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We present the most general parametrization of models of dark energy in the form of a scalar field which
is explicitly coupled to dark matter. We follow and extend the parametrized post-Friedmannian approach,
previously applied to modified gravity theories, in order to include interacting dark energy. We demonstrate
its use through a number of worked examples and show how the initially large parameter space of
free functions can be significantly reduced and constrained to include only a few nonzero coefficients.
This paves the way for a model-independent approach to classify and test interacting dark energy theories.
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I. INTRODUCTION

In recent years, cosmological data from experiments
with exquisite precision (cosmic microwave background
measurements [1,2], Ia supernovae [3], baryon acoustic
oscillation surveys [4]) suggest that ~96% of the matter/
energy content of our Universe is in the form of an exotic
dark sector. Approximately a quarter of the dark sector is
believed to be weakly interacting cold dark matter, while
roughly 70% is in the form of a dark energy component, a
substance with negative pressure responsible for the current
accelerated expansion of the Universe.

The best candidate for dark energy is the cosmological
constant A. The concordance model of cosmology, ACDM,
is currently the best fit to observations, but it comes along
with fundamental questions and problems. One of them is
the coincidence problem, which poses the question of why
the energy densities of the dark sector components are of the
same order today, when their cosmological evolution is very
different. A possible solution to the coincidence problem is a
coupling between the dark energy and the dark matter. The
introduction of an appropriate coupling does not violate
observational constraints, and it can change the background
evolution of the dark sector components in order to offer a
solution to the coincidence problem.

A plethora of such dark coupling models can be found in
the literature (see, e.g. [5—38]). In most of these models, the
choice of the coupling is purely phenomenological. In a
recent paper [39], we made further progress at the level of
construction of such models by identifying three separate
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classes of models of dark energy in the form of a scalar
field (¢) coupled to cold dark matter (CDM).

After constructing general models of exotic dark energy
or modified gravity and checking their mathematical and
physical viability (for example by identifying fundamental
problems like ghosts or strong coupling issues), one is
interested in testing them against the available data to see if
they might offer a viable alternative to ACDM.

Currently, there is a pressing need for fast and efficient
ways to rule out and constrain the large number of cosmo-
logical models available—it would be practically impossible
to go through each and every one of them individually.
The parametrized post-Friedmannian (PPF) approach
offers such a framework and has been applied to modified
gravity theories [40—42] (see [43] for a recent overview). In
this work we apply the PPF approach to interacting dark
energy theories and demonstrate its use through a number
of worked examples. In Sec. II we go through the PPF
basic principles and general formalism, extending it to the
case of coupled dark matter/dark energy. In Sec. III we first
demonstrate how a few of the most well-known phenom-
enological models in the literature fit in to this formalism
and then we proceed to apply it to the general classes of
models we presented in [39]. We conclude in Sec. IV.

II. FORMALISM

A. Basic concepts

We start by writing the gravitational field equations of a
theory as

G, = 8zG(TSM + TSP 4 TPy, (1)

. o . SM) .
where G, is the Einstein tensor of the metric g,,, T,(w Vis

the stress-energy tensor of the known forms of matter
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(baryons, photons, neutrinos, etc.) that are part of the

Standard Model of particle physics, T,(gDM) is the stress-

energy tensor of (generalized) dark matter and TLBE)
represents the stress-energy tensor of all the unknown
modifications to the gravitational field equations that
generate the effect of dark energy. Such modifications
may be purely due to a dark energy fluid or perhaps due to a
modification of gravity. It may be shown that any kind of
modification of gravity can be put in the form (1) (see for
instance [40]). Let us also note that although we start with a
generalized dark matter which may have nonzero pressure
and nonzero shear [44], we shall later on specialize to the
CDM case where both of these quantities are zero.

The Bianchi identities tell us that the Einstein tensor is
divergenceless:

V,G', =0, (2)

which in turn implies that V,(TMk, 4 7(CMp 4
T(PEk ) = 0. We assume that the Standard Model particles
do not explicitly couple to the dark sector so that
VMT<SM)”U = 0. This assumption is well justified by obser-
vations which strongly constrain such couplings [45].
Furthermore, a coupling of the evolving quintessence field
to baryons would lead to time varying constants of nature,
which are tightly constrained, see [46] and references
therein. This leaves us with V,(T(6PMk 4 7Bk ) — 0
but neither part is assumed to be individually conserved.
Thus we have that

VﬂT<GDM)"D =J, = _V”T(DE)My (3)

where the coupling current J, represents the energy and
momentum exchange between the dark sector components.

In what follows we aim to parametrize the coupling
current J, in terms of metric potentials and their derivatives
as well as the scalar modes that are part of the stress-energy
tensors of the two dark sector components. We shall do that
in such a way so that the resulting field equations contain at
most two time derivatives, or equivalently, each dark sector
component obeys two first order linearized field equations
on a Friedmann-Robertson-Walker (FRW) background
resulting from (3). We shall proceed by considering first a
FRW background spacetime and finding the relevant equa-
tions that describe the dark sector and then considering linear
perturbations about this background spacetime and see how
this affects the parametrization. Background variables will
be signified with an overbar (unless no confusion could
arise, e.g. the scale factor a is always a background variable)
while typically all perturbed tensors will be preceded by a §.
For instance, we may split J, into J, = J, + &J,.

B. FRW background

Consider a FRW background spacetime described by a
metric
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ds* = a*(—dv* +y;;dx'dx)) (4)

where a is the scale factor, 7 is the conformal time and y;; is
the spatial metric, assumed to be flat. The symmetries of
the spacetime impose that the only nonzero components
T,, are the energy density p = —7% and the pressure P
such that 7%; = P§';.

The generalized Einstein equations (1) for this ansatz
give

3H? = 87Ga*(psy + Popm + PoE) (5)

and
H2 22 = 87G(Psy + Pgom + Pog). (6)

where 'H = % is the conformal Hubble parameter and dots
denote derivatives with respect to 7.

Turning now to the coupling current J,, the symmetries
of the spacetime impose that the only nonzero component is

0=, (7)

while J; = 0. The function Q(z) is the background cou-
pling function which is for our purposes a phenomeno-
logically free function. Specific models of a coupled dark
sector will in general result to specific choices of Q(7) (see,
for example, [5,25], which are two models we present and
parametrize in Sec. III).

The v = 0 component of (3) gives the field equations for
the evolution of a particular component indexed by 7 as

pr+3Hp(1+wp) = 5,0, (8)

where we have defined the equation of state parameter for
each I-component as w; = P;/p; and the constant s; takes
the values

1 DE
s;=1< 0  SM fields. 9)
-1 GDM

C. Linear perturbations

1. The perturbed variables
We now turn to linear perturbations about the FRW
background. We shall consider only scalar modes. The
spacetime metric takes the form
ds* = —a?*(1 +2W)dr* — 2a*V {dtdx’

1 o
+a® K] + §h> Yij + Dl-ju} dx'dx/, (10)
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where W, £, h and v are four functions of time and space
(four scalar modes) and

D;=V

ij i

\Y

j_%ﬂivz (11)
is a derivative operator that projects out the longitudinal,
traceless, spatial part of the perturbation.

Let us now consider the perturbed variables of the fluids.
These are the density contrast 6 = §p/p, the scalar mode of
the momentum, 6, such that u; = aV,0, the dimensionless
pressure perturbation IT = 6P/p such that 57" = I1pé'; and
the scalar mode of the shear Z such that the shear tensor is
%;; = D;;X. Putting it all together, the stress-energy tensor
components for a fluid are

% = —p(1 +6), (12)

0 = —(p + P)V,0, (13)

T'y = (p+P)V'(0—0), (14)
T, =p(w+I)§; + (p+ P)D';X. (15)

2. Einstein and fluid equations

The perturbed Einstein equations (1) are

H(h +2V°0) — 6H2U + 2V’ = 82Ga®> 5. (16a)
1
2+ 2HY = 82Ga®y (p; + Py)0;. (16b)
1
— h—2Hh + 6HY + 6(H? 4 2H) T
— V(20— 20 + 2¢ + 4HC)
=247Ga*) 11, (16¢)
1
and
1 )
SV CHHE+20) +n—¥
(16d)

- 87[Ga22(/_)1 + P])ZI.
1

Turning now to the fluid equations, they are obtained by
perturbing (3). To this purpose we define the two scalar
mode perturbations ¢ and S by

g=6l, V.S=6J, (17)

We find
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3] = 3W[H5] + (1 + W]) [6291 —%h — %2§:|

— 3HIL; + ? lq — Q3] (18a)
PI
and
; Wy 11,
0, =— 1-3 —10
! [H( W1)+1+w1] T,
222 sy
+-VE +U+— —00,|. 18b
37 Pr L +wy ¢ 1] (180)
where the index / runs over all species (and once again let
us recall that spgp = 1 = —sgpym While s; = 0 for all other
species).

D. Dark coupling parametrization

The goal of this article is to parametrize both of the two
perturbation variables g and § as linear combinations of all
other perturbations, such as the fluid variables J, 9, IT and
2 for each fluid, as well as the metric variables V¥, £, h and
v. This means 12 variables in total for both g and S.
However, this linear combination is not entirely arbitrary,
but must obey certain rules regarding gauge transforma-
tions. As we shall see, this reduces the number of effective
independent variables to ten for both ¢ and S. Before
proceeding to the parametrization, let us briefly discuss
gauge transformations.

1. Gauge transformations

The metric in (10) is in a form which is not gauge fixed.
In other words the four scalar modes are not invariant under

gauge transformations &g, — dg,, + gg,,b generated by

a vector field &. Parametrized as & = 1 (&, V'é,) for two
scalar modes &7 and &; the gauge transformations of the
metric and fluid perturbations will involve combinations of
&r and &; and their first time derivatives.

Consider first the variables g and S. We find that they
transform as

g~ q+ [0k +(0-HQ)E)  (19)

and

MBI —l—éer, (19b)

respectively. Thus if we write ¢ and S as a linear
combination of the metric and fluid variables, variables
which involve &; in their transformation must combine
together so that £; does not appear overall in the trans-
formation of the entire linear combination.

Now the fluid variables transform only with the gauge
variable &7, i.e. as (dropping the obvious / indices)
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1
5_>5_;[3H(1+w)—s%]5% (20a)

1
00+ &, (20b)
a

H—>H+é {W—3H(1+w)w+sw%}§p (20c¢)

while X is gauge invariant, hence, all four of them are
allowed to appear in the ¢ and S parametrization.

However, the metric variables involve &; in their trans-
formation. This means that the metric variables must
combine together so that &; is eliminated altogether.
Following [40] we can find three linear combinations of
the metric perturbations and their first time derivatives
which transform only with the gauge variable £;. These are
U=h—V3 and V=0+2¢ as well as i + 2V2. The
latter one is not independent but is equal to U + V2V.
Thus out of the four metric scalar modes, we are left
with two combinations, namely U and V, which transform
exclusively with & and ¥ which transforms with éT.
Explicitly, the transformations are

6
U— U+-Hép, (21a)
a
2
Vo VtIg, (21b)
a
&r
Y (21c)
a

Since ¢ and V¥ contain éT in their transformation, we must
allow a further metric variable combination which does so,
but which does not have higher than second time deriv-

atives. The only possibility is the variable U.
To summarize, we expect that both ¢ and S can be
written as linear combinations of the four fluid variables

(for each fluid) plus the four variables U, V, ¥ and U.

2. Completing the parametrization

Following the discussion above, we start from the
parametrization

q = Cl\Ij + C2V + AIU + A2U + A35DE + A45GDM
+ AsOpg + AsOgpm + A7lIpg + Agllgpm
+ AoZpg + A10Z6pM (22)

and
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S = C3U + C4V + B,U + ByU + B3pg + Bibgpm
+ Bs6pg + Bsgpm + B7llpg + Bsllgpm
+ BoZpg + BipZgpwm- (23)

Performing the gauge transformations in (22) we find two
constraint equations, namely

Cl = Q - 6HA2 (243)
and
20, = 0 —HO—6HA, +6(H2 —FH)A, —2E A,
PDE
_PaoM g p g EPELPooMy g

PGDM PDE PGDM

Likewise, performing the gauge transformations in (23) we
find two further constraint equations, namely

C3 = —6BzH (24C)
and

2C, = Q—6HB, +6(H2 —T)B, —?33
DE

p
SPMpB..  (24d)

PGDM

5 P
—pGDMB4—Bs —Bg——"CB;—

PGDM PDE

The two constraints (24a) and (24b) are then used to
eliminate C; and C, from (22) while the two constraints
(24c) and (24d) are used to eliminate C; and C,4 from (23).
The remaining perturbations are written in terms of the
gauge-invariant variables listed in Table I by combining
them with V. The result is

1 . A ~

+ A3pg + Asbopm + AsOpe + AsOcpm
+ AsTIpg + AgTlopm + AgZpg + AjpZgpm (25)

and

TABLE I. Gauge-invariant variables.
éz—%U—i—%'HV

V=U—-1V—-iHV ‘
P=-lU+HV+1(H-H)V=0+nH]
/\_ 1l

5:5—§§V

659—%Y

f=11_2

H:H—;V
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1 A . A N
S == EQV - 6qu) - 6Bzr + B36DE + B45GDM

+ BsOpg + BsOopm + B7TIpg + Bsllgpy
+ BoZpg + BioXgpm- (26)

Hence, we are left with 20 free functions in total.

3. Special case: Cold dark matter

From now on we will assume that the dark matter fluid is
completely cold. This automatically means that wgpy =
gpm = Zgpm = 0. We shall further make the assumption
that the dark energy fluid has no shear, i.e. Xpg = 0.
Furthermore, since there is no possibility of confusion we
shall set wpg = w.

In general, the pressure perturbation Il would be an
independent dynamical degree of freedom (see [47] for
an explicit model). However, there are many instances
where Ilpg is expressed in terms of dpg and Opg via
equations of state such as the generalized dark matter
model [44]. As in [44] we shall also assume that the
pressure perturbation Ilpg is expressed in terms of
opg and Opg via equations of state. However, the usual
expression in [44] no longer holds, as it does not
transform correctly under gauge transformations. An
expression which does is

Npg = ci6pg + (¢ —c2) [3<1 +w)H — _g} Opg
PDE

+ /’l(ec - HDE) (27)
where ¢2 and c2 are the (gauge-invariant) effective and
adiabatic speeds of sound respectively. It may be shown
that the divergence of the entropy flux is proportional to
Mpg — c28pg [48], hence, the gauge-invariant “relative
entropy” parameter y measures entropy transfer to dark
energy (DE) due to its motion relative to the CDM fluid.
The adiabatic speed of sound is fixed by the equation of
state w via

v
£ _3H(14+w)

PDE

(28)

A=w+

Hence, without loss of generality, we may further set A,
and B, to zero. With these choices, the number of free
functions is reduced to 12.

We shall further assume the conformal Newtonian gauge
for which { = v = 0 (so that V = 0). With this choice, the
gauge-invariant variables we have defined in Table I are
equal to the conformal Newtonian gauge variables.

Let us now restate the parametrization as well as the
necessary evolution equations. The two parameters ¢ and S
are given by

PHYSICAL REVIEW D 91, 083537 (2015)
g =00 —64,D —6A,(P+ HV) + Asdpg

+ A4S + AsOpg + Agl. (29a)
and
S = —6B;® — 6B, (D + H) + Bydpg
+ B46. + BsOpg + B0, (29b)
for unknown functions A; and B; with i € 1...6.
The evolution equations for CDM are
. - |
5, =V’0,+3b+— (05, — q). (30a)
Pec
and
. 1
0, =—-—HO.+ ¥V +—(00.-9), (30b)
Pe
while the evolution equations for DE are
Spe = 3WHdpg + (1+w) [629DE + 39
1
— 3HIpg + —[q — QdpEl, (31a)
PDE
and
; W Ipg
Opg = —|H(1 -3 —10
DE [ ( W)‘f'l_f_w} DE+1+W
1 S
+ U4 — |——00pg]|. 31b
/_7DE|:1+W QDE] (310)

In the following section we are going to investigate
the underlying space of models of coupled DM to DE, and
show how we can construct a “dictionary” of interacting
dark energy theories and their PPF correspondences.
The same method was applied to modified gravity theories
in [42].

III. WORKED EXAMPLES

As a “warm-up” exercise, we are first going to demon-
strate the use of our PPF formalism for interacting dark
energy theories by showing that the functions A; and B; are
severely constrained when one considers specific models
which appear often in the literature. These are the “coupled
quintessence” model [5], a model where J,, o u, [25,49]
and the elastic scattering of model of dark matter and dark
energy [33,50]. In Table II one can see the list of the models
we consider with their coefficients displayed.

Following that, we consider the parametrization of the
general classes of coupled theories we constructed in [39].
More specifically, in [39] we presented three distinct types
of models of dark energy in the form of a scalar field

083537-5
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TABLE II.  Specific models and their PPF coefficients. The coupled quintessence model is a subcase of type 1 with a; = 8. The
elastic scattering model is in fact distinct from type 3 (see text at the end of Sec. III D). For the coefficients A,, A3, A4 and As in the case
of type 2 see (70). For the coefficients B; and As in the case of type 3 see (86). For the remaining functions the reader is referred to each

specific example in the text.

Model/coefficients 0 A A Ay Ay As A¢ B, B, B3 B, Bs Bg
i T . 5 a

Coupled quintessence _ Bup.d HLW 0 PapcaV, 0
J, o u, alype o oo o O 0
Elastic scattering e Cee e e e —ppe(l +w)anpop —Bs
T 1 _ A o o « 2dK

ype 4 (fa¢¢ I+w 0 Q [“LZ - (l\fvf)(/}?} ©
Type 2 ZPsp. 7z -+ Ay Az A A

yp LY 2 Ay Ay 5 0
Type 3 oo By - Bs —Bs+ 3HZFyc2

explicitly coupled to dark matter. We used the pull-back
formalism for fluids and generalized the standard fluid
action in order to include a dark coupling. The general
functional form for the combined dark energy and dark
matter Lagrangian we considered is

L=L(nY,Z ), (32)
where n is the fluid number density, ¥ = %V”qbV”qb, and
Z = u'V ,¢. As an example, within general relativity (GR),
a quintessence field and an uncoupled fluid is described by
the Lagrangian L = Y + V(¢) + f(n).

We then considered three distinct ways to reduce the
general function (32) giving rise to the three types of
coupled models which we now want to parametrize. These
are the type 1 models where L = F(Y,¢) + f(n,¢) [the
coupled quintessence model [5] is a subcase of type 1
with the choice F = Y + V(¢) and f = nef+?], the type 2
models where L = F(Y,¢)+ f(n,Z) and the type 3
models where L = F(Y,Z,¢) + f(n).

A. Specific models

1. Coupled quintessence

Writing the scalar field as ¢p = ¢ + ¢ for a background field
¢ and perturbation ¢, the components of the stress-energy
tensor for this model are (using expressions from [39])

1 <2 — 1 9
o= +V  Ppr=——d —V, (35
PDE o ¢ + DE =53 ¢ (35)

0=—ipdh  (36)

for the background, where V¢ = g—;, and

(& — $0) + Vyo,

(38)

for the perturbations. The required coupling parameters are

Let us start with the coupled quintessence (CQ) model ~ found to be
suggested by Amendola [5], which is a specific subcase of @
the type 1 class of models we presented in [39]. The scalar qg=0 <5c + T), (39)
field action for this model is @
| s=02. (40)
s=- [axymay oo vo). o) ?
Now we read off the coefficients. They are
where V(¢) is the quintessence potential. If a constant 0
coupling parameter f3, is assumed, the coupling current J, A=Ay =A4A=0 Az = T+w
is found to be (see [39] for details) _
Ay =20 As = ﬂAPca2V¢
J/l = _ﬂApcvy¢- (34) Bs =0 Biys = 0. (41)
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2. Model with Jy xu,

In this model, which was introduced in [25] and [49],
the energy-momentum transfer vector J# is parallel to the
dark matter 4-velocity u¥. In our notation we have u
a(l +W,Vo,) and

/4:

Jﬂ = Fintﬁc(l + 55)”;!’ (42)

with T, being a local constant interaction rate. The
background coupling function is

0 = al'ijyp. (43)
while the perturbative coupling parameters ¢ and S are

=0, +¥) and S=006.. (44)
In comparison with our general parametrization scheme,
we find that the only nonzero coefficients are

3. Elastic scattering of dark matter and dark energy

This model was introduced in [33] and it considered an
elastic interaction between dark energy and dark matter.
It is a pure momentum transfer model and its background
cosmology remains unaltered. In our language, this
model has

0=0 (46)
in the background while

q=0 S = —6pe),  (47)
at the level of the perturbations, with np being the proper
number density of dark matter particles and o, the
scattering cross section between dark matter and dark
energy (also note that w = const and ¢ = 1 in this model)
[33]. We therefore find that the only nonzero coefficients
are

(PoE + Pogp)anpop (6.

Bs = —(ppg + Ppr)anpop = —Bs. (48)

Now we turn our attention to the three general types of
models in [39].

B. Type 1 theory of DM coupled to DE

Type 1 models are classified in [39] via

F(Y.$)+ f(n.¢). (49)

For the case where the dark matter is CDM we further have

f(n,¢) = ne®?) where a(¢) is a free function of the
field ¢.

L(n,Y,Z,¢) =

PHYSICAL REVIEW D 91, 083537 (2015)
From [39] we have that the coupling current is
Jy = _pca(/)vﬂd) (50)
so that
0= _ﬁcaz]b(—b
_ ?\ _ 5
q=0 <5c + 5) — POy

s=0% (51)
7

where a;, = d“ and a4 = <-%. Note that the expression for
S agrees w1th the one we recovered previously, Eq. (40),
and the expression for g agrees with Eq. (39) if a4, = 0.
This is expected, as the CQ model we studied is a subcase
of type 1.

We now need to express ¢ and ¢ in terms of fluid-type
variables. For type 1 theories, we find from [39] that the
background energy density and pressure are given by

poe =—K  Ppg=—F (52)

where we have introduced the function
K(Y, ) =2YFy—F (53)

which will come in handy below (and also for type 2).
Furthermore, the perturbed variables of interest are [39]

ZK K,
Opg = ——Y5Z + ?440’ Opp = g (54)
¢
bIF, — 2K
CZ — C% + _¢[ (/) _ C.S (/)] , (55)
3(ppE + Ppp)H — O
F
2 Y
_ oy —0, 56
G=F, H (56)

_ 0k
=5
above (and since also y = 0), says that if F ¢ = 0 then the
scalar field perturbations are adiabatic.

To express ¢ and ¢ in terms of fluid-type variables we
invert the relations (56) to get

where K, = 2% and similarly for F. The expression for c2,

K ak
67 = — == bpg — =2 Ops,

— POpp. (57
7Ky Ky @ = ¢pOpg ( )

which are valid for adiabatic and nonadiabatic perturbations.
Let us now calculate the sought-after coefficients. Using

a6Z = U — ¢ and (57) we find
T+w 25 (1 + w)K

="+ ¢9DE7 (58)

ASNERSE
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so that (51) gives the required coefficients as

0c3
1 2 6 3 1+W
Q, CZI_{ =
Ay = Ag=0| W0
4 =0 s =0 o (Lt wE
BS - Q Bi;éS - 0 (59)

For the case where a4 = 8, is a constant and furthermore
F(Y,p) =Y + V(¢) we recover the coefficients for the
coupled quintessence model discussed above, which is in
fact a subcase of a type 1 model of coupled dark energy.

C. Type 2 theory of DM coupled to DE
Type 2 models are classified via [39]
F(Y.$) + f(n.Z), (60)

with f = nh(Z) in the case that the scalar field is coupled to
CDM. The coupling current in this case is [39]

L(n,Y,Z,¢) =

Jy =V, (ppu )V, (61)
where f(Z) is the function

hy
h—Zh,

B(Z) = (62)

and h; = % (and the same when Z is used as a subscript
for ). Let us first note that the relations for the fluid
variables given by (56) are still valid for the case of type 2
theory and the function K is still defined via (53).

In order to proceed further we need the function Q which
at first glance using (61) is given by

Using (8) to eliminate the terms p, and 7 we find

Z, -
br s

= = 64
0=1.7 5P (64)
where Z is determined from Eq. (70) of [39] as
. 3ZF/H+dK,
g 2oyt aky (65)
KY _ /)uﬂ_Z
1+2p

The perturbative variables ¢ and S are also found
from (61). First, S is easily calculated as

S =00, (66)

while ¢ is found to be from (61) as
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q= QU+ Z{ (8 = V20, = 30)p.p + porOZ
+ [(/_)c + 3Hﬁc)ﬂ +.5c/}ZZ] [66 - \Ij}

However, using (63) as well as (30) in order to eliminate 5C
the expression for g simplifies to

Zpz

q = 06, +Q +a’Z[1+Zﬂ

] 5.26Z.  (68)

What remains is now to eliminate 5Z. This can be done
using the perturbative version of Eq. (70) of [39] which
gives

57 . _d By 1
——\I’+{|:ZKyy+p—< —):|_ —
K ¢ W
7 dZ\1+7Zp)| Ky — 1P+ZZ/3
3K H + Kyyd 3ZF
_’_/—Y%f(p —Y((p + HD)
Z |:3FY¢HZ$__ (,121_({/)(/)_— FYV aKYEb j| 0¢
pcﬁZ
NR ¥ A—— 69
T+ ZPKy b (©9)

Using (69) and (57) into (68) we may now determine the
coefficients. They are

L ____ZFy
A1 =4 =0, A2—62FYH+zai<¢
2 Bz >
Ax = S _ ZK —1
3 <1+w><1<y—ff’zzﬂ>{Q{ K (1+Zﬂ
g ,—(”} _plQ + Z(3KyH + 1'<Y¢<?5>J}
1+ 28
(1+Zp)Ky
A4: = = —
(1+Zp)Ky — p.pz
= ﬁcﬂZ ZI_(YY
A = = aK Ql:-— = — =
5 KY—{’L%{ "CZR,0 + 28) Ky
4 7p, +chﬂz(3KYH+KY¢¢) aky
dz \1+2p 1+2p Ky
Zz/_’cﬁz(3FY¢H<?’_”2i{¢¢ _FYV ) 5
- 1+ 2p +QZ&KY¢}
B5 = Q Bi;ﬁ5 — 0 (70)
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D. Type 3 theory of DM coupled to DE

Type 3 models are classified via

L(n,Y,Z,§)=F(Y,Z,¢) + f(n). (71)

The coupling current in this case is [39]
J, = AXNpp + F,N3Z + ZF 7'V ug},  (72)
where X =V, (F,u"). A straightforward calculation gives
0=q=0 (73)
(although there can be second order corrections to J;). This
means that the type 3 case provides for a pure momentum
transfer coupling up to linear order in perturbation theory.

To proceed to the coefficients we need S which is found
to be

L s o __ . 1. _

(74)
where the background value of X is
X :é[(ZFZY - FZZ)Z_FZ¢$_3HFZ]- (75)
We eliminate the 6, term using (30) to get
s— I_%L Ko — (X p+F,2)0. + F,57),  (76)

Pe
where to remind the reader 6Z = —1 (¢ — 475\11) Now we
need to express ¢ and ¢ in terms of the fluid variables.
From [39] we find
pDE:ZZFY_ZFz+F PDE:_F (77)

for the background variables while

8ppe = Z[Fy — Z*Fyy +2ZFy; — F 7,67

+ [Z*Fyy — ZF 74 + F o, (78)
F
_y(/) + FZQC
Op =4 2°¢ 80
DE = F _ ZFy (80)

for the perturbations. For completeness, the adiabatic sound
speed is
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2 3H(Zfiy - Fz) j_a[F(p + Z_ZFY(/) — ZF 4]
¢ 3HZ(Fy +2ZFy; — Z*Fyy — Fz)
ClF¢
3H(ZFy — F)

(81)

while the effective sound speed c? is

P 2y —F (82)
S Z(Fy 4+ 2ZFy; — Fz; — Z2Fyy)’

and the relative entropy parameter is

_3F,

H=7F, (¢§ = c2)(Poe + Ppe)H. (83)

Clearly if Fy =0 then the perturbations are adiabatic,
ie. c2=c2and u =0 (so that Ilpg = c25pg).
We can now proceed to find the coefficients.

Equations (78) and (80) can be inverted to give

F ZF 27
57 = [_i_u] |:9DE+_ zZ ec} ialp S
F; Fy Poe + Ppe L+w
(84)
and
FZ — aFZ
=a|=—Z7)|0pg ——==0.. 85
@ a<FY )DE Fy ¢ ( )

We also need the equation for 7 which is found to be
[Eq. (75) in [39]]

. _ F
Z:—3HZ[C§+ il }

SH(ZFy — Fy)

The above equations are then inserted into (76) to give the
required coefficients as

BIIBZIB4:0

Ba — 177 szcg
’ 1214w
_(F, -\ - F
e G R |
| — 2z Fy aF; Fy
3HZF ;c?
By = —Bs + 22 7E (86)

It would seem tempting to try model the elastic scattering
model [33] discussed above (Sec. III A 3) into the type 3
class. However, this is in fact impossible. As we can easily
check, the elastic scattering model requires B3 = 0. Within
the type 3 class this is possible only if F is independent of Z
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(i.e. Fz = 0). This implies that B and By are also zero, in
other words, the model becomes completely uncoupled.
Hence, it is impossible to construct a model of elastic
scattering between CDM and DE within the type 3 class of
coupled dark energy.

IV. CONCLUSIONS

We presented the most general parametrization of
models of dark energy which is explicitly coupled to dark
matter using the parametrized post-Friedmannian frame-
work, and have shown that it is able to encapsulate a rich
variety of theories.

Starting from the linearized Einstein equations and using
the Bianchi identities we managed to express the mod-
ifications to GR coming from the dark sector coupling as a
collection of new terms containing the metric potentials and
their derivatives as well as the scalar modes of the two dark
sector components, i.e. the fluid variables of (generalized)
dark matter and dark energy. Of course, our formalism is
based on a few basic assumptions: the background cosmol-
ogy has a FRW solution, all field equations are at most
second order in time derivatives, and the field equations are
gauge invariant. Completing the parametrization we were
left with 24 free functions, but demanding gauge invariance
we derived four constraint equations which eliminated four
free functions.

Twenty free functions in our general parametrization is
certainly a big number, but by imposing certain well
motivated assumptions, for instance that the dark matter is
cold, that the dark energy is shearless and that the pressure
perturbation is not a dynamical quantity, we reduced the
number of free functions to 12. Furthermore, we showed that
only a handful of these functions are nonzero when one
considers known models. We demonstrated this by inves-
tigating a number of specific models in the literature, as well
as the classes of theories we constructed in [39]. It is useful
to note that, although our theories in [39] are derived from an
action, the PPF parametrization does not require knowledge
of the action, but only knowledge of the field equations.
This means that the PPF parametrization is a very useful tool
for phenomenological model building (see [42] for further
discussion in the context of modified gravity theories). The
full list of models we consider in this work is displayed in
Table II along with their coefficients.

Our type 1, 2 and 3 theories contain a fairly general
coupling function and hence they encapsulate many
different models. The parametrization coefficients for
these theories can depend, of course, on the chosen
coupling function and its derivatives, and other quantities
such as the background coupling Q, the background field
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energy density p,, the quintessence potential V(¢), the

speed of sound ¢2 etc. For type 1 theories there is only one
nonzero B coefficient and three nonzero A coefficients, for
type 2 there is one nonzero B coefficient and four nonzero
A coefficients, while for type 3 all A’s are automatically
zero and there are three nonzero B’s: different classes of
theories correspond to different nonzero functions. In
particular, from all the cases we studied, the coefficients
Ay, Ag, By, B, and B, were always zero. It would indeed be
very interesting to find models for which any of these
coefficients is nonzero.

It would also be interesting to consider the inverse
problem, i.e. given Q(¢) and a set of PPF coefficients A;
and B;, can we reconstruct the functions that appear in the
coupled dark energy Lagrangian for each of the type 1, 2
and 3 theories? For instance, what kinds of functions
correspond to constant PPF coefficients? Tackling the
inverse problem will help to reduce the free functions into
simple functional forms which are parametrized by a set of
constants and can make constraining such theories easier
and more efficient.

Another important question is how we can further
constrain the PPF functions? As discussed in [42], we
might expect to find that a subset of the PPF functions can
be very well constrained, while another subset cannot.
However, this might not pose a serious problem, as the
constraining power of a few PPF functions might be
sufficient to distinguish between theories. Tackling the
inverse problem will certainly help here as it can guide us
to which functional form of the PPF coefficients is the
most useful. The implementation of the PPF framework
presented here in numerical codes for the computation of
the cosmological effects of interacting dark energy could
provide an answer to these questions. We plan to inves-
tigate this in future work.
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