characteristic homoclinic
behavior. Here I note that no global polytropic solutions
exist [i.e., Eq. (3) cannot be satisfied asymptotically],
irrespective of the assumed parameters of the polytropic
equation of state. This can be seen immediately, if one
attempts to repeat the reasoning of Sec. III. From Eqs. (3)
and (5) one has

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m
r

−
Λ
3
r2 þ ðurÞ2

r

¼
�
1þ ΓK

Γ − 1
ρΓ−1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m
r

−
Λ
3
r2 þ ðurÞ2

r
¼ const:

The square root in the above formula behaves asymptoti-
cally at least as OðrÞ, due to the Λ term. The only way in
which this divergent behavior could be canceled (to yield
the constant appearing on the right-hand side) is to have h
vanishing sufficiently fast. This is clearly impossible since
h > 1. Of course, the unity in the expression for h comes
from the ρ term in the formula for the energy density e,
i.e., a contribution due to the rest mass of the particles of
the gas.

0 2 4 6 8 10 12
r

0.0

0.5

1.0

1.5

2.0

ur

m 0.85 mL

m 0.9 mL

m 0.95 mL

m mL

FIG. 2 (color online). Transonic solutions obtained for the
equation of state p ¼ e=4 and Λ ¼ −5=100. The graphs corre-
spond to four values of the black hole mass: m ¼ 0.85mL,
m ¼ 0.9mL, m ¼ 0.95mL, and m ¼ mL, where mL ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

32=ð441jΛjÞp
is the maximal mass for which a sonic point

exists.
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VII. DISCUSSION

Avery natural interpretation of the above results is to say
that the existence of the global (asymptotic) solutions of the
Bondi-type accretion in the Schwarzschild–anti–de Sitter
space-time is not directly related to the algebraic form of
the equation of state. Global solutions exist for relativistic
mattermodels that can be associatedwith the gas ofmassless
particles. In this context it is important to note that the
equation of state p ¼ e=3, a limiting case among isothermal
equations of state, is a simple well-known model of the
photon gas. This interpretation is also confirmed by the
observation that the term that forbids asymptotic solutions in
the case of polytropic equations of state is directly connected
with the nonvanishing rest mass of the gas particles.
Of course, the simplest (and perhaps slightly naive)

explanation would be to refer to the behavior of radial null
and timelike geodesics in the Schwarzschild–anti–de Sitter
space-times. They are analyzed in detail in [7]. Timelike
radial geodesics are described by�

dr
dτ

�
2

¼ E2 −
�
1 −

2m
r

−
Λ
3
r2
�
;

where τ denotes the proper time, and E is constant (the
energy). Here 1 − 2m=r − Λr2=3 plays a role of the
effective potential. Since it diverges asymptotically as r2,
the range of the motion of the particle with finite energy E
is limited. In terms of the coordinate time the above
equation can be written as

�
dr
dt

�
2

¼ 1

E2

�
1 −

2m
r

−
Λ
3
r2
�

2

×

�
E2 −

�
1 −

2m
r

−
Λ
3
r2
��

:

The equation describing null geodesics has the form�
dr
dt

�
2

¼
�
1 −

2m
r

−
Λ
3
r2
�

2

;

meaning that a photon can travel to infinity.
It is also interesting to note that a similar homoclinic

behaviorwas observed in the spherically symmetricmodels of
Bondi-type accretiononReissner-Nordströmblackholes [18].
In this case it is caused by the electric charge term, and the
homoclinic loop is located inside the horizon of the black hole.
As a by-product of the analysis presented in this paper I

obtained a restriction on the maximum mass of the black
hole that allows for the transonic accretion of isothermal
fluids with 0 < k < 1=3. This bound is given by a
remarkably simple formula, and it is discussed in Sec. V.
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