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We study the stability under the perturbation and the related antievaporation of the Nariai space-time in
bigravity. If we impose a specific condition for the solutions and parameters, we obtain asymptotically de
Sitter space-time, and show the existence of the Nariai space-time as a background solution. Considering
the perturbation around the Nariai space-time up to the first order, we investigate the behavior of the black
hole horizon. We show that the antievaporation does not occur on the classical level in the bigravity.
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I. INTRODUCTION

One can find that there exist many reasons and motiva-
tions to consider alternative theories of gravity to general
relativity. Some theories are motivated by the modifications
in the infrared regime and they mainly aim to resolve a
question about the dark energy. For instance, FðRÞ gravity
[1,2] can explain the accelerating expansion of the current
Universe without the cosmological constant and avoid the
hierarchy problem. Others are motivated by the modifica-
tions in the ultraviolet regime and they are often associated
with the effects of quantum gravity [3,4]. Higher curvature
theories typified by curvature-squared and the Gauss-
Bonnet terms are induced from quantum corrections and
also the corrections from the string theory. Naturally,
challenges to the theory beyond general relativity them-
selves are important because there is no fundamental reason
to choose the Einstein-Hilbert action or Einstein’s equation
over many kinds of alternatives.
Recently, much attention has been paid to bimetric

theory or what we call bigravity, which includes two
independent metric tensor fields, gμν and fμν [5–7].
Bigravity contains the massive spin-2 propagating mode
in addition to the ordinary massless spin-2 mode corre-
sponding to the graviton. This theory has been successfully
constructed as the generalization of de Rham-Gabadadze-
Tolley massive gravity in recent years [8,9]. Some people
expect that the new degrees of freedom introduced by
another metric can solve remaining problems in cosmology,
that is, dark energy [10–21] and dark matter [22–25]
problems. Interactions between two metric tensors produce
the effective cosmological constant; furthermore, the mas-
sive spin-2 fields and matter fields coupled with the metric
fμν can be candidates of dark matter.
When we intend to view the bigravity to be an alternative

theory of gravity, it is also interesting that we apply this
theory to other phenomena in cosmology or astrophysics
and find the differences from general relativity. In our work,

we focus on the nature of black holes. It is well known that
the horizon radius of the black hole in the vacuum usually
decreases by the Hawking radiation, which is called the
black hole evaporation. However, Bousso and Hawking
have observed a phenomenon where the black hole radius
increases by the quantum correction for the specific Nariai
black hole [26]. This phenomenon is called antievaporation
of black holes. Note that the Schwarzschild–de Sitter black
holes and the Nariai black holes can be primordial ones;
thus, they are not expected to appear at the final stage of star
collapse. As we have introduced, some modifications of
gravitational action are inspired by the quantum gravity,
and modified actions should be regarded as low-energy
effective ones of the quantum gravity. Therefore, it is
natural to expect that such effective theories can describe
the very early Universe, and it is also reasonable to study
the properties of primordial black holes, the Nariai black
holes, in modified gravities.
We should also note that the usual evaporation of the

black holes occurs by the quantum corrections, and the
antievaporation could occur also by the quantum correc-
tions from the matters in general relativity. Whether the
usual evaporation or the antievaporation occurs depends on
what kind of black hole we consider. The antievaporation is
a unique phenomenon in the Nariai black hole. The point to
understand the difference between the antievaporation and
the ordinary evaporation could be the isometry of the
background space-time, which we refer to later.
In FðRÞ gravity theories, however, it has been shown that

the antievaporation may occur even on the classical level
[27–29], which might be remarkable. Realization of the
antievaporation without the quantum corrections could be
due to the modification of the field equations because the
behavior of perturbations depends on the equations of
motion. The equations for the FðRÞ gravity are indeed
different from those for general relativity, but at present it is
not so clear what could be essential for the antievaporation
on the classical level. Then it might be interesting if the
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antievaporation in the classical level might be a general
phenomenon in the modified gravity. In this paper, we
consider the possibility of the antievaporation in bigravity
on the classical level because the contribution from the
interaction between two metric tensors is not so trivial. We
give a classical analysis in the stability of the Nariai black
hole in the bigravity and study if the antievaporation could
occur or not on the classical level, which may clarify what
could be necessary for the antievaporation to occur.
This paper is organized as follows: First, we explain

about the Nariai black hole. The Nariai black hole is
defined as a subset of the Schwarzschild–de Sitter black
hole where the radii of the cosmological and black hole
horizons are degenerate. Second, we give a brief review
about the bigravity. In order to show the existence of the
Nariai black hole as an exact solution in the bigravity, we
specify some parameters and solutions; then we give a
proof that the asymptotically de Sitter solutions can be
realized. Finally, we consider the perturbations around the
black hole, evaluate their stability, and investigate if the
antievaporation could occur on the classical level.

II. ANTIEVAPORATION OF THE
NARIAI BLACK HOLES

A. Nariai space-time and its property

At first, we introduce the Nariai space-time as a
family of the Schwarzschild–de Sitter space-time. The
Schwarzschild–de Sitter solution is expressed in the fol-
lowing form:

ds2 ¼ −VðrÞdt2 þ VðrÞ−1dr2 þ r2dΩ2; ð1Þ
where the function VðrÞ is defined by

VðrÞ ¼ 1 − 2μ

r
− Λ

3
r2: ð2Þ

Here, μ is a mass parameter and Λ is a positive cosmo-
logical constant. For 0 < μ < 1

3
Λ−1=2, VðrÞ has two pos-

itive roots rc and rb, corresponding to the cosmological and
black hole horizon, respectively. In the limit μ → 1

3
Λ−1=2,

the radius of the black hole horizon coincides with that of
the cosmological horizon. Here, the coordinate system in
Eq. (1) becomes inappropriate because VðrÞ → 0 between
the two horizons. Then it is useful to introduce a new
coordinate system as follows:

t ¼ 1

ϵ
ffiffiffiffi
Λ

p ψ ; r ¼ 1ffiffiffiffi
Λ

p
�
1 − ϵ cos χ − 1

6
ϵ2
�
; ð3Þ

where ϵ is the parameter defined as 9μ2Λ ¼ 1 − 3ϵ2, and
ϵ → 0 corresponds to the degeneracy of the two horizons.
In the above coordinate, the black hole horizon corre-

sponds to χ ¼ 0, the cosmological horizon corresponds to
χ ¼ π, and the metric takes the following form:

ds2 ¼ −
1

Λ

�
1þ 2

3
ϵ cos χ

�
sin2 χdψ2

þ 1

Λ

�
1 − 2

3
ϵ cos χ

�
dχ2 þ 1

Λ
ð1 − 2ϵ cos χÞdΩ2:

ð4Þ

In the degenerate case, ϵ ¼ 0, the metric is given by

ds2 ¼ 1

Λ
ð− sin2 χdψ2 þ dχ2Þ þ 1

Λ
dΩ2; ð5Þ

and this space-time is called the Nariai black hole. Note
that the topology of the spacelike sections of the
Schwarzschild–de Sitter space-time (and the Nariai
space-time) is S1 × S2 while that of the ordinary black
hole solution is S2 in four dimensions. In this coordinate
system, the radius of the two sphere, r, varies along the one-
sphere coordinate, χ; the minimal two sphere corresponds
to the black hole horizon and the maximal one corresponds
to the cosmological horizon.

B. Trace anomaly and antievaporation

In this section, we give a brief review of the antievapo-
ration in general relativity, following the paper by Bousso
and Hawking [26]. First of all, we begin with the Hawking
radiation from the black holes. It is well known that there is
radiation by the quantum effects of matter fields around the
black hole horizon, which is called the Hawking radiation.
For the massless scalar field as the radiation around the
black hole horizon, we consider the following action:

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi−gp �
R − 2Λ − 1

2

Xn
i¼1

ð∇fiÞ2
�
; ð6Þ

where fi are N scalar fields that carry the quantum
radiation. The quantum corrections by the scalar field lead
to the trace anomaly of the energy-momentum tensor
although the trace of the energy-momentum tensor should
classically vanish, Tμ

μ ¼ 0. When we reduce the four-
dimensional space-time to the two-dimensional one in a
spherically symmetric way by assuming the metric in the
following form,

ds2 ¼
X

μ;ν¼t;r

gμνdxμdxν þ e−2ϕdΩ2; ð7Þ

the trace anomaly can be expressed by the following
effective action [30,31]:

Seff ¼ −
1

48πG

Z
d2x

ffiffiffiffiffiffi−gp

×

�
1

2
R
1

□
R − 6ð∇ϕÞ2 1

□
R − ωϕR

�
: ð8Þ
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Here, ω is the redundant parameter corresponding to the
renormalization scheme.
Next, we investigate the effective action with the trace

anomaly in two-dimensional space-time. We can render the
effective action (8) local by introducing the scalar field Z
[32], and integrate out the classical solution, fi ¼ 0. Then
we obtain the following expression:

S ¼ 1

16πG

Z
d2x

ffiffiffiffiffiffi−gp ��
e−2ϕ þ κ

2
ðZ þ ωϕÞ

�
R

− κ

4
ð∇ZÞ2 þ 2þ 2e−2ϕð∇ϕÞ2 − 2e−2ϕΛ

�
; ð9Þ

where κ ≡ 2N=3. We now consider the large N limit,
κ ≫ 1, where the quantum fluctuations of the metric are
dominated by the contribution from the N scalar fields. We
also assume that the quantum correction itself should be
small, that is, b≡ κΛ ≪ 1. Then we consider the pertur-
bation around the Nariai space-time in general relativity.
According to the topology, S1 × S2, we make a spherically
symmetric metric ansatz as follows:

gμνdxμdxν ¼ e2ρðt;xÞð−dt2 þ dx2Þ þ e−2ϕðt;xÞdΩ2: ð10Þ
Here, the two-dimensional metric, corresponding to t and x
components, is written in the conformal gauge and x is the
coordinate system on the one sphere and has the period of
2π. In this coordinate, the Nariai solution is expressed as
follows:

gμνdxμdxν¼
1

Λcos2 t
ð−dt2þdx2Þþ 1

Λ
dΩ2: ð11Þ

One can obtain the equations of motion for ρ, ϕ, and Z by
substituting the anstaz (10) into action (9), and then find the
following solution:

e2ρ ¼ 1

Λ1

1

cos2t
; e2ϕ ¼ Λ2; ð12Þ

where

1

Λ1

¼ 1

Λ

�
1 − ωb

4

�
; Λ2 ¼ Λ

�
1 − b

2

�
; ð13Þ

until the first order of b.
Finally, we perturb this solution so that the two-sphere

radius, e−ϕ, varies along the one-sphere coordinate, x. We
assume the perturbation in the following form:

e2ϕ ¼ Λ2½1þ 2ϵσðtÞ cos x�; jϵj ≪ 1: ð14Þ

We now trace the time evolution of the black hole horizon.
The condition for a horizon is ð∇δφ1Þ2 ¼ 0, which is
required so that the gradient of the two-sphere size is null.
Here, perturbation ansatz (10) yields

δ _ϕ ¼ ϵ _σ cos x; δϕ0 ¼ −ϵσ sin x: ð15Þ

From the above conditions, the locations of the black
hole horizon xb and cosmological horizon xc are found as
follows:

xb ¼ arctan

���� _σσ
����; xc ¼ π − xb: ð16Þ

Therefore, the radius of the black hole horizon, rb, is
given by

r−2b ðtÞ ¼ e2ϕðt;xbÞ ¼ Λ2f1þ 2ϵδðtÞg; ð17Þ

where we define the perturbation for the horizon δðtÞ,

δðtÞ≡ σðtÞ cos xb ¼ σ

�
1þ

�
_σ

σ

�
2
	−1=2

: ð18Þ

For the classical case, κ ¼ 0, one can find the analytical
solution for σðtÞ,

σðtÞ ¼ σ0
cos t

: ð19Þ

When we substitute this solution into the horizon pertur-
bation Eq. (18), we obtain

δðtÞ ¼ σ0 ¼ const: ð20Þ

This result implies that the black hole size remains to be
that of the initial perturbation, which is just a static
Schwarzschild–de Sitter black hole of nearly maximal
mass.
In contrast, for the semiclassical case, κ > 0, one cannot

find the analytic solution because the quantum corrections
from matter field lead to the modification of the equation
for σðtÞ. However, one can solve the equation of motion as
a power series in t for the early Universe. The horizon
perturbation is given by

δðtÞ ≈ σ0

�
1 − 1

2
bt2

�
: ð21Þ

This result implies that the black hole perturbation shrinks
from its initial value, and the size of the black hole
horizon increases at least initially. This phenomenon is
called antievaporation. Note that if we do not include the
quantum correction, the quantum correction induces
the usual evaporation for the black holes like the
Schwarzschild one but the correction sometimes generates
the antievaporation.
We should note that, in the case of FðRÞ gravity, the

antievaporation occurs even on the classical level, that is,
without quantum corrections [27,28]. The field equations in
FðRÞ gravity are complicated as we will see later, which
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may generate the antievaporation on the classical level.
Because the equations in the bigravity are also pretty
complicated, we may expect that the antievaporation could
occur on the classical level, and, therefore, it could be
interesting to investigate the antievaporation in the bigrav-
ity even on the classical level.

III. NARIAI BLACK HOLES IN BIGRAVITY

In this section, we give a brief review of the bigravity and
show that the Nariai space-time is an exact solution in this
theory. The action of the bigravity [9] is given by

Sbigravity ¼ M2
g

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi− detðgÞ
p

RðgÞ

þM2
f

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi− detðfÞ
p

RðfÞ

− 2m2
0M

2
eff

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi− detðgÞ
p X4

n¼0

βnenð
ffiffiffiffiffiffiffiffiffiffi
g−1f

q
Þ:

ð22Þ

Here, g and f are dynamical variables and rank-two tensor
fields that have properties as metrics, RðgÞ and RðfÞ are the
Ricci scalars for gμν and fμν, respectively, Mg and Mf are
the two Planck mass scales for gμν and fμν as well, and the
scale Meff is the effective Planck mass scale defined by

1

M2
eff

¼ 1

M2
g
þ 1

M2
f

: ð23Þ

The quantities βns and m0 are free parameters; the former
defines the form of interactions and the latter expresses the
mass of the massive spin-2 field. The matrix

ffiffiffiffiffiffiffiffiffiffi
g−1f

p
is

defined by the square root of gμρfρν, that is,

ð
ffiffiffiffiffiffiffiffiffiffi
g−1f

q
Þμρð

ffiffiffiffiffiffiffiffiffiffi
g−1f

q
Þρν ¼ gμρfρν: ð24Þ

For a general matrix X, enðXÞs are polynomials of the
eigenvalues of X:

e0ðXÞ ¼ 1; e1ðXÞ ¼ ½X�;

e2ðXÞ ¼ 1

2
ð½X�2 − ½X2�Þ;

e3ðXÞ ¼ 1

6
ð½X�3 − 3½X�½X2� þ 2½X3�Þ;

e4ðXÞ ¼ 1

24
ð½X�4 − 6½X�2½X2� þ 3½X2�2

þ 8½X�½X3� − 6½X4�Þ
¼ detðXÞ;

ekðXÞ ¼ 0 for k > 4; ð25Þ

where the square brackets denote the traces of the matrices,
that is, ½X� ¼ Xμ

μ. For conventional notation, we explicitly
denote the determinant of matrix A as detðAÞ, and ffiffiffiffi

A
p

represents a matrix that is the square root of A.
Now we consider the variation of the action (22) with

respect to gμν. The obtained equation of motion for gμν is
given by

0 ¼ RμνðgÞ − 1

2
RðgÞgμν þ

1

2

�
m0Meff

Mg

�
2X3
n¼0

ð−1Þnβn

× fgμλYλ
ðnÞνð

ffiffiffiffiffiffiffiffiffiffi
g−1f

q
Þ þ gνλYλ

ðnÞμð
ffiffiffiffiffiffiffiffiffiffi
g−1f

q
Þg: ð26Þ

Here, for a matrix X, YnðXÞs are defined by

Yλ
ðnÞνðXÞ ¼

Xn
r¼0

ð−1ÞrðXn−rÞλνerðXÞ; ð27Þ

or explicitly

Y0ðXÞ ¼ 1; Y1ðXÞ ¼ X − 1½X�;

Y2ðXÞ ¼ X2 −X½X� þ 1

2
1ð½X�2 − ½X2�Þ;

Y3ðXÞ ¼ X3 −X2½X� þ 1

2
Xð½X�2 − ½X2�Þ

−
1

6
1ð½X�3 − 3½X�½X2� þ 2½X3�Þ: ð28Þ

We also obtain the equation of motion for fμν,

0 ¼ RμνðfÞ − 1

2
RðfÞfμν þ

1

2

�
m0Meff

Mf

�
2X3
n¼0

ð−1Þnβ4−n

× ffμλYλ
ðnÞνð

ffiffiffiffiffiffiffiffiffiffi
f−1g

q
Þ þ fνλYλ

ðnÞμð
ffiffiffiffiffiffiffiffiffiffi
f−1g

q
Þg: ð29Þ

In this case, we do not consider the energy-momentum
tensor for the ordinary matter fields. The constraints for the
conservation law appear if the minimal couplings to the
matter are introduced, and we find

0 ¼ ∇μ
ðgÞ

�X3
n¼0

ð−1ÞnβnfgμλYλ
ðnÞνð

ffiffiffiffiffiffiffiffiffiffi
g−1f

q
Þ

þ gνλYλ
ðnÞμð

ffiffiffiffiffiffiffiffiffiffi
g−1f

q
Þg
�
; ð30Þ

0 ¼ ∇μ
ðfÞ

�X3
n¼0

ð−1Þnβ4−nffμλYλ
ðnÞνð

ffiffiffiffiffiffiffiffiffiffi
f−1g

q
Þ

þ fνλYλ
ðnÞμð

ffiffiffiffiffiffiffiffiffiffi
f−1g

q
Þg
�
: ð31Þ
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Here, ∇ðgÞ and ∇ðfÞ are covariant derivatives that are
defined in terms of gμν and fμν, respectively.
In order to discuss the antievaporation in the bigravity,

we need to confirm that the asymptotically de Sitter
solutions are realized in this theory. However, it is not
so easy to investigate this problem for all combinations of
the included parameters; thus, we impose specific assump-
tions to make discussion simpler. One of the authors
considered a particular class of solutions where the two
metric tensors are proportional to each other [33],

fμν ¼ C2gμν: ð32Þ

This proportional relation leads to the Einstein equation
with a cosmological constant because

ffiffiffiffiffiffiffiffiffiffi
g−1f

p
and

ffiffiffiffiffiffiffiffiffiffi
f−1g

p
turn out to be proportional to unity. The two equations of
motion are given by

0 ¼ RμνðgÞ − 1

2
RðgÞgμν þ ΛgðCÞgμν; ð33Þ

0 ¼ RμνðfÞ − 1

2
RðfÞfμν þ ΛfðCÞfμν: ð34Þ

Note that the dynamics of two metric tensors gμν and fμν are
separated from each other and the constraints derived from
the preservation of energy-momentum tensor are automati-
cally satisfied. And we have not assumed any symmetries
in the space-time; thus, we can impose the spherical
symmetry to the solutions later.
Furthermore, we consider a specific parametrization for

the interacting parameter βns,

β0¼ 6−4α3þα4; β1¼−3þ3α3−α4;

β2¼ 1−2α3þα4; β3¼ α3−α4; β4¼ α4: ð35Þ

This combination of two parameters, α3 and α4, is required
by the existence of the solution corresponding to the flat
space-time in massive gravity, which is often used in
bigravity. With an assumption Mg ¼ Mf, it has been
shown that the de Sitter solution can be realized in some
parameter regions (Fig. 1). For instance, the minimal
model ðα3; α4Þ ¼ ð1; 1Þ has only asymptotically flat sol-
utions although the next-to-minimal models ðα3;α4Þ ¼
ð1;−1Þ; ð−1; 1Þ; ð−1;−1Þ have asymptotically de Sitter
solutions. Therefore, the Schwarzschild–de Sitter black
hole solutions are realized in the bigravity, and we can
obtain the Nariai black hole solution by the limit
μ → 1

3
Λ−1=2. Note that it has recently been implied that

the de Sitter solution is an attractor with homothetic
relation, which may support us in considering our setting
[24,25].
Under the assumption that fμν ¼ C2gμν, the dynamics of

two metric tensors gμν and fμν are separated from each
other, described by the Einstein equations. Here, this

property is just for the background solution and perturba-
tions can be independent; degrees of freedom of bigravity
do not descend to that of general relativity. When we
consider the perturbations from a background space-time,
the interaction terms give nontrivial contribution to the
evolution compared with the case of general relativity.
Therefore, it could be important to analyze the stability of
perturbation even on the classical level, and we need to
investigate if the antievaporation could be realized on the
classical level.

IV. STABILITY OF THE SCHWARZSCHILD–DE
SITTER BLACK HOLE

A. Background solution

We now consider the perturbation from the Nariai black
hole in the bigravity. According to the topology, S1 × S2,
we make a spherically symmetric metric ansatz as follows:

gμνdxμdxν ¼ e2ρ1ðt;xÞð−dt2 þ dx2Þ
þ e−2φ1ðt;xÞðdθ2 þ sin2θdϕ2Þ; ð36Þ

fμνdxμdxν ¼ e2ρ2ðt;xÞð−dt2 þ dx2Þ
þ e−2φ2ðt;xÞðdθ2 þ sin2 θdϕ2Þ: ð37Þ

Here, a two-dimensional metric, corresponding to t and x
components, is written in the conformal gauge and x is the
coordinate on the one sphere and has the period of 2π. We
should also note that the black hole and cosmological
horizons are located at same place [34], respectively.
Under the above ansatz, we can calculate each compo-

nent of the Einstein tensor Gμν ≡ Rμν − 1
2
Rgμν,

4

3

only trivial

solution

non-trivial

solutions

2 1 0 1 2 3 4

0

2

4

6

FIG. 1. Classification of the parameters α3 and α4 is given [33].
We obtain only flat solutions in the region “only trivial solution,”
although asymptotically nonflat (de Sitter and/or anti–de Sitter)
solutions are realized in “nontrivial solutions.”
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Gtt ¼ _φ2−2_ρ _φ−2ρ0φ0 þ2φ00−3φ02þe2ðφþρÞ;

Gtx ¼ 2 _φ0−2φ0 _φ−2ρ0 _φ−2_ρφ0;

Gxx¼φ02−2_ρ _φ−2ρ0φ0 þ2φ̈−3 _φ2−e2ðφþρÞ;

Gθθ ¼ e−2ðρþφÞð−ρ̈þρ00 þ φ̈−φ00− _φ2þφ02Þ;
Gϕϕ ¼ e−2ðρþφÞð−ρ̈þρ00 þ φ̈−φ00− _φ2þφ02Þsin2θ: ð38Þ

Here, · ≡ ∂=∂t and 0 ≡ ∂=∂x, and sub indices are omitted
for simplicity.
Furthermore, we need to calculate the interaction terms

in Eqs. (26) and (29). The interaction terms in each

equation of motion are written in terms of
ffiffiffiffiffiffiffiffiffiffi
g−1f

p
andffiffiffiffiffiffiffiffiffiffi

f−1g
p

. Defining A ¼
ffiffiffiffiffiffiffiffiffiffi
g−1f

p
and B ¼

ffiffiffiffiffiffiffiffiffiffi
f−1g

p
for con-

vention, these two matrices are expressed as follows:

A ¼ diagðe−ζ; e−ζ; eξ; eξÞ; ð39Þ

B ¼ diagðeζ; eζ; e−ξ; e−ξÞ; ð40Þ

where we define ζ ≡ ρ1 − ρ2; ξ≡ φ1 − φ2.
After a short calculation, we obtain Yns that take the

following forms:

Y0ðAÞ ¼ 1;

Y1ðAÞ ¼ diagð−e−ζ − 2eξ;−e−ζ − 2eξ;−2e−ζ − eξ;−2e−ζ − eξÞ;
Y2ðAÞ ¼ diagð2e−ζþξ þ e2ξ; 2e−ζþξ þ e2ξ;e−2ζ þ 2e−ζþξ; e−2ζ þ 2e−ζþξÞ;
Y3ðAÞ ¼ diagð−e−ζþ2ξ;−e−ζþ2ξ;−e−2ζþξ;−e−2ζþξÞ ð41Þ

Y0ðBÞ ¼ 1;

Y1ðBÞ ¼ diagð−eζ − 2e−ξ;−eζ − 2e−ξ;−2eζ − e−ξ;−2eζ − e−ξÞ;
Y2ðBÞ ¼ diagð2eζ−ξ þ e−2ξ; 2eζ−ξ þ e−2ξ;e2ζ þ 2eζ−ξ; e2ζ þ 2eζ−ξÞ;
Y3ðBÞ ¼ diagð−eζ−2ξ;−eζ−2ξ;−e2ζ−ξ;−e2ζ−ξÞ: ð42Þ

Next, we consider the equations ofmotion.Whenwe choose
Mg ¼ Mf, the effective Planck mass scale is given by

M2
eff ¼

1

2
M2

g ¼
1

2
M2

f: ð43Þ

And,we do not restrict the combinations of parameters in the
interaction terms but consider a general case, that is, the case
in which there are independent five parameters βns. Two
equations of motion for gμν and fμν take the following form:

0 ¼ RμνðgÞ − 1

2
RðgÞgμν þ

1

2
m2

0½β0Yλ
ð0ÞνðAÞ − β1Yλ

ð1ÞνðAÞ
þ β2Yλ

ð2ÞνðAÞ − β3Yλ
ð3ÞνðAÞ�gμλ; ð44Þ

0 ¼ RμνðfÞ − 1

2
RðfÞfμν þ

1

2
m2

0½β4Yλ
ð0ÞνðBÞ − β3Yλ

ð1ÞνðBÞ
þ β2Yλ

ð2ÞνðBÞ − β1Yλ
ð3ÞνðBÞ�fμλ: ð45Þ

As we have discussed, one can show that we obtain an
asymptotically de Sitter solution for the specific combina-
tions of parameters under the ansatz (32). Furthermore,
when we impose the spherical symmetry on the solutions,
the Schwarzschild–de Sitter space-time can be solutions in
our setting. Sowe consider the condition to obtain the Nariai
space-time as a background solution.

In the coordinate system of Eqs. (36)–(37), the Nariai
solutions are expressed as follows:

gμνdxμdxν ¼
1

Λ cos2 t
ð−dt2 þ dx2Þ þ 1

Λ
dΩ2; ð46Þ

fμνdxμdxν ¼
C2

Λ cos2 t
ð−dt2 þ dx2Þ þ C2

Λ
dΩ2: ð47Þ

Therefore, the corresponding ρðt; xÞs and φðt; xÞs in the
Nariai solutions are given by

e2ρ1ðt;xÞ ¼ 1

Λcos2t
; e−2φ1ðt;xÞ ¼ 1

Λ
;

e2ρ2ðt;xÞ ¼ C2

Λcos2t
; e−2φ2ðt;xÞ ¼ C2

Λ
; ð48Þ

that is,

ρ1 ¼ − 1

2
logΛ − logðcos tÞ;

φ1 ¼
1

2
logΛ;

ρ2 ¼ logC − 1

2
logΛ − logðcos tÞ;

φ2 ¼ − logCþ 1

2
logΛ;

ζ ¼ − logC; ξ ¼ logC: ð49Þ

TAISHI KATSURAGAWA AND SHIN’ICHI NOJIRI PHYSICAL REVIEW D 91, 084001 (2015)

084001-6



Now we substitute these solutions into the equations of
motion. Substituting (49) into (38) and (41)–(42), we find
that the Einstein tensors and the interaction terms take the
following forms:

GttðgÞ ¼ GttðfÞ ¼
1

cos2 t
;

GtxðgÞ ¼ GtxðfÞ ¼ 0;

GxxðgÞ ¼ GxxðfÞ ¼ − 1

cos2 t
;

GθθðgÞ ¼ GθθðfÞ ¼ −1;
GϕϕðgÞ ¼ GϕϕðfÞ ¼ − sin2 θ; ð50Þ

Y0ðAÞ ¼ 1; Y1ðAÞ ¼ −3C1;
Y2ðAÞ ¼ 3C21; Y3ðAÞ ¼ −C31; ð51Þ

Y0ðBÞ ¼ 1; Y1ðBÞ ¼ −3C−11;
Y2ðBÞ ¼ 3C−21; Y3ðBÞ ¼ −C−31: ð52Þ

And we find that two equations of motion are given by

0 ¼ 1 − 1

2Λ
m2

0½β0 þ 3β1Cþ 3β2C2 þ β3C3�; ð53Þ

0 ¼ 1 − C2

2Λ
m2

0½β4 þ 3β3C−1 þ 3β2C−2 þ β1C−3�: ð54Þ

Here, one can identify the two cosmological constants as
follows:

ΛgðCÞ ¼ Λ ¼ 1

2
m2

0½β0 þ 3β1Cþ 3β2C2 þ β3C3�; ð55Þ

ΛfðCÞ ¼
1

2
m2

0½β4 þ 3β3C−1 þ 3β2C−2 þ β1C−3�: ð56Þ

Then we obtain the quartic equation of C,

ΛgðCÞ ¼ C2ΛfðCÞ; ð57Þ

by using the two equations of motion.
When one chooses the interacting parameters βns,

Eq. (57) is determined and the consistent C can be given
as a solution that reproduces the positive cosmological
constants in Eqs. (55)–(56). Therefore, in order to obtain
the Nariai solutions, all we have to do is find the suitable
interacting parameters. In the following discussion, we
assume that the βns are chosen to realize the asymptotically
de Sitter space-time.

B. Perturbations

Next, we define the perturbations as follows:

ρ1 ≡ ρ̄1 þ δρ1ðt; xÞ; φ1 ≡ φ̄1 þ δφ1ðt; xÞ;
ρ2 ≡ ρ̄2 þ δρ2ðt; xÞ; φ2 ≡ φ̄2 þ δφ2ðt; xÞ: ð58Þ

Here, ρ̄s and φ̄s correspond to the unperturbed Nariai
space-time and δρs and δφs are the perturbations. Note that
these perturbations are not general, but keep the space-time
isometry to be S1 × S2. By substituting the above expres-
sions into (36)–(37), we find the metric perturbations of gμν
and fμν in the first order,

gμν ¼ diagð−e2ρ̄1 ; e2ρ̄1 ; e−2φ̄1 ; e−2φ̄1sin2θÞ
þ diagð−2e2ρ̄1δρ1; 2e2ρ̄1δρ1;
− 2e−2φ̄1δφ1;−2e−2φ̄1δφ1sin2θÞ

¼ ḡμν þ δgμν; ð59Þ

fμν ¼ diagð−e2ρ̄2 ; e2ρ̄2 ; e−2φ̄2 ; e−2φ̄2sin2θÞ
þ diagð−2e2ρ̄2δρ2; 2e2ρ̄2δρ2;
− 2e−2φ̄2δφ2;−2e−2φ̄2δφ2sin2θÞ

¼ f̄μν þ δfμν; ð60Þ

where we define

δgμν ¼ diag

�
− 2

Λcos2t
δρ1;

2

Λcos2t
δρ1;

− 2

Λ
δφ1;− 2

Λ
δφ1sin2θ

�
; ð61Þ

δfμν ¼ diag

�
− 2C2

Λcos2t
δρ1;

2C2

Λcos2t
δρ1;

− 2C2

Λ
δφ1;− 2C2

Λ
δφ1sin2θ

�
: ð62Þ

We now evaluate the equations of motion for the perturba-
tion. At first, we calculate the perturbation of the Einstein
tensor in the first order. When we substitute the metric
perturbations into (38), we obtain the deviations of GμνðgÞ,

GttðgÞ ¼
1

cos2t
þ 2δφ00

1 − 2 tan tδ _φ1 þ
2

cos2t
ðδφ1 þ δρ1Þ;

ð63Þ

GtxðgÞ ¼ 2δ _φ0
1 − 2 tan tδφ0

1; ð64Þ

GxxðgÞ ¼ −
1

cos2 t
þ 2δφ̈1

− 2 tan tδ _φ1 − 2

cos2 t
ðδφ1 þ δρ1Þ; ð65Þ
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GθθðgÞ ¼ − 1þ 2ðδρ1 þ δφ1Þ
þ cos2tð−δρ̈1 þ δρ001 þ δφ̈1 − δφ00

1Þ; ð66Þ

GϕϕðgÞ ¼ − sin2θ þ sin2θf2ðδρ1 þ δφ1Þ
þ cos2tð−δρ̈1 þ δρ001 þ δφ̈1 − δφ00

1Þg: ð67Þ

Then we define the deviations of the Einstein tensor from
the Nariai space-time. Note that the deviations of the
Einstein tensor for fμν are obtained by changing ρ1→ ρ2
and φ1 → φ2, because ρ1 þ φ1 ¼ ρ2 þ φ2 and logC is
constant. Compared with Eq. (50), we find the deviations of
the Einstein tensor are given by

δGtt ¼ 2δφ00 − 2 tan tδ _φþ 2

cos2t
ðδφþ δρÞ; ð68Þ

δGtx ¼ 2δ _φ0 − 2 tan tδφ0; ð69Þ

δGxx ¼ 2δφ̈ − 2 tan tδ _φ − 2

cos2 t
ðδφþ δρÞ; ð70Þ

δGθθ ¼ 2ðδρþ δφÞ þ cos2tð−δρ̈þ δρ00 þ δφ̈ − δφ00Þ;
ð71Þ

δGϕϕ ¼ sin2θf2ðδρþ δφÞþcos2tð−δρ̈þ δρ00 þ δφ̈− δφ00Þg:
ð72Þ

Next, we evaluate the interaction terms. We define the
deviation of ζ and ξ as follows:

ζ ¼ − logCþ δρ1 − δρ2 ≡ ζ̄ þ δζ; ð73Þ
ξ ¼ logCþ δφ1 − δφ2 ≡ ξ̄þ δξ: ð74Þ

Then we can calculate the deviations of the interaction
terms Yns from the Nariai space-time, and they are given by

δY0ðAÞ ¼ 0; δY1ðAÞ ¼ −C−1Z;
δY2ðAÞ ¼ 2C−2Z; δY3ðAÞ ¼ −C−3Z; ð75Þ

δY0ðBÞ ¼ 0; δY1ðBÞ ¼ CZ;

δY2ðBÞ ¼ −2C2Z; δY3ðBÞ ¼ C3Z; ð76Þ

where we define the tensor Z as follows,

Z ¼ diagðδζ − 2δξ; δζ − 2δξ; 2δζ − δξ; 2δζ − δξÞ: ð77Þ
Finally, we consider the equations for the perturbations. For
convention, we express the equations of motion as follows:

GμνðgÞ þ IλνðAÞgμλ ¼ 0; ð78Þ
GμνðfÞ þ IλνðBÞfμλ ¼ 0; ð79Þ

where Iλνs are the sum of Yns. When we consider the
perturbation up to first order, the above equations are
divided by background part and deviation part, and the
equations for the deviation take the following forms:

δGμνðgÞ þ δIλνðAÞgμλ þ IλνðBÞδgμλ ¼ 0; ð80Þ

δGμνðfÞ þ δIλνðBÞfμλ þ IλνðAÞδfμλ ¼ 0: ð81Þ

Here, we define

IðAÞ ¼ 1

2
m2

0½β0 þ 3β1Cþ 3β2C2 þ β3C3�1 ¼ Λ1; ð82Þ

IðBÞ ¼ 1

2
m2

0½β4 þ 3β3C−1 þ 3β2C−2 þ β1C−3�1

¼ Λ
C2

1; ð83Þ

δIðAÞ ¼ −
1

2
m2

0½β1Cþ 2β2C2 þ β3C3�Z ¼ −C1Z; ð84Þ

δIðBÞ ¼ 1

2
m2

0½β3C−1 þ 2β2C−2 þ β1C−3�Z
¼ C−4C1Z; ð85Þ

C1 ≡ 1

2
m2

0½β4 þ 3β3C−1 þ 3β2C−2 þ β1C−3�: ð86Þ

The explicit expressions of the above equations (80)–(81)
are given in Appendix B.

C. Evolution of black hole horizon

In order to describe the evolution of black holes due to
the perturbations, we need to know where the horizons are
located for gμν and fμν. In the following, we consider the
black hole horizon for gμν at first. Let us specify the form
of perturbations according to the original procedure by
Hawking and Bousso:

e2φ1 ¼ Λf1þ 2ϵσ1ðtÞ cos xg; jϵj ≪ 1; ð87Þ

that is,

δφ1 ≡ ϵσ1ðtÞ cos x: ð88Þ

Substituting the above form of perturbation into the ðt; xÞ
component of (80), we obtain

_σ1 ¼ σ1 tan t: ð89Þ

With the boundary condition, _σ1 ¼ 0 at t ¼ 0, the
solution is
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σ1ðtÞ ¼
σg
cos t

: ð90Þ

Then we find the horizon perturbation Eq. (18) as
follows:

δðtÞ ¼ σg ¼ const: ð91Þ

This result means that no antievaporation takes place as
well as in the classical case of general relativity.
Furthermore, if we define the same form of perturbation
for δφ2 as that for δφ1, we obtain the same results because
the equations have the same form as that of φ1. Then one
can find that antievaporation does not occur for two metrics
gμν and fμν on the classical level.
Note that the perturbation is consistent with Eq. (80). We

can solve the ðt; xÞ component of (80) without fixing the
form of perturbations we obtain,

δφ1 ¼
hðxÞ
cos t

þ kðtÞ: ð92Þ

Here, hðxÞ and kðtÞ are determined by the other compo-
nents of the equation.

V. DIFFERENCE FROM GENERAL RELATIVITY

In the previous section, we found that the antievaporation
is not realized in bigravity on the classical level, which is
not changed from the result in general relativity. In this
section, we focus on the problem of how we can identify
the difference between the case in general relativity and in
bigravity.
When we substitute the perturbations into the ðt; tÞ and

ðx; xÞ components of (80), we obtain

δζ − 2δξ ¼ 0: ð93Þ

Thus, the contributions from the interaction terms in ðt; tÞ,
ðx; xÞ, and ðt; xÞ components vanish, and the equations are
the same as that in general relativity. The deviations of the
interaction terms (84) and (86) exactly vanish if δζ ¼ 0 or
δξ ¼ 0. When we define the perturbation for fμν as

e2φ2 ¼ Λ
C2

f1þ 2ϵσ2ðtÞ cos xg; σ2ðtÞ ¼
σf
cos t

; ð94Þ

δξ vanishes in the case where the amplitude of the
perturbations is identical, σg ¼ σf. This means that the
two sets of metric perturbations are proportional to each
other and the relation between the perturbations is not
changed from the background, δfμν ¼ C2δgμν. In this case,
whole metrics including the perturbations are proportional
and they do not lead to difference from general relativity.
Therefore, we cannot distinguish bigravity theory from
general relativity.

Note that, regarding the perturbation, one can introduce
the different forms between δφ1 and δφ2. For instance, we
may assume the following form:

δφ1 ¼ ϵ
σg
cos t

cosðxþ αÞ; ð95Þ

δφ2 ¼ ϵ
σf
cos t

cosðxþ βÞ; ð96Þ

which is consistent with Eqs. (80)–(81). In this case, the
amplitude and phase can take independent values and these
are different from general relativity.

VI. SUMMARY AND DISCUSSION

We have studied the possibility of the antievaporation on
the classical level in the bigravity. For the assumption
fμν ¼ C2gμν and particular parameters βns and Planck
mass scales Mg ¼ Mf, we obtained the asymptotically
de Sitter space-time. When we considered the perturbations
around the Nariai space-time, the size of the black hole
horizon does not increase. And we have found that the
antievaporation does not take place on the classical level
although the equations of motion are different from general
relativity. In contrast to our result, it has been shown that
“bi-Schwarzschild” solutions are classically unstable [35].
As we stressed in Sec. IV.B, the perturbations that we
considered are not generally spherically symmetric but the
specific ones to keep the background space-time isometry.
Thus, the stability of the biNariai solution in our work may
relate to the symmetry of the space-time.
When we assume the perturbation (88), Eq. (90) is

derived from the ðt; xÞ component of Eq. (80). However,
the nondiagonal components of Eq. (80) take the forms
identical with those in general relativity because the
interaction terms do not modify the nondiagonal compo-
nents. Note that this outcome depends on the special
configuration of background solutions, that is, simultane-
ously diagonalized metrics. In this condition, the non-
diagonal components of Yns vanish; as a result, the size of
the black hole horizon does not increase as well as the case
in general relativity. In the FðRÞ gravity, however, the
antievaporation can occur on the classical level because
the equations of motion are modified in a different way. The
general equation of motion in FðRÞ gravity without matter
fields is given by

0 ¼ RμνFRðRÞ − 1

2
gμνFðRÞ þ ðgμν□ − ∇μ∇νÞFRðRÞ;

ð97Þ

where FR ¼ ∂F=∂R. This equation is apparently different
from Eqs. (26) and (29), and the difference from general
relativity is not given by the addition to the Einstein tensors
but by nonlinear couplings of the curvature. In fact, the
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field equation of δφ corresponding to ðt; xÞ components of
Eq. (80) is modified; then this modification makes it an
open possibility to realize the antievaporation on the
classical level [28].
We may expect that the antievaporation could occur if we

include the quantum correction of matter fields as in the
case of general relativity. The explicit calculation could be
pretty complicated, but an interesting problem could be to
study whether we need to introduce the quantum correc-
tions only for one of the two metrics gμν and fμν or both of
the metrics. In bigravity, we may assume the two kinds of
matter fields ΨgðxÞ and ΨfðxÞ that are coupled to gμν and
fμν, respectively. Thus, there are potentially quantum
radiations and the corrections from the two kinds of matter.
For instance, if we found that the antievaporation occurs by
including the quantum corrections from the matters only
coupled with fμν, black hole radius could increase even
though we do not include the quantum corrections from the
matters coupled with gμν.
There could be another way to realize the antievapora-

tion by modification to FðRÞ bigravity theory [36–39]. This
theory modifies the kinetic terms of bigravity, from the
Ricci scalar to the function of it. In FðRÞ bigravity, we find
similar problem to introducing the quantum corrections.
That is, we need to study if the modification is required for
only one metric or both metrics.
It is interesting that our approach may be generalized to

the case of other background solutions. As we mentioned
above, we took the background ḡμν and f̄μν as the Nariai
space-time, and these metrics are diagonalized because of
the proportional relation between two metrics fμν ¼ C2gμν.
In general, however, two metrics cannot be simultaneously
diagonalized because we have only one set of diffeo-
morphisms for two independent metrics in the bigravity
[40]. If we remove the assumption fμν ¼ C2gμν and we can
find the nondiagonal solution for gμν and/or fμν, the
interaction terms do modify the nondiagonal components
for the equations of perturbations, and these modifications
lead to nontrivial contributions. From the point of view of
specifying the difference from general relativity, nondiag-
onal components of metric are of great interest. For
instance, nondiagonal solutions even for the spherically
symmetric space-time are permitted because of one set of
diffeomorphisms for two metrics. Therefore, if we can
detect the phenomena that stem from such solutions in the
cosmological and astrophysical observation, it leads us to
the possibility to distinguish or restrict the bigravity theory.
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APPENDIX A: GEOMETRICAL QUANTITIES

The connections and curvature in the conformal gauge
are given as follows:

Γt
tt ¼ Γt

xx ¼ _ρ; Γt
tx ¼ ρ0;

Γt
θθ ¼ − _φe−2ðρþφÞ; Γt

ϕϕ ¼ − _φe−2ðρþφÞsin2θ;

Γx
tx ¼ _ρ; Γx

xx ¼ Γx
tt ¼ ρ0;

Γx
θθ ¼ φ0e−2ðρþφÞ; Γx

ϕϕ ¼ φ0e−2ðρþφÞsin2θ;

Γθ
tθ ¼ − _φ; Γθ

xθ ¼ −φ0; Γθ
ϕϕ ¼ − sin θ cos θ;

Γϕ
tϕ ¼ − _φ; Γϕ

xϕ ¼ −φ0; Γϕ
θϕ ¼ cot θ;

Rtt ¼ −ρ̈þ 2φ̈þ ρ00 − 2 _φ2 − 2_ρ _φ−2ρ0φ0;

Rxx ¼ ρ̈þ 2φ00 − ρ00 − 2φ02 − 2_ρ _φ−2ρ0φ0;

Rtx ¼ 2 _φ0 − 2φ0 _φ − 2ρ0 _φ − 2_ρφ0;

Rθθ ¼ 1þ e−2ðρþφÞð−φ̈þ φ00 þ 2 _φ2 − 2φ02Þ;
Rϕϕ ¼ f1þ e−2ðρþφÞð−φ̈þ φ00 þ 2 _φ2 − 2φ02Þgsin2θ;
R ¼ ð2ρ̈ − 2ρ00 − 4φ̈þ 4φ00 þ 6 _φ2 − 6φ02Þe−2ρ þ 2e2φ:

Here, · ≡ ∂=∂t and 0 ≡ ∂=∂x.

APPENDIX B: PERTURBATIONS

The equations for the perturbations are given as follows:
(i) ðt; tÞ component of (80),

0 ¼ δφ00
1 − tan tδ _φ1 þ

1

cos2t
δφ1

þ C1

2Λcos2t
ðδζ − 2δξÞ: ðB1Þ

(ii) ðt; xÞ component of (80),

0 ¼ δ _φ0
1 − tan tδφ0

1: ðB2Þ

(iii) ðx; xÞ component of (80),

0 ¼ δφ̈1 − tan tδ _φ1 − 1

cos2 t
δφ1

−
C1

2Λ cos2 t
ðδζ − 2δξÞ: ðB3Þ

(iv) ðθ; θÞ, ðϕ;ϕÞ component of (80),

0 ¼ 2δρ1 þ cos2 tð−δρ̈1 þ δρ001 þ δφ̈1 − δφ00
1Þ

−
C1

Λ
ð2δζ − δξÞ: ðB4Þ
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(v) ðt; tÞ component of (81),

0 ¼ δφ00
2 − tan tδ _φ2 þ

1

cos2t
δφ2

−
C1

2C2Λcos2t
ðδζ − 2δξÞ: ðB5Þ

(vi) ðt; xÞ component of (81),

0 ¼ δ _φ0
2 − tan tδφ0

2: ðB6Þ

(vii) ðx; xÞ component of (81),

0 ¼ δφ̈2 − tan tδ _φ2 − 1

cos2 t
δφ2

þ C1

2C2Λ cos2 t
ðδζ − 2δξÞ: ðB7Þ

(viii) ðθ; θÞ, ðϕ;ϕÞ component of (81),

0 ¼ 2δρ2 þ cos2tð−δρ̈2 þ δρ002 þ δφ̈2 − δφ00
2Þ

þ C1

C2Λ
ð2δζ − δξÞ: ðB8Þ
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