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We show that dissipative effects have a significant impact on the evolution of cosmological scalar
fields, leading to friction, entropy production and field fluctuations. We explicitly compute the dissipation
coefficient for different scalar fields within the standard model and some of its most widely considered
extensions, in different parametric regimes. We describe the generic consequences of fluctuation-
dissipation dynamics in the postinflationary universe, focusing in particular on friction and particle
production, and analyze in detail two important effects. First, we show that dissipative friction delays the
process of spontaneous symmetry breaking and may even damp the motion of a Higgs field sufficiently to
induce a late period of warm inflation. Along with dissipative entropy production, this may parametrically
dilute the abundance of dangerous thermal relics. Second, we show that dissipation can generate the
observed baryon asymmetry without symmetry restoration, and we develop in detail a model of dissipative
leptogenesis. We further show that this generically leads to characteristic baryon isocurvature perturbations
that can be tested with cosmic microwave background observations. This work provides a fundamental
framework to go beyond the leading thermal equilibrium semiclassical approximation in addressing
fundamental problems in modern cosmology.
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I. INTRODUCTION

Scalar fields play a major role in modern cosmological
theories. Depending on the balance between the kinetic,
potential and gradient energy stored in these fields, they can
mimic fluids with distinct equations of state and so have
been proposed as leading candidates to describe the early
phase of inflationary expansion, as well as dark matter and
dark energy.
Scalar fields are also a key ingredient in modern particle

physics theories and the recent discovery of what is now
widely accepted to be the electroweak Higgs boson at the
LHC puts the existence of fundamental scalar degrees of
freedom on firm experimental ground. Indeed, these are
ubiquitous in extensions of the standard model (SM) of
particle physics, such as grand unified theories (GUT),
supersymmetric theories or extradimensional scenarios,
namely within the context of string/M-theory compactifi-
cations. The study of the cosmological dynamics of scalar
fields, both at the classical and quantum levels, is thus of
crucial importance to understand the early history of our
Universe.
One of the most prominent roles of scalar fields is the

phenomenon of spontaneous symmetry breaking in

fundamental gauge theories, where vector bosons and
fermions acquire mass through the Bose condensation of
a scalar field. This process of spontaneous symmetry
breaking sees an initial symmetric state go to a state of
broken symmetry, all due to the change of a single
parameter, the vacuum expectation value (vev) of a scalar
field hϕi. The electroweak Higgs mechanism is the best
known example of this simple idea, which is also expected
to apply to the spontaneous breaking of higher-rank gauge
symmetry groups that extend the SM at high-energy scales.
The significance of spontaneous symmetry breaking

for cosmology was pointed out several decades ago by
Kirzhnits and Linde [1]. They observed that this behavior
would be a feature of quantum field theories at finite
temperature, whereby at very high temperatures the vev of
the scalar field would be a single value that restores
symmetry and then, at some specific critical temperature,
this vev would change and lead to a phase of broken
symmetry. The description of this process fits well within
the Landau theory of phase transitions. These two simple
ideas of spontaneous symmetry breaking and its realization
in finite temperature quantum field theory as a phase
transition have been the foundation for cosmological phase
transitions [2,3]. Such behavior has since been applied to
numerous areas in cosmology including inflation, defects,
baryogenesis [4], and cosmic magnetic fields [5].
The study of cosmological phase transitions has so far

been centered primarily on their equilibrium properties.
In particular, most of the interest has gone into studying
the particle physics features in the symmetric and broken

*s.bartrum@sms.ed.ac.uk
†ab@ph.ed.ac.uk
‡Also at Departamento de Física e Astronomia, Faculdade de

Ciências da Universidade do Porto, Rua do Campo Alegre 687,
4169-007 Porto, Portugal.

§joao.rosa@ua.pt

PHYSICAL REVIEW D 91, 083540 (2015)

1550-7998=2015=91(8)=083540(23) 083540-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.91.083540
http://dx.doi.org/10.1103/PhysRevD.91.083540
http://dx.doi.org/10.1103/PhysRevD.91.083540
http://dx.doi.org/10.1103/PhysRevD.91.083540


phases. The dynamics that induces the change from one
phase to the other is, however, also a necessary component
of this entire process. This change will involve the motion
of the order parameter hϕi from the symmetry-restored to
broken phase. Since this scalar order parameter is the
expectation value of a quantum field, which in general
interacts with other fields that comprise the radiation bath,
its evolution between the different phases will generically
involve energy exchange. Due to the tendency for the
equipartition of energy in dynamical systems, this appears
primarily as energy exchange between the single dynamical
scalar degree of freedom and the many degrees of freedom
comprising the heat bath. This thus results in dissipation of
the scalar field’s energy into the ambient radiation fluid.
The order parameter experiences another effect when

immersed in the radiation bath. All the random interactions
of the bath constituents with the single order parameter
will slightly push the scalar field around in all different
directions, thus inducing fluctuations. These two processes
of dissipation and fluctuations of the order parameter
are intrinsically related to each other by the underlying
dynamical quantum mechanical equations [6]. This is the
basis of fluctuation-dissipation theorems and it is appli-
cable to the dynamics of cosmological phase transitions
just as it is to any phase transitions or out-of-equlibrium
situation in condensed matter systems [7–10].
As such, wherever a cosmological phase transition is

present, fluctuation-dissipation dynamics will be present
hand in hand during the out-of-equilibrium transition
period between the two equilibrium phases. This phase
transition dynamics will add three new features to the
equilibrium description. First, the background evolution
of the scalar order parameter will affect the expansion
behavior of the Universe. Second, there will be particle
production. Third, there will be fluctuations created in the
Universe in the wake of this transition. The first feature
has been examined in great detail in the cosmology
literature. For the last two features, there are many quantum
field theory calculations of fluctuation and/or dissipation
dynamics [11–15,15–21] but very little has been explicitly
applied to particle physics models during cosmological
phase transitions. One exception is in the case of inflation,
where warm inflation captures all three of these features
[22–33]. However, cosmological phase transitions can and
generically do occur with no inflation and, in these cases
also, all three of these features will be present. They are an
intrinsic part of the evolution history of the early Universe
and the dynamics emerging from whatever is the under-
lying particle physics model.
Fluctuation-dissipation effects will, more generally, be

present in the dynamics of any cosmological scalar field,
regardless of the occurrence of phase transitions. For
example, several completions of the SM predict the
existence of very light scalars, such as extradimensional
moduli or axionlike fields. These fields will be

underdamped during the early inflationary phase and driven
to potentially very large values by random quantum
fluctuations. After inflation, once the expansion rate has
decreased sufficiently, they will be able to dynamically
relax to their minimum energy configuration. This may in
several cases lead to large-amplitude oscillations that
overclose the Universe or spoil the successful predictions
of big bang nucleosynthesis (BBN) for light element
abundances, which poses a considerable challenge for
cosmological models in beyond the SM scenarios.
Interactions with other degrees of freedom in the ambient
heat bath may, however, induce energy dissipation and
fluctuations in these scalar fields, modifying their dynami-
cal evolution and potentially their role in the subsequent
cosmic history.
Another case where fluctuation-dissipation dynamics

may be of relevance is the cosmological variation of
fundamental constants driven by scalar fields. These could
include e.g. unknown scalars driving variations of the fine-
structure constant, α, or even the cosmological evolution of
the SM Higgs field, which determines all fermion masses
and in particular the electron-proton mass ratiome=mp (see
e.g. [34]). In the latter case dissipation could delay the
electroweak phase transition, as we will discuss in this
work for generic phase transitions, and potentially yield
temporal variations of the electron-proton mass ratio
me=mp. Additionally, the associated fluctuations will also
induce spatial variations of this ratio, which depending on
their size and scale could in principle lead to observable
effects.
This fluctuation-dissipation dynamics is not specific to

near thermal equilibrium conditions. Whatever the statis-
tical state is, a relation exists between the dissipation
produced by the system and the fluctuations induced by
the radiation bath. The near thermal equilibrium regime is,
however, amenable to explicit calculations using well-
developed thermal field theory methods and will be the
focus of this paper. The early Universe is generally believed
to be in a near thermal equilibrium state and so these
calculations based on thermal field theory have significant
relevance to it. Nevertheless, there could be processes in the
early cosmic stages where a scalar field moves too quickly
or the underlying microphysical processes are too slow to
justify a near thermal equilibrium approximation. Thus it
should be kept in mind that the calculations done in this
paper could also be extended to these regimes; it would be a
technical, albeit complicated, step further, but the under-
lying concept is the same as that developed in this paper.
It is the goal of this work to set the stage for the study of

cosmological fluctuation-dissipation dynamics within con-
crete particle physics models. We discuss different exam-
ples of dissipation (and related noise) coefficients within
the SM and beyond, exploring their distinct parametric
regimes and domains of applicability. We then outline
some of the generic consequences of dissipation, particle
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production and induced fluctuations in the dynamics of
cosmological scalar fields, both with and without the
occurrence of phase transitions. We focus on the postinfla-
tionary dynamics, where the effects of fluctuation-
dissipation dynamics remain largely unexplored, there
existing already a considerable literature devoted to this
topic in inflationary cosmology in the context of the above-
mentioned warm inflation dynamics.
To better illustrate the cosmological impact of these

processes, we analyze in detail two concrete scenarios.
First, we consider a high-temperature phase transition in
the early Universe, where the associated Higgs field can
dissipate its energy into fermionic modes through standard
Yukawa interactions. In particular, we show that, by
slowing down the field’s motion, dissipation will delay
the phase transition, leading to additional entropy produc-
tion and Hubble expansion that can dilute the abundance of
dangerous relics such as topological defects. Furthermore,
if the transition is sufficiently delayed, the Higgs field may
come to dominate the energy balance and yield an addi-
tional (short) period of inflationary expansion. This results
in a more efficient dilution of thermal relics, similarly to
thermal inflation models, although dissipative friction can
sustain accelerated expansion below the temperatures at
which thermal effects can hold the Higgs field in the
symmetric phase. Both thermal and dissipative (warm)
inflation are, in fact, due to the same interactions between
the Higgs field and the thermal bath degrees of freedom and
may occur within the same cosmological phase transition,
as we show in this work.
Second, we consider the relaxation of a scalar field from

a large postinflationary value to its minimum energy
configuration. We show that its coupling to a B- or L-
violating sector can lead to the dissipative production of a
baryon or lepton asymmetry, respectively, in the spirit of
the warm baryogenesis scenario proposed in [35] in the
inflationary context. To illustrate this generic mechanism,
we develop a concrete model of dissipative leptogenesis,
where dissipation results from the excitation and decay of
heavy right-handed neutrinos, which gain a large Majorana
mass from the coupling to a dynamical scalar field. As
opposed to standard leptogenesis and other thermal baryo-
genesis scenarios, these are mainly produced off shell,
which allows for baryogenesis at parametrically low
temperatures and therefore avoids the troublesome over-
production of thermal relics.
These two examples show that dissipative effects can

have an important role in the cosmic history, particularly in
addressing some of the most important puzzles in modern
cosmology. We therefore hope that they motivate a more
thorough exploration of this topic and of more general
nonequilibrium processes in cosmology.
This work is organized as follows. In Sec. II we show

examples of how dissipation arises within common particle
physics models, focusing in particular on the electroweak

phase transition and grand unified theories. In Sec. III we
describe the effects of fluctuation-dissipation dynamics in
high-temperature phase transitions. In Sec. IV we describe
the postinflationary production of a baryon asymmetry
through dissipative effects, describing in detail the dis-
sipative leptogenesis scenario and its observational signa-
tures. We summarize our main results and conclusions in
Sec. V, also discussing prospects for future research in
this area.

II. FLUCTUATION-DISSIPATION DYNAMICS
IN PARTICLE PHYSICS MODELS

The several scalar fields employed in particle physics
and associated cosmological models are typically not
isolated systems and generically interact with other degrees
of freedom. Their dynamics is therefore described by a
quantum effective action that encodes the effects of all
interactions with other fields. In the cosmological context,
this effective action must take into account the nontrivial
statistical states of both the dynamical field and the degrees
of freedom with which it interacts. The black-body spec-
trum of the cosmic microwave background (CMB) and
the successful predictions of BBN show that the Universe
was in a state very close to local thermal equilibrium for
a great part of its early history, and we henceforth assume
that all relevant particle states always remain near this
configuration.
For static fields the effective action reduces to a local

effective potential, which takes the well-known Coleman-
Weinberg form at leading order in a perturbative expansion
[36]. From the finite temperature effective potential one can
derive the thermodynamic properties of the cosmological
fields, such as their energy density, entropy and pressure, as
well as thermal mass corrections. Static fields are, however,
generically of little interest in cosmology, and for dynami-
cal fields the effective action includes nonlocal effects
beyond the leading effective potential approximation.
Time nonlocal effects may take different forms depend-

ing on the regime considered. The simplest case is the
adiabatic regime, where the field varies on time scales that
largely exceed the typical time scales of the relevant
microphysical processes. This is for example the case
for the inflaton field, which in the simplest scenarios is
slowly rolling in order to produce a quasi–de Sitter phase.
Local thermal equilibrium in the ambient heat bath can be
maintained if scattering and/or decay processes within it are
sufficiently fast, namely faster than Hubble expansion, such
that an adiabatic approximation will be valid for large
classes of cosmological scalar fields.
In the adiabatic limit, a system has sufficient time to

relax to an equilibrium configuration in response to the
perturbing effect of the time nonlocal terms in the effective
action, and linear response theory can be used to study the
system’s evolution. The leading time nonlocal effect is
dissipation of the scalar field’s energy into the degrees of
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freedom in the heat bath, which manifests itself through an
effective friction term in the field’s equation of motion.
The simplest example of this is the creation and

subsequent annihilation of particle-antiparticle pairs
coupled to the background field, where this coupling
makes the amplitude of creation and annihilation field
dependent. Suppose then that pairs are created at a time t
where the scalar field takes a value ϕðtÞ. They will then
annihilate at time tþ δt where the field has shifted by an
amount δϕ ¼ _ϕδtþ… in the adiabatic regime, and to
leading order there will be a net particle production
proportional to _ϕ, resulting in a transfer of energy from
the scalar field into the produced degrees of freedom. This
will perturb the local thermal equilibrium in the ambient
heat bath but the system can relax into a new equilibrium
configuration if adiabatic dissipation is slower than other
microphysical processes.
Dissipation corresponds to the systematic effect of the

particles in the heat bath on the evolution of the field and
the resulting friction opposes the latter’s evolution through
the creation and annihilation of particles in the heat bath
in a field-dependent fashion, as outlined above. This is
entirely analogous, for example, to the systematic friction
force produced on a moving mirror by a rarefied gas of
molecules that randomly hits the mirror in a Brownian
motion [37]. Much like this random Brownian motion also

resulting in an irregular motion of the mirror, fluctuations
in the cosmological heat bath will also backreact on the
evolution of the scalar field and introduce a degree of
randomness. The two effects, fluctuations and dissipation,
result from the same interactions between the scalar field
and the heat bath and are thus interconnected. This is a
general result that applies to large classes of dissipative
systems in nature and is known as the fluctuation-
dissipation theorem, the details of which depend on the
statistical state of the system and its microscopic properties.
The combined effect of fluctuations and dissipation leads

to an effective Langevin-like equation for a cosmological
scalar field interacting with the ambient heat bath of the
form (see e.g. [15,21,27,38–40] and references therein)

ϕ̈þ ð3H þϒÞ _ϕ −
1

a2
∇2ϕþ V 0ðϕÞ ¼ ζ; ð1Þ

where ϒ denotes the dissipation coefficient and ζ the
related random noise term, with the remaining terms
yielding the usual Klein-Gordon equation in a flat
Friedmann-Robertson-Walker universe. In the adiabatic
regime, the noise term is Gaussian to leading order and
its correlator satisfies the following fluctuation-dissipation
relation in momentum space [33,41,42]:

hζðk; tÞζðk0; t0Þi ¼
�
ð1þ 2nðkÞÞ 3H

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4πQ=3

p
π

þ 2ϒT

�
a−3ð2πÞ3δ3ðkþ k0Þδðt − t0Þ; ð2Þ

where we have also included a “quantum noise” contribu-
tion, given by the first term within brackets and
Q ¼ ϒ=3H. This results from a coarse-graining of the
scalar field as employed in the stochastic approach to
inflation [43], with short-wavelength (subhorizon) field
modes inducing an effective noise in the dynamics of the
long-wavelength classical modes. While the form in Eq. (2)
is obtained for a sharp mode splitting, a smooth filtering
function generically results in a colored noise distribution
[44]. We have also included the effect of a generic phase-
space mode distribution nðkÞ [42], which vanishes in the
standard stochastic inflation approach, but becomes sig-
nificant, in particular, when the scalar field is itself
thermalized and nðkÞ is the Bose-Einstein distribution.
For example, for T ≫ H; jV 00ðϕÞj andQ ≪ 1, the first term
within brackets becomes proportional to HT for modes
crossing the horizon.
As discussed above, the dissipative friction term is

associated with a net particle creation in the ambient heat
bath. One can then integrate Eq. (1) and average over the
noise term to obtain the evolution of the scalar field’s
energy density, and use energy conservation to derive the
associated equation for the heat bath:

_ρϕ þ 3H _ϕ2 ¼ −ϒ _ϕ2; _ρα þ 3Hðρα þ pαÞ ¼ ϒ _ϕ2;

ð3Þ
where we take the heat bath to be described, to leading
order, by a perfect fluid of density ρα and pressure pα. If it
is composed of relativistic particles that thermalize suffi-
ciently fast, the latter corresponds to a radiation fluid with
equation of state pR ¼ ρR=3.
As we discuss below in more detail, we will be mainly

interested in interactions between cosmological scalar
fields and other (complex) scalar and fermionic degrees
of freedom. Gauge interactions may also be of relevance
for early universe cosmology, but since the main features
of vector boson interactions are well described by scalar
degrees of freedom we will not consider this case explicitly
to simplify our discussion. We thus consider a generic
(renormalizable) Lagrangian of the form

L ¼ fðϕÞjχj2 þ gϕψ̄ψ ; ð4Þ
where χ and ψ denote complex scalar and fermion fields in
the heat bath and fðϕÞ is a generic function of the
dynamical scalar field we are interested in.
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The leading one-loop contributions of these interactions
to the effective action are illustrated in Fig. 1 and, for a
nearly thermal heat bath at temperature T ¼ 1=β, these
yield an adiabatic dissipation coefficient of the form

ϒ ¼ f0ðϕÞ2
T

Z
d4p
ð2πÞ4 ρχðp0;pÞ2nBðp0Þð1þ nBðp0ÞÞ

þ g2

2T

Z
d4p
ð2πÞ4 Tr½ρψðp0;pÞ2�nFðp0Þð1 − nFðp0ÞÞ;

ð5Þ

where nBðωÞ ¼ ðeβω − 1Þ−1 is the Bose-Einstein and
nFðωÞ ¼ ðeβω þ 1Þ−1 is the Fermi-Dirac distribution for
particle modes of energy ω. The functions ρχ and ρψ
represent the spectral functions of the scalar and fermion
fields in the heat bath and can be computed from the
corresponding (dressed) propagators at finite temperature,
using e.g. the real-time formalism [33,45–47]. For exam-
ple, in the scalar field case one obtains

ρχ ¼
4ωpΓχ

ðp2
0 − ω2

pÞ2 þ 4ω2
pΓ2

χ
; ð6Þ

where ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj2 þm2

χ

q
, with the field mass correspond-

ing to its renormalized value including thermal corrections,
and Γχ is the (finite temperature) decay width of the field. A
similar, albeit more complicated expression can be obtained
in the fermionic case [46].
From Eq. (5) one can deduce a few generic aspects of

dissipation coefficients in the adiabatic regime. First, we
see that if the fields χ and ψ were in a trivial (vacuum) state,
the dissipation coefficient would vanish. Dissipation is thus
an effect intrinsic to the motion of the scalar field in the
presence of a heat bath with nontrivial occupation numbers,
corresponding as argued above to the systematic effect of
the heat bath degrees of freedom on the field’s motion.
Second, the spectral functions correspond to the imaginary
part of the field propagators and are consequently propor-
tional to their decay width, as shown above. Hence, if the
field’s χ and ψ were stable there would be no dissipation.

However, at finite temperature interacting fields always
have a nonzero decay width, arising from a combination of
decays, inverse decays and Landau damping processes.
Finally, the dissipation coefficient will in general be both
field and temperature dependent. The temperature depend-
ence is explicit in the distribution functions but will also
arise in general in the masses and decay width of the fields.
The field dependence can be explicit in the scalar case, for a
generic function fðϕÞ, but will also arise from the masses
(and consequently the decay width of the fields), noting
that from Eq. (4) one obtains at tree level m2

χ ¼ fðϕÞ
and m2

ψ ¼ g2ϕ2.
The integrals in Eq. (5) can be computed numerically in

general, there existing, however, two approximate regimes
where the computation can be performed analytically. In the
low-temperature regime,mχ ; mψχ

≫ T, the distribution func-
tions nB; nF become exponentially (Boltzmann) suppressed
for on-shell field modes, p2

0 ¼ ω2
p, so that their contribution

can be neglected. The main contribution in this case comes
from off-shell or virtual modes with jpj; p0 ≪ mχ ; mψ , for
which the spectral functions take a simple form, e.g. ρχ ≃
4Γχ=m3

χ in the scalar case. The low-momentum dissipation
coefficient (LM) is thus approximately given by

ϒLM ≃ 16f0ðϕÞ2
T

Z
d4p
ð2πÞ4

Γ2
χ

m6
χ
nBð1þ nBÞ

þ 2g2

T

Z
d4p
ð2πÞ4

TrðImΣ2Þ
m2

ψ
nFð1 − nFÞ ð7Þ

where ImΣ is the imaginary part of the fermion self energy,
from which their decay width can be extracted in the
conventional way. This approximation is valid in the narrow
width limit where mi ≫ Γi for i ¼ χ;ψ (see [47] for more
details). The integrals involving the distribution functions and
the decay widths can then be performed numerically [46,47].
A simple example that we will consider below is the case
wherefðϕÞ ∝ ϕ2,withmχ ∝ ϕ andΓχ ∝ mχ . In this case, it is
not difficult to see that ϒLM ∝ T3=ϕ2 for the scalar contri-
bution, while the corresponding fermionic contribution is
suppressed by further powers ofT=mψ ≪ 1 as shown in [46].
In the opposite high-temperature regime, mχ ; mψ ≪ T, it

is energetically possible to excite on-shell modes in the
thermal bath and their occupation numbers are not
Boltzmann suppressed. These will then give the dominant
contribution to the dissipation coefficient, and one can
expand the spectral functions about their poles at p0 ¼ ωp

to yield

ϒP ≃ f0ðϕÞ2
T

Z
d3p
ð2πÞ3

1

Γχω
2
p
nBð1þ nBÞ

þ 2g2

T

Z
d3p
ð2πÞ3

m2
ψ

Γψω
2
p
nFð1 − nFÞ: ð8Þ

FIG. 1. Leading one-loop contributions of scalar and fermion
degrees of freedom to the dissipation coefficient. The thick
dashed and solid lines indicate dressed propagators for scalars
and fermions, respectively.

FLUCTUATION-DISSIPATION DYNAMICS OF … PHYSICAL REVIEW D 91, 083540 (2015)

083540-5



The 3-momentum integrals can then be easily computed
analytically in different regimes (see e.g. [47]). In particu-
lar, for light on-shell modes one typically obtains
Γi ∝ mi ∝ T, for i ¼ χ;ψ, yielding ϒP ∝ ϕ2=T for scalar
modes and ϒP ∝ T for fermionic modes [46,47].
In the general case, the dissipation coefficient receives

contributions from both on-shell and off-shell modes, and
numerical calculations show that adding both contributions
yields a very good approximation to the full result. In
particular, it has been observed that the on-shell contribu-
tion can be dominant for masses mi ≳ T despite the
associated Boltzmann suppression, particularly for small
decay widths [47].
These two regimes will be relevant for different types of

particle physics and cosmological scenarios. On the one
hand, in a typical phase transition the relevant Higgs field is
stabilized at the origin at high temperatures and starts
rolling towards the minimum of its potential below a critical
temperature (potentially after tunneling in a first order
phase transition). In this case, the fields it couples to are
initially light, and on-shell dissipation dominates. As T
decreases and the field value approaches the true minimum,
these fields become heavier and the contribution of low-
momentum modes will grow until it potentially dominates.
On the other hand, a light scalar ϕ can attain very large
values during inflation, after which it will eventually roll
towards the minimum of its potential. In this case, off-shell
modes will typically dominate initially, while on-shell
modes will become increasingly more significant if ϕ
evolves towards smaller values and χ;ψ become lighter.
In the following we give a series of examples, by no

means exhaustive, of dissipation coefficients for dynamical
scalar fields in the SM and its typically considered
extensions, within different dynamical regimes that may
be relevant for the cosmic history.

A. Dissipation in the SM and
supersymmetric extensions

The SM gauge group, SUð3Þc × SUð2ÞL × Uð1ÞY , is
broken spontaneously to SUð3Þc ×Uð1ÞQ by the non-
vanishing vacuum expectation value of the electroweak
Higgs boson. In typical cosmological scenarios, the reheat-
ing temperature after inflation largely exceeds the critical
temperature of the electroweak phase transition. Quarks,
leptons and electroweak gauge bosons are relativistic and
in thermal equilibrium, and their backreaction on the
Higgs effective potential at high temperatures stabilizes
the Higgs field at the symmetric minimum. As the Universe
cools down, the effective potential approaches its zero-
temperature form and the Higgs field will roll towards the
finite vev that spontaneously breaks the electroweak
symmetry. As the field rolls from the origin towards the
broken minimum, we then expect dissipative processes to
be mainly mediated by on-shell quarks and leptons, as well
as the weak gauge bosons. The former, in particular, have
the following well-known Yukawa couplings to the Higgs
field:

L ∼ λije ēR;iϕ†Lj þ λiju ūR;iϕqj þ λijd d̄R;iϕ
†qj þ H:c:; ð9Þ

where we have suppressed weak isospin and color indices,
while the indices i; j label the fermion generations. At high
temperatures, the decay width of quarks and leptons is
given essentially by Landau damping terms from the above
Yukawa interactions, as well as gauge interactions [48].
The relevant dissipation coefficient is thus of the on-shell
form given in Eq. (8). Including both Yukawa and gauge
contributions to the fermions’ decay width we obtain

ϒP
SM ≃ 288ζð3ÞT

π3
X3
i¼1

� ðλiie Þ2
ðλiie Þ2 þ 4ðg21 þ 3g22Þ

þ 3ðλiiu Þ2
ðλiiu Þ2 þ 4ðg21 þ 3g22 þ 8g23Þ

þ 3ðλiid Þ2
ðλiid Þ2 þ 4ðg21 þ 3g22 þ 8g23Þ

�
; ð10Þ

where gi are the SM gauge couplings. We note that
dissipation can also occur through the excitation of the
W� and Z gauge fields, although for simplicity we do not
include this in the above expression. As ϕ increases and T
decreases eventually the masses of the SM particles will
become heavier than the temperature and their on-shell
contribution to dissipation becomes Boltzmann suppressed,
with low-momentum dissipation of the form in Eq. (7)
becoming the dominant contribution.
Another example based on the same symmetry group

arises within the minimal supersymmetric extension of the
SM (MSSM), where two Higgs doublets are required to
break the electroweak symmetry and give masses to all
quarks and leptons. The MSSM superpotential is given by

W ¼ μHuHd þ yuHuQUc þ ydHdQDc þ yeHdLEc:

ð11Þ

As in the SM, in this case one finds dissipative channels for
both Higgs scalar components, hu and hd, by exciting both
fermion and sfermion degrees of freedom in the heat bath.
At high temperatures these will have the forms ϒ ∝ ϕ2=T
and ϒ ∝ T obtained above for sfermions and fermions,
respectively, with ϕ ¼ hu; hd (see also [49]).
The simplest extension of the MSSM, known as the next-

to-minimal supersymmetric SM (NMSSM), replaces the μ
term in the superpotential by a trilinear term gΦHuHd,
where Φ is a singlet chiral superfield. The effective μ term

SAM BARTRUM, ARJUN BERERA, AND JOÃO G. ROSA PHYSICAL REVIEW D 91, 083540 (2015)

083540-6



is then given by the vev of the scalar component of Φ, a
possibility that helps address the smallness of the a priori
unconstrained μ parameter required for successful electro-
weak symmetry breaking (see e.g. [50]). One can then
envisage scenarios where the singlet scalar field, ϕ, is
driven towards (or maintained at) a large value during
inflation, after which it will roll towards hϕi ¼ μ=g. Its
coupling to both Higgs scalar doublets hu and hd is of the
form given in Eq. (4) and explicitly as

LS ¼ g2jϕj2ðjhdj2 þ jhuj2Þ þ gϕ†h†dy
ij
u ~qi ~ucj

þ gϕ†h†uðyijd ~qi ~dcj þ yije ~li ~ecjÞ þ H:c:; ð12Þ

so that the singlet field can dissipate its energy through
excitation of both scalar doublet components and their
fermionic superpartners, which decay into the SM fermions
and sfermions. If the initial field value is large, the
dominant contribution to the dissipation coefficient is given
by off-shell scalar modes as discussed above and the
dissipation coefficient is approximately given by

ϒLM
NMSSM ≃ Cϕ

T3

ϕ2
;

Cϕ ≃ 1

8π

X
ij

ð3ðyiju Þ2 þ 3ðyijd Þ2 þ ðyije Þ2Þ; ð13Þ

where i; j run over family indices.

B. Dissipation in grand unified theories:
an SUð5Þ example

There is significant evidence for the unification of the
SM gauge couplings at high-energy scales, particularly
within the context of the MSSM [51–54], which points
towards the existence of a larger gauge symmetry group.
Several GUT have been proposed where this gauge

group is spontaneously broken into the SM gauge group
through a Higgs-like mechanism, with SUð5Þ and SOð10Þ
being the simplest and most studied examples (see e.g.
[55]). In GUT models the relevant Higgs fields are coupled
to gauge bosons and matter fields, such that fluctuation-
dissipation dynamics may play an important role in their
cosmological evolution.
If GUT symmetries are restored after inflation, for a

sufficiently high reheating temperature, the Higgs fields
roll from the symmetric point to the symmetry-breaking
minimum once the temperature drops below a critical
value. This may be preceded by a tunneling event if the
transition is first order, depending on the particle content of
the GUT model [2], but dissipative rolling will always
occur. This scenario may, however, be troublesome for
cosmology since symmetry breaking typically leads to
the generation of dangerous topological defects such as

monopoles, which may overclose the Universe. Although
postinflationary symmetry restoration is appealing from the
point of view of thermal GUT baryogenesis models, there
are viable alternative mechanisms for the production of a
cosmological baryon asymmetry such as the dissipative
baryo/leptogenesis mechanism that we describe in Sec. IV.
In the case where GUT symmetries are not restored

during reheating, the relevant Higgs fields may nevertheless
find themselves displaced from the symmetry-breaking
minimum after inflation. This occurs if the Higgs fields
are light during inflation, being frozen at some initial value
or even driven to larger values by random quantum
fluctuations. Dissipation will then also be relevant in the
postinflationary eras as the fields roll towards the true
minimum of their potential.
To illustrate the form of dissipative effects in GUT

models, we consider the simplest case of SUð5Þ, bearing in
mind that similar processes will generically occur for
higher-rank gauge groups where many other dynamical
scalars and dissipative channels may be present. In fact, in
Sec. IV we consider the particular example of a scalar field
responsible for the Majorana mass of right-handed neu-
trinos that is naturally embedded in SOð10Þ models.
SUð5Þ is broken into the SM gauge group by the vev of

an adjoint Higgs field, 24H, which gives masses to the
gauge and fundamental Higgs field components that are
associated with the broken symmetries. The adjoint scalar
potential takes the form

Vð24HÞ ¼ −μ2Tr½242H� þ aTr½242H�2
þ bTr½244H� þ cTr½243H�; ð14Þ

which, in certain parametric regimes, has an absolute
minimum in the direction ϕdiagð2; 2; 2;−3;−3Þ= ffiffiffiffiffi

30
p

that
preserves the SM gauge group. Interactions between the
adjoint and fundamental Higgs fields are given by

Ls ¼ −
A2

2
5†H5H þ B

4
ð5†H5HÞ2 þ C5†H5HTr½242H�

þD5†H24
2
H5H þ E5†H24H5H; ð15Þ

while the latter is coupled to the SM matter fermions in the
10 and 5̄ representations via Yukawa couplings of the form

LY ¼ Yij
5 5̄Fi10Fj5

�
H þ 1

8
ϵ5Y

ij
1010Fi10Fj5H þ H:c: ð16Þ

Decomposing these fields in terms of SM representations,
we find the following interaction Lagrangian involving the
symmetry-breaking scalar direction ϕ, the doublet and
triplet Higgs fields, H and T, and the SM quarks and
leptons:
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Lint ¼
�
−
A2

2
þ 2Effiffiffiffiffi

30
p ϕþ 2D

15
ϕ2 þ Cϕ2

�
jTj2 þ

�
−
A2

2
−

3Effiffiffiffiffi
30

p ϕþ 3D
10

ϕ2 þ Cϕ2

�
jHj2

− Yij
5 ðliqj þ dci u

c
jÞT� − Yij

10

�
1

2
qiqj þ uci e

c
j

�
T þ Yij

5 ðLiecj þ qidcjÞH� − Yij
10qiu

c
jH þ H:c: ð17Þ

As discussed above there are also gauge interactions, but
for illustrative purposes we restrict ourselves to dissipative
effects associated with the scalar and Yukawa interactions
given above. Let us consider, in particular, the case where ϕ
has a large vev after inflation that is displaced from its true
minimum. The leading C terms in Eq. (17) give a large
mass to the Higgs doublet and triplet, which are initially
equal due to the large field vev, while a doublet-triplet mass
splitting will only arise close to the minimum. These terms
are of the generic form given in Eq. (4) for χ ¼ H; T and we
expect the main contribution to dissipation in this regime to
correspond to virtual Higgs modes decaying into quarks
and leptons. From Eq. (7) we then obtain the following
dissipation coefficient:

ϒLM
SUð5Þ ≃

0.44
C2

T7

ϕ6

X
i;j

½10ðYij
5 Þ4 þ 8ðYij

10Þ4�: ð18Þ

In a supersymmetric realization of SUð5Þ the SM fermions
have scalar superpartners and, due to the holomorphic
nature of the superpotential, two distinct Higgs fields in the
5 and 5̄ representation are required. The relevant part of the
superpotential is given by

W ¼ g5̄H24H5H þM5̄H5H þ Yij
5 5̄Fi10Fj5̄H

þ 1

8
ϵ5Y

ij
1010Fi10Fj5H; ð19Þ

where the relevant scalar interactions are

Ls ¼ Yij
5

�
2gϕffiffiffiffiffi
30

p þM

�
~tu†ð ~dci ~ucj − ~li ~qjÞ

þ Yij
10

�
2gϕffiffiffiffiffi
30

p þM

�
~td†
�
~eci ~u

c
j þ

1

2
~qi ~qj

�

þ Yij
10

�
M −

3gϕffiffiffiffiffi
30

p
�
~h†d ~qi ~u

c
j

þ Yij
5

�
M −

3gϕffiffiffiffiffi
30

p
�
~h†uð~li ~ecj þ ~qi ~d

c
jÞ þ H:c: ð20Þ

As in the nonsupersymmetry (SUSY) model, the low-
temperature regime for dissipation will be the relevant one
after inflation if ϕ attains a large vev, gϕ ≫ M, and the
GUT symmetry is not restored. Dissipation is in this case
dominantly mediated by virtual scalar doublet and triplet
Higgs modes that decay mainly into sfermion fields, as

shown in [46] for generic SUSY models of this form. The
dissipation coefficient is then given by

ϒLM
SSUð5Þ ≃

1

16π

T3

ϕ2

X
i;j

½10ðYij
5 Þ2 þ 8ðYij

10Þ2�: ð21Þ

Note that dissipative effects will be more pronounced
in this case compared to the non-SUSY model, since the
dissipation coefficient is less suppressed by powers of
T=mχ , where χ generically denotes the doublet and triplet
Higgs scalars involved.

III. FLUCTUATION-DISSIPATION DYNAMICS IN
COSMOLOGICAL PHASE TRANSITIONS

Despite the numerous studies in the context of con-
densed matter systems, the dynamics of phase transitions
in fundamental particle physics and cosmology remains
largely unexplored. The recent discovery of the Higgs
boson at the LHC, so far consistent with the SM predictions
for the spontaneous breaking of the electroweak gauge
symmetry, is the first experimental hint for the occurrence
of a fundamental phase transition in the cosmic history and
motivates further exploration of this topic. Moreover, the
apparent unification of gauge couplings suggests, as dis-
cussed above, that one or more phase transitions may have
occurred in the early stages of the Universe’s history,
spontaneously breaking a higher-ranked gauge group into
SUð3Þc × SUð2ÞL ×Uð1ÞY , in potentially several stages of
a progressively lower degree of symmetry.
Cosmological Higgs fields are coupled to matter fields

and gauge bosons, and the effects of dissipation and
associated fluctuations will necessarily play a role in the
evolution of the fields from a symmetric to a spontaneously
broken symmetry phase. In this section, we discuss several
potential effects of fluctuation-dissipation dynamics in
generic cosmological phase transitions.

A. Thermal fluctuations and topological defects

The cosmological evolution of a generic Higgs field in
the process of spontaneous symmetry breaking follows a
Langevin-like equation of the form (1), with both the noise
term on the right-handed side and the dissipative friction
term on the left-handed side playing an important role at
different dynamical stages. Fluctuations will be primarily
significant at the onset of the phase transition, just below
the critical temperature at which the symmetric Higgs value
can no longer be stabilized by thermal effects. In particular,
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in the absence of random fluctuations the field would
remain at the unstable symmetric minimum, since this is
nevertheless an extremum of the effective potential. The
noise term in the Langevin-like equation is thus crucial in
inducing the phase transition and in determining the
direction within the vacuum manifold towards which the
field’s evolution will proceed.
Since the Higgs field is, on average, at rest at the onset of

the phase transition, its dynamics will be initially governed
by the Gaussian and white noise term in the adiabatic
regime. As discussed earlier, the stochastic noise term
encodes the effective backreaction of the ambient heat bath,
also incorporating the inherent quantum nature of the field.
On the one hand, the backreaction of the heat bath is
directly related to the dissipation coefficient through the
fluctuation-dissipation theorem and given by the term
proportional to ϒ in the noise correlator (2). On the other
hand, the remaining quantum noise term, proportional to
the Hubble parameter H, can be deduced from a coarse-
graining of the quantum Higgs field, with short wavelength
modes that are well within the Hubble horizon backreacting
on the longer wavelength modes that one is interested in
following. This stochastic approach has e.g. been success-
ful in describing field fluctuations in both warm and cold
inflation regimes [41].
The phase transition will then initially be driven by the

quantum and thermal/dissipative noise terms, which ran-
domly kick the Higgs field away from and towards the
symmetric minimum. This will proceed until the amplitude
of the noise term becomes subdominant compared to the
classical terms in the equation of motion, i.e. roughly whenffiffiffiffiffiffiffi
ϒT

p ≲ V 0ðϕÞ=H2 for strong dissipation. Random fluctua-
tions will then effectively cease and the subsequent field
dynamics will essentially be classical. However, the field is
now spatially inhomogeneous and the classical evolution
will drive it to different directions in the vacuum manifold
at distinct spacetime points. The classical dynamics can
nevertheless homogenize the field within causally con-
nected patches, determined by the field’s correlation length,
ξc, that is at most the size of the cosmological horizon. If
the Higgs field is relativistic at this stage, ξc ∼ 1=T ≪ H−1,
and so the temperature at which the noise term becomes
inefficient will set the size and consequently the abundance
of any topological defects that may form once the field
settles into the lowest energy configuration. Some prelimi-
nary studies for the formation of topological defects in
phase transitions including the effects of both thermal noise
and dissipation have been performed in [56–58]. It would
be interesting to further explore this in the context of the
concrete particle physics models discussed above and
within realistic cosmological settings. This is, however,
beyond the scope of the present work, where we focus on
the dissipative classical evolution.
One other related consequence of the noise term should

nevertheless be pointed out. The inhomogeneity of the

Higgs field resulting from its initial random motion will
also induce a spatial variation of its gauge quantum
numbers, generically sourcing magnetic fields [5,59].
Their strength will then also be determined by the corre-
lation length at the time when the noise term becomes
inefficient and, if sufficiently large, this may sow the seeds
for galactic magnetic fields.
Although here we will not pursue these issues in further

detail, it is worth emphasizing that the Langevin-like
equation (1) gives a fundamental framework for these
studies. Given a particle physics model, one can compute
the dissipation coefficient and associated noise term from
first principles, as explicitly done in the previous section for
several examples, and use this equation to determine both
the quantum and classical dynamics. This allows one to
determine the correlation length, the density of cosmologi-
cal defects or the strength of generated magnetic fields
in a rigorous way. In this way, there is no need to simply
employ statistical arguments to derive these quantities and
the field evolution can be completely determined for
arbitrary initial conditions.

B. Dissipative effects: entropy production and
additional inflation

Once the effects of the thermal and quantum noises
become subdominant, the field’s evolution becomes
classical and is driven by the competition between the
scalar potential’s slope and the effects of dissipative and
Hubble friction. To analyze the concrete effects of
dissipation, which have so far been overlooked in the
literature and, as we will show, may play an important
role, we consider a generic toy model where a real Higgs
field is coupled to fermions through standard Yukawa
couplings of the form in Eq. (4). This can be easily
extended to concrete particle physics models such as the
electroweak phase transition or GUT phase transitions by
considering the appropriate couplings, particle content
and the properties of the vacuum manifold, as illustrated
in the previous section.
The fermions induce, as discussed before, both local

and nonlocal corrections to the effective action of the
Higgs field. The leading effect of the former is finite
temperature corrections to the effective potential, with
zero-temperature corrections playing a subdominant role
that we will for simplicity discard in our analysis.
Thermal corrections are significant for relativistic fer-
mions, mψ ≪ T, namely inducing a thermal mass for the
Higgs field, while for mψ ≳ T these corrections are
Boltzmann suppressed and thus irrelevant to the dynam-
ics. The general form of the thermal mass can be obtained
by numerical integration, but for our purposes it is
sufficiently accurate to explicitly multiply the high-
temperature result by a Boltzmann factor, yielding for
the effective Higgs potential
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Vðϕ; TÞ ¼ λ2

4
ðϕ2 − v2Þ2 þ 1

2
α2T2ϕ2 exp

�
−
mψ ;T

T

�
;

ð22Þ

where α2 ¼ g2NF=6, with NF denoting the number of
Dirac fermion species. In this expression, the first term
corresponds to the simplest symmetry-breaking potential
with minima at ϕ ¼ �v and the second term is the leading
thermal correction. In the fermion mass m2

ψ ;T ¼ g2ϕ2 þ
h2T2 we also include thermal corrections from coupling
to different species in the heat bath, including e.g. gauge
fields, which we generically parametrize with an effective
coupling h≲ 1. At high temperatures, the second term
dominates the effective potential and the Higgs field is
thus stabilized at the origin, with mψ ;T ≃ hT ≲ T, while at
low temperatures it will roll towards one of the minima at
ϕ ¼ �v. The symmetric minimum becomes unstable at a
critical temperature:

Tc ¼
λv
α
: ð23Þ

As soon as the field begins rolling towards the symmetry-
breaking minimum, it will feel the friction effect of the
fermion heat bath. The relevant dissipation coefficient
corresponds to the on-shell excitation of light fermions
with a thermal decay width and was first computed in
[60], yielding

ϒ≃ 11.2NFT exp

�
−
mψ ;T

T

�
: ð24Þ

Note that, as above, we have multiplied the high-
temperature result by a Boltzmann factor which will
cut off on-shell dissipation at low temperatures, T ≲ gϕ,
which is sufficiently accurate for our purposes. As we
have seen above, virtual modes will also induce dissi-
pation in the latter regime, but since this is a significantly
smaller effect we discard it in our analysis to a first
approximation. Also notice that the SM high-temperature
dissipation coefficient given in Eq. (10) coincides with
this expression if one discards gauge interactions. The
thermal width of the fermions is roughly given by
Γψ ∼m2

ψ ;T=T ≲ T, and adiabaticity of the dissipative
process requires Γψ ≳H, which is easily satisfied in

the radiation-dominated era, where H ≃ ffiffiffiffiffiffiffiffiffiffiffiffi
π2=90

p
g1=2� T2=

MP ≪ T. For simplicity, we assume that the radiation
bath is made exclusively of fermions, taking g� ¼ 7NF=4,
although one can easily include other relativistic degrees
of freedom.
With the form of the effective potential and dissipation

coefficient, we may thus describe the dynamics of the phase
transition by solving the system of coupled Higgs-radiation
equations, given by

ϕ̈þ ð3H þϒÞ _ϕþ V 0ðϕÞ≃ 0; _ρR þ 4HρR ¼ ϒ _ϕ2;

ð25Þ
where as discussed abovewe neglect the effects of the noise
term, and ρR ¼ ðπ2=30Þg�T4 assuming a nearly thermal
equilibrium state. Dissipation thus plays two distinct roles
in the dynamics, on the one hand damping the field’s
motion and, on the other hand, sourcing the radiation bath
through the production of fermion modes.
If the energy density in the scalar field is sufficiently

large, it may come to dominate the energy density before
the Universe cools down to below the critical temperature.
This occurs for g2NF ≳ 2π

ffiffiffiffiffi
g�

p
λ, thus inducing a period of

thermal inflation along the lines proposed in [61] and which
may help diluting the abundance of dangerous thermal
relics produced e.g. during reheating or earlier cosmologi-
cal phase transitions. This additional period of inflation
can typically last only for a few e-folds until the critical
temperature is reached, with the field then rolling towards
the symmetry-breaking minimum and oscillating about it.
In the presence of dissipation, the dynamics can be quite

different below the critical temperature and an interesting
alternative/addition to thermal inflation arises. First, we
note that in the radiation era ϒ≳ T ≫ H and so the main
source of friction is dissipation into fermionic modes rather
than Hubble expansion. The field’s motion will then be
overdamped for ϒ≳ jmϕj, where m2

ϕ ¼ V 00ðϕÞ, and under-
damped otherwise. For relativistic fermions, close to
the origin we have m2

ϕ ≃ α2ðT2 − T2
cÞ, while for ϕ ¼ �v

the field mass is m2
ϕ ¼ α2ð2T2

c þ T2Þ. This means that the
field’s trajectory from the symmetric to the symmetry-
breaking minimum will be overdamped if during the
transition the temperature is above 0.05gTc=

ffiffiffiffiffiffiffi
NF

p
, which

is parametrically below the critical value. This implies that
instead of oscillating about ϕ ¼ �v, the field will smoothly
evolve towards this value. When the motion is overdamped,
the scalar field equation reduces to a slow-roll equation of
the form

3Hð1þQÞ _ϕ≃ −V 0ðϕÞ; ð26Þ

where Q≡ϒ=3H, such that in the radiation era Q ∼
8.5

ffiffiffiffiffiffiffi
NF

p
MP=T ≫ 1 as argued above and the field’s evo-

lution occurs in a strong dissipation regime. Furthermore,
the field may remain close to the origin and mimic a
cosmological constant if its energy density does not vary
significantly within a Hubble time:

1

H

_ρϕ
ρϕ

≃ −3ð1þQÞ
_ϕ2

V
≃ −2

Ωϕϵϕ
1þQ

≪ 1; ð27Þ

where ϵϕ ¼ ðM2
P=2ÞðV 0ðϕÞ=VðϕÞÞ2 is the slow-roll param-

eter typically considered in slow-roll inflationary models
and Ωϕ ¼ ρϕ=ρtotal is the Higgs field relative abundance.
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This condition essentially ensures that the Higgs field does
not dissipate a significant fraction of its energy density into
the heat bath on cosmological time scales, thus sustaining a
cosmological constant–like behavior for small kinetic
energy. Note also that the condition above reduces to the
slow-roll condition ϵϕ ≪ 1 in nondissipative (cold) infla-
tionary models, where the scalar field is the dominant
component, and to the slow-roll condition ϵϕ ≪ 1þQ in
dissipative (warm) inflation scenarios. It moreover shows
that a constant energy density is easier to maintain when the
field is subdominant, Ωϕ < 1.
Close to the origin we find ϵϕ ≃ 8ðMP=vÞ2ðϕ=vÞ2,

which can be small if the field is very close to the origin.
Inflation is, however, hard to maintain in the absence of
dissipation with this type of “hill-top" potential since the
curvature parameter ηϕ ¼ M2

PV
00=V ≃ −4M2

P=v
2 is too

large unless v ≳MP. Dissipation into the heat bath alle-
viates this constraint by overdamping the field’s motion
as shown above. As first shown in [60,62], it is hard to
obtain a very long period of inflation with the dissipation
coefficient in Eq. (24), in particular the 50–60 e-folds
required to solve the horizon and flatness problems, since
the fermion mass increases as the field moves towards the
minimum and eventually dissipation becomes Boltzmann
suppressed. We note, however, that for supersymmetric
models in the low-temperature regime, where dissipation is
dominantly mediated by low-momentum scalar field
modes, fully successful models of warm inflation have
been developed (see e.g. [22,31,46,47]). In such scenarios
dissipation can sustain both the slow-roll dynamics of
the inflaton field and the temperature of the radiation bath
for a sufficiently long period. Nevertheless, the dissipation
coefficient in Eq. (24) can sufficiently overdamp the field’s
motion to allow for a few e-folds of inflation which,
analogously to thermal inflation, can dilute dangerous
relics generated prior to the phase transition. The slow-
roll equation (26) can be solved when the field is close to
the origin in a radiation-dominated universe, yielding

ϕ ∝ exp

�
0.1α2

N3=2
F

MP

T

��
Tc

T

�
2

− 3

��
; ð28Þ

so that the field increases exponentially below the critical
temperature. Since ϵϕΩϕ=Q ∝ ϕ2=T3 in this case, slow roll
can only be maintained for a finite period of time. The
Higgs field may become dominant at a temperature
Tϕ ≃ g−1=4� αTc=

ffiffiffi
λ

p
, so if the scalar self coupling is

sufficiently small the field will overcome the radiation
before the end of the slow-roll regime and induce a period
of inflation. In Fig. 2 we show a numerical example of a
phase transition close to the GUT scale where a short period
of inflationary expansion occurs.
It is clear in this figure that the field’s motion is always

overdamped, exhibiting no field oscillation, even though

slow roll is only maintained for a finite period, with
inflation lasting in this example for ∼1.5 e-folds. The field
then evolves quickly to the symmetry-breaking minimum,
which is actually time dependent until the field’s thermal
mass becomes exponentially suppressed. We note that this
transition is fast in terms of the cosmological Hubble time,
although still adiabatic from the microphysical perspective.
We emphasize that dissipation prevents the field from
oscillating about the minimum, as opposed to what is
commonly considered in phase transitions when this effect
is not taken into account. Therefore, in the presence of
dissipation, the Higgs field will not behave as pressureless
matter after the phase transition.
During the Higgs-dominated phase, the radiation density

is diluted exponentially by the accelerated expansion until
the end of the slow-roll regime. With the increase in the
field’s velocity, the dissipative source term in the radiation
evolution equation (25) grows substantially, allowing
radiation to once more become the dominant component.
We note that in warm inflation models where 50–60 e-folds
of inflationary expansion can be sustained, generically in
the low-T rather than the high-T regime considered here, ρR
typically reaches a quasisteady evolution with the dissipa-
tive source term balancing the Hubble dilution effect. In the
example shown above, inflation does not last sufficiently
long for this quasiequilibrium to be reached, with first
dilution and then dissipation playing a dominant role in the
radiation evolution.
A crucial point to emphasize is that the expansion history

can be significantly modified even if inflation does not
occur, i.e. in parametric regimes where slow roll cannot be
sustained until the field can dominate. On the one hand,

FIG. 2 (color online). Evolution of the field and radiation
energy density during a phase transition (solid lines), for a case
where the field comes to dominate the energy density. The dashed
red line shows the evolution of the radiation energy density in the
absence of a phase transition. In this example, λ ¼ 0.01,
NF ¼ 10, v ¼ 1015 GeV, g2 ¼ 1=NF and h ¼ 0.1. Time here
is shown in units of the scale 1015 GeV. The vertical dashed line
indicates the time when the critical temperature is reached.
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when the field is slowly rolling, its energy density increases
the expansion rate, therefore diluting the ambient radiation
more quickly even if it is subdominant. On the other hand,
once slow roll is over and the field quickly settles into the
symmetry-breaking minimum, it can dissipate a significant
part of its energy density into the heat bath. This is
illustrated in Fig. 3, where slow roll ends just before the
scalar field’s abundance becomes comparable to the
heat bath.
This figure clearly shows that the most significant effects

occur at the end of the slow-roll regime, when the Higgs
field’s relative abundance is maximal, leading first to a
dilution and then to an increase in the radiation energy
density. The latter eventually relaxes to the value it would

have in the absence of a phase transition, since the relation
ρRðtÞ is an attractor of the Friedmann equation in a
radiation-dominated universe. One can solve the equation
of motion for radiation in the absence of a dissipative
source to find

ρRðtÞ ¼
3m2

p

4t2

�
1þ 1

t

� ffiffiffi
3

p
mp

2ρ1=2R0

− t0

��−2
: ð29Þ

At sufficiently large t the radiation becomes insensitive to
its initial value and shows an attractor behavior tending
towards ρRðtÞ ¼ 3m2

p=4t2. This explains why the radiation
approaches the standard evolution given by the dotted red
line in Figs. 2 and 3 at late times after dissipation (particle
production) becomes irrelevant. However, the increase in
the Hubble parameter during the phase transition makes the
Universe expand by a larger factor than in the standard
radiation-domination scenario. In Fig. 4 we show the
evolution of the Hubble parameter and radiation energy
density relative to a standard radiation-dominated universe,
for different numbers of fermion species. As one can easily
conclude, increasing NF enhances the effect of dissipation
and the relative change of H and ρR.
The additional expansion will have a diluting effect

on any decoupled particle species, for which the number
density redshifts as n ∝ a−3. This includes e.g. topological
relics such as monopoles or thermal relics such as grav-
itinos generated prior to the phase transition. Considering
an initial time ti before the critical temperature is reached
and a final time tf after the field has settled into the
symmetry-breaking minimum, we have for a generic
decoupled species

nf ¼ ni exp
�
−3

Z
tf

ti

Hdt0
�
: ð30Þ

FIG. 3 (color online). Evolution of the field and radiation
energy density during a phase transition (solid lines), for a case
where the field never dominates the energy density. The dashed
red line shows the evolution of the radiation energy density in the
absence of a phase transition. In this example, λ ¼ 0.2, NF ¼ 1,
v ¼ 1015 GeV, g2 ¼ 1=NF and h ¼ 0.1. Time here is shown in
units of the scale 1015 GeV. The vertical dashed line indicates the
time when the critical temperature is reached.

FIG. 4 (color online). In the left- (right-) handed plot we show the evolution of the radiation energy density (Hubble parameter)
compared to that of a standard radiation-dominated universe. In this example, λ ¼ 0.1, v ¼ 1015 GeV, g2 ¼ 1=NF and h2 ¼ 0.1, Time
here is shown in units of the scale, 1015 GeV.
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Assuming no changes in the number of relativistic degrees
of freedom, the entropy density of the heat bath before and
after the phase transition is related by sf=si ¼ ðTf=TiÞ3.
This implies that the number density-to-entropy ratio of the
decoupled species is diluted by a factor,

nf=sf
ni=si

¼ exp ½−3 R tf
ti Hdt0�

ðTf=TiÞ3
: ð31Þ

In Fig. 5 we show numerical results for this dilution factor
as a function of the number of fermion species, showing
that stronger dissipative effects lead to a more significant
dilution of dangerous relics, by enhancing either the
maximum value of Ωϕ attained or the duration of the late
period of warm inflation. For example, observational
constraints on the abundance of GUT monopoles require
at least nM=s≲ 10−11 [63,64], so it is unlikely that a single
phase transition subsequent to monopole formation can
yield the required dilution factor unless a very large number
of dissipative channels is involved. Even if a complete
dilution cannot be achieved, this may, for example, alle-
viate the bounds on the reheating temperature after inflation
concerning the overproduction of gravitinos. In particular,
since Ω3=2 ∝ TR (see e.g. [65]), bounds on TR will increase
by the inverse of the dilution factor in Eq. (31).
Furthermore, the cumulative effect of several different
stages of symmetry breaking may potentially result in a
significant dilution factor that should be taken into account.
In summary, we have shown that dissipative effects

during a cosmological phase transition may have a sig-
nificant effect on the cosmic history. By overdamping the
motion of the associated Higgs field, dissipation not only
prevents oscillations about the symmetry-breaking mini-
mum but also leads to a period of slow roll and potentially
late-time warm inflation. The energy density in the field
and the entropy produced by dissipative effects will also

generically increase the amount of Hubble expansion
during the phase transition and parametrically dilute the
abundance of frozen relics.
One or more short periods of late-time warm inflation

during phase transitions could have significant observa-
tional effects. On the one hand, their existence implies that
the main period of inflation can be considerably shorter
than the overall 50–60 e-folds of accelerated expansion
required by the observed flatness and homogeneity of the
Universe. This will therefore change observational predic-
tions for large scales, along the lines suggested in [66] for
the case of thermal inflation. On the other hand, small scale
perturbations will be generated during these periods,
although they should be well within the horizon today
and hence potentially too damped to be studied in galaxy
surveys or CMB observations. Although this requires
further inspection and a detailed study that is outside the
scope of this work, we nevertheless emphasize that dis-
sipation will modify the evolution of fluctuations, therefore
yielding distinct observational predictions from a period
of thermal inflation. Since both thermal and dissipative
(warm) inflation may occur within the same phase tran-
sition, it would be interesting to explore the combined
effects of these two types of inflationary expansion on the
spectrum of cosmological perturbations.

IV. DISSIPATIVE BARYOGENESIS
AND LEPTOGENESIS

As we have seen in the previous section, dissipation may
have a significant effect in the dynamics of a cosmological
scalar field in the process of spontaneous symmetry break-
ing. Significant effects arose in this case when the field
became a non-negligible component of the energy balance
in the Universe, either itself increasing the Hubble rate or
leading to a significant entropy production. In this section,
we consider an effect of dissipation that may occur even
when the dissipating scalar field carries a very small
fraction of the energy in the Universe and plays a
subdominant role in entropy production.
Dissipation leads to the production of particles within

the heat bath to which a dynamical scalar is coupled to,
continuously disturbing its equilibrium. The degrees of
freedom within the heat bath will a priori include the SM
particles and their antiparticles, as well as potentially dark
matter particles and other beyond the SM species. The rate
at which each particle species is produced is related to its
fractional contribution to the dissipation coefficient, as
explicitly shown in [67]. It is then natural to envisage
scenarios where particles and antiparticles are produced
at different rates by a dissipating scalar field, necessarily
involving interactions that violate baryon/lepton number as
well as the C and charge parity (CP) symmetries, according
to the conditions first established by Sakharov [68]. This
was first explored in the context of warm inflation in a
mechanism dubbed warm baryogenesis [35], where the

FIG. 5 (color online). Dilution factor for frozen relics during a
phase transition as a function of the number of fermions
coupled to the Higgs field, for λ ¼ 10−2, v ¼ 1015 GeV, g2 ¼
1=NF and h ¼ 0.1.
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same interactions responsible for damping the inflaton’s
motion and sustaining a radiation bath during inflation
were shown to yield a significant baryon asymmetry,
parametrically within the observed window.
Here, we show that dissipative baryogenesis is a much

more general mechanism that may occur in the dynamics of
any cosmological scalar field with nonequilibrium dissipa-
tive dynamics and interactions satisfying the Sakharov
conditions. We illustrate this by looking at a concrete
example based on the interactions employed in standard
thermal leptogenesis scenarios with right-handed neutrinos
that is naturally motivated within GUT models. Although
dissipative baryo/leptogenesis will occur in several different
dynamical regimes, we focus on low-temperature dissipative
models to explicitly show that the production of a lepton
asymmetry does not require temperatures above the right-
handed neutrino mass threshold as in the standard thermal
scenarios. Our example further shows that no symmetries
need to be restored in the early Universe to generate the
observed baryon asymmetry, thus avoiding the several
potential cosmological problems that this may cause.
We first consider the relevant particle physics inter-

actions and describe how they lead to dissipative effects
that may produce more particles than their antiparticles, and
afterwards describe the dynamics of dissipative baryo-
genesis in the radiation-dominated era.

A. Interactions and dissipative particle production rates

Leptogenesis is amongst the most popular models for the
generation of a cosmic baryon asymmetry [69–74]. In the
simplest models, it is based on the out-of-equilibrium
decays of heavy right-handed Majorana neutrinos, which
violate lepton number as well as C and CP. The resulting
lepton asymmetry is later on converted into a baryon
asymmetry by electroweak sphaleron processes [75], which
conserve B − L but not the two global charges independ-
ently. Heavy right-handed neutrino singlets are the simplest
addition to the SM particle content, yielding light neutrino
masses through the seesaw mechanism, thereby providing
an interesting connection between cosmology and low-
energy particle physics.
Right-handed neutrinos also fit nicely within the 16

fundamental representation of the SOð10Þ GUT gauge
group and their large Majorana mass required by the
seesaw mechanism can in this case be generated by the
vev of a Higgs field in the 126 representation [76]. It is thus
natural to consider the cosmological dynamics of this scalar
field, which to our knowledge remains unexplored, includ-
ing in particular the dissipative effects associated with its
couplings to right-handed neutrinos. We then consider a
supersymmetric model where the relevant interactions are
encoded in the superpotential,

W ¼ 1

2
gaΦNc

aNc
a þ yaiNc

aHuLi þ fðΦÞ; ð32Þ

which involves the right-handed neutrino superfields, Na,
as well as the SM lepton and Higgs doublet superfields, Li
andHu, respectively. We consider three neutrino and lepton
generations denoted by the indices a and i and note that
SUð2Þ gauge indices are implicit in the superpotential. The
chiral superfield Φ can be identified with the scalar
direction within the 126 representation of SOð10Þ that
gives a Majorana mass to the right-handed neutrinos, as
discussed above, or more generally as a SM singlet with
self interactions encoded in the analytic function fðΦÞ.
Without loss of generality, we take its scalar vev as a real
field hΦi ¼ ϕ=

ffiffiffi
2

p
.

Dissipation of the scalar field’s energy will in this case
proceed through the excitation of the right-handed neu-
trinos and their scalar superpartners in the cosmic heat bath
and their subsequent decay into the MSSM (s)leptons and
Higgs(inos). The cosmological evolution of the ϕ field will
depend on its potential, given by jf0ðϕÞj2, and crucially on
its behavior during inflation. As anticipated above, we will
be mainly interested in studying the regime where right-
handed neutrinos are too heavy to be thermally produced
and therefore standard leptogenesis scenarios are ineffi-
cient. This is natural in scenarios where the field is light and
hence overdamped during inflation, either remaining frozen
at some potentially large initial value or driven towards a
large vev by de Sitter fluctuations. In the low-temperature
regime where the reheat temperature after inflation is below
the right-handed neutrino mass threshold, dissipation
proceeds through the excitation of virtual modes in the
heat bath as discussed earlier in this work. Scalar modes, in
this case the right-handed sneutrinos decaying dominantly
into sleptons and Higgs bosons, yield the leading contri-
bution to the dissipation coefficient [47], which is given
approximately by

ϒ ¼ Cϕ
T3

ϕ2
; Cϕ ≃ 1

16π

X
a;i

yaiy�ai: ð33Þ

This coefficient therefore determines the overall entropy
production rate in the form of MSSM particles produced
in the thermal bath by the decays of the virtual right-
handed sneutrinos. These decays violate lepton number,
since the Majorana mass term precludes a consistent
assignment of L to Nc

a, and may also violate C and CP if
the Yukawa coupling matrix has nontrivial phases, which
is possible for at least three matter generations. If this is
the case then out-of-equilibrium dissipation will naturally
induce an overabundance of sleptons over antisleptons in
the heat bath (or vice versa, although we assume this to be
the case).
The rate at which sleptons and antileptons are produced

can be computed from the imaginary part of their self
energies, following the generic procedure first described
in [67]:

SAM BARTRUM, ARJUN BERERA, AND JOÃO G. ROSA PHYSICAL REVIEW D 91, 083540 (2015)

083540-14



_nðpÞ ¼ Im

�
2

Z
t

−∞
dt2

e−iωpðt−t2Þ

2ωp
Σ21ðp; t; t2Þ

�
: ð34Þ

Integrating over the 3-momentum p and summing over the
energies of all the light particle species yields a source term
for the radiation energy density ϒ _ϕ2 corresponding to the
dissipation coefficient in Eq. (33). We are, however,
interested in the difference between the slepton and anti-
slepton production rates, which as we will show is a
subleading effect compared to the overall dissipative
entropy production. To compute the slepton self energies
we first consider the relevant scalar and Yukawa inter-
actions resulting from the superpotential in Eq. (32), which
are given by

Ls ¼
g2a
2
ϕ2j ~Naj2 þ

gaϕffiffiffi
2

p yaj ~N
�
ahu~lj þ H:c: ð35Þ

LY ¼ 1

2
yaið ~Nc

a
~̄huPLli þ ~Nc

al̄iPL
~hþ hul̄iPLNa þ huN̄aPLli

þ ~li ~̄huPLNa þ ~liN̄aPL
~hu þH:c:Þ: ð36Þ

In Fig. 6 we show the leading one- and two-loop diagrams
contributing to the slepton self energies. We note that, even
though dissipation is dominated by scalar modes, at two-
loop order fermions and scalars will give comparable
contributions to the slepton self energy. It is also interesting
to note that even though the final asymmetry is independent
of the lepton number assignment chosen for the right-
handed neutrinos, this choice determines which diagrams
actually exhibit L-violation. For example, the Yukawa
sector always violates L, whereas scalar interactions
preserve it for LðNc

aÞ ¼ 1. In scenarios where B − L is a
spontaneously broken gauge symmetry, the Nc

a superfield

will have lepton number −1 and L is violated by both types
of interactions.
Analogously to standard leptogenesis scenarios, CP

violation arises only through the interference between
the leading and next-to-leading diagrams. The leading
diagram corresponds in this case to the top-left diagram
in Fig. 6, the imaginary part of which yields the (tree-level)
decay of the right-handed sneutrinos. The slepton self
energies can be computed using standard thermal field
theory techniques and we refer the reader to [35,67] for
more technical details. Slepton and antislepton self energies
are related by charge conjugation and we obtain for the
difference between the self energies, to leading order,

ΔΣ
~li
21 ¼

3

16π

X
a;b

X
j

Z
dp

Z
dkCðp; kÞ

×

�
T
mb

�
4 mb

ma
Imðybiy�ajybjy�aiÞ; ð37Þ

where ma ¼ gaϕ=
ffiffiffi
2

p
are the right-handed sneutrino

masses to leading order, assuming the MSSM Higgs and
sleptons have zero or at least negligible expectation values
at this stage in the cosmological evolution. We note that
once the sum over all heavy sneutrino and light field
generations is performed, only the diagrams involving
fermionic propagators contribute to the self-energy differ-
ence above. The factor Cðp; kÞ is common to the self
energy of all the different particle species and therefore
determines the overall dissipation coefficient given above.
Adding the self energies of all particle species we obtain to
leading order the following overall radiation production
rate:

ΣR
21 ¼ 8

X
a

X
j

Z
dp

Z
dkCðp; kÞyajy�aj: ð38Þ

FIG. 6. The one-loop and two-loop diagrams contributing to the slepton self energy. Black circles indicate background field (i.e. right-
handed sneutrino mass) insertions.
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The relative rate at which a lepton asymmetry is produced
by dissipation can then be obtained by taking the quotient
of Eqs. (37) and (38), yielding

rL ≡ _nL
_ndR

≃ 3

64π

1P
aðyy†Þaa

X
a≠b

�
T
mb

�
4 mb

ma
Im½ðyy†Þ2ba�;

ð39Þ
where the sum over light fields running in the loop is
implicit. Note that, as in thermal leptogenesis, a non-
vanishing asymmetry can only be produced if at least two
of the right-handed sneutrinos are nondegenerate, thus
requiring distinct ga couplings in the superpotential (32).
A couple of important properties of the asymmetry

production rate should be emphasized. First, the dissipation
coefficient in Eq. (33) is independent of the ga couplings to
leading order, so that all three right-handed sneutrino
species will be virtually excited by the motion of the ϕ
field and contribute to the lepton asymmetry. This is in
contrast to thermal scenarios, where the out-of-equilibrium
decay of the lightest right-handed (s)neutrino will give a
dominant contribution. Second, the asymmetry production
rate is suppressed by ðT=maÞ4 ≪ 1, which is associated
with the fact that the right-handed sneutrinos are only
virtually excited, as opposed to thermal leptogenesis sce-
narios. This means that while in the latter mechanism one
must consider small couplings and CP violating phases to
yield the observed baryon asymmetry; in dissipative lepto-
genesis a small baryon-to-entropy ratio can result solely
from the low-temperature suppression. We note that the
leading scalar loop diagrams contributing to the asymmetry
are only suppressed by a factor ðT=maÞ2, but as mentioned
above their overall contribution cancels out when summing
over the different generations. This is a specific feature of
the interaction structure considered in leptogenesis, with a
single type of decay channel for the heavy right-handed
sneutrinos, so that in more general models of dissipative
baryogenesis, such as the one considered in [35], the
asymmetry production rate will be larger.
The light neutrino mass hierarchy inferred from exper-

imental bounds motivates considering a hierarchical
structure in the right-handed neutrino sector as well, e.g.
g1 ≪ g2 ≪ g3. In this case the asymmetry production rate
reduces to

rL ≃ 3

64π

�
T
m1

�
4 1P

aðyy†Þaa
XNR

a≠1

�
m1

ma

�
Im½ðyy†Þ21a�;

ð40Þ
which is suppressed relative to its thermal leptogenesis
counterpart by a factor ð1=8ÞðT=m1Þ4, as well as the fact
that in the latter case only the lightest right-handed neutrino
contributes to the factor

P
aðyy†Þaa in the denominator

which corresponds to the overall entropy production rate.

To simplify our dynamical analysis of dissipative lepto-
genesis, we collect all couplings and mass differences into
an effective parameter ϵ, such that

rL ≃ ϵy2
�
T
m1

�
4

; ð41Þ

where we assumed that the Yukawa couplings have roughly
the same magnitude y.

B. Dynamics of the lepton asymmetry generation

Having determined the rate at which lepton number is
produced by dissipation, we now consider the dynamics of
the scalar field ϕ, which is coupled to the evolution of the
overall entropy and lepton number density via the system of
equations

ϕ̈þ ð3H þϒÞ _ϕþ V 0ðϕÞ ¼ 0; ð42Þ

_sþ 3Hs ¼ ϒ _ϕ2

T
; _nL þ 3HnL ¼ 45ζð3Þ

2π4
gL
g�

ϒ _ϕ2

T
rL;

ð43Þ

where gL is the number of relativistic degrees of freedom
with nonvanishing lepton number, for which we will take
the MSSM value gL ¼ 33.75 as a reference, as well as
the associated g� ¼ 228.75 for the overall number of
relativistic species. We consider the evolution in the
low-temperature dissipative regime, where the dissipation
coefficient takes the form in Eq. (33). We assume that the
Yukawa couplings have roughly the same magnitude for
all three generations, such that Cϕ ≃ 9y2=16π, although
this assumption is not crucial for our subsequent analysis.
The lepton number density is sourced, as computed in the
previous section, by a fraction rLϒ of the overall dis-
sipation coefficient.
We are interested in the evolution of the field ϕ in a

regime where it has a large vev, such that right-handed (s)
neutrinos have a large mass and cannot be produced on
shell. This implies that, as opposed to the example
considered in the previous section, we assume that there
is no symmetry restoration after inflation. As a concrete
example, we take the simple symmetry-breaking potential
of the previous section, given in Eq. (22), although thermal
mass corrections will always be Boltzmann suppressed in
the regime that we are interested in exploring.
We note that if the field ϕ comes to dominate over the

radiation energy density, or at least attains a significant
relative abundance, then a sizeable lepton asymmetry can
be produced, which is the case of the warm baryogenesis
mechanism during inflation [35]. We show, however, that
the observed baryon asymmetry can also be produced when
the field is subdominant and dissipation does not contribute
significantly to the overall entropy of the Universe.
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It is convenient to express the lepton number density
in terms of the lepton-to-entropy ratio, YL ≡ nL=s, which
becomes constant once a lepton asymmetry stops being
efficiently produced. We then have

_YL ¼ CL
T3

ϕ6
_ϕ2; CL ¼ 90ζð3Þ

π4
gL
g�

Cϕ

Cs
ϵ
y2

g4
; ð44Þ

where Cs ¼ 2π2g�=45. The evolution of YL will then be
determined by the dynamics of the ϕ field. We assume the
field’s self coupling λ is sufficiently small for it to be
overdamped during inflation, m2

ϕ ¼ λ2ð3ϕ2 − v2Þ ≪ H2
inf ,

where Hinf ≲ 1014 GeV from the recent CMB upper
bounds on the tensor-to-scalar ratio obtained by the
Planck satellite [77]. De Sitter fluctuations will then lead
to a distribution of field values ϕi ≲MP in different patches
of the inflationary universe at the start of the radiation era,
which will typically be displaced from the minimum of the
potential at jϕj ¼ v.
As it evolves towards the minimum, the field will feel the

effects of both Hubble damping and dissipative friction.
The latter will play a significant role for

Q ¼ ϒ
3H

≃
ffiffiffiffiffi
10

π2

r
Cϕffiffiffiffiffi
g�

p TMP

ϕ2
≳ 1; ð45Þ

where we have used the standard relation between the
Hubble rate and the ambient temperature in a radiation-
dominated universe. On the one hand, if the field rolls
towards the minimum from jϕij < v, Q will necessarily
decrease in time and so dissipation can at most have a
significant effect during the earlier stages of the evolution.
On the other hand, for jϕij > v, Qmay increase as the field
value decreases, in particular if it overshoots the minimum
and attains a small value during the first oscillation. In any
case dissipation can only have a transient effect, since
asymptotically the field will settle at the minimum and Q
will decrease with the temperature.
For simplicity, we focus on scenarios where dissipation

plays no significant role in the field dynamics. This is,
in particular, the case for a large field vev v ≲MP and
initial displacements Δϕi ¼ jϕi − vj≲ v, for which
Q≲ T=MP ≪ 1. In the standard seesaw mechanism the
right-handed (s)neutrino masses are related to the light
neutrino masses via

m ~N ¼ gvffiffiffi
2

p ≃ 1015y2
�
0.1 eV
mν

�
GeV; ð46Þ

so that v ≲MP implies g≳ 10−3y2ð0.1 eV=mνÞ. Under
these conditions the field oscillations are well described by

ϕ≃ vþ Δϕi

�
t
ti

�
−3=4

cos ðmϕðt − tiÞÞ; ð47Þ

where mϕ ¼ ffiffiffi
2

p
λv is the field mass at the minimum,

Δϕi ≡ ϕi − v and ti ¼ ð2HiÞ−1 ∼ ð2mϕÞ−1 is the time at
which the field becomes underdamped and effectively
starts oscillating. We may then substitute this into
Eq. (44) to estimate the lepton-to-entropy ratio produced
by dissipation as the field oscillates. We note that since
the field velocity is small before the onset of oscillations,
no significant lepton number will be produced until the
field becomes underdamped. Taking the average field
value hϕi ¼ v and the average field velocity h _ϕ2i≃
m2

ϕΔϕ2
i ðt=tiÞ−3=2=2, we can then integrate Eq. (44) from

t ¼ ti to obtain asymptotically

YL ≃ CL

4g3=4�

�
45

2π2

�
3=4

ðMPtiÞ3=2
m2

ϕΔϕ2
i

v6
1

t2i
: ð48Þ

For g� ¼ 228.75 and gL ¼ 33.75 in the MSSM, and taking
into account the relation between the asymptotic baryon
and lepton numbers after conversion by sphaleron proc-
esses, Bf ¼ −ð8=23ÞLi [74], this yields

ηs ≃ 0.1

�
mν

0.1 eV

�
2
�

m ~N

1015 GeV

�
1=2

�
Δϕi

v

�
2
�
mϕ

m ~N

�
5=2

ϵ:

ð49Þ

The baryon asymmetry thus depends parametrically on the
ratio of the field and sneutrino masses, mϕ=m ~N ¼ 2λ=g.
Adiabaticity of the dissipative process requires the field to
move slowly compared to the sneutrino decay rate, _ϕ=ϕ∼
mϕ ≪ Γ ~N ≃ y2m ~N=16π. Additionally, for the asymmetry
to be produced below the sneutrino mass threshold, we
require T < m ~N at the onset of field oscillations, H ∼mϕ.
This then implies mϕ=m ~N ≲m ~N=MP, which is typically a
stronger constraint than adiabaticity of the dissipative
processes. Saturating this bound, we obtain for the final
baryon asymmetry

ηs ≃ 10−10
�

mν

0.1 eV

�
2
�

m ~N

2 × 1015 GeV

�
3
�
Δϕi

v

�
2
�

ϵ

0.05

�
:

ð50Þ

We thus see that the observed baryon asymmetry, ηs ∼
10−10 [78], can be obtained through adiabatic dissipation
for sneutrino masses close to the GUT scale, which
generate neutrino masses in the range suggested by
atmospheric neutrino oscillations for Oð1Þ Yukawa cou-
plings [79]. As opposed to standard leptogenesis models,
the amount of CP violation, parametrized by ϵ, need not be
very small in this case since the produced baryon asym-
metry is naturally small. We note that Eq. (50) is an
estimate that is accurate up to Oð1Þ factors, since the onset
of field oscillations does not occur exactly for H ¼ mϕ, so
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the above values for the masses should be taken only as
reference values.
The exact value of the produced asymmetry can be

computed numerically, and in Figs. 7 and 8 we give
examples for the numerical evolution of the field ϕ and
the asymmetry nB=s in the regime considered above, for
different values of the field mass parametrized by the self
coupling λ. In all examples shown, dissipation has a
subdominant effect on the field evolution, as discussed
above, and its main effect is the production of a baryon
asymmetry. We have checked in all cases that the adiabatic
condition is satisfied and that the temperature is below the
sneutrino mass threshold at the onset of field oscillations.
We thus conclude that the produced asymmetry can have

a range of values both below and above the observational
window. Most of the lepton number is produced in the first
few oscillations of the field, where the field velocity, and
hence the dissipative lepton source, is larger, with the

lepton-to-entropy ratio stabilizing within a few oscillation
periods.
We note that, even though the adiabatic dissipation

coefficient decreases with the temperature, and hence
becomes negligible at late times, the full dissipation
coefficient includes a zero-temperature part that corre-
sponds to the standard decay width for an oscillating field
[67]. This corresponds in the present scenario to the four-
body decay of the ϕ field into Higgs and slepton pairs
mediated by virtual right-handed sneutrinos, since the
latter’s on-shell production is kinematically forbidden.
As shown in [67], this contribution is suppressed by
ðmϕ=TÞ3, as well as numerical factors, with respect to
the adiabatic component. We may thus safely neglect this
contribution in computing the lepton asymmetry, which is
produced whenmϕ ∼H ≪ T, bearing nevertheless in mind
that this will lead to the decay of the ϕ field after it becomes
nonrelativistic at late times.

FIG. 8 (color online). Numerical results for the evolution of the field ϕ and the baryon asymmetry ηs ¼ nB=s, starting from a field
value above the minimum at v ¼ MP. The quartic self coupling λ ¼ 1 × 10−7; 2 × 10−7; 4 × 10−7 for the blue, black and green curves,
respectively. We have taken g ¼ 10−3, y ¼ 3 and ϵ ¼ 1=64π in all cases. Time is given in Planck units.

FIG. 7 (color online). Numerical results for the evolution of the field ϕ and the baryon asymmetry ηs ¼ nB=s, starting from a field
value below the minimum at v ¼ 1018 GeV. The quartic self coupling λ ¼ 1 × 10−8; 2 × 10−8; 4 × 10−8 for the blue, black and green
curves, respectively. We have taken g ¼ 10−3, y ¼ 3 and ϵ ¼ 1=64π in all cases. Time is given in Planck units.
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In the particular model of leptogenesis that we have
considered, a lepton (and hence baryon) asymmetry is
produced by the dynamical evolution of a scalar SM singlet
that determines the Majorana mass of right-handed (s)
neutrinos. This is, however, a much more general result and
dissipative baryogenesis should occur in any scenario
where fields whose decay violates the B/L and C, CP
symmetries are coupled to (and acquire mass from) a
dynamical scalar field, including e.g. the SUð5Þ model
considered in Sec. II. Depending on the field masses and
couplings, the observed baryon asymmetry may be entirely
produced by off-shell dissipative effects, with no need for
temperatures above the B-violating field mass threshold.
This may then avoid symmetry restoration in the early
Universe and the production of dangerous thermal relics
during the associated phase transitions. In addition, dis-
sipative baryogenesis generically yields potentially observ-
able signatures, as we describe below.

C. Isocurvature perturbations

As obtained above, the baryon asymmetry that results
from dissipative processes will depend on the initial field
displacement from the true minimum of its potential. If, as
we assumed earlier, the field is light during inflation, we
then expect superhorizon quantum fluctuations hδϕ2

i i ¼
ðHinf=2πÞ2 in the initial field value. These will then result in
fluctuations in the final baryon-to-entropy ratio and hence
baryon isocurvature modes that can be tested with CMB
observations.
This is also a feature of the warm baryogenesis scenario

during (warm) inflation [35], where both inflaton and
temperature fluctuations generate baryon isocurvature
modes. The main difference to the case analyzed in this
work resides, first, in the fact that the field responsible for
producing the baryon asymmetry never dominates the
energy balance in the Universe. Consequently, the resulting
baryon isocurvature modes will be uncorrelated with the
main (adiabatic) curvature perturbations sourced by the
inflaton. Second, the baryon asymmetry is produced at
the onset of field oscillations rather than in a slow-roll
regime. Since this occurs when H ∼mϕ, fluctuations in
the ambient temperature will only delay or expedite the
production of the baryon asymmetry, but they do not
change its final value. From Eq. (50), we have that

SB ¼ δηs
ηs

¼ 2
δϕi

Δϕi
; ð51Þ

such that we can write the relative contribution of
uncorrelated baryon isocurvature modes to the CMB
spectrum as

B2
B ¼ S2B

P2
ζ

≃ r
2

�
Mp

Δϕi

�
2

; ð52Þ

where P2
ζ ≃ 2 × 10−9 is the amplitude of the adiabatic

curvature perturbation spectrum [77] and r is the tensor-
to-scalar ratio. This gives a contribution to the total matter
isocurvature power spectrum that is suppressed by the
relative abundance of baryons ðΩb=ΩmÞ2B2

B ≃ 0.03B2
B.

From the constraints posed by the Planck satellite on
uncorrelated cold dark matter (CDM) isocurvature modes
with a scale invariant spectrum at a comoving wave
number klow ¼ 0.002 Mpc−1 [77], we deduce the bound
BB ≲ 1.03. The result above satisfies this bound for initial
field displacements:

Δϕi > 0.68
ffiffiffi
r

p
MP: ð53Þ

If the tensor-to-scalar ratio is close to the current upper
bound r≲ 0.1 [77], this requires field displacements
Δϕi ≳ 0.2MP. Although the value of the baryon asym-
metry does not depend directly on the actual value of
the field displacement, but rather on the ratio Δϕi=v, we
have seen above that the observed baryon asymmetry can
be entirely produced by off-shell dissipative effects for
Δϕi ∼ v ∼MP. The bound above is thus consistent with
the generation of the observed baryon asymmetry. On the
other hand, low-scale inflationary models with r ≪ 0.1
are consistent with initial field displacements parametri-
cally below the Planck scale.
We note, however, that in supergravity models scalar

fields may acquire masses parametrically close to the
Hubble scale during inflation, and hence be driven to a
local minimum that does not necessarily coincide with the
low-energy global minimum [80]. In this case dissipation
may also produce a baryon/lepton asymmetry as the field
rolls towards the true minimum after inflation, although
field masses of the order of the Hubble scale may somewhat
change the dynamics. In these scenarios there will be,
however, no significant field fluctuations on superhorizon
scales, which makes them less appealing from the obser-
vational point of view.
Evidence for baryon isocurvature modes will never-

theless constitute a strong hint for dissipative baryogenesis,
which is thus a testable mechanism. In addition, the
particular case of dissipative leptogenesis considered above
can be related to low-energy neutrino phenomenology, thus
yielding two independent potential ways of probing the
production of a baryon asymmetry.

V. CONCLUSION

Scalar fields are ubiquitous in the best-motivated exten-
sions of the standard model of particle physics and their
dynamics has in most cases a very significant cosmological
impact. Since they generically interact with other matter
and gauge degrees of freedom, dissipative effects are a
crucial feature determining how scalar fields evolve in the
cosmological heat bath. This leads to additional friction,
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entropy production and scalar field fluctuations. These
effects are, in the leading adiabatic approximation, fully
encoded in a single dissipation coefficient, which can be
computed from the fundamental Lagrangian defining the
properties and interactions of a given scalar field.
The study of dissipative effects has so far been mostly

restricted to the early period of inflation, where dissipation
may, in fact, completely change the inflaton dynamics and
the associated generation of primordial curvature pertur-
bations [22–33]. More recently, a few studies have also
begun to explore the importance of dissipation in the
dynamics of reheating after inflation [46,81–84], assuming
it proceeds from a supercooled stage where dissipative
dynamics plays a negligible role, and also in the dynamics
of a curvaton field [85].
It was the purpose of this work to set the stage for a

much broader exploration of dissipative dynamics in the
evolution of cosmological scalar fields, which in many
cases only begins in the radiation-dominated era once the
Hubble expansion rate and the ambient temperature have
decreased sufficiently. A scalar field will typically find
itself displaced from the absolute minimum of its effec-
tive potential after inflation and, in evolving towards it,
the field will necessarily dissipate part of its energy into
the ambient heat bath. Dissipation is thus, in particular, an
inherent part of the process of spontaneous symmetry
breaking and can modify the dynamics of the several
phase transitions that may have occurred in the early
cosmic history. The evaporation of a Bose condensate
may also lead to an effective friction term along the lines
suggested in [86].
A natural starting point for our study was to compute, for

the first time, the dissipation coefficient inherent to differ-
ent scalar fields in particle physics models of the early
Universe, which we hope will be useful for future studies.
We have, in particular, considered the electroweak Higgs
field(s) in the SM and its minimal supersymmetric exten-
sion, the scalar singlet yielding the μ term in the NMSSM,
the adjoint Higgs direction breaking the GUT SUð5Þ group
to the SM, and a SM singlet giving a Majorana mass to
right-handed neutrinos [embedded e.g. in SOð10Þ]. For a
given dynamical scalar, the dissipation coefficient takes
different forms depending on the properties of the fields
it is coupled to, namely their mass, spin, multiplicity and
coupling constants. Dissipation proceeds generically
through the excitation and decay of these fields and the
associated coefficient takes different forms depending on
whether on-shell or off-shell excitation is dominant. Note,
for example, that while on-shell modes resonantly enhance
dissipation, their occupation numbers become Boltzmann
suppressed at temperatures below their mass threshold
and virtual modes then yield the dominant contribution.
Generically, dissipation coefficients depend both on the
field value and the ambient temperature, thus constituting
dynamical quantities.

We then proceeded to explore the dynamical impact of
dissipative effects by solving the Langevin-like equation
that determines the evolution of a cosmological scalar field,
Eq. (1), in different scenarios. In this work we have focused
mainly on the effects of dissipation and entropy production,
although we have also briefly discussed the importance
of the dissipative noise term, which we plan to explore in
more detail in a future work. This term will be crucial, for
example, in the initial stages of a cosmic phase transition,
randomly kicking the associated Higgs field away from the
unstable symmetric point. Fluctuation-dissipation will then
play an important role in the formation of topological
defects and also potentially in sourcing cosmic magnetic
fields. There are various works in the literature which make
statistical arguments for the distribution of seed magnetic
domains. In a related context, statistical arguments are
made on the initial distribution of a scalar field, such as
in examining the initial condition problem of inflation
[87–89]. The Langevin-like Eq. (1) provides a dynamical
equation from which such distributions can be calculated
rather than just argued statistically.
The friction effects associated with dissipation will slow

down a field’s evolution towards the minimum of its
potential and damp the amplitude of its oscillations about
the minimum. This will prolong a cosmic phase transition,
potentially even completely overdamping the associated
Higgs field. One interesting outcome of our analysis is the
possibility of dissipation keeping the field in a slow-roll
regime close to the symmetric value, such that it drives a
late period of warm inflation. This may last for a few e-
folds, which may be sufficient to dilute dangerous thermal
relics such as gravitinos or GUT monopoles formed at
earlier stages. In fact, a period of thermal inflation above
the critical temperature and a period of (dissipative) warm
inflation below the critical temperature can occur within
the same phase transition. Although they have a similar
dilution effect, these two periods have inherently different
field dynamics, as well as fluctuations, and we hope in the
future to investigate more closely their potentially distinct
observational impact in the CMB and/or matter power
spectrum.
We have also observed that a slow-roll period typically

ends with a Higgs field falling fast towards the symmetry-
breaking minimum, in the process producing a significant
amount of entropy. We have thus concluded that, even if the
field does not become dominant during the slow-roll phase,
a parametric dilution of unwanted relics will still occur as a
combined result of this entropy production and enhance-
ment of the expansion rate during the phase transition.
In this work, we have also shown that, even if

dissipation does not significantly enhance friction or
entropy production, it may nevertheless lead to a small
but nevertheless crucial effect—the generation of a
cosmological baryon asymmetry. This occurs due to
the out-of-equilibrium nature of dissipative processes
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when B-/L- and C-/CP-violating interactions are
involved. We have explicitly shown that the observed
baryon asymmetry can be generated in a scenario of
dissipative leptogenesis, where a SM scalar singlet giving
a Majorana mass to right-handed (s)neutrinos excites the
latter while rolling towards the minimum of its potential.
This can occur at temperatures below the right-handed (s)
neutrino mass threshold, with dissipation dominantly
exciting virtual modes. We expect this to be a generic
feature, also found earlier in the context of warm baryo-
genesis during inflation [35], such that it is possible to
produce the observed baryon asymmetry while avoiding
symmetry restoration and subsequent production of
topological defects. Furthermore, the baryon-to-entropy
ratio generated through dissipation is generically field
and temperature dependent, thus leading to baryon iso-
curvature perturbations that may be probed in the near
future with CMB observations. If the observed asymme-
try is produced by dissipation, we may thus hope to be
able to test the violation of fundamental symmetries at
high energies.
Our results show that going beyond the leading approxi-

mation of noninteracting adiabatic fluids can have a very
significant impact in cosmology. Fluctuation-dissipation
dynamics is present in any dynamical interacting system
and, in particular, we have explicitly shown that this is
the case for the SM Higgs field and for many other
dynamical scalars present in its extensions. Significant
dissipative effects are already a feature of near-equilibrium
and near-adiabatic dynamics and thus should motivate
further exploration of this topic, not only within this regime
but also for more general nonequilibrium cosmological
systems.
Up to now cosmology has been very successful in

explaining almost all observations through the simple
model of a thermalized universe that is expanding. Phase
transitions have been added to this picture to reconcile it
with unified models of particle physics. There is a need to
press beyond this simple picture and look with greater
detail at the dynamics in the early Universe. The early
Universe is a many-body system with limited initial
condition information. A theoretical treatment of it requires
a statistical dynamical approach, which can extend on the
thermal equilibrium hot big bang model. Phase transitions
and other regimes of scalar field evolution in the early
Universe have, up to now, only been treated classically.
This paper has shown that the extension of this classical
treatment leads to fluctuation-dissipation dynamics. In an
earlier paper it was shown how fluctuation-dissipation
effects would also extend the treatment of the Universe
evolution in the general hot big bang regime [42].
Combined, these papers provide an extended dynamical
framework to examine key unsolved problems of the early
Universe.

The underlying principle behind both these papers is the
same as in the original warm inflation work—that many of
the most fundamental quantities measured in cosmology,
those associated with some underlying field dynamics, only
provide a coarse-grained information about that dynamics
and not necessarily about its microphysical properties. This
is the concept that separates the warm and cold paradigms
of inflation. In cold inflation, the observables such as the
index and bispectrum are interpreted to probe precise
information about an underlying classical dynamics with
quantum fluctuations superposed upon it. The uncertainty
in this semiclassical approach is only that associated with
the quantum mechanical uncertainty. In contrast warm
inflation goes further to a full statistical state where these
observables are interpreted to provide only coarse-grained
information about the underlying fundamental dynamics.
There can be many statistical dynamical realizations of the
coarse-grained dynamics. One common feature is the
presence of energy fluxes amongst the coarse-grained cells,
often related through the underlying dynamics. The fluc-
tuation-dissipation relations examined in this paper are one,
perhaps most common, example of such relations, and
these can provide observable, testable, consequences.
Several problems in cosmology today need to be

approached beyond the semiclassical approximation of
thermal equilibrium dynamics, such as the generation of
curvature and isocurvature perturbations, baryogenesis,
leptogenesis, generation of dark matter, origin of cosmic
magnetic fields, initial conditions of phase transitions, and
dynamics during a phase transition or scalar field evolution.
Adhering to just a thermal, semiclassical dynamical view-
point of the underlying dynamics in the early Universe can
restrict the scope of theoretical investigation that is pos-
sible, and can lead to misleading directions of interpreta-
tion, such as doing elaborate model building where some
simple statistical interpretation could actually bring the
predictions in line with observation. This paper has high-
lighted these points and provided a methodology that can
be used for such exploration along with several example
applications.
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