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In this paper, we explore higher-dimensional asymptotically flat wormhole geometries in the framework
of Gauss-Bonnet (GB) gravity and investigate the effects of the GB term, by considering a specific radial-
dependent redshift function and by imposing a particular equation of state. This work is motivated by
previous assumptions that wormhole solutions were not possible for the k ¼ 1 and α < 0 case, where k is
the sectional curvature of an ðn − 2Þ-dimensional maximally symmetric space, and α is the Gauss-Bonnet
coupling constant. However, we emphasize that this discussion is purely based on a nontrivial assumption
that is only valid at the wormhole throat, and cannot be extended to the entire radial-coordinate range. In
this work, we provide a counterexample to this claim, and find for the first time specific solutions that
satisfy the weak energy condition throughout the entire spacetime, for k ¼ 1 and α < 0. In addition to this,
we also present other wormhole solutions which alleviate the violation of the weak energy condition in the
vicinity of the wormhole throat.
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I. INTRODUCTION

Wormholes are nontrivial throatlike geometrical struc-
tures which connect two parallel universes or distant parts
of the same universe. In 1988, Morris and Thorne intro-
duced a family of traversable wormholes [1], where the
fundamental ingredient is the flaring-out condition of the
wormhole throat. This latter condition, in the framework of
general relativity (GR), entails the violation of the null
energy condition (NEC), which states that Tμνkμkν ≥ 0,
where Tμν is the energy-momentum tensor and kμ is any
null vector. Matter that violates the NEC is denoted by
exotic matter [2,3]. Due to the problematic issue of the
violations of the energy conditions [4], several avenues of
research have been explored in order to minimize the usage
of exotic matter [5]. For instance, it was shown that
dynamical spherically symmetric wormholes can satisfy
the energy conditions [6] and the averaged energy con-
ditions over timelike or null geodesics for a period of
time [7]. Another interesting construction is the thin-shell
wormholes, where the exotic matter is restricted to the
throat, and therefore minimize its usage [8].
It was also found that higher-dimensional cosmological

wormholes [9] and wormholes in modified gravity involv-
ing higher-order curvature invariants can satisfy the energy

conditions [10–14], at least at the throat. In fact, in
modified gravity, it was shown that matter threading the
wormhole throat can be imposed to satisfy all of the energy
conditions, and it is the higher-order curvature terms, which
may be interpreted as a gravitational fluid, that support
these nonstandard wormhole geometries. Thus, one is
motivated in exploring wormhole geometries in higher-
dimensional theories, due to the fact that these alleviate the
violation of the energy conditions, at least at the throat. Of
particular interest are the n-dimensional Lorentzian worm-
hole geometries [15] that were explored in Lovelock
gravity [16], which is the most general theory of gravitation
in n dimensions. In contrast to Einstein gravity, it was
found that the wormhole throat radius has a lower limit that
depends on the Lovelock coefficients, the dimensionality of
the spacetime and the shape function. In addition to this, it
was shown that the higher-order Lovelock terms with
negative coupling constants enlarge the region of normal
matter near the throat.
Lorentzian wormhole solutions were also investigated in

the context of the n-dimensional Einstein-Gauss-Bonnet
(GB) theory of gravitation, which is the second-order
Lovelock gravity [17]. These wormholes were found to
have features depending on the dimensionality of the
spacetime, n, and the GB coupling constant, α. It was
shown that in a large number of cases, the wormhole
throat radius is constrained by n and α. The possibility of
obtaining solutions with normal and exotic matter limited
to the vicinity of the throat was also explored. Similar to the
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situation in GR, the violation of the weak energy condition
(WEC) persists for α > 0. For α < 0, this condition may or
may not be violated depending on the nature of an
inequality involving jαj, n, the radius r, and the wormhole
shape function. Dynamic wormhole solutions in the frame-
work of Lovelock gravity with compact extra dimensions
were also analyzed [18]. It was shown that as the wormhole
inflates with the three-dimensional space, the extra
dimensions deflate to very small, yet nonvanishing scales.
In addition to this, it was also shown that the WEC holds
for certain ranges of the free parameters of the theory.
Further higher-dimensional wormhole solutions have been
explored, and we refer the reader to [19,20] for more
details.
A thorough analysis of the properties of n-dimensional

static wormhole solutions was investigated in Einstein-
Gauss-Bonnet gravity with or without a cosmological
constant. The analysis in [17] was generalized in [21] by
assuming that the spacetime possessed symmetries corre-
sponding to the isometries of an ðn − 2Þ-dimensional
maximally symmetric space with the sectional curvature
k ¼ �1; 0. The metric was assumed to be least C2 and the
ðn − 2Þ-dimensional maximally symmetric subspace to be
compact. The solutions were classified into GR and non-
GR branches, respectively, depending on the existence or
absence of the general relativistic limit α → 0. The authors
showed that the branch surface in the GR branch coincides
with the wormhole throat respecting the dominant energy
condition (DEC), otherwise the NEC is violated. On the
other hand, in the non-GR branch for kα ≥ 0, it was shown
that there is nowormhole solution. In addition to this, it was
also shown in the non-GR branch with kα ≤ 0 and Λ ≤ 0,
for the matter field with zero tangential pressure, that the
DEC holds at the wormhole throat if the throat radius
satisfies a specific inequality. Furthermore, explicit worm-
hole solutions respecting the energy conditions in the whole
spacetime were obtained in the vacuum and dust cases with
k ¼ −1 and α > 0.
We emphasize that despite the fact that wormhole

solutions satisfying the energy conditions for the specific
case of k ¼ −1 and α > 0, as mentioned above, no
solutions were found for the k ¼ 1 and α < 0, which
was the case extensively explored in Ref. [17]. In the
latter, the authors claimed that wormhole solutions were not
possible for k ¼ 1 and α < 0. However, as also mentioned
in [21], this discussion is purely based on a nontrivial
assumption, which seems to be valid only at the wormhole
throat, and cannot be extended throughout the entire range
of the radial coordinate. Although no counterexample was
provided in [21], here we provide for the first time a
specific solution for wormholes that satisfy the WEC for
the specific case of k ¼ 1 and α < 0.
In addition to this, in all of the above GB wormhole

studies, the redshift function is considered to be zero.
Here, we relax this assumption and consider a specific

radial-dependent choice for the redshift function, which
tends to zero at spatial infinity. Indeed, since the GB term
has low effects on regions far from throat, one can expect
that a nonconstant redshift function may contribute to
solutions satisfying the energy conditions. Thus, in this
paper, we discuss higher-dimensional wormhole solutions
in the framework of GB gravity and investigate the effects
of the GB term, with the presence of r-dependent redshift
functions and considering a specific equation of state, on
the satisfaction of the WEC.
The paper is organized as follows: In Sec. II, we give a

brief review of the field equations of GB gravity, and
introduce an equation of state in order to solve the field
equations. In Sec. III, several wormhole solutions are
presented, more specifically, by considering particular
choices for the parameters of the theory. In Sec. IV, we
summarize and discuss our results.

II. ACTION AND FIELD EQUATIONS

A. Action

The action in the framework of GB theory, in the
presence of a cosmological constant, is given by

IG ¼
Z

dnx
ffiffiffiffiffiffi
−g

p ½R − 2Λþ α2LGB�; ð1Þ

where n is the dimension of the spacetime, R and Λ are the
n-dimensional Ricci scalar and the cosmological constant,
respectively, α2 is the GB coefficient, and the GB term LGB
is given by

LGB ¼ R2 − 4RμνRμν þ RμνρσRμνρσ: ð2Þ
In Lovelock theory, for each Euler density of order k̄ in
n-dimensional spacetime, only terms with k̄ < n exist in
the equations of motion [22]. Therefore, the solutions of the
Einstein-Gauss-Bonnet theory are in n ≥ 5 dimensions.
Note that the action (1) is derived in the low energy limit of
string theory [23].
Now, varying the action (1) with respect to the metric,

one obtains the field equations

Gμν þ α2Gμν ¼ Tμν; ð3Þ
where Tμν is the energy-momentum (EM) tensor, Gμν is
Einstein tensor and Gμν is the GB tensor given by

Gμν ¼ 2ð−RμσκτRκτσ
ν − 2RμρνσRρσ − 2RμσRσ

ν þ RRμνÞ

−
1

2
LGBgμν: ð4Þ

We use a unit system with 8πGn ¼ 1, where Gn is the
n-dimensional gravitational constant.
In this work, we consider the n-dimensional spacetime,

by replacing the two-sphere [1] with an ðn − 2Þ-sphere
given by the following line element
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ds2 ¼ −e2ϕðrÞdt2 þ dr2

1 − bðrÞ=rþ r2dΩ2
n−2; ð5Þ

where dΩ2
n−2 is the metric on the surface of the ðn − 2Þ-

sphere. ϕðrÞ is denoted the redshift function as it is related
to the gravitational redshift, and bðrÞ is denoted the shape
function because it determines the shape of the wormhole,
as can be shown by embedding diagrams [1]. The radial
coordinate r is nonmonotonic in that it decreases from þ∞
to a minimum value r0, which represents the throat of
the wormhole, and then increases to þ∞. The shape
function at the throat is defined as bðr0Þ ¼ r0. Note that
ϕðrÞ should be finite everywhere in order to avoid the
presence of an event horizon [1]. bðrÞ should satisfy the
flaring-out condition, i.e., rb0 − b < 0, so that at the throat
we verify the condition b0ðr0Þ < 1. The condition
1 − bðrÞ=r ≥ 0 is also imposed. Note that although the
metric coefficient grr becomes divergent at the throat,
signaling a coordinate singularity, the proper radial distance
lðrÞ ¼ � R

r
r0
dr=ð1 − b=rÞ1=2 is required to be finite every-

where. Thus, the proper distance decreases from l ¼ þ∞,
in the upper universe, to l ¼ 0 at the throat, and then from
zero to −∞ in the lower universe.

B. Field equations

The EM tensor is given by Tμ
ν ¼ diag½−ρðr; tÞ; prðr; tÞ;

ptðr; tÞ; ptðr; tÞ; ...�, where ρðrÞ is the energy density and
prðrÞ and ptðrÞ are the radial and transverse pressures,
respectively. Thus, the gravitational field equation (3)
provides the following relations

ρðrÞ ¼ ðn − 2Þ
2r2

�
−
�
1þ 2αb

r3

� ðb − rb0Þ
r

þ b
r

�
ðn − 3Þ þ ðn − 5Þ αb

r3

��
; ð6Þ

prðrÞ ¼
ðn − 2Þ
2r

�
2

�
1 −

b
r

��
1þ 2αb

r3

�
ϕ0

−
b
r2

�
ðn − 3Þ þ ðn − 5Þ αb

r3

��
; ð7Þ

ptðrÞ ¼
�
1 −

b
r

��
1þ 2αb

r3

��
ϕ″ þ ϕ02 þ ðb − rb0Þϕ0

2rðr − bÞ
�

þ
�
1 −

b
r

��
ϕ0

r
þ b − b0r
2r2ðr − bÞ

�

×

�
ðn − 3Þ þ ðn − 5Þ 2αb

r3

�

−
b
2r3

�
ðn − 3Þðn − 4Þ þ ðn − 5Þðn − 6Þ αb

r3

�

−
2ϕ0α
r4

�
1 −

b
r

�
ðb − b0rÞðn − 5Þ; ð8Þ

where the prime denotes a derivative with respect to the
radial coordinate r. We define α ¼ ðn − 4Þðn − 3Þα2 for
notational convenience. We provide below several strate-
gies for solving the field equations.

C. Strategy of solving the field equations

We now have three equations, namely, the field equa-
tions (6)–(8), with the following five unknown functions
ρðrÞ, prðrÞ, ptðrÞ, bðrÞ and ϕðrÞ. Therefore, in order to
determine the wormhole geometry, one can adopt several
strategies. For instance, one can apply restrictions on bðrÞ
and ϕðrÞ or on the EM tensor components. It is also
common to use a specific equation of state (EOS) relating
the EM tensor components, such as specific equations of
state responsible for the present accelerated expansion of
the Universe [24] and the traceless EM tensor equations
of state [25], amongst others.
In this work, we use an EOS of the form [26]

ρ ¼ ω½pr þ ðn − 2Þpt�: ð9Þ

Using Eq. (9), the trace of the EM tensor can be written as
T ¼ −ρþ pr þ ðn − 2Þpt ¼ ρð1 − ωÞ=ω. This EOS will
be particularly useful, as for ω ¼ 1, it reduces to a traceless
EOS, T ¼ 0, which is usually associated with the Casimir
effect, and that will be extensively explored in the solutions
presented below.
Now, substituting ρ, pr and pt in the EOS, one obtains

the following differential equation

b0ðrÞ ¼ f2r2ωðn − 2Þðr − bÞðr3 þ 2αbÞðϕ02 þ ϕ00Þ
þ rωϕ0η − ξg=ζ; ð10Þ

with the following definitions

η ¼ ðn − 2Þf2r4ðn − 2Þ − rb½r2ð2n − 5Þ − 4α� − 2αb2g;
ξ ¼ r3bðn − 2Þðn − 4Þ½ðn − 3Þωþ 1�

þ αb2ðn − 2Þðn − 7Þ½ðn − 5Þωþ 1�;
and

ζ ¼ r4ðn − 2Þ½ðn − 3Þωþ 1� þ 2αrbðn − 2Þ½ωðn − 5Þ þ 1�
− ðn − 2Þωr2ϕ0fð2αbð−2nþ 9Þ þ r½4αðn − 5Þ − r2�g:

With the EOS given by Eq. (9) in hand, an additional
restriction is necessary in order to close the system and
solve the field equations. For this purpose, we choose an
asymptotically flat redshift function given by

e2ϕðrÞ ¼ ϕ0 þ ϕ1

�
r0
r

�
m
; ð11Þ

where ϕ0 and ϕ1 are dimensionless constants and m is a
positive constant. Note that choosing ϕ1 ¼ 0, Eq. (11)
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reduces to the well-known zero tidal force case [1]. As
mentioned above, we are interested in analyzing solutions
that are asymptotically flat, i.e., bðrÞ=r → 0 and ϕðrÞ → 0
as r → ∞.

III. WORMHOLE SOLUTIONS

It is well known that static traversable wormholes in four
dimensions violate the energy conditions at or near the
wormhole throat in GR [1–3]. Theses violations are derived
from the flaring-out condition of the wormhole throat. On
the other hand, the energy conditions can be satisfied in the
vicinity of static wormhole throats in higher-dimensional
alternative theories [15,17] and the whole spacetime in the
case of higher-order curvature terms [11], and dynamic
wormholes [18]. In the context of the local energy con-
ditions, we examine the WEC, i.e., TμνUμUν ≥ 0 whereUμ

is a timelike vector. For a diagonal EM tensor, the WEC
implies ρ ≥ 0, ρþ pr ≥ 0 and ρþ pt ≥ 0, simultaneously.
Note that the last two inequalities are defined as the NEC.
Using Eqs. (6)–(8), one finds the following relationships

ρþ pr ¼ −
ðn − 2Þ
2r2

�ðb − rb0Þ
r

þ 2ϕ0ðb − rÞ
��

1þ 2αb
r3

�
;

ð12Þ

ρþ pt ¼ −
ðb − rb0Þ

2r3

�
1þ 6αb

r3

�

þ b
r3

�
ðn − 3Þ þ ðn − 5Þ 2αb

r3

�

þ ϕ0
�
b − rb0

2r2

�
1 −

2αb
r3

ð9 − 2nÞ
�

−
b
r2

�
ðn − 3Þ þ 2αb

r3
ðn − 5Þ

�

þ 1

r

�
ðn − 3Þ þ 2αb0ðn − 5Þ

r2

��

þ
�
1 −

b
r

��
1þ 2αb

r3

�
ðϕ02 þ ϕ00Þ; ð13Þ

respectively. One can easily show that for α ¼ 0 and ϕ0 ¼ 0
the NEC, and consequently the WEC, are violated, due to
the flaring-out condition.
Note that at the throat, one verifies

ðρþ prÞjr¼r0 ¼ −
n − 2

2r20
ð1 − b00Þ

�
1þ 2α

r20

�
: ð14Þ

Taking into account the condition b00 < 1, and for α > 0,
one verifies the general condition ðρþ prÞjr¼r0 < 0. For
α < 0, the NEC at the throat is also violated for the range
r0 >

ffiffiffiffiffiffiffiffi
2jαjp

. In order to impose ðρþ prÞjr¼r0 > 0, one

needs to consider α < 0, and the condition r0 <
ffiffiffiffiffiffiffiffi
2jαjp

,

which proves that one may have wormholes in GB gravity
satisfying the WEC at the throat.

A. Solutions violating the WEC

1. Einstein gravity

In this section, we search for exact solutions in higher-
order Einstein gravity (α ¼ 0) imposing m ¼ ðn − 3Þ in
Eq. (11). For this specific case, Eq. (10) provides the
following solution

bðrÞ ¼ 2c0ϕ0½ϕ0 þ ϕ1ðr0r Þm�ð1þ ωmÞ þ ϕ2
1r

m
0 ðr0r Þmωm

ϕ0f2ϕ0rðm−1Þ½1þ ωm� þ ϕ1rm0
r ð2þ ωmÞg

;

ð15Þ

where c0 is a constant of integration, and can be determined
using the condition bðr0Þ ¼ r0. It is clear that the solutions
are asymptotically flat, i.e., bðrÞ=r → 0 as r → þ∞. Note
that from Eq. (15) for ω ¼ 0 and ϕ0 ¼ ϕ1, one obtains
bðrÞ ¼ c0

rðn−4Þ which presents the Schwarzschild geometry.
One also verifies that by choosing ϕ1 ¼ 0, the wormhole
solution of Ref. [27] is obtained.
Choosing ω ¼ 1 in Eq. (9) leads to a traceless EM

tensor solution. In this case, one can obtain wormhole
solutions with suitable constants ϕ0 and ϕ1 in order to
avoid an event horizon. For instance, in four dimensions
Eq. (15) reduces to

bðrÞ ¼
4c0ϕ0ðϕ0

r
r0
þ ϕ1Þ þ ϕ1r0

ϕ0ð4ϕ0
r
r0
þ 3ϕ1Þ

; ð16Þ

where c0 is given by

c0 ¼
r0ð4ϕ0 − ϕ1Þ

4ϕ0

; ð17Þ

with ϕ1 þ ϕ0 > 0, to avoid the presence of an event
horizon. Using the field equations (6)–(8) one obtains

ρ ¼ −
4ϕ1r0ðc0ϕ0 þ ϕ1r0Þ
r2ð4ϕ0rþ 3ϕ1r0Þ2

; ð18Þ

ρþ pr ¼ −
16ðrϕ0 þ ϕ1r0Þðc0ϕ0 þ ϕ1r0Þ

r2ð4rϕ0 þ 3ϕ1r0Þ2
; ð19Þ

ρþ pt ¼
8ϕ0ðc0ϕ0 þ ϕ1r0Þ
rð4ϕ0rþ 3ϕ1r0Þ2

: ð20Þ

It is clear that the conditions ϕ0 þ ϕ1 > 0 and
−4ϕ1r0ðc0ϕ0þϕ1r0Þ
ð4ϕ0r0þ3ϕ1r0Þ2 < 1 [which is imposed by b0ðr0Þ < 1] lead

to the violation of WEC.
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2. ϕ1 ¼ 0

Since solving the differential equation (10) is too
complicated, in general, we will consider restrictions on
the redshift function. For instance, consider a constant
redshift function, i.e., ϕ1 ¼ 0 in Eq. (11). Applying these
simplified choices, the shape function is given by

bðrÞ ¼

h
−ω̄�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω̄2 þ 4c1αðω̄ − 2ωÞð rr0Þ1−n

q i
r3

2αðω̄ − 2ωÞ ; ð21Þ

where we have defined ω̄ ¼ ωðn − 3Þ þ 1 for notational
simplicity, and the constant c1 is given by

c1 ¼ ½r20ω̄þ αðω̄ − 2ωÞ�r−40 : ð22Þ

In order to study the behavior of this solution at infinity,
we consider the approximation

1 −
bðrÞ
r

≃ 1þ ðω̄∓ ffiffiffiffiffiffi
ω̄2

p
Þr2

2αðω̄ − 2ωÞ þO

�
1

rn−3

�
: ð23Þ

There are two classes of wormhole solutions corresponding
to the two signs that appear in Eq. (23). It is obvious that
these solutions are asymptotically flat if we choose suitable
signs in the equation above, namely, ω̄ > 0 for the positive
sign, and ω̄ < 0 for the negative sign We denote these
solutions bþ and b−, respectively.
Now, in order to check the WEC, we first investigate the

behavior of ρðrÞ for large r, which is given by the following
approximation

ρðrÞ≃ −
ðn − 1Þðn − 2Þαωc21

ω̄

�
r0
r

�
2ðn−1Þ

þO

�
1

r3ðn−1Þ

�
:

ð24Þ

Note that ρðrÞ tends to zero as r increases to infinity. Since
ρðrÞ has no real positive root, in order to find its sign, it is
sufficient to investigate the sign at infinity. In the case of the
bþ (b−) solution which corresponds to ω̄ > 0 (ω̄ < 0), in
order to satisfy the WEC, one finds that αω < 0 (αω > 0).
Let us now obtain ρþ pr and ρþ pt for large r:

ρþ pr ≃ −
c1ðn − 2Þ

ω̄

�
r0
r

�
n−1

þO

�
1

r2ðn−1Þ

�
; ð25Þ

and

ρþ pt ≃ c1
ω̄

�
r0
r

�
n−1

þO

�
1

r2ðn−1Þ

�
: ð26Þ

It is clear that both ρþ pr and ρþ pt tend to zero as r tends
to infinity, with opposite signs. Therefore, in the large r
limit, one of ρþ pr or ρþ pt is negative and consequently
the WEC is violated. However, we show that one can

choose suitable values for the constant parameters in order
to have normal matter in the vicinity of the throat.
In the following analysis, we consider the traceless EM

tensor, T ¼ 0. This is usually associated to the Casimir
effect, which violates all the energy conditions. Thus, in
order to investigate the traceless EM tensor case, we impose
ω ¼ 1. In this case, bþ reduces to

bþðrÞ ¼

h
2 − nþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn − 2Þ2 þ 4c1αðn − 4Þð rr0Þ1−n

q i
r3

2αðn − 4Þ :

ð27Þ

The behavior of bþ in the large r limit is given by

bþðrÞ≃ c1r
ðn−1Þ
0

ðn − 2Þrn−4 ; ð28Þ

which guarantees the asymptotic flatness of the solution. In
order to check the flaring-out condition at the throat, i.e.,
b0ðr0Þ < 1, one obtains from Eq. (10) that

b0ðr0Þ ¼ −
ðn − 4Þ½r20ðn − 2Þ þ αðn − 7Þ�

½r20ðn − 2Þ þ 2αðn − 4Þ� : ð29Þ

Note that in Einstein gravity, where α ¼ 0, the condition
b0ðr0Þ < 1 is satisfied independent of r0. In the case of
α > 0, the flaring-out condition is also satisfied, but for
α < 0 it should be carefully checked.
Now, restricting our discussion to the case of the five-

dimensional spacetime, one finds that

bþðrÞ ¼
ð−3r2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9r4 þ 4ð3r20 þ αÞα

p
Þr

2α
: ð30Þ

The EM tensor components for this solution are given by

ρ ¼ 3½ð3κ − 9r2Þr2 − 2ð3r20 þ αÞα�
αr2κ

; ð31Þ

ρþ pr ¼
9½5ðκ − 3r2Þr2 − 4ð3r20 þ αÞα�

4αr2κ
; ð32Þ

ρþ pt ¼
ð45κ − 135r2Þr2 − 28ð3r20 þ αÞα

4αr2κ
; ð33Þ

respectively, where κ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9r4 þ 4ð3r20 þ αÞαp

. Imposing
different values on α, we plot the quantities 1 − bðrÞ=r,
ρ, ρþ pr and ρþ pt in Fig. 1. Note that the components of
the EM tensor tend to zero as r tends to infinity. Figure 1(b)
shows that for α > 0 the WEC (and also NEC) is violated in
the vicinity of the wormhole throat, but for α < 0, it can be
satisfied near the wormhole throat as it is shown in
Fig. 1(a). It can also be seen that ρ and ρþ pt have
no real root and therefore are positive everywhere, while

EINSTEIN-GAUSS-BONNET TRAVERSABLE WORMHOLES … PHYSICAL REVIEW D 91, 084004 (2015)

084004-5



ρþ pr possesses a real root (rc), where the value ρþ pr is
positive in the radial region r0 ≤ r ≤ rc. Thus, one may
have normal matter in the radial region r0 ≤ r ≤ rc.
Figure 2 shows that the increase of jαj enlarges the

normal matter region. Briefly, all of these figures show
that it is possible to choose suitable values for the
constants in order to have normal matter in the vicinity
of the throat.

B. Solutions satisfying the WEC

In this section, the equations are solved for the full
redshift function of the form presented in Eq. (11). Since
finding exact analytical solutions is extremely difficult,
we consider a simplifying assumption of ω ¼ 1 so that
the EOS reduces to a traceless energy momentum tensor,
T ¼ 0. One may now choose specific constant parameters
so that the solutions are asymptotically flat. Although
one cannot find explicit solutions for the shape function,
the numerical solutions are plotted in Figs. 3 and 4. We

verify that for these choices, the quantity bðrÞ=r tends to
zero at spatial infinity, and the behavior of 1 − bðrÞ=r is
plotted in the figures. Note that all of the quantities ρðrÞ,
ρðrÞ þ prðrÞ and ρðrÞ þ ptðrÞ are positive throughout the
spacetime, implying that the WEC is satisfied for all
values of r.
Note that Bhawal and Kar [17] have claimed that it is not

possible to find wormhole solutions of the GB field
equations with normal matter everywhere. However,
this discussion is based on the positivity of the factor
½ðb − rb0Þ=rþ 2ϕ0ðb − rÞ� [see Eq. (12)] throughout space-
time. This factor is indeed positive at the throat as shown
above, but this behavior is not guaranteed to be positive for
the entire range of the radial coordinate. The solutions
presented in Figs. 3 and 4 provide a counterexample to the
claim in [17].
Another condition that needs to be satisfied is the

condition b0ðr0Þ < 1 at the throat. We verify that the
quantity b00 is given by [see Eq. (10)]
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FIG. 2 (color online). The specific case of a constant redshift function, ϕ1 ¼ 0, and for the traceless EOS, with T ¼ 0 (ω ¼ 1), is
considered. The behaviors of 1 − bðrÞ=r (dot dash), 103ρ (solid), 10ðρþ prÞ (dotted) and 10ðρþ ptÞ (dashed) versus r=r0 for n ¼ 5,
are plotted. It is shown that the region of normal matter in the vicinity of the throat enlarges as the value of jαj increases.
(a) α ¼ −1.6 and (b) α ¼ −3.
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FIG. 1 (color online). The specific case of a constant redshift function, ϕ1 ¼ 0, and for the traceless EOS, with T ¼ 0 (ω ¼ 1), is
considered. The behaviors of 1 − bðrÞ=r, 102ρ (solid), ρþ pr (dotted) and ρþ pt (dashed) versus r=r0 for n ¼ 5, are plotted. It is shown
that for α < 0, the WEC is satisfied near the wormhole throat (a) whereas for α > 0 it is not (b). (a) α ¼ −1 and (b) α < 1.
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b0ðr0Þ ¼ −
2ϕ0ðn − 4Þ½αðn − 7Þ þ r20ðn − 2Þ� þ ϕ1½ðn − 2Þðn − 4Þ þm�½2αþ r20�

2ϕ0½2αðn − 4Þ þ r20ðn − 2Þ� þ ϕ1½2αð2ðn − 2Þ −m − 8Þ þ r20ð2ðn − 2Þ −mÞ� : ð34Þ

One can find the values of b0ðr0Þ for these numerical
solutions in the captions of Figs. 3 and 4.

IV. SUMMARY AND CONCLUSIONS

In this paper, we have explored higher-dimensional
asymptotically flat wormhole solutions in the framework
of GB gravity by considering a specific choice for a radial-
dependent redshift function and by imposing a particular
equation of state. We have shown explicitly that theWEC is
satisfied at the throat by considering a negative Gauss-
Bonnet coupling constant, i.e., α < 0, and in which the
wormhole throat is constrained by the following condition
r20 < 2jαj. This confirms previous results outlined in [17].
Furthermore, we have briefly presented solutions in higher-
dimensional Einstein gravity, α ¼ 0, for a specific
radial-dependent redshift function. Furthermore, we have
considered a constant redshift function and shown specifi-
cally that, for α < 0, one may have normal matter in a
determined radial region r0 ≤ r ≤ rc, and that the increase
of jαj enlarges the normal matter region.
However, the main motivation of this work resides in

finding solutions that satisfy the WEC throughout the
entire spacetime. We have been intrigued by previous

assumptions claiming that wormhole solutions were not
possible for the α < 0 case [17]. However, we agree with
the discussion in [21], in that the nontrivial assumption
discussed in [17], which is valid only at the wormhole
throat, cannot be extended throughout the entire range of
the radial coordinate. In this work, we provided a counter-
example to this claim, and found for the first time solutions
that satisfy the WEC throughout the entire spacetime. In
this context, it would be interesting to extend the analysis
carried out in third-order Lovelock gravity considered in
[15], where it was shown that a negative third-order
coupling constant enlarges the radius of the region of
normal matter relative to the second-order theory, and
perhaps it may be possible to find solutions that satisfy the
WEC throughout the entire spacetime. Work along these
lines is presently under way.
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