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We study the collision of two particles in the Teo wormhole spacetime, in which the wormhole is
stationary and axisymmetric. We show that a nonrotating Teo wormhole cannot be a high energy particle
collider, while a rotating Teo wormhole can be used to accelerate particles and create high energy collisions
because of the deep effective potential of the colliding particles. The process is different from that in the
vicinity of a near-extremal black hole, since here there is no event horizon. This is the first example of
particle collision with high center-of-mass energy in a spacetime with no event horizon and no naked
singularity and not being extremal in a clear sense. The process can unlikely have direct implications for
astrophysical observations, but it is interesting as a tool to investigate wormhole instabilities.
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I. INTRODUCTION

Recently, Bañados, Silk and West have rediscovered that
the center-of-mass energy of a collision of two particles that
are at rest at infinity can be arbitrary high near the horizon
of an extremal Kerr black hole if the particle angular
momentum is fine-tuned to a critical value [1]. The
phenomenon is now called Bañados–Silk–West (BSW)
effect, but actually it was found for the first time by Piran,
Shaham and Katz in 1975 in a sequence of papers on the
collisional Penrose process [2–4]. The properties of high
energy collisions in the vicinity of extremal and almost
extremal Kerr black holes have been investigated in detail
[5]. For a review, see e.g. Harada and Kimura [6]. The BSW
process has been criticized in Refs. [7,8]. First, the proper
time of a critical particle to reach the event horizon of an
extremal Kerr black hole is infinite. Second, it is widely
believed that astrophysical black holes cannot be extremal.
The Thorne bound for the spin parameter of a Kerr black
hole accreting from a thin disk is J=M2 ≤ 0.998 [9], even if
it can be violated in the cases of super-Eddington accretion
[10,11] and of deviations from the Kerr background [12].
From the relativistic point of view, high energy collisions

of particles on curved spacetimes are interesting because
the phenomenon would have close relationships with other
relativistic effects, such as the emission of gravitational
waves [13], the self-gravity of colliding objects [14], and
instabilities of the background spacetime [14–16]. In
astrophysical situations, the true upper bound of the
center-of-mass energy for a particle collision would be
affected by these relativistic effects.
The electromagnetic counterpart of the BSW effect

in the extremal Reissner–Nordström black hole spacetime
was found by Zaslavskii [17], although the extremal

Reissner–Nordström black hole can unlikely be considered
an astrophysical object. The details of the BSW collision in
the Reissner–Nordström spacetime have been investigated
to understand the BSW effect deeply [14,18,19] since the
Reissner–Nordström spacetime has a simpler structure than
the Kerr spacetime.
The BSW effect has been also studied in a variety of

near-extremal black hole spacetimes [14,20], including
cases in higher dimensions [16,21], and some near-
extremal non-black-hole spacetimes [22,23]. These recent
studies have revealed that the BSW effect is a universal
property in extremal and near-extremal spacetimes, while
particle accelerations would also occur in non-near-
extremal spacetimes if a gravitational potential is deep [6].
In this paper, we will show clearly that particle collisions
with a high center-of-mass energy can occur because of a
deep effective potential.
The BSWeffect can be used to study the instability of the

background spacetime. Kimura et al. pointed out that a
BSW collision may generate a new black hole in the
vicinity of extremal or almost extremal black holes [14].
This implies that extremal black holes are unstable against
the BSW process. Tsukamoto et al. [16] showed that there
are analogies between the instability of extremal horizons
suggested by the BSWeffect and the test-field instability of
extremal horizons studied by Aretakis [24].
General relativity permits gravitating objects with a

nontrivial topology such as wormholes (for a review on
wormhole spacetimes, see e.g. Ref. [25]). Astrophysical
observations give some constraints [26], but they cannot
exclude the existence of these objects in our Universe. For
instance, some traversable wormholes are still viable
candidates to explain the supermassive objects at the
centers of galaxies [27]. The Ellis wormhole is the simplest
traversable wormhole of the Morris–Thorne class [28]. It is
a static, spherically symmetric and asymptotically flat
solution of Einstein’s equations with a phantom scalar
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field [29]. However, the spacetime is unstable [30], despite
some early studies claiming its stability [31].
In 2013, Bronnikov et al. considered the Ellis wormhole

metric, but with the spacetime filled with a perfect fluid
with negative density and a source-free radial electric or
magnetic field. With this setup, they proved that their
wormhole was linearly stable under both spherical and
axial perturbations [32]. It seems to be the first example of a
stable wormhole without a thin shell in general relativity.
Their result clearly shows that the stability of a wormhole
does not only depend on the metric but also on the matter
content supporting the wormhole. Interestingly, the center-
of-mass energy of a collision between two particles is
independent of the matter content supporting the worm-
hole. The possible instability suggested by the BSW effect
can thus be a useful tool to study the instability of the
spacetime.
In this paper, we will investigate the collision of two

particles in the Teo wormhole spacetime. Such a metric was
proposed by Teo in Ref. [33] and describes a simple
rotating wormhole. Because of the absence of any event
horizon, the process is different from the BSW effect. We
find that the spin of the wormhole dramatically changes the
picture. Nonrotating Teo wormholes cannot be high energy
particle colliders,1 while rotating Teo wormholes can
potentially accelerate particles and create collisions with
a high center-of-mass energy.
The paper is organized as follows. In Sec. II, we consider

the motion of a test particle in the Teo wormhole spacetime.
In Sec. III, we investigate the collision of two particles in
the vicinity of a Teo wormhole. In Sec. IV, we discuss and
summarize our results. In Appendix A, we consider particle
collisions in the Ellis wormhole spacetime. In Appendix B,
we study the relation between the scalar curvature and the
collision of two particles with a high center-of-mass energy
in wormhole spacetimes. Throughout the paper, we use
geometrical units in which the light speed c and Newton’s
constant GN are 1, unless stated otherwise.

II. PARTICLE MOTION IN THE TEO
WORMHOLE SPACETIME

In this section, we will investigate the motion of a test
particle in the Teo wormhole spacetime, which is a simple
example of a rotating wormhole and was suggested by Teo
in Ref. [33]. The line element in spherical polar coordinates
is given by

ds2 ¼ −N2dt2 þ 1

1 − b
r

dr2

þ r2K2½dθ2 þ sin2θðdϕ − ωdtÞ2�; ð2:1Þ

where

N ¼ K ¼ 1þ 16a2dcos2θ
r

; ð2:2Þ

ω ¼ 2a
r3

; ð2:3Þ

b and d are positive constants,2 and we shall consider the
range of the radial coordinate r ≥ b. The throat of the
wormhole is at r ¼ b, and the flare-out condition [28] is
satisfied there:

b − b;rr
2b2

> 0: ð2:4Þ

Without loss of generality, we assume a non-negative spin
angular momentum a ≥ 0. The spacetime has the time
translational Killing vector tμ∂μ ¼ ∂t and the axial Killing
vector ϕμ∂μ ¼ ∂ϕ, since it is, respectively, stationary and
axisymmetric.
The throat of the wormhole has a peanut-shell-like shape

(see Fig. 1 in Teo’s paper [33]), and the wormhole shadow
was studied by Mori [35]. In the fast-rotating wormhole
case with a > b2=2, the ergoregion exists in the range
2aj sin θj > r2 > b2. It is near the equatorial plane
(θ ¼ π=2), but it does not extend to the poles (θ ¼ 0
and π).
Let us now consider the motion of a test particle with the

rest mass m and the angular momentum pμ ¼ dxμ=dλ,
where xμ is the spacetime coordinate and λ is a parameter
defined as λ≡ τ=m for a massive particle with proper time
τ. For the sake of simplicity, we focus on the motion of a
particle on the equatorial plane θ ¼ π=2. We introduce a
new radial coordinate ρ defined by

dρ
dr

≡�
�
1 −

b
r

�
−1
2

; ð2:5Þ

which assumes values in the range −∞ < ρ < ∞, and we
rewrite the line element as

ds2 ¼ −dt2 þ dρ2 þ r2ðρÞðdϕ − ωðρÞdtÞ2: ð2:6Þ

Without loss of generality, we can assume that the
wormhole throat is at ρ ¼ 0, and we obtain

1We note, however, that the passage through a wormhole
can potentially accelerate a particle; see e.g. Ref. [34],
pages 159–160.

2Here, we have introduced a positive parameter d to tune the
dimension of the second term on the right-hand side in Eq. (2.2)
because we use the geometrical units in which c ¼ GN ¼ 1,
while Teo used units in which c ¼ GN ¼ b ¼ 1. The dimension
of d is ½d� ¼ ½m−3� ¼ ½kg−3� ¼ ½s−3� in geometrical units.
If we set b ¼ d ¼ 1, we find the same line element as in Teo’s
paper [33].
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ρ ¼ �
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rðr − bÞ
p

þ b log

� ffiffiffi
r
b

r
þ

ffiffiffiffiffiffiffiffiffiffiffi
r
b
− 1

r ��
; ð2:7Þ

where the sign of the right-hand side is, respectively,þ or −
in the region on the one side or the other side of the throat.
From the forward-in-time condition dt=dλ ≥ 0, the follow-
ing relation holds along geodesics,

EðρÞ≡ E − ωðρÞL ≥ 0; ð2:8Þ

where E≡ −pμtμ ¼ −pt and L≡ pμϕ
μ ¼ pϕ are, respec-

tively, the conserved energy and the conserved angular
momentum for a massive particle.
From the condition −m2 ¼ pμpμ, we obtain

1

2

�
dρ
dλ

�
2

þ VeffðρÞ ¼ 0; ð2:9Þ

where

VeffðρÞ≡ −
1

2
RðρÞ; ð2:10Þ

and

RðρÞ≡ −m2 þ E2ðρÞ − L2

r2ðρÞ : ð2:11Þ

We can rewrite Eq. (2.9) as

dρ
dλ

¼ σρ
ffiffiffiffiffiffiffiffiffiffi
RðρÞ

p
; ð2:12Þ

where σρ ¼ −1 ðþ1Þ for a particle approaching (leaving)
the wormhole throat at ρ ¼ 0 in a region ρ ≥ 0. In the
region ρ < 0, σρ ¼ −1 ðþ1Þ when the particle leaves
(approaches) the wormhole throat.
Motion is possible when VeffðρÞ ≤ 0, namely RðρÞ ≥ 0.

The effective potential at infinity is

lim
ρ→∞

VeffðρÞ ¼
1

2
ðm2 − E2Þ; ð2:13Þ

and a particle can be at infinity if the conserved energy is
larger than its rest mass, i.e. E2 ≥ m2. The effective
potential has an extreme value at the throat ρ ¼ 0:

Veffð0Þ ¼
1

2

�
m2 −

�
E −

2aL
b3

�
2

þ L2

b2

�
: ð2:14Þ

From Veffð0Þ ≤ 0, a particle can be at the throat
ρ ¼ 0 either if L ≤ L− or if L ≥ Lþ for any value of the
conserved energy E in the case a ≥ b2=2. When E2 ≥
ð1 − 4a2=b4Þm2 in the case a < b2=2, the condition is
L− ≤ L ≤ Lþ, where

L� ≡ 2aE�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2b4 þm2ð4a2 − b4Þ

p
4a2 − b4

b3: ð2:15Þ

At this point, it is useful to introduce the dimensionless
parameters

a� ≡ a
b2

; e≡ E
m
; l≡ L

mb
; r� ≡ r

b
; ρ� ≡ ρ

b
;

ð2:16Þ

where ρ� and r� are related by

ρ� ¼ �½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r�ðr� − 1Þ

p
þ log ð ffiffiffiffiffi

r�
p þ

ffiffiffiffiffiffiffiffiffiffiffiffi
r� − 1

p
Þ�: ð2:17Þ

Using these parameters, we can rewrite the effective
potential for a particle as

2Veffðρ�Þ
m2

¼ 1 −
�
e −

2a�l
r3�ðρ�Þ

�
2

þ l2

r2�ðρ�Þ
: ð2:18Þ

We note that Veffðρ�Þ=m2 is invariant under transformations
that do not change the dimensionless parameters e, l, a�, r�
and ρ�. An example is the transformation E → 2E, L → 2L
and m → 2m.

FIG. 1 (color online). Some examples of the effective potential
VeffðρÞ=m2 in which a particle moves from a flat region at infinity
to another flat region at infinity in the Teo wormhole spacetime
passing through the wormhole throat. The solid (red), dashed
(green), dot-spaced (blue), dotted (magenta), dash-dotted (cyan)
and double-dot-spaced (black) curves denote the effective
potentials of a particle with, respectively, the following set of
parameters: I (a ¼ 1,m ¼ 1, E ¼ 1.1, L ¼ −1, b ¼ 1), II (a ¼ 1,
m ¼ 1, E ¼ 1.1, L ¼ −1, b ¼ 0.001), III (a ¼ 1, m ¼ 1, E ¼ 2,
L ¼ −2, b ¼ 0.001), IV (a ¼ 1, m ¼ 1, E ¼ 2, L ¼ −1,
b ¼ 0.001), V (a ¼ 2, m ¼ 1, E ¼ 2.2, L ¼ −1, b ¼ 0.001)
and VI (a ¼ 1, m ¼ 2, E ¼ 2.2, L ¼ −1, b ¼ 0.001). We note
that the effective potentials VeffðρÞ=m2 are already quite close to
their asymptotic values 1=2 − E2=ð2m2Þ at ρ ¼ 5. We also note
that the effective potentials are even with respect to ρ, i.e.
Veffð−ρÞ ¼ VeffðρÞ, and the derivatives of the effective potential

with respect to ρ vanish at the throat, namely dVeff ð0Þ
dρ ¼ 0.
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Figure 1 shows some examples of the effective potential
VeffðρÞ=m2 in which the particle can reach the wormhole
throat at ρ ¼ 0. We note that the effective potential
is even with respect to the radial coordinate ρ, namely
Veffð−ρÞ ¼ VeffðρÞ.
A particle that is initially at ρ ¼ ρi > 0 reaches the

wormhole throat at ρ ¼ 0 in a proper time,

τ ¼ m
Z

ρi

0

dρffiffiffiffiffiffiffiffiffiffi
RðρÞp : ð2:19Þ

Figure 1 shows that this time is finite. We remind the reader
that a critical particle with a fine-tuned angular momentum
reaches the event horizon in the extremal Kerr black hole
spacetime in an infinite proper time.

III. PARTICLE COLLISIONS IN THE
TEO WORMHOLE SPACETIME

Now we want to study the collision of two particles, say
particle 1 with rest mass mð1Þ and particle 2 with rest mass
mð2Þ. The center-of-mass energy of the collision is

E2
CMðρÞ ¼ −ðpμ

ð1Þ þ pμ
ð2ÞÞðpð1Þμ þ pð2ÞμÞ

¼ m2
ð1Þ þm2

ð2Þ þ 2Eð1ÞðρÞEð2ÞðρÞ −
2Lð1ÞLð2Þ
r2ðρÞ

− 2σρð1Þσρð2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rð1ÞðρÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rð2ÞðρÞ

q
; ð3:1Þ

where RIðρÞ and EIðρÞ are defined by

RIðρÞ≡ −m2
I þ E2

I ðρÞ −
L2
I

r2ðρÞ ð3:2Þ

and

EIðρÞ≡ EI − ωðρÞLI; ð3:3Þ

respectively, for particle I ¼ 1 and 2, and where pμ
I , LI, σρI

and EI are pμ, L, σρ and E for I ¼ 1 and 2.
We are interested in the collisions of two particles falling

into the rotating wormhole from the two flat regions. With
this setup, we have σρð1Þσρð2Þ ¼ −1. The center-of-mass
energy of the collision of the particles at the wormhole
throat ρ ¼ 0 is

E2
CMð0Þ ¼ m2

ð1Þ þm2
ð2Þ þ 2Eð1Þð0ÞEð2Þð0Þ −

2Lð1ÞLð2Þ
b2

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rð1Þð0Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rð2Þð0Þ

q
: ð3:4Þ

Here, RIð0Þ and EIð0Þ are given by

RIð0Þ ¼ −m2
I þ E2

I ð0Þ −
L2
I

b2
ð3:5Þ

and

EIð0Þ ¼ EI −
2aLI

b3
; ð3:6Þ

respectively, for I ¼ 1and 2.

A. Static and spherically symmetric wormholes (a ¼ 0)

If the wormhole is static and spherically symmetric,
namely a ¼ 0, the center-of-mass energy of the head-on
collision of the two particles at the wormhole throat
ρ ¼ 0 is

E2
CMð0Þ ¼ m2

ð1Þ þm2
ð2Þ þ 2Eð1ÞEð2Þ −

2Lð1ÞLð2Þ
b2

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rð1Þð0Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rð2Þð0Þ

q
: ð3:7Þ

If the wormhole throat is small b ≪ jLIj, the center-of-
mass energy for the particle collision can be large.
However, this requires that the particles have a large
conserved energy E2ð> m2 þ L2=b2Þ to reach the worm-
hole throat. We point out that this is the case in our class of
wormholes while, in wormhole spacetimes in which the
throat is located in a region in which gtt is small, particles
can naturally fall there. The conclusion is that static and
spherical symmetric wormholes cannot be used as a particle
accelerator.

B. Small and fast-rotating wormholes

If the wormhole is small in size and it is fast rotating,
namely b ≪ a1=2, jLI=EIj and jLI=mIj, and if the con-
served angular momenta LI for the particles I ¼ 1 and 2 are
negative, the center-of-mass energy of a head-on collision
of two particles at the wormhole throat ρ ¼ 0 is given by

E2
CMð0Þ ∼

8a2Lð1ÞLð2Þ
b6

þ 8a2jLð1ÞjjLð2Þj
b6

¼ 16a2Lð1ÞLð2Þ
b6

: ð3:8Þ

E2
CMð0Þ can be very large even if the initial energy at

infinity is small. We thus find that rotating Teo wormholes
can be particle accelerators if they are small.

IV. SUMMARY AND DISCUSSION

In the Teo wormhole spacetime, particles can reach the
wormhole throat from an initial point in the flat regions in a
finite proper time. This is an important difference with
respect to the BSW process in an extremal Kerr black hole
spacetime because here a collision with a high center-of-
mass energy is possible in a finite proper time. Moreover,
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we do not require any fine-tuning of the particle angular
momentum or of the particle charge in order to reach a high
center-of-mass energy.
The center-of-mass energy of the particles near the

wormhole throat can be very large if the wormhole is
rotating fast and if its size is small, namely the parameter b
is small (b ≪ a1=2, jLI=EIj, and jLI=mIj). If the energy of
the center of mass is sufficiently high, the collision could
generate a black hole near the wormhole. Our result can
thus be interpreted as an indication that fast-rotating
wormholes with small b are unstable against particle
collisions in the vicinity of the wormhole throat. We note
that such a conclusion is independent of the matter content
responsible for the existence of the wormhole. Usual
considerations on the wormhole stability are instead based
on the study of small perturbations around the background
metric and the matter configuration. Because of this
dependence of the matter content, in the wormhole cases,
it is not really possible to point out any analogy between
particle collisions with high center-of-mass energy and
instabilities depending on the matter content. However, the
presence of an instability related to the collision of two
particles with a high center-of-mass energy might become a
useful tool to investigate the stability of gravitating objects.
Even if we accept the hypothesis that some observed

astrophysical objects like the supermassive bodies in
galactic nuclei might be wormholes, the high rotating
condition would not be achieved. Our result may instead
be relevant for wormhole formations. The creation of
wormholes is still an open problem, although some authors
are challenging this issue (see e.g. Ref. [36] and the
references therein). Wormholes might have been created
in the early Universe, because of quantum fluctuations in
spacetime topology [37], and enlarged to classical size [38].
If the particle collision with high center-of-mass energy in
rotating wormhole spacetimes implies the instability of a
wormhole, we may constrain the initial condition of
rotating wormholes and the growth process.
The fact that the collision of two particles has a high

center-of-mass energy does not imply that an observer at
infinity can detect very high energy radiation produced in
the process, as such a radiation may be strongly affected by
gravitational redshift. For instance, very energetic particles
created in a collisional Penrose process [2] in an extremal
or almost extremal Kerr black spacetime cannot escape to
infinity with a high energy, or equivalently very massive
particles cannot reach a distant observer [39–41]. The result
is different in the Reissner–Nordström black hole case, in
which a charged particle with a very high energy or a very
large rest mass can do it [17,19,42]. Recently, the details
of the collisional Penrose process in an extremal Kerr
spacetime have been reexamined [43].
Zaslavskii investigated a head-on particle collision and a

collisional Penrose process in a general spacetime without
horizons or naked singularities [23]. Using the notation in

our Eq. (2.1), he considered a spacetime with N > 0 but
arbitrary small at the collision point. In this sense, the
spacetime is almost extremal, although there is no horizon.
The Teo wormhole spacetime discussed in this paper is
quite different. As it can be seen from Eq. (2.2),N is always
larger than 1, so it never becomes small. Our process is thus
the first example of particle collision with high center-of-
mass energy in a spacetime with no event horizons and no
naked singularities and not being extremal at all.
A rapidly rotating Teo wormhole has an ergoregion

where a collisional Penrose process can occur like in the
ergosphere in the Kerr spacetime and in the generalized
ergoregion [44,45] in the Reissner–Nordström spacetime.
The details of the collisional Penrose process in the Teo
wormhole spacetime will be discussed in a future work.
We conclude with a comment on exact solutions of

rotating wormholes. Recently, rotating Ellis wormholes
with a phantom scalar field were investigated numerically
in four [46] and in five dimensions [47]. The authors found
that there is an upper bound for the wormhole angular
momentum. However, this does not imply that highly
rotating wormholes cannot exist, since the key point is
the matter content responsible for the spacetime geometry.
The Teo wormhole metric was introduced to study con-
cretely the properties of wormholes that can rotate fast and
do not have any horizon [33]. It is not an exact solution
generated by a specific matter content. We hope that this
paper will stimulate the investigations of rapidly rotating
wormholes.
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APPENDIX A: PARTICLE COLLISION IN
THE ELLIS WORMHOLE SPACETIME

This Appendix is devoted to the collision of two particles
in the Ellis wormhole spacetime. The Ellis wormhole [29]
was the first example of a traversable wormhole of the
Morris–Thorne class [28]. The line element is given by

ds2 ¼ −dt2 þ dρ2 þ ðρ2 þ b2Þðdθ2 þ sin2θdϕ2Þ; ðA1Þ

where b is a positive constant. Since the spacetime is
spherical symmetric, we can consider the motion on the
equatorial plane θ ¼ π=2 without loss of generality. As we
have done in the Teo wormhole case, we can define an
effective potential VeffðρÞ as
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VeffðρÞ≡ 1

2

�
m2 − E2 þ L2

ρ2 þ b2

�
: ðA2Þ

The effective potential VeffðρÞ is a monotonically decreas-
ing function of ρ2 and has a maximum at the throat ρ ¼ 0.
The center-of-mass energy of the collision of two

particles is

E2
CM ¼ m2

ð1Þ þm2
ð2Þ þ 2Eð1ÞEð2Þ − 2

Lð1ÞLð2Þ
ρ2 þ b2

− 2σρð1Þσρð2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rð1ÞðρÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rð2ÞðρÞ

q
; ðA3Þ

where

RIðρÞ≡ −m2
I þ E2

I −
L2
I

ρ2 þ b2
ðA4Þ

for I ¼ 1 and 2. At the throat ρ ¼ 0, the center-of-mass
energy in a head-on collision of two particles and the
effective potential are exactly the same as in the Teo
wormhole spacetime with a ¼ 0. Therefore, the Ellis
wormhole cannot be a high energy particle collider, just
like the static and spherical symmetric Teo wormhole.

APPENDIX B: SCALAR CURVATURE

The scalar curvatureR on the equatorial plane (θ ¼ π=2)
in the Teo wormhole is given by

R ¼ −
2a2ð64r4ðρÞdþ 9b − 9rðρÞÞ

r7ðρÞ : ðB1Þ

As shown in Sec. III, in the case of a wormhole of small
size and high spin, namely b ≪ a1=2, jLI=EIj, and jLI=mIj,
the Teo wormhole can work as a high energy particle
collider. It turns out that, in such a situation, the absolute
value of the scalar curvatureR is very large at the throat on
the equatorial plane. On the contrary, in the nonrotating
case a ¼ 0, the Teo wormhole cannot be used as a high
energy particle collider, and Eq. (B1) shows that the scalar
curvature R vanishes everywhere.
Such a finding between curvature and center-of-mass

energy may suggest that the possibility of an efficient
particle acceleration requires a large jRj. Actually, this is
not true. The scalar curvature R in the Ellis wormhole is
given by

R ¼ −
2b2

ðb2 þ ρ2Þ2 : ðB2Þ

At the wormhole throat ρ ¼ 0, this gives R ¼ −2=b2. In
the small b case, the absolute value of the scalar curvature is
large at the throat ρ ¼ 0. However, the Ellis wormhole with
small b cannot be a high energy particle collider as seen in
Appendix A. We thus conclude that the scalar curvature R
is not a good indicator to understand the possibility of the
creation of high energy collision between two particles.
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