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Motivated by the gravity-fluid correspondence, we introduce a new method for characterizing nonlinear
gravitational interactions. Namely we map the nonlinear perturbative form of the Einstein equation to the
equations of motion of a collection of nonlinearly coupled harmonic oscillators. These oscillators
correspond to the quasinormal or normal modes of the background spacetime. We demonstrate the
mechanics and the utility of this formalism within the context of perturbed asymptotically anti–de Sitter
black brane spacetimes. We confirm in this case that the boundary fluid dynamics are equivalent to those of
the hydrodynamic quasinormal modes of the bulk spacetime. We expect this formalism to remain valid in
more general spacetimes, including those without a fluid dual. In other words, although born out of the
gravity-fluid correspondence, the formalism is fully independent and it has a much wider range of
applicability. In particular, as this formalism inspires an especially transparent physical intuition, we expect
its introduction to simplify the often highly technical analytical exploration of nonlinear gravitational
dynamics.
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I. INTRODUCTION

Can spacetimes become turbulent? Direct numerical
simulations of large asymptotically anti–de Sitter (AdS)
black holes [1] and their holographically dual fluids [2,3]
have provided convincing evidence that this is the case.
This phenomenon, perhaps counterintuitive at first glance,1

can be understood through the gravity-fluid correspon-
dence [4–6]. This correspondence links the behavior of
long-wavelength perturbations of black holes in AdS to
viscous relativistic hydrodynamics, and its regime of
applicability can include cases of high Reynolds number
on the fluid side. Spacetime turbulence then follows from
turbulence in the dual fluid [2,6]. On the gravity side, a high
Reynolds number corresponds to dissipation of gravita-
tional perturbations that is weak when compared with
nonlinear interactions. It is therefore not surprising that
it arises in the vicinity of asymptotically AdS black holes,
which can have relatively long-lived quasinormal modes.
The observation of gravitational turbulence in AdS

motivates a further question: Can one analyze this
striking nonlinear behavior directly in general relativity
without relying on the existence of a holographic dual?
That is, rather than borrowing from the dual hydro-
dynamic description—and any restricted regime of

applicability—can one establish a bona fide description
of turbulence as a perturbative solution of the Einstein
equation? Recall that turbulence is a nonlinear phenome-
non characterized, in particular, by cascades of energy
(and sometimes enstrophy) between wave numbers. It is
therefore delicate to fully capture this behavior within
ordinary perturbation theory without carrying it out to
sufficiently high orders and performing a suitable resum-
mation [3]. In order to take into account the essential
gravitational self-interactions of perturbations that are
present in the Einstein equation we will require a more
general perturbative framework.
In this work we introduce a nonlinear coupled oscillator

model to describe the interaction of quasinormal or normal
modes of a background spacetime, in particular their mode-
mode couplings. This proposal is a natural generalization of
our earlier study of nonlinear scalar wave generation
around rapidly spinning asymptotically flat black holes
[7], where the backreaction on the driving mode was
neglected (we account for it properly in this paper). This
previous model illustrated that the onset of turbulence in
gravity does not require the spacetime to be asymptotically
anti–de Sitter.2 In the nonlinear oscillator model presented
here, the coupling between modes is accounted for explic-
itly and in real time as opposed to implicitly through a

1Because of a crucial difference: The Einstein equation is
linearly degenerate as opposed to truly nonlinear as is the case of
e.g., the Navier-Stokes equations.

2In analogy to hydrodynamics, it is of course necessary to be in
the regime of high gravitational Reynolds number.
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recursive scheme. Therefore the equations of motion
provide solutions that are valid over longer time scales.
Within this model, nonlinear gravitational perturbations

are described by excitations of modes (quasinormal or
normal). For a given background spacetime, the collection
of modes is parametrized by a particular set of frequencies,
damping rates, and, at the nonlinear level, mode coupling
coefficients. Through these parameters, we can quantita-
tively compare and contrast signatures of nonlinear gravi-
tational perturbations in different backgrounds, in the
same way that frequencies and damping rates alone char-
acterize linear perturbations. In this waywe can gain a better
understanding of nonlinear interactions and associated
phenomena (such as turbulence) in general relativity. The
route taken when constructing this formalism essentially
offers a new perspective on how to deal with nonlinear
metric perturbations that is conducive to intuition building.
This compares favorably with more traditional methods,
where one has to contend with difficult technical details that
often mask the underlying physics.
To provide a concrete example,wewill apply ourmethods

to study nonlinear perturbations of an asymptotically AdS
black brane. Thegravity-fluid correspondence applies in this
case and the resulting coupled oscillator system may be
compared against the dual fluid. We find that our equations
are consistent with the relativistic hydrodynamic equations
provided by the duality.Although the agreement is expected,
our derivation provides an explicit demonstration and a
natural physical interpretation of the observed phenomena in
terms of quasinormal modes. We emphasize that the
derivations in the gravity and fluid sides are independent
of each other, and so the treatment for gravitational pertur-
bations does not depend on the existence of a dual fluid and
can be applied to more general spacetimes.
In the interest of caution, we recall that quasinormal

modes do not form a basis for generic metric perturbations
(see [8] for a recent discussion). For instance, consider
linear perturbations of the (asymptotically flat) Kerr space-
time as an example (see also discussions in Sec. II). The
signal sourced by some matter distribution comprises
quasinormal modes, the late-time “tail” term, as well as a
prompt piece that travels along the light cone. In this sense,
our formalism is approximate as we consider only the
quasinormal mode contributions. However, in many cases,
such as the ringdown stage of binary black hole mergers or
when considering long-wavelength perturbations of an
asymptotically AdS black brane, it is sufficient to track
only the quasinormalmodes, as they are the dominant part of
the signal (see, e.g., [9], for a related discussion). In more
general scenarios, we can always check the validity of our
approximation by estimating the magnitudes of the other
contributions.
This paper is organized as follows. In Sec. II, we introduce

the general formalism of the nonlinear coupled oscillator
model and compare it with traditional methods for handling

nonlinear gravitational perturbations. In Sec. III, we briefly
review the asymptotically AdS black brane spacetime and
the gravity-fluid correspondence, and we analyze the boun-
dary fluid in the mode-expansion picture. In Sec. IV, we
apply the general formalism to the specific case of the
asymptoticallyAdS black brane.We conclude in Sec.V. The
gravitational constantG and the speed of light c are both set
to one, unless otherwise specified. Appendixes are provided
to elaborate on certain details.

II. GENERAL FORMALISM

In this section, we begin by reviewing the traditional
approach to solving the Einstein equation using ordinary
perturbation theory and assuming a series expansion in the
perturbation amplitude. This method might not lend itself
to easily capturing relevant phenomena like turbulence. In
the case where the linearized dynamics take the form of
independently evolving normal or quasinormal modes (in
the absence or presence of dissipation, respectively), we
then show how the nonlinear Einstein equation can be
represented as a set of coupled oscillator equations, which
is analogous to treatments of the Navier-Stokes equation in
fluid dynamics, and is indeed capable of cleanly capturing
turbulence. For simplicity, we restrict our discussion to
vacuum spacetimes, but it is straightforward to generalize
the analysis to spacetimes with a cosmological constant.

A. Ordinary perturbation theory

Given any metric gμν, one can split it into the sum of a
“background” metric and a “perturbation”:

gμν ¼ gBμν þ hμν: ð2:1Þ

Without invoking any approximation, the vacuum Einstein
equation may then be written as

RμνðgBÞ þ Rð1Þ
μν ðgB; hÞ þ Rð2Þ

μν ðgB; hÞ þ
X∞
n¼3

RðnÞ
μν ðgB; hÞ ¼ 0;

ð2:2Þ

where RðnÞ
μν ðgB; hÞ denotes the nth-order Ricci tensor

expanded about gBμν. Explicitly, the linearized and second-
order terms are, respectively,

Rð1Þ
μν ≡ 1

2
ð−hjμν − hμνjαα þ hαμjνα þ hανjμαÞ ð2:3Þ

and

Rð2Þ
μν ≡ 1

4
½hαβ jνhαβjμ þ 2ðhναjβ − hνβjαÞhμαjβ

þ ðhαμjν þ hανjμ − hμνjαÞðhββjα − 2hαβ jβÞ
þ 2hαβðhαβjμjν þ hμνjαjβ − hαμjνjβ − hανjμjβÞ�: ð2:4Þ
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In these expressions, covariant derivatives associated to the
background metric gBμν are denoted by vertical lines. The
background metric is also used to raise and lower indices.
As described in [10], ordinary perturbation theory

assumes the existence of a one-parameter family of
solutions gμνðϵÞ, where gμνð0Þ ¼ gBμν, and hμν depends
differentiably on ϵ. One can then Taylor expand the
perturbation:

hμν ¼ ϵhð1Þμν þ ϵ2hð2Þμν þ � � � : ð2:5Þ

Perturbative equations of motion of order n follow by
differentiating the Einstein equation (2.2) n times with
respect to ϵ and then setting ϵ ¼ 0. At zeroth order we have
simply

RμνðgBÞ ¼ 0; ð2:6Þ

so that gBμν is a vacuum solution itself.
At first order in ϵ we have the linearized Einstein

equation

Rð1Þ
μν ðgB; hð1ÞÞ ¼ 0: ð2:7Þ

It is generally much easier to solve this equation (after
making appropriate gauge choices and imposing boundary
and initial conditions) than it is to solve the full Einstein

equation. Then for sufficiently small ϵ, gBμν þ ϵhð1Þμν should
be a good approximation to gμνðϵÞ.
This procedure may be continued to higher orders. For

instance, at second order, we obtain

Rð1Þ
μν ðgB; hð2ÞÞ ¼ −Rð2Þ

μν ðgB; hð1ÞÞ: ð2:8Þ

The second-order perturbation is seen to evolve in the
background spacetime gBμν, and it is sourced by the first-

order solution hð1Þμν .
Generically, this approach reduces the nonlinear problem

to a series of linear inhomogeneous problems of the form

Rð1Þ
μν ðgB; hðnÞÞ ¼ SðnÞμν ðgB; hð1Þ;…; hðn−1ÞÞ: ð2:9Þ

Thus, at each order, one solves a linear partial differential
equation with a source, subject to appropriate boundary
conditions and gauge choices. The left-hand side of the
equation at order n consists always of the nth-order

perturbation hðnÞμν evolving linearly in the background

spacetime gBμν. The source term SðnÞμν involves only

already-solved lower-order pieces hðmÞ
μν for m < n, so a

higher-order perturbation does not backreact on one of
lower order. Moreover, since the nth-order perturbation
evolves in the zeroth-order background metric—not the
ðn − 1Þth-order metric—the efficient capture of parametric

resonance type effects is precluded [3,7]. (Of course, with
enough intuition, it may be possible to identify this
behavior through a suitable resummation of perturbations
of sufficiently high order.) In following this program, the
calculations are quite involved and the gauge choices at
different orders are often subtle (see e.g., [11–14]). In the
specific context of extreme mass ratio binaries, recent
examples of this program are given in [15,16].

B. Larger perturbations

After iterating the above procedure to any given order,
the resulting perturbative metric should be a good approxi-
mation to gabðϵÞ for sufficiently small ϵ. However, in certain
situations one may be interested in studying systems
with larger (but still small) values of ϵ, where the
Taylor expansion (2.5) either fails to converge or would
require a large number of terms to obtain a good solution.
Typically the perturbative solution would be valid for a
short time, but for long times secular terms might dominate.
Therefore, a more suitable scheme would be required. In,
for example, the context of the Navier-Stokes equation,
ordinary perturbation theory might be capable of capturing
the initial onset of turbulence, but it would be ineffective in
capturing fully developed turbulence (and likewise for
gravitational turbulence [3,7]).
In order to characterize the nonlinear dynamics in general

relativity in a more efficient and transparent manner, we
present here an alternative way of obtaining approximate
solutions that is better suited for exploring certain nonlinear
phenomena such as wave interactions and turbulence. We
assume as before that gBμν satisfies the vacuum Einstein
equation. But then, rather than Taylor expanding hμν as in
(2.5), we consider the full metric perturbation hμν, and we
attempt to solve directly a truncated version of (2.2). In fact
truncation at second order,

Rð1Þ
μν ðgB; hÞ þ Rð2Þ

μν ðgB; hÞ ¼ 0; ð2:10Þ

captures the essential nonlinearities of interest to us here.We
note that our formalism could straightforwardly be extended
to higher orders, but for simplicity we restrict to second-
order nonlinearities here.
To summarize, instead of solving a tower of inhomo-

geneous linear equations (2.9) we solve a nonlinear
equation, but we neglect the higher-order nonlinearities.
Instead of dealing with gauge issues at each order, we have
only to impose the gauge condition once on hμν. Of course,
the truncation of the Ricci tensor is not a tensor itself so
Eq. (2.10) is not gauge invariant. But it should be sufficient
to the order we are working [Oðh2Þ]. As we shall see, this
approach readily captures the nonlinear mode coupling
effects of interest to us.
In general it will be very difficult to solve (2.10), even

neglecting the higher-order nonlinearities as we have done.
However, as we describe in the following subsection, in
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cases where the linear dynamics is dominated by the
evolution of normal or quasinormal modes, (2.10) reduces
to a system of nonlinearly coupled (and possibly damped)
oscillators.

C. Expansion into modes

We now restrict consideration to background spacetimes
whose linear perturbations are characterized (for some
region of spacetime) by a set of modes (normal or
quasinormal). In this case the first-order metric perturbation
may be written

hð1Þμν ðt;xÞ∼
X
j

½q−j ðtÞZðj−Þ
μν ðxÞþqþj ðtÞZðjþÞ

μν ðxÞ�; ð2:11Þ

with

q−j ðtÞ ¼ Aje−iωjt; qþj ðtÞ ¼ Bje
iω�

j t: ð2:12Þ

The background spacetime is assumed to be stationary and
the t coordinate is the associated Killing parameter. Modes
always occur in pairs with frequencies ωj and −ω�

j , so we
have organized the summation above along these lines,
labeling each pair with a multi-index j (denoting both the
transverse harmonic and radial overtone). The associated

spatial wave functions are denoted Zðj�Þ
μν ðxÞ. Finally, q�j

and fAj; Bjg are the displacements and the amplitudes for
modes j�, respectively. As hμν must be real at all time, we
expect that fAj; Bjg (as well as fZðj−Þ;ZðjþÞg) are con-
jugate to each other.
The reason we organize our modes into pairs in (2.11) is

to emphasize that all modes must be included in the
nonlinear analysis; many linear analyses use symmetry
arguments to only treat modes with ℜðωÞ > 0 [17]. In the

case of normal modes, the mode functions Zðj�Þ
μν are

degenerate and ωj ∈ R, so we take qj¼q−j þqþj ¼
Aje−iωjtþBjeiωjt. For quasinormal modes, the radial

dependence of Zðj�Þ
μν , along with the dissipative boundary

conditions at the horizon and/or infinity, fixes the time
dependence of the mode uniquely. Any “degenerate” mode
in this case must therefore have ωj ¼ −ω�

j , so the fre-
quency is purely imaginary, and the multi-index j describes
just a single mode. We analyze these cases separately from
the nondegenerate case in the following sections.
Frequencies of quasinormal modes have nonzero pos-

itive imaginary part, which implies an exponential time
decay as a result of energy dissipation. In addition, this
complex frequency means that the mode functions gen-
erally blow up at spatial infinity and the horizon bifurcation
surface. However, as physical observers effectively lie near
null infinity, the quasinormal-mode signals they observe are
finite and the modes are indeed physical perturbations of
the spacetime. For such observers, the sum in (2.11) can

become a good approximation over finite time intervals,
although we remind the reader that quasinormal modes do
not form a complete basis for generic metric perturbations.3

Additional contributions to the metric can arise at late times
from waves being scattered by the background potential at
large distances (the “tail” term), or at early times from a
prompt signal (on the light cone) from the source (see, e.g.,
[17–20]); we collect these into the “residual part.”
In this paper our focus is on mode-mode interactions and

the associated coupling coefficients. We will therefore not
consider the nonlinear interactions between the modes
and the tail and prompt components of the metric pertur-
bation. We caution, however, that such couplings need not
always be small. While they are small for perturbations of
AdS black branes in the hydrodynamic limit (which we
analyze below), readers should keep in mind that they will
lead to additional contributions to, e.g., Eq. (2.15) below.
Furthermore, questions as to how quasinormal modes are
excited by moving matter or how to compute the excitation
factors for these modes based on some arbitrary initial data
are also beyond the scope of this work (see [19,21,22] and
Appendix D).
With these observations in mind, following the discus-

sion in Sec. II B we write the full metric perturbation as

hμνðt;xÞ ¼
X
j

½q−j ðtÞZðj−Þ
μν ðxÞ þ qþj ðtÞZðjþÞ

μν ðxÞ�

þ residual part; ð2:13Þ

but now generalizing the coefficients Aj and Bj to be
functions of time,

q−j ðtÞ ¼ AjðtÞe−iωjt; qþj ðtÞ ¼ BjðtÞeiω
�
j t: ð2:14Þ

Our task is to determine the nonlinear evolution of
quasinormal modes; in other words, to evaluate the time
dependence of q�j . Addressing this task is generally non-
trivial as it requires the proper separation of the quasinor-
mal modes from the residual part of the full metric
perturbation. For Schwarzschild and Kerr spacetimes this
is achievable by invoking the Green’s function technique
(Appendix D), whereas the generalization of this approach
to generic spacetimes remains an open problem. To present
the coupled oscillator model, we apply an alternative
strategy of plugging (2.13) into the truncated Einstein
equation (2.10) and projecting our spatial dependencies,
thereby obtaining mode evolution equations. This method
is most accurate for dealing with normal-mode evolutions
and cases where the residual parts are negligible (for
example, see Sec. IV). In more general scenarios, we shall
make several additional approximations (such as neglecting

3This qualification is represented by the use of the “∼”
notation in (2.11) (see, e.g., [18]).
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certain time derivatives, neglecting the residual part) to
single out the ordinary differential equations for q�j . We
also caution that since the set of modes generally does not
form a complete basis, the resulting hμν is still only an
approximate solution to the truncated Einstein equation.
For simplicity, hereafter we shall not explicitly write down
the residual part in the equations.
Upon substitution, the truncated Einstein equation (2.10)

takes the form

X
j

X
s¼�

½ρsjðxÞq̈sj þ τsjðxÞ _qsj þ σsjðxÞqsj�

¼ Oðqs0k qs
00
l ; q

s0
k _q

s00
l ; _q

s0
k _q

s00
l ; q

s0
k q̈

s00
l Þ: ð2:15Þ

Here ρsj, τsj, and σsj are tensor functions of the spatial
coordinates, and they depend on the background metric as
well as the corresponding wave function of the quasinormal
mode. The right-hand side of the equation has a compli-
cated x dependence that we have suppressed.
We would now like to project Eq. (2.15) onto individual

modes to obtain equations for a set of nonlinearly coupled
oscillators in the form of

asjq̈
s
j þ bsj _q

s
j þ csjq

s
j ¼ Ŝsjðqs0k qs

00
l ; q

s0
k _q

s00
l ; _q

s0
k _q

s00
l ; q

s0
k q̈

s00
l Þ;
ð2:16Þ

for each j and s. In order to do so we require a suitable set
of projectors. If, along any of the dimensions transverse to
the radial direction, the background metric possesses a
suitable isometry group so that this part of the wave
function is described by tensor harmonics (Fourier modes,
tensor spherical harmonics, etc.), then it is easy to project
out this part by using an inner product. The remaining part
(generally including the radial direction) is however more
problematic.
It is often the case that the equations can be written in the

form of a standard eigenvalue problem, Ψ̈ ¼ −AΨ. For
normal modes, one can define an inner product hχjηi with
respect to which A is self-adjoint, and the modes are
orthogonal. One can then use this inner product to define
the projector. For dissipative systems with quasinormal
modes, the eigenvalues are complex and A cannot be self-

adjoint. Another problem is that often jZðj�Þ
μν j → ∞ at the

dissipative boundaries of the system. Nevertheless, it is still
possible to define a suitable bilinear form, with respect to
which A is symmetric [7,23–28]. This bilinear form
involves an integral of χη without any complex conjugation
so symmetry of A does not imply that the eigenvalues
are real. Furthermore it is still necessary to appropriately
regulate the integration to eliminate divergences. The
bilinear form may be regarded as a “generalized” inner
product and be used as such. In particular, it may then be
shown that hZj�jZk�i ¼ 0 for ωj ≠ ωk, and this ortho-
gonality leads to a suitable projector.

In the general case (such as the coordinate system we use
in Sec. IV) it is not necessarily possible to rewrite the
equation as a standard eigenvalue problem. Nevertheless,
we can still define a generalized inner product and use it to
project the equation onto modes. It may be that the modes
are not orthogonal with respect to this inner product, in
which case the projection of the left-hand side of (2.10)
contains contributions from additional modes beyond the
desired projection mode. After performing projections onto
all modes, it would then be necessary to diagonalize the
system to obtain a set of equations of the form (2.16). This
is possible by applying procedures described in Sec. II C 1
to remove “unphysical modes” and reduce the order of
the differential equations. At this point, it is worth noting
that in principle any inner product which leaves this set of
equations nondegenerate fits our purpose. However, in
order to minimize the error from neglecting the residual
part, it is good practice to adopt an inner product suitable
for eigenvalue perturbation analysis (see Sec. IV B for a
concrete example of such an inner product).
With the equations decoupled as in (2.16) with a suitable

generalized inner product, we can now substitute in
Eq. (2.14) for q�j . We obtain

a−j Äj þ ~b−j _Aj ¼ S−j ðAk; BlÞ; ð2:17Þ

aþj B̈j þ ~bþj _Bj ¼ Sþj ðAk; BlÞ; ð2:18Þ

where ~b−j ≡ b−j − 2iωja−j and ~bþj ≡ bþj þ 2iω�
ja

þ
j . We

have used the fact that e−iωjt and eiω
�
j t are homogeneous

solutions to simplify the left-hand sides. The “source”
terms on the right-hand sides are quadratic in Ak and Bk.
We have dropped quadratic terms involving derivatives
of Ak and Bk in Ssj as we expect them to be smaller
than quadratic terms not involving derivatives. Indeed
Eqs. (2.17) and (2.18) already indicate that time derivatives
of the coefficients are of quadratic order in the perturbation
amplitudes, so that, e.g., terms on the right-hand side of the
form Ak

_Al would be of cubic order. In general, the
nonlinear terms will then be of the form

S−j ¼
X
lk

½κ−ð1Þjkl AkAle−iðωkþωl−ωjÞt þ κ−ð2Þjkl AkBle−iðωk−ω�
l−ωjÞt

þ κ−ð3Þjkl BkBleiðω
�
kþω�

lþωjÞt�; ð2:19Þ

where the coefficients κ−ðnÞjkl are constants (and similarly
for Sþj ).
We now proceed to separately analyze nondegenerate

and degenerate modes.

1. Nondegenerate modes

The nondegenerate case applies to quasinormal modes
only. We immediately see from examining (2.17) and
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(2.18) that with Ssj ¼ 0, fAj; Bjg ¼ const are solutions.
This is by design as (2.12) are solutions to the linearized
equations. However, if asj ≠ 0, the left-hand sides of (2.17)
and (2.18) are second order in time, so that there are
additional homogeneous solutions

Aj ∝ e−
~bþj t=a

þ
j ; Bj ∝ e−

~b−j t=a
−
j ; ð2:20Þ

which give rise to

qþj ∝ eðiωj−bþj =a
þ
j Þt; q−j ∝ eð−iω

�
j−b

−
j =a

−
j Þt: ð2:21Þ

These solutions are clearly not quasinormal modes since
when combined with the spatial wave functions, they do
not satisfy the appropriate dissipative boundary conditions.
In addition, if we multiply them with the wave function
Z�

j , the original linearized Einstein equation is not neces-
sarily satisfied (if asj ≠ 0 and bsj ≠ 0). At the linear level,
one can require Aj; Bj to be constants to remove these
spurious modes. At the nonlinear level, we need a sys-
tematic strategy to eliminate this extra unphysical degree of
freedom.
Let us first assume that asj ≠ 0. For clarity we only

consider the s ¼ þ modes, but the analysis carries over
directly to s ¼ −. We will argue that the second time
derivative terms in Eqs. (2.17) and (2.18) should be dropped.
To arrive at an intuition for this, first note that we are
considering the problem of mode excitation in the presence
of sources. In Eqs. (2.17) and (2.18), the source terms come
from nonlinear couplings, but it is more instructive to move
beyond this particular specialization and consider generic
sources. If a delta-function source S ¼ δð4Þðxμ − xμ0Þ is
introduced to the spacetime, it gives rise to a finite-value
discontinuity of the quasinormal mode amplitude at t ¼ t0,
afterwhich quasinormalmodes evolve freely andAj remains
constant (see the example in Appendix D). In other words,
only Aj jumps at the delta source while _Aj is unaffected
(otherwise it will not remain constant in the ensuing free
evolution), so that only _Aj is needed in a sourced mode
evolution equation to account for the influence of that
source, while Ä does not in fact contribute to the evolution
of the physicalmodes. Furthermore, dropping Ä also frees us
of the unphysical spurious modes, as the evolution equation
is now first order in time. We have subsequently

_Aj ¼
S−j
~bþj

; _Bj ¼
Sþj
~bþj

: ð2:22Þ

Mathematically, this physical intuition is reflected in the
fact that when we integrate (2.17) from t0− to t0þ with a
delta-function source at t ¼ t0, we realize that the integra-
tion of the Ä term in fact vanishes because _As

jðt0−Þ and
_As
jðt0þÞ must both be zero in order to satisfy the free

evolution condition when the source vanishes. We note of
course that the solutions of Eq. (2.22) no longer strictly
satisfy the original equations (2.17) or (2.18). However,
since both sets of equations should be satisfied on physical
grounds, Ä and B̈ terms should be balanced by the residual
part of the metric perturbations, which is implicit in the left-
hand sides of (2.17) and (2.18).
The situation with asj ¼ 0 does not present any of the

above difficulties as the oscillator equation (2.17) or (2.18)
is already first order in time, so that

_Aj ¼
S−j
bþj

or _Bj ¼
Sþj
bþj

: ð2:23Þ

In fact, this is the case we shall encounter in Sec. IV when
we perturb about the anti–de Sitter black brane background
in ingoing Eddington-Finkelstein coordinates. In that case
perturbations are described by a first-order in time and
second-order in space partial differential equation.

2. Degenerate modes

For a degenerate mode, the two equations in (2.16) for
s ¼ � degenerate to a single equation for qj ¼ q−j þ qþj .
Thus the four degrees of freedom present for a given j that
we saw in the nondegenerate case reduce to two degrees of
freedom (or one if aj ¼ 0). In other words, we do not have
any unphysical spurious solutions in the degenerate case,
but instead two sets of physical solutions with the same
spatial wave function, which should both be kept. The
consequence of this observation is that in the end, the
evolution equation for each mode is of first order, and we
need not apply the treatment for the Ä term employed in the
nondegenerate case.
Consider first the case where aj ≠ 0. As noted earlier,

this corresponds to a nondissipative (i.e. normal) mode.
An example where this occurs is in perturbations about
pure anti–de Sitter spacetime (without any black hole).
(The case of coupled scalar field–general relativity pertur-
bations about AdS was analyzed as coupled oscillators
within the context of a two time scale expansion in [29].)
As discussed before, even for this aj ≠ 0 case, (2.17) and

(2.18) should reduce to first order, and we show below how
this is to be achieved. First note that we have

qj ¼ AjðtÞe−iωjt þ BjðtÞeiω
�
j t; ð2:24Þ

and when we introduced time dependence into Aj and Bj,
these parameters can in themselves contain e−iωjt and eiω

�
j t

factors, so their choices in Eq. (2.24) are not unique, and we
have in effect a freedom that we have to fix. The most
obvious optimal choice is to enforce

_qj ¼ −iωjAje−iωjt þ iω�
jBje

−ω�
j t ð2:25Þ

as a gauge fixing, or equivalently
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_Aje−iωjt þ _Bje
iω�

j t ¼ 0; ð2:26Þ

which incidentally looks as if we were solving an inho-
mogeneous equation through a variation of parameters
method. The physical intuition behind this constraint is that
Aj and Bj change only slowly with time so it is appropriate
to regard them as “instantaneous” amplitudes. (However,
this does not constitute a restriction on the solution.) We
then have

Aj ¼ eiωjt
ω�qj þ i _qj
ωþ ω� ;

Bj ¼ e−iω
�
j t
ω�qj − i _qj
ωþ ω� : ð2:27Þ

So far we have not imposed any equation of motion, and
after substituting in Eq. (2.16) and walking through the
same procedure as that presented in Appendix A, we obtain

_Aj ¼
ieiωjt

ajðω�
j þ ωjÞ

Ŝj; _Bj ¼ −
ie−iω�

j t

ajðωj þ ω�
jÞ
Ŝj: ð2:28Þ

We have thus reexpressed the second-order equation (2.16)
for qj in terms of first-order equations for the amplitudes
Aj and Bj.
In the case where aj ¼ 0, we haveωj ¼ −ω�

j ¼ −icj=bj,
so ωj is purely imaginary and there is a single degree of
freedom. There is then no need to distinguish Aj and Bj, so
we can set Bj ¼ 0. Equation (2.17) easily reduces to

_Aj ¼
Sj
bj

¼ Ŝjeiωjt

bj
. ð2:29Þ

Equations (2.22), (2.23), (2.28) and (2.29) are our
desired first-order equations of motion. They describe a
collection of nonlinearly coupled harmonic oscillators. For
any suitable background spacetime, perturbations are char-
acterized by the mode spectrum, the mode-mode coupling
coefficients and the mode excitation factors.
Despite being a simplified model in the small amplitude

limit, the formalismwe introduced in this section effectively
serves as a general platform to quantitatively compare and
study the nature of nonlinear gravitational phenomena in
different spacetimes. Amost attractive feature is that the vast
literature on nonlinear coupled oscillators that has been
developed in other branches of physics can now be applied
directly to the study of gravitational interactions. For
example, a precursor to the present procedure led to the
discovery of the parametric instability in the wave gener-
ation process in near-extremal Kerr spacetimes in Ref. [7],
which exhibited similar properties to the parametric insta-
bility in nonlinear driven oscillators. In general relativity,
another example is furnished by the study of perturbed
anti–de Sitter spacetimes through a two time scale analysis

[29] and its connection to the Fermi-Pasta-Ulam prob-
lem [30,31].
In Sec. IV below (with some details relegated to

Appendix B), we provide a concrete example on how to
implement the abstract procedure laid out in this section,
using the asymptotically AdS spacetime containing a black
brane as the background. The study of this particular case
also results in a number of interesting physical observations
and so has its own intrinsic value. For example, we shall see
that relativistic hydrodynamics admits a similar description
to the gravitational equations of motion, thus expanding the
gravity-fluid correspondence. Additionally, by connecting
it to the fluid side one concludes that the symmetry of κ is
closely connected to the cascading or inverse-cascading
behavior in the turbulent regime. Hence, this duality
mapping provides further evidence and insights for the
behavior of turbulence in gravity.

III. AdS BLACK BRANE SPACETIMES AND THE
GRAVITY-FLUID CORRESPONDENCE

In advance of our analysis of coupled AdS black brane
quasinormal modes in Sec. IV, here we review the gravity-
fluid correspondence and study the black brane perturba-
tions from the fluid side. We first present the background
uniform AdS black brane solution. We then review the
derivative expansion method that leads to boundary fluid
equations that describe long-wavelength perturbations.
Finally, by Fourier transforming the boundary coordinates
we rewrite the system as a set of coupled oscillators to
facilitate comparison with our later gravitational analysis.
For a more complete introduction to the gravity-fluid
correspondence, interested readers should consult the
original references [4–6,32].

A. Background metric

The metric for the dþ 1 dimensional uniformly boosted
AdS black brane is given in ingoing Eddington-Finkelstein
coordinates by

ds2½0� ¼ −2uμdxμdrþ r2
�
ημν þ

1

ðbrÞd uμuν
�
dxμdxν;

ð3:1Þ
where uμ (with uμuμ ¼ −1) is some arbitrary constant four
velocity, r is the radial coordinate and xμ are the boundary
coordinates. The Hawking temperature of the black brane
is the constant T ¼ d=ð4πbÞ. This metric satisfies the
Einstein equation

Gμν þ Λgμν ¼ 0; ð3:2Þ

with cosmological constant Λ ¼ −dðd − 1Þ=2.
Different choices of uμ correspond simply to different

Lorentz-boosted boundary frames. In particular, in the case
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where the spatial velocity vanishes, the above metric
simplifies to

ds2½0� ¼ 2dvdr − r2fðrÞdv2 þ r2
Xd−1
i¼1

ðdxiÞ2; ð3:3Þ

where fðrÞ≡ 1 − 1=ðbrÞd and v ¼ x0 is the ingoing
Eddington-Finkelstein coordinate. The horizon is then
located at r ¼ 1=b.
If we define the tortoise coordinate r� as dr� ¼

dr=ðr2fðrÞÞ and dv ¼ dtþ dr�, then the metric can be
rewritten

ds2½0� ¼ r2
�
−fðrÞdt2 þ

Xd−1
i¼1

ðdxiÞ2
�
þ dr2

r2fðrÞ ; ð3:4Þ

which is in the same form of Eq. (4.1) of Ref. [33].
Sometimes it is more convenient to work with a compacti-
fied radial coordinate and normalize the boundary coor-
dinates by the scale of the black brane horizon. With
u≡1=ðbrÞ2, ~t≡ t8πT=d, ~xi≡ xi8πT=d and fðuÞ¼1−ud=2,
the metric becomes

ds2½0� ¼
ð4πT=dÞ2

u

�
−fðuÞdt2 þ

Xd−1
i¼1

ðdxiÞ2
�
þ 1

4u2fðuÞ du
2

¼ 1

4u

�
−fðuÞd~t2 þ

Xd−1
i¼1

ðd~xiÞ2
�
þ 1

4u2fðuÞ du
2:

ð3:5Þ

To derive the gravity-fluid correspondence, we take as
our starting point the uniformly boosted black brane (3.1).

B. Gravity-fluid correspondence

To each asymptotically AdS bulk solution there is an
associated metric and conserved stress-energy tensor on the
timelike boundary of the spacetime at r → ∞ (see, e.g.,
Ref. [34]). The boundary metric in the case of (3.1) is ημν,
while the boundary stress-energy tensor is

T ½0�
μν ¼ 1

16πGdþ1bd
ðduμuν þ ημνÞ: ð3:6Þ

This describes a perfect fluid with energy density ρ and
pressure p given by

ρ ¼ d − 1

16πGdþ1bd
; ð3:7Þ

p ¼ 1

16πGdþ1bd
: ð3:8Þ

The stress-energy tensor is traceless, with equation of state

p ¼ ρ

d − 1
; ð3:9Þ

as required by conformal invariance. Imposing the first
law of thermodynamics, dρ ¼ Tds, as well as the relation
ρþ p ¼ sT, gives the entropy density s and fluid temper-
ature T:

s ¼ ATd−1; ð3:10Þ

ρ ¼ d − 1

d
ATd: ð3:11Þ

Here, A is a constant of integration. This is fixed to A≡
ð4πÞd=ð16πGdþ1dd−1Þ by equating T with the Hawking
temperature.
At this point, the fluid we have described is of constant

density, pressure and velocity. To go beyond the uniform
fluid, b and uμ are promoted to functions of the boundary
coordinates xμ. Importantly, these will be assumed to vary
slowly; that is, if L is the typical length scale of variation of
these fields, then L ≫ b. With nonconstant boundary
fields, the metric (3.1) no longer describes a solution to
the Einstein equation. However, a solution can be obtained
by systematically correcting the metric order by order
though a derivative expansion, so that the Einstein equation
is solved to any desired order in derivatives. One can then
compute the boundary stress-energy tensor corresponding
to the metric at each order and take this as defining the
boundary fluid.
After a rather long, but direct, calculation, the resulting

boundary stress-energy tensor (to second order in deriva-
tives) is

T ½0þ1þ2�
μν ¼ ρ

d − 1
ðduμuν þ ημνÞ þ Πμν; ð3:12Þ

where the viscous part Πμν is [see, e.g., Eq. (3.11) of
Ref. [4]]

Πμν ¼ − 2ησμν

þ 2ητΠ

�
huα∂ασμνi þ

1

d − 1
σμν∂αuα

�

þ hλ1σμασνα þ λ2σμαων
α þ λ3ωμαων

αi: ð3:13Þ

The shear and vorticity tensors are defined, respectively, as

σμν ≡ h∂μuνi; ð3:14Þ

ωμν ≡ Pμ
αPν

β∂ ½αuβ�: ð3:15Þ

We have employed angle brackets to denote the symmetric
traceless part of the projection orthogonal to uμ:
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hAμνi≡
�
PðμαPνÞβ −

1

d − 1
PμνPαβ

�
Aαβ ð3:16Þ

and defined Pμν to be the spatial projector orthogonal to uμ:

Pμν ≡ ημν þ uμuν: ð3:17Þ

Notice that Πμν is symmetric and satisfies

Πμ
μ ¼ 0; ð3:18Þ

uνΠμν ¼ 0: ð3:19Þ

The transport coefficients fη; τΠ; λig for various dimensions
can be found in, e.g., [6,35,36]. In particular, η ¼ s=ð4πÞ.
Projection of the Einstein equation along the boundary

directions shows that the boundary stress-energy tensor is
conserved, giving rise to the fluid equations of motion

0 ¼ uν∂νρþ
d

d − 1
ρ∂νuν − uμ∂νΠμν; ð3:20Þ

0 ¼ d
d − 1

ρuμ∂μuα þ
∂αρ

d − 1
−

d
ðd − 1Þ2 u

αρ∂μuμ

þ 1

d − 1
uαuμ∂νΠμν þ Pαμ∂νΠμν: ð3:21Þ

The gravity-fluid correspondence thus provides an
explicit link between black hole perturbations in the
sufficiently long-wavelength regime—described by small
wave numbers—and relativistic hydrodynamics. Ordinary
perturbation theory, by contrast, provides a solution that
is valid for sufficiently small amplitudes but cannot easily
capture the transfer of energy between modes. Our
coupled oscillator approach in contrast does capture the
leading mode-mode couplings that are manifest in the fluid
picture, and it is in that sense valid for larger amplitudes
(see Sec. II B). As illustrated in Fig. 1, there is an over-
lapping regime where the predictions of both approaches
can be compared.

C. Mode expansion of the boundary fluid

We now proceed to rewrite the fluid equations as a set of
coupled oscillator equations so that they can be compared
with the equations we will derive on the gravity side. We
denote the four velocity uμ ¼ ðγ;uÞ, where γ2 ¼ 1þ u · u,
and the density ρ ¼ ρ0eξ. Keeping viscous terms to linear
order in u and ξ, and inviscid terms to quadratic order (as
needed for the comparison), the energy conservation and
Euler equations reduce to

0 ¼ ∂tξþ u · ∇ξþ d
d − 1

ð∂tγ þ∇ · uÞ; ð3:22Þ

0 ¼ ∂tuþ u ·∇uþ 1

d
∇ξ −

1

d − 1
ð∂tγ þ∇ · uÞu

−
η

ρ0

�
d − 1

d
∇2uþ d − 3

d
∇ð∇ · uÞ

�
: ð3:23Þ

Furthermore, dropping nonlinear terms,

0 ¼ ∂tξ
ð1Þ þ d

d − 1
∇ · uð1Þ; ð3:24Þ

0 ¼ ∂tuð1Þ þ 1

d
∇ξð1Þ

−
η

ρ0

�
d − 1

d
∇2uð1Þ þ d − 3

d
∇ð∇ · uð1ÞÞ

�
: ð3:25Þ

Linearized solutions are decomposed into two families
of modes: sound and shear. A sound wave of momentum k
takes the form

uð1Þ
b ∼ AbðkÞe−iωbteik·xk̂; ξð1Þ ∼ BbðkÞe−iωbteik·x:

ð3:26Þ

By solving the linearized equations (3.24) and (3.25), the
dispersion relation is found to be

ωb ¼ � kffiffiffiffiffiffiffiffiffiffiffi
d − 1

p − i
d − 2

d
η

ρ0
k2 þOðk3Þ; ð3:27Þ

and

FIG. 1. An illustration of the hydrodynamical expansion (small
wave number) and black hole perturbation (small amplitude).
They both admit effective coupled oscillator descriptions. In AdS
black brane spacetime we compare the results from both sides of
the duality, in the shaded region of the plot. For small perturba-
tion amplitude, this comparison has been done in the linearized
perturbation theory (as depicted by region “A” and see for
example [33]). For larger perturbation amplitude (region “B”),
we are able to expand the comparison to equations of motion with
nonlinear couplings using the coupled oscillator model.
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BbðkÞ ¼
d

d − 1

k
ωb

AbðkÞ: ð3:28Þ

For the shear modes, ξð1Þ ¼ 0 and

uð1Þ
s ∼ AsðkÞe−iωsteik·xûs; ð3:29Þ

with ûs · k ¼ 0. The resulting dispersion relation is

ωs ¼ −i
d − 1

d
η

ρ0
k2 þOðk3Þ; ð3:30Þ

so shear modes are purely decaying. The general solution to
the linearized fluid equations is simply a sum over sound
and shear modes of different k and shear polarizations s.
We are now in a position to include the effects of

nonlinear coupling terms. To do so, we express ξ and u as
sums over linear modes, but we allow for the coefficients A
and B to be functions of time. The velocity ansatz then
takes the form

uðx; tÞ ¼
X
k

�
qbðk; tÞk̂þ

X
s

qsðk; tÞûs

�
eik·x; ð3:31Þ

where qsðk;tÞ¼Asðk;tÞe−iωst and qbðk;tÞ¼Abðk;tÞe−iωbt.
The coefficients are of course subject to a reality condition.
Inserting this expansion into Eq. (3.23), and projecting it
onto a particular shear mode, we obtain

∂tAsðk; tÞ ¼ i
X

pþq¼k;s0;s00
½ûs0 ðp; tÞ · q�½ûsðk; tÞ · ûs00 ðq; tÞ�

× As0 ðp; tÞAs00 ðq; tÞ
þ

X
pþq¼k;s0

ð…ÞAs0 ðp; tÞqbðq; tÞ

þ
X

pþq¼k

ð…Þqbðp; tÞqbðq; tÞ: ð3:32Þ

Notice that the left-hand side has been reduced to simply
the time derivative of As because the mode function
satisfies the linearized equation of motion. The right-hand
side describes the nonlinear coupling between modes.
The second and third terms (coupling coefficients

unspecified) in Eq. (3.32) describe the mixing between
the sound modes and the shear modes, as well as between
two sound modes. The coefficients to these terms contain
fast [expðiωtÞ type] oscillatory time-dependent factors, so
their effects tend to average to zero during the longer time
scales in which we examine the growth and decay of
modes. On the other hand, the first term describes the
mixing between two shear modes, and it trivially satisfies
the “resonant condition” in the time domain since
ℜðωsÞ ¼ 0. This results in significant energy transfer
between shear modes (and had we been performing an
ordinary perturbative expansion would have resulted in

secular growth). It is then natural to expect that the effect of
sound modes is subdominant in the turbulent process of
conformal fluids, where the viscous damping is less
important. In fact, if we ignore all the sound modes in
the relativistic hydro equation, the resulting Eq. (3.32) is
the same as the one for incompressible fluid (Appendix B),
and they share the same conservation laws in the Fourier
domain.
Equation (3.32) expresses the fluid as a collection of

coupled oscillators, to be compared with (2.28) on the
gravity side. In the next section we shall apply the general
formalism of Sec. II to the AdS black brane spacetime
and directly match its mode coupling coefficients (for the
fundamental hydro shear quasinormal modes) to the shear-
shear mode coupling coefficients in Eq. (3.32). One can
apply the same procedure to verify the correspondence
in the sound channel (which we have not written down). We
will only address the shear modes, as the main purpose
of this work is to formulate the coupled oscillator model
and to illustrate its technical details rather than to provide a
full verification of the gravity-fluid correspondence. We
envisage that this framework shall prove its unique value
when studying gravitational interactions in spacetime
without a clear gravity-fluid correspondence, or in cases
where the hydrodynamical (long-wavelength) approxima-
tion becomes too restrictive.

IV. LINEAR AND NONLINEAR GRAVITATIONAL
PERTURBATIONS OF THE AdS5 BLACK BRANE

In this section we study gravitational perturbations about
an asymptotically AdS black brane within the context of the
coupled oscillator model. We adopt this particular example
for two reasons: On the one hand, the boundary metric of
the background spacetime is flat, which simplifies calcu-
lations when performing wave function projections. On the
other hand, the gravity-fluid correspondence is well estab-
lished in this spacetime, and this allows us to compare
results obtained in the gravity and dual fluid pictures, as
depicted in Fig. 1. In particular, we shall focus on the
analysis of shear modes at both linear and nonlinear levels.
We also fix the spacetime dimension to dþ 1 ¼ 5,
although it is straightforward to generalize the analysis
below to other dimensions. For calculations within this
section, we make further simplifications by scaling the
coordinates such that b ¼ 1, so the horizon is located at
r ¼ 1. This means that we effectively choose T ¼ 1=π so
[see above Eq. (3.5)]

xi ¼ 1

2
~xi; ki ¼ 2~ki: ð4:1Þ

A. Linear perturbation

Linear quasinormal mode perturbations of AdS black
branes have been thoroughly analyzed in [33]. There, the
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fundamental (slowly decaying) quasinormal modes of the
spacetimewere shown to be the same as the hydrodynamical
modes of the boundary fluid. The analysis was performed
using the coordinate system of Eq. (3.5), whereas for our
purposes it ismore convenient to use the ingoing coordinates
of Eq. (3.3). As discussed in Appendix C, choosing different
coordinates leads to different definitions for the modes.
At the linear level there exists a clean one-to-one mapping
of modes in different bases as each quasinormal mode
is a solution to the linear Einstein equation. However,
when studying nonlinear perturbations, their projection
with respect to a mode basis associated to a different
coordinate system leads to an expansion with a less direct
identification. In Appendix C we illustrate this point with a
simple example describing a scalar field propagating on
Minkowski spacetime.
As demonstrated in [33], linear perturbations of the AdS

black brane can be classified into shear, sound and scalar
sectors. In addition, as the boundary metric is flat, it is
straightforward to Fourier transform the metric components
along the boundary coordinates. The same logic applies
when we adopt ingoing coordinates. Without loss of
generality, we consider a mode whose boundary-coordinate
dependence is eikz. For shear perturbations, the relevant
metric components are then hrα; hvα; hzα, where α ¼ x; y.
Without loss of generality, we choose the polarization
α ¼ x and impose the radial gauge condition hrM ¼ 0, with
M ¼ fr; v; z; x; yg. Defining the auxiliary variables

Hzx ≡ hzx
e−ikz

r2
; Hvx ≡ hvx

e−ikz

r2
; ð4:2Þ

the independent components of the linearized Einstein
equation take the form

0 ¼ 5r
∂Hvx

∂r þ ik
∂Hzx

∂r þ r2
∂2Hvx

∂r2 ;

0 ¼ k2Hvx − 5r3f
∂Hvx

∂r − r4f
∂2Hvx

∂r2
þ ik

∂Hzx

∂v − r2
∂2Hvx

∂v∂r : ð4:3Þ

We can further simplify this system by defining the
master variable, Ψ≡ ∂rHvx. This satisfies the master
equation

−k2Ψþ ð5r3fΨÞ0 þ ðr4fΨ0Þ0 þ 7r _Ψþ 2r2 _Ψ0 ¼ 0;

ð4:4Þ

where in this section wewill often denote partial derivatives

as ð·Þ0 ≡ ∂r and _ð·Þ≡ ∂v. To look for quasinormal modes,
we first take advantage of the time translation symmetry of
the equation to impose a e−iωv time dependence (so
_Ψ → −iωΨ). Solving the remaining spatial equation with

appropriate boundary conditions at the horizon and spatial
infinity gives rise to a set of quasinormal modes in the
ingoing coordinates and the frequency spectrum ωðkÞ.
To analyze the horizon boundary, we multiply Eq. (4.4)

by f and take the horizon limit r → 1. The wave equation
becomes

ð∂2
r� þ 2∂v∂r� ÞΨ ¼ 0; ð4:5Þ

with two independent solutions

∂r�Ψ ¼ 0 and ð∂r� þ 2∂vÞΨ ¼ 0: ð4:6Þ

The ingoing boundary condition for the quasinormal modes
selects

∂Ψ
∂r� → 0; r → 1: ð4:7Þ

As r → ∞ we impose a reflecting boundary condition
(since the spacetime is asymptotically AdS), so the metric
perturbation is required to vanish. This means that we
should at least expect h ¼ Oð1=rÞ and Ψ ¼ Oð1=r4Þ.
The above discussion applies to all quasinormal modes

of our system. However, the dual fluid captures only the
longest-lived shear and sound modes, which have ω → 0 as
k → 0 (known as the “hydro” modes). In order to compare
our results with the fluid we therefore restrict to ~k ≪ 1. We
can then construct the eigenfunctions perturbatively in k
(and ω). In this expansion, the leading-order part of
Eq. (4.4) is

ð5r3fÞ0Ψþ 5fr3Ψ0 þ r4fΨ00 þ ðr4fÞ0Ψ0 ¼ 0: ð4:8Þ

After imposing the horizon boundary condition, the sol-
ution is

Ψ0 ¼
CðvÞ
r5

; ð4:9Þ

where the subscript 0 indicates that this solves the leading-
order equation. (Notice that this solution also falls off
sufficiently rapidly at spatial infinity.) To look for quasi-
normal mode solutions we take CðvÞ ¼ e−iωv.
The leading-order solution Ψ0 then sources the first-

order correction Ψ1 through

ð5r3fÞ0Ψ1 þ 5fr3Ψ0
1 þ r4fΨ00

1 þ ðr4fÞ0Ψ0
1

¼ −ð−k2Ψ0 þ 7r _Ψ0 þ 2r2 _Ψ0
0Þ: ð4:10Þ

The combined solution Ψ ¼ Ψ0 þΨ1 is then
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Ψ¼
�
1

r5
þ−ðk2−4iωÞ logð1− rÞ− ðk2þ4iωÞ logð1þ rÞ

16r5

þ8iωarctanrþk2 logð1þ r2Þ
16r5

�
e−iωv: ð4:11Þ

In order to satisfy the horizon boundary condition we must
impose k2 ¼ 4iω, resulting in

Ψ¼
�
1

r5
þ2k2arctanr−2k2 logð1þrÞþk2 logð1þr2Þ

16r5

�
e−iωv:

ð4:12Þ

Using Eq. (4.1), we verify that k2 ¼ 4iω is equivalent to
~ω ¼ −i~k2=2, which is exactly the dispersion relation of
shear hydro quasinormal modes derived in [33] using a
different coordinate system. In addition, it is easy to check
that the dispersion relation matches (3.30), derived on the
fluid side.
Knowing Ψ, it is straightforward to use Eq. (4.3) to

reconstruct the metric perturbations. For the shear modes
considered here, the metric perturbation is

hvx ¼ −
A
4r2

e−iωvþikz

�
1þ k2r2

16
ðπr2 − 4rþ 2Þ

−
k2

16
ðr4 − 1Þ

�
2 arctan rþ log

1þ r2

ð1þ rÞ2
��

; ð4:13Þ

hzx ¼ i
A
4
kr2e−iωvþikz

�
π

4
−
1

r
−
arctan r

2

þ 1

4
log

ð1þ r2Þð1þ rÞ2
r4

�
: ð4:14Þ

B. Mode projection

Having carried out the linear analysis, we are almost
ready to calculate the shear-shear mode coupling coeffi-
cient. There is one more problem to tackle however, which
is to project the Einstein equation onto an individual mode
to see how a source term affects its evolution. As described
in Sec. II C, we adopt a technique that has been proven
very powerful in solving similar problems [7,25–28,37].
Namely, we enlist a suitable bilinear form to project the
equation onto individual modes.
For later convenience, we define ϕ ¼ r5Ψ, so that

Eq. (4.4) takes the form

�
f
r
ϕ0
�0

− k2
ϕ

r5
þ 7

r4
_ϕþ 2r2

�
_ϕ

r5

�0
¼ 0: ð4:15Þ

Fourier transforming the wave operator in v, we define

Hωϕ≡
�
f
r
ϕ0
�0

−k2
ϕ

r5
−
7iω
r4

ϕ−2iωr2
�
ϕ

r5

�0
: ð4:16Þ

We also define a generalized inner product

hχjηi ¼
Z

∞

1

drχη: ð4:17Þ

The operator Hω is not symmetric under this bilinear form,
i.e., hχjHωηi ≠ hHωχjηi, because of the fourth term in Hω.
However, in the hydrodynamic limit (~k ≪ 1) this term is
neglected, so (4.17) is suitable for our purpose of compar-
ing to the dual fluid.
For completeness, we note that should the need arise for

the study of perturbations of higher overtones away from
the hydro limit, we may use an alternative bilinear form
(dependent on ω) with respect to whichHω is symmetric so
that hχjHωηiω ¼ hHωχjηiω. In this case,

hχjηiω¼
Z

∞

1

drgωðrÞχη; with

loggωðrÞ¼−iω
�
arctanrþ1

2
log

1− r
1þ r

�
þ const; ð4:18Þ

is the unique option. There is one gω for each ω, so we have
a family of such generalized inner products. Using gω to
project onto the mode with frequency ω [followed by a
diagonalization procedure as per the discussion above
Eq. (2.17)] is a natural choice and indeed leads to agree-
ment with the Green’s function method for projecting
modes (see Appendix D). In any case, to Oðk2Þ, these
generalized inner products reduce to Eq. (4.17).
For the purpose of the time-domain analysis in the next

section, we expect the effect of nonhydrodynamical modes
[see Eq. (4.26) below] and the excitation of residual parts4

to be at least OðkÞ. Therefore only the hydrodynamical
modes are important to leading order and we shall adopt the
generalized inner product (4.17) for calculations, as it is
easier to implement in the time-domain analysis. As an
example, we show below that this inner product generates
the correct leading order (in k) frequency in the eigenvalue
analysis.
Let us now consider a simple example that demonstrates

the essence of how to utilize this inner product to carry out
perturbation studies. Suppose we perturb k to kþ ϵδk
(ϵ ≪ 1) and ask for the change of ω. On the one hand,
based on the dispersion relation ω ¼ −ik2=4, we immedi-
ately know that δω ¼ −ikδk=2. On the other hand, we can

4The prompt piece of the residual can be intuitively understood
as the source terms propagating on the light cone. Also notice that
the source terms, as represented by Eq. (3.32) or Eq. (4.29), are
linear in the hydrodynamical momentum, so overall the source
terms are of OðkÞ, as is the excitation amount of the prompt
residual.
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arrive at the same conclusion through a perturbation
analysis of the eigenvalue problem defined by Eq. (4.16).
The change k → kþ ϵδk causes H to pick up an extra

term, −2ϵkδk=r5. We expect both the eigenfrequency and
the eigenfunction to also change to order ϵ:

ϕ → ϕþ ϵϕð1Þ þOðϵ2Þ;
ω → ωþ ϵδωþOðϵ2Þ: ð4:19Þ

Plugging into the wave equation (4.16) and projecting both
sides onto ϕ while keeping only the OðϵÞ terms, we can
eliminate the unknown function ϕð1Þ to obtain

−iδω ¼ 2kδk
hϕj1=r5ϕi

hϕj7ϕ=r4 þ 2r2ðϕ=r5Þ0i þOðk2Þ

≈ −
k
2
δk; ð4:20Þ

which is consistent with our expectation. We note that it
was necessary in this analysis to use the symmetry property
of Hω to eliminate terms involving ϕð1Þ. Although some-
what excessive for this simple problem, we see that with the
help of our generalized inner product, it is now possible to
carry out a perturbation analysis in a manner analogous to
the application of perturbation theory in quantum mechan-
ics [38] (for a direct mapping of a wave equation with
outgoing boundary condition into a Schrödinger equation
with non-Hermitian Hamiltonian, see [24]).

C. Nonlinear analysis

We are now in a position to move beyond the linear level
and study the second-order (nonlinear) Einstein equa-
tion (2.10). We begin by considering its projection onto
the shear sector with spatial dependence eikx and spatial
polarization α ¼ z (see Sec. IVA). (It is straightforward to
perform this projection onto a Fourier basis element with an
ordinary inner product. The nontrivial aspect is the sub-
sequent projection onto the hydro mode.) The nonvanishing
vx and rx components of the Einstein equation take the
form

5r
∂Hvz

∂r þ ik
∂Hzx

∂r þ r2
∂2Hvz

∂r2 ¼ τrz;

k2Hvz − 5r3f
∂Hvz

∂r − r4f
∂2Hvz

∂r2 þ ik
∂Hzx

∂v − r2
∂2Hvz

∂v∂r
¼ τvz: ð4:21Þ

We have formally written the nonlinear terms as “sources”
on the right-hand side of the equation. At quadratic order
the nonlinear terms are

τrz ≡ −he−ikx; 2Rð2Þ
rz i; τvz ≡ −he−ikx; 2Rð2Þ

vz i: ð4:22Þ

The inner product h·; ·i is the ordinary inner product over
the boundary spatial coordinates. Equation (4.21) is simply
(4.3) with nonlinear terms included and a simple switch of
coordinates x↔ z.
Since the second-order Ricci tensor is a quadratic

function of the metric perturbation, which can be expanded
over Fourier modes (and scalar, sound, shear sectors), the
projection (4.22) enforces a wave number matching con-
dition on the terms that can contribute to the right-hand side
of (4.21). Namely, modes with wave numbers p and q can
only act as a source for mode k if pþ q ¼ k (see Fig. 2).
[This of course also holds for the fluid analysis in (3.32).]We
define the angles θ1 ≡ arccosðq̂ · k̂Þ and θ2 ≡ arccosðp̂ · k̂Þ.
Following the same procedure as in the linear analysis,

we rewrite Eq. (4.21) in the form of a sourced version of
Eq. (4.15):

�
f
r
ϕ0
�0

− k2
ϕ

r5
þ 7

r4
_ϕþ 2r2

�
_ϕ

r5

�0

¼ −_τrz − τ0vz ≡ Sin: ð4:23Þ

Since only first-order time derivatives appear in this wave
equation and we know from the previous subsection
that the quasinormal frequency is purely imaginary, this
shear hydrodynamic mode belongs to the class described
by Eq. (2.29).
We now proceed to compute the nonlinear source Sj [see

(2.29)] using the generalized inner product of Sec. IV B. As
in Sec. II C, we first express the field ϕ as a sum over radial
modes

ϕ → A0ðtÞe−iω0vχ0ðrÞ þ
X
j>0

AjðtÞe−iωjvχjðrÞ þOðkÞ;

ð4:24Þ

but we allow for the modes to have additional time
dependence through the mode amplitudes Aj. Here the
spatial wave functions are denoted χj, with j ¼ 0 corre-
sponding to the hydro mode. The nonhydro modes all have
frequencies ωj ¼ Oð1Þ, while ω0 ¼ −ik2=4. While ϕ is to
be matched to modes of the 4-velocity uμ on the fluid side,
we normalize the wave function

χ0 ¼ 4 ð4:25Þ

FIG. 2. An illustration of three wave numbers satisfying the
“momentum matching” condition.
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accordingly.5 The OðkÞ appearing in the expression for ϕ
includes the residual contribution under the hydrodynam-
ical approximation (see Footnote 4).
We can now plug (4.24) into the wave equation (4.23)

and then take the generalized inner product of both sides
with χ0 using (4.17). Within this computation, the effect of
the nonhydrodynamical terms is at least OðkÞ [in fact
Oðk2Þ] as we claimed in Sec. IV B. This is because e−iωjvχj
solves the linear equation (4.15), so for j > 0

ωj

�
χ0

���� 7r4 χj þ 2r2
�
χj
r5

�0	
¼ −

�
χ0

����
�
f
r
χ0j

�0
− k2

χj
r5

	

¼ −
��

f
r
χ00

�0
− k2

χ0
r5

����χj
	

¼ ω0

�
7

r4
χ0 þ 2r2

�
χ0
r5

�0����χj
	

¼ Oðk2Þ: ð4:26Þ

Given this observation, it is now simple to show that

_A ≈
1

4

hχ0jSinieiω0v

hχ0j7χ0=r4 þ 2r2ðχ0=r5Þ0i
≈ −

1

4
τvzjr¼1; ð4:27Þ

where we dropped high-order [Oðk2Þ and higher] terms in
k, including nonlinear terms containing time derivatives (as
discussed in Sec. II C). Using Eq. (2.4), the mode expansion
of hμν, and after some lengthy but nevertheless straightfor-
ward calculations, one can show that the shear-shear mode
coupling coefficient arising from (4.27) is

κkpq ¼ ik sinðθ2 − θ1Þ; ð4:28Þ

which agrees with the result obtained with its fluid counter-
part from Eq. (3.32):

κkpq ¼ i½ûs0 ðp; tÞ · q�½ûsðk; tÞ · ûs00 ðq; tÞ� þ ðp↔ qÞ:
ð4:29Þ

We end this section by noting that the agreement
between the mode coupling coefficients inferred from
the fluid equations and the AdS black brane perturbation
theory relies on the fact that they are computed using the
same mode basis and that the comparison is made in
the regime where ~k ≪ 1 and jhj ≪ 1 (cf. Fig. 1). However,
the coupled oscillator model is applicable more broadly.

V. CONCLUSIONS

The study of nonlinear wave phenomena is undoubtedly
a fascinating subject. Gaining understanding in the par-
ticular case of general relativity poses unique challenges
even given the fixed speed of propagation of physical
perturbations. These challenges are rooted in the covariant
nature of the theory and physical degrees of freedom often
hidden within a larger set of (metric) variables. These issues
have hampered understanding of gravitational perturba-
tions beyond linear order except in a few specialized
regimes [12–16], seemingly leaving full numerical simu-
lations as the main tool to try to understand these issues (for
a recent overview of these efforts, see [39] and references
cited therein).
In the current work, we have presented a model to

capture the nonlinear behavior of gravitational perturba-
tions.6 This model regards the system as composed of a
collection of nonlinearly coupled (damped) harmonic
oscillators with characteristic (isolated) frequencies given
by quasinormal modes. By construction this model repro-
duces standard results obtained at the linearized level. At
the nonlinear level, it describes mode-mode couplings
and their effect on frequency and amplitude shifts. As an
illustration, we have shown how our model reproduces
recent results captured through the gravity-fluid correspon-
dence via a purely gravitational calculation. Importantly,
the applicability of our formalism is not restricted to long-
wavelength perturbations—as in the case of the gravity-fluid
correspondence—so the coupled oscillator model can also
treat so-called “fast (nonhydrodynamical) modes” of per-
turbed blackholes [40].As a consequence it can be employed
to study a broader phenomenology than that reachablevia the
correspondence.7 We stress that our formalism is also
applicable beyond asymptotically AdS spacetimes. Thus it
can also help shed light on nonlinear mode generation in
perturbations of asymptotically flat black hole space-
times [42,43].
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APPENDIX A: BRIEF OVERVIEW OF COUPLED
OSCILLATOR SYSTEMS

Consider a family of nonlinearly coupled harmonic
oscillators governed by

q̈j þ γj _qj þ ~ω2
jqj ¼

X
kl

ð~λð1Þjklqkql þ ~λð2Þjkl _qkql þ ~λð3Þjkl _qk _qlÞ

≡ Sj; ðA1Þ

where ~ω2
jqj is the restoring force and γj is the damping

coefficient. Each oscillator’s displacement can be decom-
posed in the same way as Eq. (2.14), with ωj satisfying

−ω2
j − iγjωj þ ~ω2

j ¼ 0: ðA2Þ

In the presence of nonlinear mode-mode coupling

(~λðnÞjkl ≠ 0), Aj and Bj are both time dependent. In fact,
we can take one more time derivative of the first equation in
Eq. (2.27) and obtain

ð _Aj− iωjAjÞe−iωjt ¼ 1

ωjþω�
j
ðω�

j _qjþ iq̈jÞ

¼ iSj
ωjþω�

j
þ
�

_qjω�
j

ωjþω�
j
þ γj _qjþ ~ω2

jqj
iðω�

j þωjÞ
�

¼ iSj
ωjþω�

j
−

iωj

ωjþω�
j
ðω�

jqjþ i _qjÞ;

ðA3Þ

such that

_Aj ¼
iSj

ωj þ ω�
j
eiωjt; ðA4Þ

and similarly

_Bj ¼ −
iSj

ωj þ ω�
j
e−iω

�
j t: ðA5Þ

These effective equations of motion have the same kind of
first-order form as Eqs. (2.28) and (2.29), which means that
one can utilize results from previous studies on nonlinear
coupled oscillators to analyze nonlinear gravitational
interactions.

APPENDIX B: TWO-DIMENSIONAL
INCOMPRESSIBLE FLUID IN THE INERTIAL

REGIME

Here we review the Navier-Stokes equation for a
two-dimensional incompressible fluid. This discussion

highlights how a new symmetry for the mode-mode
coupling coefficient arises in the mode-expansion picture.
Such symmetry is critical for the double-cascading (inverse
energy and direct enstrophy cascades) behavior in two-
dimensional fluids. A more detailed discussion can be
found in Ref. [44].
The Navier-Stokes equation for an incompressible fluid

in the spatial-frequency domain reads
� ∂
∂tþ νk2

�
ujðk; tÞ

¼ iklPjnðkÞ
X

pþq¼k

unðp; tÞulðq; tÞ

¼ iklPjnðkÞ
2

X
pþq¼k

½unðp; tÞulðq; tÞ þ unðq; tÞulðp; tÞ�;

ðB1Þ
where uðx;tÞ¼P

ke
ik·xuðk;tÞ and PjnðkÞ≡δjn−kjkn=k2.

In incompressible fluids, the condition ∇ · u ¼ 0 translates
to k · uðk; tÞ ¼ 0 in the Fourier domain. We can write
uðk; tÞ as

uðk; tÞ ¼ Aðk; tÞûðk; tÞ; ðB2Þ

where ûðk; tÞ satisfies û · k ¼ 0 and û · û ¼ 1. In 2þ 1
fluids, û is unique for any k. Using the new variables, the
Navier-Stokes equation can be rewritten as

� ∂
∂tþ νk2

�
Aðk; tÞ

¼ i
X

pþq¼k

κðk;p;qÞAðp; tÞAðq; tÞ

¼ i
X

pþq¼k

f½ûðk; tÞ · ûðp; tÞ�½k · ûðq; tÞ�

þ ½ûðk; tÞ · ûðq; tÞ�½k · ûðp; tÞ�gAðp; tÞAðq; tÞ: ðB3Þ

This is the same as the shear-shear coupling term in
Eq. (3.32), which is already written in a form consistent
with the coupled oscillator model.
In the inertial regime we shall set the viscosity coefficient

ν to zero (as such coefficient only governs the extent of the
regime but not the behavior within it) and recall that uðx; tÞ
must be real. One can then show that

−
∂½ujðk; tÞu�jðk; tÞ�

∂t
¼

X
pþqþk¼0

Imf½uðk; tÞ · uðp; tÞ�½k · uðq; tÞ�

þ ½uðk; tÞ · uðq; tÞ�½k · uðp; tÞ�g
≡ X

pþqþk¼0

Im½κðk;p;qÞAðp; tÞAðq; tÞAðk; tÞ�: ðB4Þ
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Energy conservation requires that

∂½ujðk; tÞu�jðk; tÞ�
∂t þ ∂½ujðp; tÞu�jðp; tÞ�

∂t
þ ∂½ujðq; tÞu�jðq; tÞ�

∂t ¼ 0; ðB5Þ

which is equivalent to demanding

κðk;p;qÞ þ κðq;k;pÞ þ κðp;q;kÞ ¼ 0 ðB6Þ

for any vectors k, p, and q satisfying pþ qþ k ¼ 0. It is
straightforward to check that the above relation is auto-
matically satisfied given the expression of T . Moreover,
for 2þ 1 fluids, by using the fact that k · uðk; tÞ ¼ p ·
uðp; tÞ ¼ q · uðq; tÞ ¼ 0 and the identity

sin3θ1 cosðθ2 − θ3Þ þ sin3θ2 cosðθ3 − θ1Þ
þ sin3θ3 cosðθ1 − θ2Þ ¼ 0; ðB7Þ

∀ θ1 þ θ2 þ θ3 ¼ π, we can show that an additional sym-
metry for the mode-mode coupling exists, which is

k2κðk;p;qÞ þ q2κðq;k;pÞ þ p2κðp;q;kÞ ¼ 0: ðB8Þ

This additional symmetry is directly connected with the
additional conserved quantity in 2þ 1 fluids: enstrophy.
With two conserved quantities in the inertial regime,
Kraichnan [44] explained that a dual-cascading behavior
should be expected in the turbulent regime. This example
strongly suggests that the symmetry of the mode-mode
coupling coefficients in our coupled oscillator model could
be crucial for classifying the nonlinear behavior of gravi-
tational evolutions.

APPENDIX C: EXPANSION IN TWO
DIFFERENT BASES

Let us imagine a simple example of a scalar field whose
perturbations propagate on a two-dimensional flat space-
time with timelike boundaries at x ¼ 0 and x ¼ 1. For
comparison purposes, we have assigned two coordinate
systems in this spacetime: standard Cartesian coordinates
ðt; xÞ and “null” ðv; xÞ coordinates, with v≡ tþ x. For
simplicity, we impose Dirichlet boundary conditions
Φjx¼0 ¼ Φjx¼1 ¼ 0 for the wave. At linear order, the scalar
wave satisfies the following wave equation:

ð−∂2
t þ ∂2

xÞΦ ¼ 0 ðC1Þ

in the ðt; xÞ coordinate system or

ð∂2
x þ 2∂v∂xÞΦ ¼ 0 ðC2Þ

in the ðv; xÞ coordinate system.

Based on the wave equation and the boundary condi-
tions, we can see that this is a standard Sturm-Liouville
problem, where it is straightforward to write down the
solutions of the wave equation in a mode expansion

Φðt; xÞ ¼
X
j

ðAje−iωjt þ BjeiωjtÞ sinðjπxÞ; ðC3Þ

and

Φðv; xÞ ¼
X
j

ð ~Aje−iωjveiωjx þ ~Bjeiωjve−iωjxÞ sinðjπxÞ;

ðC4Þ

with ωj ¼ jπ. It is obvious that we can match up the linear
modes from the two different expansions above, and in fact
we can make the identifications

Aj ¼ ~Aj; Bj ¼ ~Bj: ðC5Þ

Now suppose nonlinear terms (Φ2, Φ3 or even higher
order) are present in the wave equations, resulting in a new
solution [Φðt; xÞ or Φðv; xÞ]. For such a wave, we can still
choose constant-t or constant-v slices and use the above
spatial mode basis to perform a decomposition

Φðt; xÞ ¼
X
j

½AjðtÞe−iωjt þ BjðtÞeiωjt� sinðjπxÞ ðC6Þ

in the ðt; xÞ coordinates and

Φðv;xÞ¼
X
j

½ ~AjðvÞe−iωjveiωjxþ ~BjðvÞeiωjve−iωjx�sinðjπxÞ

ðC7Þ

in the ðv; xÞ coordinates. We note that the mode amplitudes
are generically time dependent now.
Pick an arbitrary point in the spacetime (for example, the

one labeled with a “star” in Fig. 3). There we can ask
whether the matching described in Eq. (C5) still holds for
the two different mode expansions at that point. As we can
see from Fig. 3, these two mode expansions sample two
different slices of the spacetime: one at constant t and the
other at constant v. Unlike the linear case, the scalar wave
distributions on these two slices can be made quite
“independent” of each other by freely detuning the non-
linear terms in the wave equations. In the end, the largely
independent data on these two slices imply that simple
mappings such as Eq. (C5) no longer exist for mode
expansions under different bases in the general nonlinear
scenario. However, we emphasize that despite the lack of a
simple mapping between them, both mode expansions are
equally valid in describing the wave evolution. Although
our present analysis is performed using this simple example
where the mode expansion is complete, we see no reason
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why a similar conclusion would not hold for quasinormal
mode expansions of generic spacetimes.

APPENDIX D: COUPLED OSCILLATOR MODEL
IN SCHWARZSCHILD SPACETIME

As discussed in Sec. II, generic linear metric perturba-
tions can be decomposed into quasinormal modes plus a
residual part. Unless we are dealing with normal modes
which form a complete basis, or under certain physical
conditions inwhich quasinormalmodes dominate (e.g.,AdS
perturbations in the hydrodynamical limit), ignoring the
contribution from the residual part should always require
justification. Here we offer an alternative way of arriving at
the coupled oscillator model, using the Green’s function
approach (see also [9]). Using this method, the quasinormal
mode excitations can be unambiguously determined given
a driving source term. So far this approach can only be
demonstrated for perturbations with separable wave equa-
tions, such as Schwarzschild and Kerr perturbations, and we
shall leave extensions to more general spacetimes to future
studies.
To simplify the problem, we assume that the angular

dependence has been factored out, and we focus on the
nonlinear evolution of modes with spherical harmonic
indices ðl; mÞ, which satisfy the Regge-Wheeler (odd
parity) and Zerilli-Moncrief (even parity) wave equations

�
−

∂2

∂t2 þ
∂2

∂r2� þ Ve=oðrÞ
�
Ψe=o ¼ Se=oðr; tÞ: ðD1Þ

Here r� ≡ rþ 2M log½r=ð2MÞ − 1� and Ψe;Ψo are the
Zerilli-Moncrief and Regge-Wheeler gauge-invariant quan-
tities, respectively. The expressions for the potential Ve=o

and angular-projected source Se=o can be found in [45,46].
In our present study, Se=o is defined by the second-order
Ricci tensor, which is bilinear in the metric perturbations.
Without the source term, for fixed time dependence e−iωt

there are two independent solutions to each wave equation.
One solution asymptotes to

uin → e−iωðtþr�Þ; r� → −∞ ðD2Þ
near the event horizon and

uin → CinðωÞe−iωðtþr�Þ þ CoutðωÞe−iωðr−r�Þ; r� → ∞
ðD3Þ

at spatial infinity. The other solution satisfies

uout → e−iωðt−r�Þ; r� → ∞ ðD4Þ
at spatial infinity and

uout→ ~CinðωÞe−iωðtþr�Þ þ ~CoutðωÞe−iωðr−r�Þ; r� →−∞

ðD5Þ

near the horizon. At the quasinormal mode frequencies ωn,
these two solutions become degenerate, and CinðωnÞ ¼
~CoutðωnÞ ¼ 0.
Using the Green’s function technique, Leaver [19]

showed that Ψ can be decomposed as

Ψ ¼ ΨQNM þΨF þΨBC; ðD6Þ

where ΨF is the contribution from high-frequency propa-
gator, ΨBC is the branch-cut contribution in the Green
function calculation, and ΨQNM is the quasinormal mode
contribution that we seek. In addition, he showed that

ΨQNMðr; tÞ ¼ 2Re

�X
n

uinðrÞe−iωnt

Dn

Z
t

−∞
dt0

Z
∞

−∞
dr0�

× eiωnt0uinðr0ÞSðr0; t0Þ
�
; ðD7Þ

with

Dn ≡ 2ωn
dCin

dω

����
ωn

C−1
outðωnÞ: ðD8Þ

Notice that we are taking the real part because this
quasinormal mode (QNM) contribution is supposed to
sum over both positive and negative frequencies. Also
note that in order to maintain causality, we have introduced
an upper bound t into the time integral of Eq. (D7), while in
the original paper [19] this bound was set to ∞ (see also
[47]). From Eq. (D7), it is then straightforward to derive the
equations of motion for the amplitude of mode n:

FIG. 3 (color online). An illustration for mode decompositions
of a scalar field in a flat spacetime. At each point (such as the star
in the diagram), we show two possible mode bases with respect to
which to decompose the scalar wave.
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_Anðr;tÞ¼
eiωnt

Dn

Z
dr0�uinðr0ÞSðr0;tÞ≡eiωnt

Dn
huinjSiCI; ðD9Þ

where the integration should be performed as a contour
integral in the complex r0 plane to ensure convergence [27].

Interestingly, when we apply this Green’s function tech-
nique to analyze generation of the shear quasinormal modes
in Sec. IV (as the wave equation is separable), we find that
the generalized inner product h·j·iCI coincides with h·j·iω
defined in Eq. (4.18).
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