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We present the most general parametrization of models of dark energy in the form of a scalar field which
is explicitly coupled to dark matter. We follow and extend the parametrized post-Friedmannian approach,
previously applied to modified gravity theories, in order to include interacting dark energy. We demonstrate
its use through a number of worked examples and show how the initially large parameter space of
free functions can be significantly reduced and constrained to include only a few nonzero coefficients.
This paves the way for a model-independent approach to classify and test interacting dark energy theories.
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I. INTRODUCTION

In recent years, cosmological data from experiments
with exquisite precision (cosmic microwave background
measurements [1,2], Ia supernovae [3], baryon acoustic
oscillation surveys [4]) suggest that ∼96% of the matter/
energy content of our Universe is in the form of an exotic
dark sector. Approximately a quarter of the dark sector is
believed to be weakly interacting cold dark matter, while
roughly 70% is in the form of a dark energy component, a
substance with negative pressure responsible for the current
accelerated expansion of the Universe.
The best candidate for dark energy is the cosmological

constant Λ. The concordance model of cosmology, ΛCDM,
is currently the best fit to observations, but it comes along
with fundamental questions and problems. One of them is
the coincidence problem, which poses the question of why
the energy densities of the dark sector components are of the
same order today, when their cosmological evolution is very
different. A possible solution to the coincidence problem is a
coupling between the dark energy and the dark matter. The
introduction of an appropriate coupling does not violate
observational constraints, and it can change the background
evolution of the dark sector components in order to offer a
solution to the coincidence problem.
A plethora of such dark coupling models can be found in

the literature (see, e.g. [5–38]). In most of these models, the
choice of the coupling is purely phenomenological. In a
recent paper [39], we made further progress at the level of
construction of such models by identifying three separate

classes of models of dark energy in the form of a scalar
field ðϕÞ coupled to cold dark matter (CDM).
After constructing general models of exotic dark energy

or modified gravity and checking their mathematical and
physical viability (for example by identifying fundamental
problems like ghosts or strong coupling issues), one is
interested in testing them against the available data to see if
they might offer a viable alternative to ΛCDM.
Currently, there is a pressing need for fast and efficient

ways to rule out and constrain the large number of cosmo-
logicalmodels available—it would be practically impossible
to go through each and every one of them individually.
The parametrized post-Friedmannian (PPF) approach
offers such a framework and has been applied to modified
gravity theories [40–42] (see [43] for a recent overview). In
this work we apply the PPF approach to interacting dark
energy theories and demonstrate its use through a number
of worked examples. In Sec. II we go through the PPF
basic principles and general formalism, extending it to the
case of coupled dark matter/dark energy. In Sec. III we first
demonstrate how a few of the most well-known phenom-
enological models in the literature fit in to this formalism
and then we proceed to apply it to the general classes of
models we presented in [39]. We conclude in Sec. IV.

II. FORMALISM

A. Basic concepts

We start by writing the gravitational field equations of a
theory as

Gμν ¼ 8πGðTðSMÞ
μν þ TðGDMÞ

μν þ TðDEÞ
μν Þ; ð1Þ

where Gμν is the Einstein tensor of the metric gμν, T
ðSMÞ
μν is

the stress-energy tensor of the known forms of matter
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(baryons, photons, neutrinos, etc.) that are part of the

Standard Model of particle physics, TðGDMÞ
μν is the stress-

energy tensor of (generalized) dark matter and TðDEÞ
μν

represents the stress-energy tensor of all the unknown
modifications to the gravitational field equations that
generate the effect of dark energy. Such modifications
may be purely due to a dark energy fluid or perhaps due to a
modification of gravity. It may be shown that any kind of
modification of gravity can be put in the form (1) (see for
instance [40]). Let us also note that although we start with a
generalized dark matter which may have nonzero pressure
and nonzero shear [44], we shall later on specialize to the
CDM case where both of these quantities are zero.
The Bianchi identities tell us that the Einstein tensor is

divergenceless:

∇μGμ
ν ¼ 0; ð2Þ

which in turn implies that ∇μðTðSMÞμ
ν þ TðGDMÞμ

νþ
TðDEÞμ

νÞ ¼ 0. We assume that the Standard Model particles
do not explicitly couple to the dark sector so that
∇μTðSMÞμ

ν ¼ 0. This assumption is well justified by obser-
vations which strongly constrain such couplings [45].
Furthermore, a coupling of the evolving quintessence field
to baryons would lead to time varying constants of nature,
which are tightly constrained, see [46] and references
therein. This leaves us with ∇μðTðGDMÞμ

ν þ TðDEÞμ
νÞ ¼ 0

but neither part is assumed to be individually conserved.
Thus we have that

∇μTðGDMÞμ
ν ¼ Jν ¼ −∇μTðDEÞμ

ν ð3Þ
where the coupling current Jν represents the energy and
momentum exchange between the dark sector components.
In what follows we aim to parametrize the coupling

current Jν in terms of metric potentials and their derivatives
as well as the scalar modes that are part of the stress-energy
tensors of the two dark sector components. We shall do that
in such a way so that the resulting field equations contain at
most two time derivatives, or equivalently, each dark sector
component obeys two first order linearized field equations
on a Friedmann-Robertson-Walker (FRW) background
resulting from (3). We shall proceed by considering first a
FRW background spacetime and finding the relevant equa-
tions that describe the dark sector and then considering linear
perturbations about this background spacetime and see how
this affects the parametrization. Background variables will
be signified with an overbar (unless no confusion could
arise, e.g. the scale factor a is always a background variable)
while typically all perturbed tensors will be preceded by a δ.
For instance, we may split Jν into Jν ¼ J̄ν þ δJν.

B. FRW background

Consider a FRW background spacetime described by a
metric

ds2 ¼ a2ð−dτ2 þ γijdxidxjÞ ð4Þ

where a is the scale factor, τ is the conformal time and γij is
the spatial metric, assumed to be flat. The symmetries of
the spacetime impose that the only nonzero components
T̄μν are the energy density ρ̄ ¼ −T̄0

0 and the pressure P̄
such that T̄i

j ¼ P̄δij.
The generalized Einstein equations (1) for this ansatz

give

3H2 ¼ 8πGa2ðρ̄SM þ ρ̄GDM þ ρ̄DEÞ ð5Þ

and

H2 − 2
ä
a
¼ 8πGðP̄SM þ P̄GDM þ P̄DEÞ; ð6Þ

where H ¼ _a
a is the conformal Hubble parameter and dots

denote derivatives with respect to τ.
Turning now to the coupling current Jν, the symmetries

of the spacetime impose that the only nonzero component is

Q≡ J̄0 ð7Þ

while J̄i ¼ 0. The function QðτÞ is the background cou-
pling function which is for our purposes a phenomeno-
logically free function. Specific models of a coupled dark
sector will in general result to specific choices ofQðτÞ (see,
for example, [5,25], which are two models we present and
parametrize in Sec. III).
The ν ¼ 0 component of (3) gives the field equations for

the evolution of a particular component indexed by I as

_̄ρI þ 3Hρ̄Ið1þ wIÞ ¼ sIQ; ð8Þ

where we have defined the equation of state parameter for
each I-component as wI ≡ P̄I=ρ̄I and the constant sI takes
the values

sI ¼

8>><
>>:

1 DE

0 SM fields

−1 GDM

: ð9Þ

C. Linear perturbations

1. The perturbed variables

We now turn to linear perturbations about the FRW
background. We shall consider only scalar modes. The
spacetime metric takes the form

ds2 ¼ −a2ð1þ 2ΨÞdt2 − 2a2∇iζdtdxi

þ a2
��

1þ 1

3
h

�
γij þDijν

�
dxidxj; ð10Þ
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where Ψ, ζ, h and ν are four functions of time and space
(four scalar modes) and

Dij ¼ ∇i∇j − 1

3
γij∇2 ð11Þ

is a derivative operator that projects out the longitudinal,
traceless, spatial part of the perturbation.
Let us now consider the perturbed variables of the fluids.

These are the density contrast δ≡ δρ=ρ̄, the scalar mode of
the momentum, θ, such that ui ¼ a∇iθ, the dimensionless
pressure perturbation Π≡ δP=ρ̄ such that δTi

j ¼ Πρ̄δij and
the scalar mode of the shear Σ such that the shear tensor is
Σij ¼ DijΣ. Putting it all together, the stress-energy tensor
components for a fluid are

T0
0 ¼ −ρ̄ð1þ δÞ; ð12Þ

T0
i ¼ −ðρ̄þ P̄Þ ~∇iθ; ð13Þ

Ti
0 ¼ ðρ̄þ P̄Þ ~∇iðθ − ζÞ; ð14Þ

Ti
j ¼ ρ̄ðwþ ΠÞδij þ ðρ̄þ P̄ÞDi

jΣ: ð15Þ

2. Einstein and fluid equations

The perturbed Einstein equations (1) are

Hð _hþ 2 ~∇2
ζÞ − 6H2Ψþ 2 ~∇2

η ¼ 8πGa2
X
I

ρ̄IδI; ð16aÞ

2_ηþ 2HΨ ¼ 8πGa2
X
I

ðρ̄I þ P̄IÞθI; ð16bÞ

− ḧ − 2H _hþ 6H _Ψþ 6ðH2 þ 2 _HÞΨ
− ~∇2ð2η − 2Ψþ 2_ζ þ 4HζÞ
¼ 24πGa2

X
I

ρ̄IΠI ð16cÞ

and

1

2
ν̈þ _ζ þHð_νþ 2ζÞ þ η −Ψ

¼ 8πGa2
X
I

ðρ̄I þ P̄IÞΣI: ð16dÞ

Turning now to the fluid equations, they are obtained by
perturbing (3). To this purpose we define the two scalar
mode perturbations q and S by

q≡ δJ0 ~∇iS≡ δJi: ð17Þ

We find

_δI ¼ 3wIHδI þ ð1þ wIÞ
�
~∇2
θI − 1

2
_h − ~∇2

ζ

�

− 3HΠI þ
sI
ρ̄I

½q −QδI�; ð18aÞ

and

_θI ¼ −
�
Hð1 − 3wIÞ þ

_wI

1þ wI

�
θI þ

ΠI

1þ wI

þ 2

3
~∇2ΣI þΨþ sI

ρ̄I

�
S

1þ wI
−QθI

�
: ð18bÞ

where the index I runs over all species (and once again let
us recall that sDE ¼ 1 ¼ −sGDM while sI ¼ 0 for all other
species).

D. Dark coupling parametrization

The goal of this article is to parametrize both of the two
perturbation variables q and S as linear combinations of all
other perturbations, such as the fluid variables δ, θ, Π and
Σ for each fluid, as well as the metric variables Ψ, ζ, h and
ν. This means 12 variables in total for both q and S.
However, this linear combination is not entirely arbitrary,
but must obey certain rules regarding gauge transforma-
tions. As we shall see, this reduces the number of effective
independent variables to ten for both q and S. Before
proceeding to the parametrization, let us briefly discuss
gauge transformations.

1. Gauge transformations

The metric in (10) is in a form which is not gauge fixed.
In other words the four scalar modes are not invariant under

gauge transformations δgμν → δgμν þ L
ξ
ḡμν generated by

a vector field ξμ. Parametrized as ξμ ¼ 1
a ðξT; ~∇i

ξLÞ for two
scalar modes ξT and ξL the gauge transformations of the
metric and fluid perturbations will involve combinations of
ξT and ξL and their first time derivatives.
Consider first the variables q and S. We find that they

transform as

q → qþ 1

a
½Q_ξT þ ð _Q −HQÞξT � ð19aÞ

and

S → Sþ 1

a
QξT; ð19bÞ

respectively. Thus if we write q and S as a linear
combination of the metric and fluid variables, variables
which involve ξL in their transformation must combine
together so that ξL does not appear overall in the trans-
formation of the entire linear combination.
Now the fluid variables transform only with the gauge

variable ξT , i.e. as (dropping the obvious I indices)
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δ → δ − 1

a

�
3Hð1þ wÞ − s

Q
ρ̄

�
ξT; ð20aÞ

θ → θ þ 1

a
ξT; ð20bÞ

Π → Πþ 1

a

�
_w − 3Hð1þ wÞwþ sw

Q
ρ̄

�
ξT; ð20cÞ

while Σ is gauge invariant, hence, all four of them are
allowed to appear in the q and S parametrization.
However, the metric variables involve ξL in their trans-

formation. This means that the metric variables must
combine together so that ξL is eliminated altogether.
Following [40] we can find three linear combinations of
the metric perturbations and their first time derivatives
which transform only with the gauge variable ξT . These are
U≡ h − ∇2ν and V ≡ _νþ 2ζ as well as _hþ 2∇2ζ. The
latter one is not independent but is equal to _U þ∇2V.
Thus out of the four metric scalar modes, we are left
with two combinations, namely U and V, which transform
exclusively with ξT and Ψ which transforms with _ξT .
Explicitly, the transformations are

U → U þ 6

a
HξT; ð21aÞ

V → V þ 2

a
ξT; ð21bÞ

Ψ → Ψþ
_ξT
a
: ð21cÞ

Since q and Ψ contain _ξT in their transformation, we must
allow a further metric variable combination which does so,
but which does not have higher than second time deriv-
atives. The only possibility is the variable _U.
To summarize, we expect that both q and S can be

written as linear combinations of the four fluid variables
(for each fluid) plus the four variables U, V, Ψ and _U.

2. Completing the parametrization

Following the discussion above, we start from the
parametrization

q ¼ C1Ψþ C2V þ A1U þ A2
_U þ A3δDE þ A4δGDM

þ A5θDE þ A6θGDM þ A7ΠDE þ A8ΠGDM

þ A9ΣDE þ A10ΣGDM ð22Þ

and

S ¼ C3Ψþ C4V þ B1U þ B2
_U þ B3δDE þ B4δGDM

þ B5θDE þ B6θGDM þ B7ΠDE þ B8ΠGDM

þ B9ΣDE þ B10ΣGDM: ð23Þ

Performing the gauge transformations in (22) we find two
constraint equations, namely

C1 ¼ Q − 6HA2 ð24aÞ

and

2C2 ¼ _Q−HQ−6HA1þ6ðH2− _HÞA2−
_̄ρDE
ρ̄DE

A3

−
_̄ρGDM
ρ̄GDM

A4−A5−A6−
_̄PDE

ρ̄DE
A7−

_̄PGDM

ρ̄GDM
A8: ð24bÞ

Likewise, performing the gauge transformations in (23) we
find two further constraint equations, namely

C3 ¼ −6B2H ð24cÞ

and

2C4¼Q−6HB1þ6ðH2− _HÞB2−
_̄ρDE
ρ̄DE

B3

−
_̄ρGDM
ρ̄GDM

B4−B5−B6−
_̄PDE

ρ̄DE
B7−

_̄PGDM

ρ̄GDM
B8: ð24dÞ

The two constraints (24a) and (24b) are then used to
eliminate C1 and C2 from (22) while the two constraints
(24c) and (24d) are used to eliminate C3 and C4 from (23).
The remaining perturbations are written in terms of the
gauge-invariant variables listed in Table I by combining
them with V. The result is

q ¼ 1

2
ð _Q −HQÞV þQΨ − 6A1Φ̂ − 6A2Γ̂

þ A3δ̂DE þ A4δ̂GDM þ A5θ̂DE þ A6θ̂GDM

þ A7Π̂DE þ A8Π̂GDM þ A9ΣDE þ A10ΣGDM ð25Þ

and

TABLE I. Gauge-invariant variables.

Φ̂≡− 1
6
U þ 1

2
HV

Ψ̂≡Ψ − 1
2
_V − 1

2
HV

Γ̂≡− 1
6
_U þHΨþ 1

2
ð _H −H2ÞV ¼ _̂ΦþHΨ̂

δ̂≡ δ − 1
2

_̄ρ
ρ̄V

θ̂≡ θ − 1
2
V

Π̂≡ Π − _̄P
ρ̄ V
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S ¼ 1

2
QV − 6B1Φ̂ − 6B2Γ̂þ B3δ̂DE þ B4δ̂GDM

þ B5θ̂DE þ B6θ̂GDM þ B7Π̂DE þ B8Π̂GDM

þ B9ΣDE þ B10ΣGDM: ð26Þ

Hence, we are left with 20 free functions in total.

3. Special case: Cold dark matter

From now on we will assume that the dark matter fluid is
completely cold. This automatically means that wGDM ¼
ΠGDM ¼ ΣGDM ¼ 0. We shall further make the assumption
that the dark energy fluid has no shear, i.e. ΣDE ¼ 0.
Furthermore, since there is no possibility of confusion we
shall set wDE ¼ w.
In general, the pressure perturbation ΠDE would be an

independent dynamical degree of freedom (see [47] for
an explicit model). However, there are many instances
where ΠDE is expressed in terms of δDE and θDE via
equations of state such as the generalized dark matter
model [44]. As in [44] we shall also assume that the
pressure perturbation ΠDE is expressed in terms of
δDE and θDE via equations of state. However, the usual
expression in [44] no longer holds, as it does not
transform correctly under gauge transformations. An
expression which does is

ΠDE ¼ c2sδDE þ ðc2s − c2aÞ
�
3ð1þ wÞH − Q

ρ̄DE

�
θDE

þ μðθc − θDEÞ ð27Þ

where c2s and c2a are the (gauge-invariant) effective and
adiabatic speeds of sound respectively. It may be shown
that the divergence of the entropy flux is proportional to
ΠDE − c2aδDE [48], hence, the gauge-invariant “relative
entropy” parameter μ measures entropy transfer to dark
energy (DE) due to its motion relative to the CDM fluid.
The adiabatic speed of sound is fixed by the equation of
state w via

c2a ¼ wþ _w
Q
ρ̄DE

− 3Hð1þ wÞ : ð28Þ

Hence, without loss of generality, we may further set A7

and B7 to zero. With these choices, the number of free
functions is reduced to 12.
We shall further assume the conformal Newtonian gauge

for which ζ ¼ ν ¼ 0 (so that V ¼ 0). With this choice, the
gauge-invariant variables we have defined in Table I are
equal to the conformal Newtonian gauge variables.
Let us now restate the parametrization as well as the

necessary evolution equations. The two parameters q and S
are given by

q ¼ QΨ − 6A1Φ − 6A2ð _ΦþHΨÞ þ A3δDE

þ A4δc þ A5θDE þ A6θc ð29aÞ

and

S ¼ −6B1Φ − 6B2ð _ΦþHΨÞ þ B3δDE

þ B4δc þ B5θDE þ B6θc ð29bÞ

for unknown functions Ai and Bi with i ∈ 1…6.
The evolution equations for CDM are

_δc ¼ ~∇2
θc þ 3 _Φþ 1

ρ̄c
ðQδc − qÞ; ð30aÞ

and

_θc ¼ −Hθc þΨþ 1

ρ̄c
ðQθc − SÞ; ð30bÞ

while the evolution equations for DE are

_δDE ¼ 3wHδDE þ ð1þ wÞ½ ~∇2
θDE þ 3 _Φ�

− 3HΠDE þ
1

ρ̄DE
½q −QδDE�; ð31aÞ

and

_θDE ¼ −
�
Hð1 − 3wÞ þ _w

1þ w

�
θDE þ

ΠDE

1þ w

þΨþ 1

ρ̄DE

�
S

1þ w
−QθDE

�
: ð31bÞ

In the following section we are going to investigate
the underlying space of models of coupled DM to DE, and
show how we can construct a “dictionary” of interacting
dark energy theories and their PPF correspondences.
The same method was applied to modified gravity theories
in [42].

III. WORKED EXAMPLES

As a “warm-up” exercise, we are first going to demon-
strate the use of our PPF formalism for interacting dark
energy theories by showing that the functions Ai and Bi are
severely constrained when one considers specific models
which appear often in the literature. These are the “coupled
quintessence” model [5], a model where Jμ ∝ uμ [25,49]
and the elastic scattering of model of dark matter and dark
energy [33,50]. In Table II one can see the list of the models
we consider with their coefficients displayed.
Following that, we consider the parametrization of the

general classes of coupled theories we constructed in [39].
More specifically, in [39] we presented three distinct types
of models of dark energy in the form of a scalar field
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explicitly coupled to dark matter. We used the pull-back
formalism for fluids and generalized the standard fluid
action in order to include a dark coupling. The general
functional form for the combined dark energy and dark
matter Lagrangian we considered is

L ¼ Lðn; Y; Z;ϕÞ; ð32Þ

where n is the fluid number density, Y ¼ 1
2
∇μϕ∇μϕ, and

Z ¼ uμ∇μϕ. As an example, within general relativity (GR),
a quintessence field and an uncoupled fluid is described by
the Lagrangian L ¼ Y þ VðϕÞ þ fðnÞ.
We then considered three distinct ways to reduce the

general function (32) giving rise to the three types of
coupled models which we now want to parametrize. These
are the type 1 models where L ¼ FðY;ϕÞ þ fðn;ϕÞ [the
coupled quintessence model [5] is a subcase of type 1
with the choice F ¼ Y þ VðϕÞ and f ¼ neβAϕ], the type 2
models where L ¼ FðY;ϕÞ þ fðn; ZÞ and the type 3
models where L ¼ FðY; Z;ϕÞ þ fðnÞ.

A. Specific models

1. Coupled quintessence

Let us start with the coupled quintessence (CQ) model
suggested by Amendola [5], which is a specific subcase of
the type 1 class of models we presented in [39]. The scalar
field action for this model is

S ¼ −
Z

d4x
ffiffiffiffiffiffi−gp �

1

2
gμν∂μϕ∂νϕþ VðϕÞ

�
; ð33Þ

where VðϕÞ is the quintessence potential. If a constant
coupling parameter βA is assumed, the coupling current Jμ
is found to be (see [39] for details)

Jμ ¼ −βAρc∇μϕ: ð34Þ

Writing the scalar field as ϕ ¼ ϕ̄þ φ for a background field
ϕ̄ and perturbation φ, the components of the stress-energy
tensor for this model are (using expressions from [39])

ρ̄DE ¼ 1

2a2
_̄ϕ
2 þ V P̄DE ¼ 1

2a2
_̄ϕ
2 − V; ð35Þ

c2a ¼ 1þ 2 _̄ϕVϕ

3 ϕ̄2

a2 H −Q
Q ¼ −βAρ̄c _̄ϕ ð36Þ

for the background, where Vϕ ≡ dV
dϕ, and

δρDE ¼
_̄ϕ

a2
ð _φ − _̄ϕΨÞ þ Vϕφ;

θDE ¼ φ
_̄ϕ
; ð37Þ

δPDE ¼
_̄ϕ

a2
ð _φ − _̄ϕΨÞ − Vϕφ; c2s ¼ 1; μ ¼ 0

ð38Þ

for the perturbations. The required coupling parameters are
found to be

q ¼ Q

�
δc þ

_φ
_̄ϕ

�
; ð39Þ

S ¼ Q
φ
_̄ϕ
: ð40Þ

Now we read off the coefficients. They are

A1 ¼ A2 ¼ A6 ¼ 0 A3 ¼
Q

1þ w

A4 ¼ Q A5 ¼ βAρ̄ca2Vϕ

B5 ¼ Q Bi≠5 ¼ 0: ð41Þ

TABLE II. Specific models and their PPF coefficients. The coupled quintessence model is a subcase of type 1 with αϕ ¼ βA. The
elastic scattering model is in fact distinct from type 3 (see text at the end of Sec. III D). For the coefficients A2, A3, A4 and A5 in the case
of type 2 see (70). For the coefficients B3 and A5 in the case of type 3 see (86). For the remaining functions the reader is referred to each
specific example in the text.

Model/coefficients Q A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6

Coupled quintessence −βAρ̄c _̄ϕ � � � � � � Q
1þw

Q βAρ̄ca2Vϕ � � � � � � � � � � � � � � � Q � � �
Jμ ∝ uμ aΓintρ̄c � � � � � � � � � Q � � � � � � � � � � � � � � � � � � � � � Q
Elastic scattering � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � −ρ̄DEð1þ wÞanDσD −B5

Type 1 −ρ̄cαϕ _̄ϕ � � � � � � Qc2s
1þw

Q
Q
h
αϕϕ
αϕ

− c2s
_̄ϕK̄ϕ

ð1þwÞK̄
i � � � � � � � � � � � � � � � Q � � �

Type 2 Z̄βZ ρ̄c
1þZ̄β

_̄Z � � � A2 A3 A4 A5 � � � � � � � � � � � � � � � Q � � �
Type 3 � � � � � � � � � � � � � � � � � � � � � � � � � � � B3 � � � B5 −B5 þ 3HZ̄FZc2s

1−Z̄F̄Z
ρ̄c
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2. Model with Jμ ∝ uμ
In this model, which was introduced in [25] and [49],

the energy-momentum transfer vector Jμ is parallel to the
dark matter 4-velocity uμ. In our notation we have uμ ¼
að1þΨ;∇θcÞ and

Jμ ¼ Γintρ̄cð1þ δcÞuμ; ð42Þ

with Γint being a local constant interaction rate. The
background coupling function is

Q ¼ aΓintρ̄c ð43Þ

while the perturbative coupling parameters q and S are

q ¼ Qðδc þΨÞ and S ¼ Qθc: ð44Þ

In comparison with our general parametrization scheme,
we find that the only nonzero coefficients are

A4 ¼ B6 ¼ Q: ð45Þ

3. Elastic scattering of dark matter and dark energy

This model was introduced in [33] and it considered an
elastic interaction between dark energy and dark matter.
It is a pure momentum transfer model and its background
cosmology remains unaltered. In our language, this
model has

Q ¼ 0 ð46Þ

in the background while

q ¼ 0 S ¼ ðρ̄DE þ P̄DEÞanDσDðθc − θDEÞ; ð47Þ

at the level of the perturbations, with nD being the proper
number density of dark matter particles and σD the
scattering cross section between dark matter and dark
energy (also note that w ¼ const and c2s ¼ 1 in this model)
[33]. We therefore find that the only nonzero coefficients
are

B5 ¼ −ðρ̄DE þ P̄DEÞanDσD ¼ −B6: ð48Þ

Now we turn our attention to the three general types of
models in [39].

B. Type 1 theory of DM coupled to DE

Type 1 models are classified in [39] via

Lðn; Y; Z;ϕÞ ¼ FðY;ϕÞ þ fðn;ϕÞ: ð49Þ
For the case where the dark matter is CDM we further have
fðn;ϕÞ ¼ neαðϕÞ where αðϕÞ is a free function of the
field ϕ.

From [39] we have that the coupling current is

Jμ ¼ −ρcαϕ∇μϕ ð50Þ
so that

Q ¼ −ρ̄cαϕ _̄ϕ
q ¼ Q

�
δc þ

_φ
_̄ϕ

�
− ρ̄cαϕϕφ

S ¼ Q
φ
_̄ϕ

ð51Þ

where αϕ ≡ dα
dϕ and αϕϕ ≡ d2α

dϕ2. Note that the expression for
S agrees with the one we recovered previously, Eq. (40),
and the expression for q agrees with Eq. (39) if αϕϕ ¼ 0.
This is expected, as the CQ model we studied is a subcase
of type 1.
We now need to express φ and _φ in terms of fluid-type

variables. For type 1 theories, we find from [39] that the
background energy density and pressure are given by

ρ̄DE ¼ −K̄ P̄DE ¼ −F̄ ð52Þ
where we have introduced the function

KðY;ϕÞ ¼ 2YFY − F ð53Þ

which will come in handy below (and also for type 2).
Furthermore, the perturbed variables of interest are [39]

δDE ¼ − Z̄K̄Y

K̄
δZ þ K̄ϕ

K̄
φ; θDE ¼ φ

_̄ϕ
; ð54Þ

c2a ¼ c2s þ
_̄ϕ½F̄ϕ − c2sK̄ϕ�

3ðρ̄DE þ P̄DEÞH −Q
; ð55Þ

c2s ¼
F̄Y

K̄Y
; μ ¼ 0; ð56Þ

where K̄ϕ ≡ ∂K̄
∂ϕ and similarly for F̄. The expression for c2a,

above (and since also μ ¼ 0), says that if F̄ϕ ¼ 0 then the
scalar field perturbations are adiabatic.
To express φ and _φ in terms of fluid-type variables we

invert the relations (56) to get

δZ ¼ − K̄
Z̄K̄Y

δDE − aK̄ϕ

K̄Y
θDE; φ ¼ _̄ϕθDE; ð57Þ

which are valid for adiabatic and nonadiabatic perturbations.
Let us now calculate the sought-after coefficients. Using

aδZ ¼ _̄ϕΨ − _φ and (57) we find

_φ
_̄ϕ
¼ Ψþ c2s

1þ w
δDE − c2sK̄ϕ

ð1þ wÞK
_̄ϕθDE; ð58Þ
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so that (51) gives the required coefficients as

A1 ¼ A2 ¼ A6 ¼ 0 A3 ¼
Qc2s
1þ w

A4 ¼ Q A5 ¼ Q

�
αϕϕ
αϕ

− c2sK̄ϕ

ð1þ wÞK̄
_̄ϕ

�

B5 ¼ Q Bi≠5 ¼ 0: ð59Þ

For the case where αϕ ¼ βA is a constant and furthermore
FðY;ϕÞ ¼ Y þ VðϕÞ we recover the coefficients for the
coupled quintessence model discussed above, which is in
fact a subcase of a type 1 model of coupled dark energy.

C. Type 2 theory of DM coupled to DE

Type 2 models are classified via [39]

Lðn; Y; Z;ϕÞ ¼ FðY;ϕÞ þ fðn; ZÞ; ð60Þ
with f ¼ nhðZÞ in the case that the scalar field is coupled to
CDM. The coupling current in this case is [39]

Jμ ¼ ∇νðρcβuνÞ∇μϕ ð61Þ

where βðZÞ is the function

βðZÞ ¼ hZ
h − ZhZ

; ð62Þ

and hZ ¼ dh
dZ (and the same when Z is used as a subscript

for β). Let us first note that the relations for the fluid
variables given by (56) are still valid for the case of type 2
theory and the function K is still defined via (53).
In order to proceed further we need the functionQwhich

at first glance using (61) is given by

Q ¼ Z̄½ð _̄ρc þ 3Hρ̄cÞβ þ ρ̄cβZ
_̄Z�: ð63Þ

Using (8) to eliminate the terms _̄ρc and _̄Z we find

Q ¼ Z̄βZ
1þ Z̄β

ρ̄c
_̄Z ð64Þ

where _̄Z is determined from Eq. (70) of [39] as

_̄Z ¼ − 3Z̄F̄YHþ aK̄ϕ

K̄Y − ρ̄cβZ
1þZ̄β

: ð65Þ

The perturbative variables q and S are also found
from (61). First, S is easily calculated as

S ¼ Qθϕ ð66Þ

while q is found to be from (61) as

q ¼ QΨþ Z̄

�
ð_δc − ~∇2

θc − 3 _ΦÞρ̄cβ þ ρ̄cβZ _δZ

þ ½ð _̄ρc þ 3Hρ̄cÞβ þ ρ̄cβZ
_̄Z�½δc −Ψ�

þ
�
ð _̄ρc þ 3Hρ̄cÞβZ þ ρ̄cβZZ

_̄Z þ Q
Z̄2

�
δZ

�
: ð67Þ

However, using (63) as well as (30) in order to eliminate _δc
the expression for q simplifies to

q ¼ Qδc þQ
_δZ
_̄Z
þ d
dZ

�
Z̄βZ

1þ Z̄β

�
ρ̄c

_̄ZδZ: ð68Þ

What remains is now to eliminate _δZ. This can be done
using the perturbative version of Eq. (70) of [39] which
gives

_δZ
_̄Z
¼ Ψþ

��
Z̄K̄YY þ ρ̄c

d
dZ

�
βZ

1þ Z̄β

��
1

K̄Y − ρ̄cβZ
1þZ̄β

þ 3K̄YHþ K̄Yϕ
_̄ϕ

3Z̄F̄YHþ aK̄ϕ

�
δZ − 3Z̄F̄Y

3Z̄F̄YHþ aK̄ϕ
ð _ΦþHΨÞ

þ Z̄

�
3F̄YϕH

_̄ϕ − a2K̄ϕϕ − F̄Y
~∇2

3Z̄F̄YHþ aK̄ϕ
þ aK̄Yϕ

K̄Y − ρ̄cβZ
1þZ̄β

�
θϕ

þ ρ̄cβZ
ð1þ Z̄βÞK̄Y − ρ̄cβZ

δc: ð69Þ

Using (69) and (57) into (68) we may now determine the
coefficients. They are

A1 ¼ A6 ¼ 0; A2 ¼
Z̄F̄Y

6Z̄F̄YHþ 2aK̄ϕ
Q

A3 ¼
c2s

ð1þ wÞðK̄Y − ρ̄cβZ
1þZ̄βÞ

�
Q

�
Z̄K̄Y

d
dZ

ln

�
Z̄βZ

1þ Zβ

�

þ Z̄2K̄YY

�
− ρ̄cβZ½Qþ Z̄2ð3K̄YHþ K̄Yϕ

_̄ϕÞ�
1þ Z̄β

�

A4 ¼
ð1þ Z̄βÞK̄Y

ð1þ Z̄βÞK̄Y − ρ̄cβZ
Q

A5 ¼
1

K̄Y − ρ̄cβZ
1þZ̄β

�
aK̄ϕQ

�
ρ̄cβZ

Z̄K̄Yð1þ Z̄βÞ −
Z̄K̄YY

K̄Y

−
d
dZ

ln

�
Z̄βZ

1þ Zβ

��
þ Z̄ρ̄cβZð3K̄YHþ K̄Yϕ

_̄ϕÞ
1þ Z̄β

aK̄ϕ

K̄Y

−
Z̄2ρ̄cβZð3F̄YϕH

_̄ϕ − a2K̄ϕϕ − F̄Y
~∇2Þ

1þ Z̄β
þQZ̄aK̄Yϕ

�

B5 ¼ Q Bi≠5 ¼ 0: ð70Þ
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D. Type 3 theory of DM coupled to DE

Type 3 models are classified via

Lðn; Y; Z;ϕÞ ¼ FðY; Z;ϕÞ þ fðnÞ: ð71Þ

The coupling current in this case is [39]

Jν ¼ qβνfX∇βϕþ FZ∇βZ þ ZFZuμ∇μuβg; ð72Þ

where X ≡∇μðFZuμÞ. A straightforward calculation gives

Q ¼ q ¼ 0 ð73Þ

(although there can be second order corrections to J0). This
means that the type 3 case provides for a pure momentum
transfer coupling up to linear order in perturbation theory.
To proceed to the coefficients we need S which is found

to be

S ¼ −ðX̄ _̄ϕþF̄Z
_̄Z þ Z̄F̄ZHÞθc − Z̄F̄Z

_θc − 1

a
F̄Z _φþ X̄φ

ð74Þ

where the background value of X is

X̄ ¼ 1

a
½ðZ̄F̄ZY − F̄ZZÞ _̄Z − F̄Zϕ

_̄ϕ − 3HF̄Z�: ð75Þ

We eliminate the _θc term using (30) to get

S ¼ 1

1 − Z̄F̄Z
ρ̄c

½X̄φ − ðX̄ _̄ϕþF̄Z
_̄ZÞθc þ F̄ZδZ�; ð76Þ

where to remind the reader δZ ¼ − 1
a ð _φ − _̄ϕΨÞ. Now we

need to express φ and _φ in terms of the fluid variables.
From [39] we find

ρ̄DE ¼ Z̄2FY − Z̄FZ þ F P̄DE ¼ −F ð77Þ

for the background variables while

δρ̄DE ¼ Z̄½FY − Z̄2FYY þ 2Z̄FYZ − FZZ�δZ
þ ½Z̄2FYϕ − Z̄FZϕ þ Fϕ�φ; ð78Þ

δP̄DE ¼ ðZ̄FY − FZÞδZ − Fϕφ; ð79Þ

θDE ¼
FY
a φþ FZθc
FZ − Z̄FY

ð80Þ

for the perturbations. For completeness, the adiabatic sound
speed is

c2a ¼
3HðZ̄FY − FZÞ − a½Fϕ þ Z̄2FYϕ − Z̄FZϕ�

3HZ̄ðF̄Y þ 2Z̄F̄YZ − Z̄2F̄YY − FZZÞ
−

aFϕ

3HðZ̄F̄Y − F̄ZÞ
ð81Þ

while the effective sound speed c2s is

c2s ¼
Z̄F̄Y − F̄Z

Z̄ðF̄Y þ 2Z̄F̄YZ − F̄ZZ − Z̄2F̄YYÞ
; ð82Þ

and the relative entropy parameter is

μ ¼ 3FZ

Z̄F̄Y
ðc2s − c2aÞðρ̄DE þ P̄DEÞH: ð83Þ

Clearly if Fϕ ¼ 0 then the perturbations are adiabatic,
i.e. c2s ¼ c2a and μ ¼ 0 (so that ΠDE ¼ c2aδDE).
We can now proceed to find the coefficients.

Equations (78) and (80) can be inverted to give

δZ ¼
�
μ

F̄Z
− aFϕ

FY

��
θDE þ

Z̄FZ

ρ̄DE þ P̄DE
θc

�
þ c2sZ̄
1þ w

δDE

ð84Þ

and

φ ¼ a

�
F̄Z

F̄Y
− Z̄

�
θDE − aF̄Z

F̄Y
θc: ð85Þ

We also need the equation for _̄Z which is found to be
[Eq. (75) in [39]]

_̄Z ¼ −3HZ̄

�
c2a þ

aFϕ

3HðZ̄F̄Y − F̄ZÞ
�
:

The above equations are then inserted into (76) to give the
required coefficients as

B1 ¼ B2 ¼ B4 ¼ 0

B3 ¼
1

1 − Z̄F̄Z
ρ̄c

Z̄F̄Zc2s
1þ w

B5 ¼
a

1 − Z̄F̄Z
ρ̄c

�
X̄

�
F̄Z

F̄Y
− Z̄

�
þ F̄Z

�
μ

aF̄Z
− Fϕ

FY

��

B6 ¼ −B5 þ
3HZ̄FZc2s
1 − Z̄F̄Z

ρ̄c

: ð86Þ

It would seem tempting to try model the elastic scattering
model [33] discussed above (Sec. III A 3) into the type 3
class. However, this is in fact impossible. As we can easily
check, the elastic scattering model requires B3 ¼ 0. Within
the type 3 class this is possible only if F is independent of Z
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(i.e. FZ ¼ 0). This implies that B5 and B6 are also zero, in
other words, the model becomes completely uncoupled.
Hence, it is impossible to construct a model of elastic
scattering between CDM and DE within the type 3 class of
coupled dark energy.

IV. CONCLUSIONS

We presented the most general parametrization of
models of dark energy which is explicitly coupled to dark
matter using the parametrized post-Friedmannian frame-
work, and have shown that it is able to encapsulate a rich
variety of theories.
Starting from the linearized Einstein equations and using

the Bianchi identities we managed to express the mod-
ifications to GR coming from the dark sector coupling as a
collection of new terms containing the metric potentials and
their derivatives as well as the scalar modes of the two dark
sector components, i.e. the fluid variables of (generalized)
dark matter and dark energy. Of course, our formalism is
based on a few basic assumptions: the background cosmol-
ogy has a FRW solution, all field equations are at most
second order in time derivatives, and the field equations are
gauge invariant. Completing the parametrization we were
left with 24 free functions, but demanding gauge invariance
we derived four constraint equations which eliminated four
free functions.
Twenty free functions in our general parametrization is

certainly a big number, but by imposing certain well
motivated assumptions, for instance that the dark matter is
cold, that the dark energy is shearless and that the pressure
perturbation is not a dynamical quantity, we reduced the
number of free functions to 12. Furthermore, we showed that
only a handful of these functions are nonzero when one
considers known models. We demonstrated this by inves-
tigating a number of specific models in the literature, as well
as the classes of theories we constructed in [39]. It is useful
to note that, although our theories in [39] are derived from an
action, the PPF parametrization does not require knowledge
of the action, but only knowledge of the field equations.
This means that the PPF parametrization is a very useful tool
for phenomenological model building (see [42] for further
discussion in the context of modified gravity theories). The
full list of models we consider in this work is displayed in
Table II along with their coefficients.
Our type 1, 2 and 3 theories contain a fairly general

coupling function and hence they encapsulate many
different models. The parametrization coefficients for
these theories can depend, of course, on the chosen
coupling function and its derivatives, and other quantities
such as the background coupling Q, the background field

energy density ρ̄ϕ, the quintessence potential VðϕÞ, the
speed of sound c2s etc. For type 1 theories there is only one
nonzero B coefficient and three nonzero A coefficients, for
type 2 there is one nonzero B coefficient and four nonzero
A coefficients, while for type 3 all A’s are automatically
zero and there are three nonzero B’s: different classes of
theories correspond to different nonzero functions. In
particular, from all the cases we studied, the coefficients
A1, A6, B1, B2 and B4 were always zero. It would indeed be
very interesting to find models for which any of these
coefficients is nonzero.
It would also be interesting to consider the inverse

problem, i.e. given QðtÞ and a set of PPF coefficients Ai
and Bi, can we reconstruct the functions that appear in the
coupled dark energy Lagrangian for each of the type 1, 2
and 3 theories? For instance, what kinds of functions
correspond to constant PPF coefficients? Tackling the
inverse problem will help to reduce the free functions into
simple functional forms which are parametrized by a set of
constants and can make constraining such theories easier
and more efficient.
Another important question is how we can further

constrain the PPF functions? As discussed in [42], we
might expect to find that a subset of the PPF functions can
be very well constrained, while another subset cannot.
However, this might not pose a serious problem, as the
constraining power of a few PPF functions might be
sufficient to distinguish between theories. Tackling the
inverse problem will certainly help here as it can guide us
to which functional form of the PPF coefficients is the
most useful. The implementation of the PPF framework
presented here in numerical codes for the computation of
the cosmological effects of interacting dark energy could
provide an answer to these questions. We plan to inves-
tigate this in future work.
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