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We quantize spherically symmetric electrovacuum gravity. The algebra of Hamiltonian constraints can
be made Abelian via a rescaling and linear combination with the diffeomorphism constraint. As a result the
constraint algebra is a true Lie algebra. We complete the Dirac quantization procedure using loop quantum
gravity techniques. We present explicitly the exact solutions of the physical Hilbert space annihilated by all
constraints. The resulting quantum spacetimes resolve the singularity present in the classical theory inside
charged black holes and allows us to extend the spacetime through where the singularity used to be into
new regions. We argue that quantum discreteness of spacetime may also play a role in stabilizing the
Cauchy horizons, though backreaction calculations are needed to confirm this point.
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I. INTRODUCTION

Charged black holes are not expected to play a signifi-
cant role in astrophysics, but they are a good laboratory to
test important ideas in black hole physics. Unlike neutral
Schwarzschild black holes, charged Reissner–Nordstrom
black holes share elements in common with rotating black
holes, like the appearance of Cauchy horizons. There have
been many treatments of quantum charged black holes
including reduced quantizations [1,2], and also charged
black holes have been treated in 2D dilaton gravity models
[3]. Reduced treatments typically end up with a mechanical
system parametrized by the mass and charge of the black
hole and hole. Similar treatments have been applied to the
uncharged case [4]. With loop quantum gravity techniques,
one can treat the problem without reducing it to a
mechanical system initially, as was demonstrated in the
uncharged case [5]. One sees that the singularity is removed
and new quantum observables arise in addition to the mass.
We would like to show that similar results hold for the
charged case.
A key element to being able to quantize uncharged black

holes in loop quantum gravity was the realization that one
can linearly combine the Hamiltonian and diffeomorphism
constraints into constraints that satisfy a Lie algebra. This
allows the completion of the Dirac quantization program.
Perhaps more surprising, the physical space of states was
found in closed form. New observables that do not have a
classical counterpart appear in the quantum theory. The
metric of spacetime can be written as an operator associated
with a parametrized Dirac observable acting on the space of
physical states. Analyzing the metric, it was found that the
singularity is resolved by quantum effects, and one tunnels
into another region of spacetime through a region where the
singularity used to be in the classical theory where quantum
effects are not negligible.

The purpose of this paper is to show that the above
results can be extended to the case of charged spherically
symmetric black holes. We will see that the singularity is
again resolved by the quantum theory. In addition to that,
new perspectives on the stability of Cauchy horizons arise.

II. SPHERICALLY SYMMETRIC ELECTROVAC
GRAVITY: THE CLASSICAL THEORY

The treatment of spherically symmetric spacetimes with
Ashtekar-type variables was pioneered by Bengtsson [6]
and in more modern language discussed in detail by
Bojowald and Swiderski [7]. We will follow here the
notation of our previous paper [8], and we refer the
reader to them and to Bojowald and Swiderski for more
details.
Ashtekar-like variables adapted to the symmetry of the

problem, after some work, lead to two pairs of canonical
variables Eφ, Kφ and Ex, Kx, that are related to the
traditional canonical variables in spherical symmetry ds2 ¼
Λ2dx2 þ R2dΩ2 by Λ ¼ Eφ=

ffiffiffiffiffiffiffiffijExjp
, PΛ ¼ −

ffiffiffiffiffiffiffiffijExjp
Kφ,

R ¼ ffiffiffiffiffiffiffiffijExjp
, and PR ¼ −2

ffiffiffiffiffiffiffiffijExjp
Kx − EφKφ=

ffiffiffiffiffiffiffiffijExjp
where

PΛ, PR are the momenta canonically conjugate to Λ and R
respectively, x is the radial coordinate, and dΩ2 ¼
dθ2 þ sin2θdφ2. We consider a spherically symmetric
electromagnetic field A ¼ Γdrþ Φdt paramterized by
two configuration variables Γ, Φ and their canonically
conjugate momenta, PΓ, PΦ. We assume a trivial bundle for
the electromagnetic field implying the absence of monop-
oles. In the canonical treatment, it is found that Φ operates
as a Lagrange multiplier and can be dropped as a canonical
variable [2].
The constraints of the theory are given by the

Hamiltonian, diffeomorphism, and electromagnetic Gauss
law constraints,
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H ¼ −
Eφ

2
ffiffiffiffiffiffi
Ex

p − 2Kφ

ffiffiffiffiffiffi
Ex

p
Kx −

EφK2
φ

2
ffiffiffiffiffiffi
Ex

p þ ððExÞ0Þ2
8
ffiffiffiffiffiffi
Ex

p
Eφ

−
ffiffiffiffiffiffi
Ex

p ðExÞ0ðEφÞ0
2ðEφÞ2 þ

ffiffiffiffiffiffi
Ex

p ðExÞ00
2Eφ þG

Eφ

2ðExÞ3=2 P
2
Γ; ð1Þ

C ¼ −ðExÞ0Kx þ EφðKφÞ0 −GΓP0
Γ; ð2Þ

G ¼ P0
Γ; ð3Þ

where we have chosen the Immirzi parameter to be one. We

proceed to rescale the Lagrange multipliers, Nold
r ¼ Nnew

r −

2Nold Kφ

ffiffiffiffi
Ex

p
ðExÞ0 and Nold ¼ Nnew ðExÞ0

Eφ , and from now onward
we will drop the “new” subscripts for brevity. This leads to
a total Hamiltonian,

HT ¼
Z

dx

�
−N
��

−
ffiffiffiffiffiffi
Ex

p
ð1þ K2

φÞ

þ ððExÞ0Þ2 ffiffiffiffiffiffi
Ex

p

4ðEφÞ2 þ 2GM

�0

þ G
ðExÞ0

2ðExÞ3=2 P
2
Γ þ 2G

Kφ

Eφ ΓP
0
Γ

�

þ Nr½−ðExÞ0Kx þ EφðKφÞ0 − ΓP0
Γ� þ λ0ðPΓ þQÞ

�
;

ð4Þ

with the Lagrange multipliersN, the lapse,Nr the shift, and
λ the parameter of Gauss law. The GM and Q terms are
constants of integration that arise from an examination of
the theory at spatial infinity. This is standard, so we refer
the reader to previous papers for it [9,10]. The rescaling
makes the Hamiltonian constraint have an Abelian algebra
with itself, and the usual algebra with the diffeomorphism
constraint and Gauss law. We had already noted this in
vacuum [5], and here we point out that it also holds with the
inclusion of an electromagnetic field.

We are interested in partially fixing the electromagnetic
gauge to Γ ¼ 0, which is natural for static situations. This
determines the Lagrange multiplier λ and also turns the
Gauss law into a strong constraint PΓ ¼ −Q. This leads to a
total Hamiltonian of the form

HT ¼
Z

dx

�
−N
�
−
ffiffiffiffiffiffi
Ex

p �
1þ K2

φ þ
GQ2

Ex

�

þ ððExÞ0Þ2 ffiffiffiffiffiffi
Ex

p

4ðEφÞ2 þ 2GM

�0

þ Nr½−ðExÞ0Kx þ EφðKφÞ0�
�
; ð5Þ

where we identify the contribution of the electromagnetic
field to the mass function, proportional to Q2.
Notice that if one were to choose the gauge Ex ¼ x2 and

Kφ ¼ 0 the preservation of the gauge conditions requires
that Nr ¼ 0, and one would get the Reissner–Nordstrom
metric in Schwarzschild form,

ds2 ¼ −
�
1 −

2GM
x

þ GQ2

x2

�
dt2 þ 1

1 − 2GM
x þ GQ2

x2

dr2

þ x2dΩ2: ð6Þ

III. QUANTIZATION: KINEMATICS

We now proceed to quantize. We start by recalling the
basis of spin network states in one dimension (see Ref. [8]
for details). One has graphs g consisting of a collection of
edges ej connecting the vertices vj. It is natural to associate
the variable Kx with edges in the graph and the variable Kφ

with vertices of the graph. For bookkeeping purposes we
will associate each edge with the vertex to its left. One then
constructs the “holonomies” (only Kx is a true connection,
so the holonomies associated with Kφ are “point”
holonomies),

ð7Þ

with ej the edges of the spin network g and vj its vertices and the integer kj is the (integer) valence associated with the edge
ej and the integer number μj the “valence” associated with the vertex vj. Notice that since we gauge fixed the
electromagnetic field the kinematical states are the same as those for vacuum gravity.
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On these states the triads act multiplicatively,

ÊxðxÞTg;~k;~μ ¼ l2
PlanckkiðxÞTg;~k;~μ ð8Þ

Z
I
ÊφðxÞTg;~k;~μ ¼

γl2
Planck

4π

X
vj∈I

μjTg;~k;~μ; ð9Þ

where I is an interval, and kiðxÞ is the valence of the edge
that contains the point x.
The problem has two global variables, the mass and the

charge. Each of them is associated with a Hilbert space of
square integrable functions. In particular this means that the
mass and the charge will have a continuous spectrum as
quantum operators. One can speculate if this is a short-
coming of the model. In the case of the mass, since a black
hole gets contributions from the energy of infalling matter
and the latter is not quantized and could include massless
particles, it appears plausible that in a more general
calculation it will remain a continuous parameter. One
may question this in view that the area has a discrete
spectrum, but in a discrete quantum spacetime, it is
plausible to have quantized areas and not quantized
energies of the fields living on it. The relation of mass
and area for noncharged black holes could be recovered as a
semiclassical relation only. Also, in our model the location
of the classical horizon does not have to lie on a point of the
discrete spacetime, so it is not natural to think it will be
quantized. The charge could be quantized if one considered
monopoles through Dirac’s construction, but we will not
pursue that at this stage.
So the complete kinematical Hilbert space is given by,

functions, the kinematical Hilbert space is given by

Hkin ¼ HM
kin ⊗ HQ

kin½⊗V
j¼1 l

2
j ⊗ l2j �; ð10Þ

where l2j is the space of square integrable functions
associated with the vertex vj, V is the number of vertices,
andHM

kin andH
Q
kin are the Hilbert spaces associated with the

mass and charge. We have chosen periodic functions in Kφ

with period π=ρ with ρ a real constant. As discussed in
Ref. [11], an equivalent quantization can be constructed
choosing a Bohr compactification. Notice that we are
working with a fixed number of vertices. This will be
justified later on by noticing that the diffeomorphism and
Hamiltonian constraints do not change the number of
vertices.
The Hilbert space is endowed with an inner product,

hg; ~k; ~μ; q;Mjg0; ~k0; ~μ0; q0;M0i
¼ δ~k;~k0δ~μ;~μ0δg;g0δðM −M0ÞδðQ −Q0Þ; ð11Þ

where we are not assuming the charge to be quantized.
On this space the kinematical momentum operators are

multiplicative,

M̂jg; ~k; ~μ; Q;Mi ¼ Mjg; ~k; ~μ; Q;Mi; ð12Þ

Q̂jg; ~k; ~μ; Q;Mi ¼ Qjg; ~k; ~μ; Q;Mi; ð13Þ

ÊxðxÞjg; ~k; ~μ; Q;Mi ¼ l2
PlanckkjðxÞjg; ~k; ~μ; Q;Mi; ð14Þ

Z
I
dxÊφðxÞjg; ~k; ~μ; Q;Mi ¼

X
vj∈I

l2
Planckμjjg; ~k; ~μ; Q;Mi;

ð15Þ

and the holonomies act as

exp

�
in
2

Z
ej

dxKxðxÞ
�
jg; ~k; ~μ; Q;Mi

¼ jg; k1;…; kj þ n;…; kV; ~μ; Q;Mi; ð16Þ

exp

�
� in

2
ρKφðvjÞ

�
jg; ~k; ~μ; Q;Mi

¼ jg; ~k; μ1;…; μj � n;…; μV;Q;Mi: ð17Þ

We are restricting the action of the holonomy of Kφ to
vertices, since acting elsewhere it would create a new
vertex, and we are only interested in situations with a fixed
number of vertices.

IV. QUANTIZATION: DYNAMICS

To deal with the Hamiltonian constraint, one needs to
polymerize it and choose a factor ordering. We start with
the classical expression and integrate by parts,

HðNÞ ¼
Z

dxN0
� ffiffiffiffiffiffi

Ex
p �

1þ K2
φ þ

GQ2

Ex

�

− 2GM −
ððExÞ0Þ2 ffiffiffiffiffiffi

Ex
p

4ðEφÞ2
�
: ð18Þ

This expression can be factorized,

HðNÞ ¼
Z

dxN0HþH−; ð19Þ

with

H� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ex

p �
1þ K2

φ þ
GQ2

Ex

�
− 2GM

s
� ðExÞ0ðExÞ1=4

2Eφ :

ð20Þ

We now absorb one of the two factors into the lapse and
rescaling by a factor of 4ðEφÞ2,
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HðN̄Þ ¼
Z

dxN̄

 
2Eφ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ex

p �
1þ K2

φ þ
GQ2

Ex

�
− 2GM

s

− ðExÞ0ðExÞ1=4
!
: ð21Þ

This expression is readily quantized choosing a factor
ordering,

ĤðN̄ÞjΨgi

¼
Z

dxN̄

 
2

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffîffiffiffiffiffi
Ex

p �
1þ

ˆsin2ðρKφÞ
ρ2

þGQ2

Êx

�
−2GM

s #
Êφ

− ˆðExÞ0 ˆðExÞ1=4
!
jΨgi: ð22Þ

The term involving a sine, although readily realizable,
implies a finite translation in ~μ leading to an equation in
finite differences, that is not easy to solve. It turns out that it
is much more convenient to study the action of the
Hamiltonian constraint in a mixed representation, where
we use the connection representation in Kφ and the loop
representation in Kx,

jΨgi ¼
Z

∞

0

dM
Z

∞

−∞
dQ
Y
vj∈g

Z
π=ρ

0

dKφðvjÞ

×
X
~k

jg; ~k; ~Kφ;M;QiψðM;Q; ~k; ~KφÞ; ð23Þ

where ~Kφ is a vector that has as ith component KφðviÞ. On
these states Êφ ¼ −il2

Planck∂=∂Kφ.
We will assume that the function ψ is factorizable,

i.e.,

ψðM;Q; ~k; ~KφÞ ¼
Y
j

ψ jðM;Q; kj; kj−1; KφðvjÞÞ: ð24Þ

This does not imply loss of generality as the operator has
the form of a sum of operators each acting nontrivially only
on a given vertex,

4il2
Planck

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

jsin
2ðyjÞ

q
mj

∂yjψ j

þ lPlanck2ðkj − kj−1Þψ j ¼ 0; ð25Þ

where yj ¼ ρKφðvjÞ and

m2
j ¼ ρ−2

 
1 −

2GMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
Planckkj

q þ GQ2

l2
Planckkj

!
: ð26Þ

This equation can be readily solved,

ψ jðM;Q; kj; kj−1; KφðvjÞÞ

¼ exp

�
i
4
mjðkj − kj−1ÞFðρKφðvjÞ; imjÞ

�
; ð27Þ

with F a function of two variables given by

Fðϕ; KÞ ¼
Z

ϕ

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2sin2t

p ; ð28Þ

with mj complex inside the black hole between the
horizons. The states are normalizable with respect to the
kinematical inner product. For a lengthier discussion of
normalizability, we refer the reader to Ref. [11].

V. OBSERVABLES

There are several immediately identified Dirac observ-
ables. To begin with one has the mass and charge, which are
observables both at a classical and quantum level. But in
addition to them, one has observables that do not have a
simple classical counterpart. The first such observable is
the number of vertices. The implementation of the
Hamiltonian constraint we chose does not change the
number of vertices when acting on states of the kinematical
Hilbert space. The states of the physical space of states,
annihilated by the constraint, can be chosen all with the
same number of vertices.
An additional observable can be hinted from the fact that

(nonsingular) diffeomorphisms in one dimension will not
alter the order of the vertices. Therefore, the tower of values
of ~k is diffeomorphism invariant and unchanged by the
Hamiltonian constraint. Therefore, one can readily con-
struct an observable associated with this property. Consider
a parameter z in the interval [0,1]. We define

ÔðzÞjΨiphys ¼ l2
PlanckkIntðVzÞjΨiphys; ð29Þ

where IntðVzÞ is the integer part of the product of z times
the number of vertices. As z sweeps from zero to 1, it will
produce as a result the components of ~k in an ordered way.
This observable may sound artificial, but it actually can be
used to capture the gauge invariant portion of Ex. The latter
is not diffeomorphism invariant. However, if we consider a
function of the real line into the [0,1] interval zðxÞ, we can
define

ÊxðxÞjΨiphys ¼ ÔðzðxÞÞjΨiphys: ð30Þ

The result is a parametrized Dirac observable (or “evolving
constant of the motion”). It is a Dirac observable, but its
value is only well defined if one specifies a (functional)
parameter zðxÞ. Specifying the parameter is tantamount to
fixing the gauge (diffeomorphisms) in the radial direction.
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This is a known mechanism [12] for representing gauge
dependent quantities on the space of physical states, where
only Dirac observables are well defined naturally.
Defining Êx on the space of physical states has interest-

ing physical quantities as it allows us to define the metric as
an operator on such space. Classically its components are
given by

gtx ¼ −
KφðExÞ0

2
ffiffiffiffiffiffi
Ex

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ K2

φÞ − 2GMffiffiffiffi
Ex

p þ GQ2

Ex

q ; ð31Þ

gxx ¼
ððExÞ0Þ2

4Exðð1þ K2
φÞ − 2GMffiffiffiffi

Ex
p þ GQ2

Ex Þ
; ð32Þ

gtt ¼ −
�
1 −

2GMffiffiffiffiffiffi
Ex

p þ GQ2

Ex

�
: ð33Þ

These expressions can be readily promoted to (para-
metrized) Dirac observables acting on the space of physical
states. One replaces Ex → Êx, M → M̂, and Q → Q̂. The
quantity Kφ remains classical; it is a (functional) parameter
on which the observable depends [it also depends on zðxÞ
through Êx]. The parameter Kφ is associated with the
slicing. This can be directly seen in gtx. A choice Kφ ¼ 0
yields gtx ¼ 0, that is, a manifestly static slicing. With
nonzero Kφ one can accommodate slicings that are horizon
penetrating like Painlevé–Gullstrand or Kerr–Schild. It
should be noted that Kφ is a classical variable, and horizon
penetrating slices may require relating it to values of Ex

which is a quantum operator in this treatment. This is
resolved by considering the expectation value of Ex. With
suitably chosen states that approximate very well the
classical geometry, one can find slices that penetrate the
horizon in such a way.
Onewishes the metric to be a self-adjoint operator. Given

the square root, this would be violated if one allowed a
component of ~k to vanish. Fortunately, since the action of
the constraints does not connect states with vanishing
values of components of ~k with other states, that means
we can simply exclude such states and the operators remain
well defined and are self-adjoint. Remarkably, this implies
that r ¼ 0 is excluded from the treatment, therefore
removing the singularity. This is similar to what we
observed in vacuum. One can then consider extending
the geometry to negative values of x, continuing it through
the region where the singularity used to be into a new
region of spacetime. The resulting Penrose diagram is
similar to the one obtained by analytic extensions [13].

VI. CAUCHY HORIZONS AND DISCRETE
SPACETIME

Recalling that Ex ¼ R2, with R the radius of the spheres
of symmetry, the fact that the eigenvalues of Êx are discrete

imposes a constraint on the minimum increment in the
value of R as one goes from a vertex of the spin network to
the next, equal to l2

Planck=ð2RÞ. That means that in the
exterior of a black hole the maximum spacing one can have
occurs close to the horizon and is given by l2

Planck=ð4GMÞ.
This fundamental level of discreteness has implications
when one studies the propagation of waves on the quantum
spacetime. It implies that trans-Planckian modes of very
high frequencies are eliminated. The finest lattice one can
have, determined by the spin network and the condition of
the quantization of Ex, will be a nonuniform lattice that gets
progressively coarser toward the horizon. However, propa-
gation of waves on nonuniform lattices involves a series
of phenomena, like attenuation and reflection of waves. If
one studies the propagation of waves on a black hole
geometry in the exterior of the black hole, the natural
coordinate to use is the tortoise coordinate r ¼ 2GMþ
lnðr=ð2GMÞ − 1Þ, since in such coordinate one is left with
a wave equation with a potential that can be readily
analyzed. In such coordinates, the condition for the
quantization of the areas implies that the lattice points
get progressively more and more separated as one
approaches the horizon [12]. So the propagation of wave
packets gets more and more disrupted as one approaches
the horizon, exhibiting attenuation and reflection. In
ordinary radial coordinates, this can also be seen; there
it would be the byproduct of the progressive blueshifting of
the incoming modes.
This nonstandard propagation due to the quantum

spacetime may have implications for the stability of the
Cauchy horizons present in the interior of Reissner–
Nordstrom black hole [14]. The heuristic argument for
instability of such horizons is as follows. Suppose one has
two observers in the exterior and one of them decides to
enter the black hole. The external observer remains static
and shines a flashlight on the infalling observer. By the time
the infalling observer reaches the inner Cauchy horizon, the
observer in the outside reaches iþ. That means the exterior
observer had a chance of shining an infinite amount of
energy on the infalling observer in what, from the point of
view of the latter, is a finite amount of time. This suggests
an instability can occur. This has been confirmed in
classical general relativity using perturbation theory and
numerical analysis.
In a quantum spacetime, the above argument gets

modified by the reflections and backscatters that are
implied by the quantization of space-time that we discussed
above. To begin with, not all light enters the horizon to
reach the infalling observer. Some is backscattered outside
the black hole toward scriþ. Some light crosses the horizon,
and backscattering continues in the interior toward the
Cauchy horizon. At this heuristic level, this is not enough to
argue that the Cauchy horizon is stabilized, but it clearly
suggests that a rethinking of the situation in a quantum
spacetime is in order. This, however, significantly exceeds
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the scope of this paper, as it would require studying
backreaction of perturbations at a quantum level, some-
thing that is not possible in loop quantum gravity today,
though it may become feasible in a relatively near future.
Since the backscattering starts only very close to the
horizon, the backscattered light would become visible only
in the remote future to external observers, so it will not
conflict with black hole observations.

VII. SUMMARY

We have shown that one can complete the Dirac
quantization procedure using loop quantum gravity
techniques for spherically symmetric electrovacuum

spacetimes. The space of physical states can be found in
closed form. Dirac observables can be identified and the
physical states labeled with their eigenvalues. The singu-
larity is resolved due to quantum effects as had been
observed in the vacuum case. The fundamental discreteness
of spacetime opens new possibilities in analyzing the
stability of the Cauchy horizon inside the Reissner–
Nordstrom black hole.
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