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We present a new formalism designed to discover dark matter annihilation occurring in the Milky Way’s
dwarf galaxies. The statistical framework extracts all available information in the data by simultaneously
combining observations of all the dwarf galaxies and incorporating the impact of particle physics
properties, the distribution of dark matter in the dwarfs, and the detector response. The method performs
maximally powerful frequentist searches and produces confidence limits on particle physics parameters.
Probability distributions of test statistics under various hypotheses are constructed exactly, without relying
on large sample approximations. The derived limits have proper coverage by construction and claims of
detection are not biased by imperfect background modeling. We implement this formalism using data from
the Fermi Gamma-ray Space Telescope to search for an annihilation signal in the complete sample of
Milky Way dwarfs whose dark matter distributions can be reliably determined. We find that the observed
data are consistent with background for each of the dwarf galaxies individually as well as in a joint analysis.
The strongest constraints are at small dark matter particle masses. Taking the median of the systematic
uncertainty in dwarf density profiles, the cross section upper limits are below the pure s-wave weak scale
relic abundance value (2.2 × 10−26 cm3 s−1) for dark matter masses below 26 GeV (for annihilation into
bb̄), 29 GeV (τþτ−), 35 GeV (uū; dd̄; ss̄; cc̄, and gg), 6 GeV (eþe−), and 114 GeV (γγ). For dark matter
particle masses less than 1 TeV, these represent the strongest limits obtained to date using dwarf galaxies.
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I. INTRODUCTION

By the mid 1970s the quest to extend particle physics
beyond the Standard Model had begun to receive valuable
contributions from cosmology. Astronomical observations
revealed dark matter to be the dominant form of matter in
the Universe and it appeared to consist of some non-
baryonic substance [1–5]. This immediately provided a
fundamental question for particle physics: what theoretical
extension to the Standard Model can explain the nature
of this component? It was realized that a new particle, if
it were massive (∼GeV scale) and interacted with the
Standard Model via weak interactions, would automatically
exist in the Universe with an abundance roughly equal to
that observed for dark matter (e.g. [3,6–15]). In parallel,
particle physicists had been exploring fine-tuning issues
with the Standard Model which seemed to point toward the
existence of new physics (and new particles) at the weak
scale ∼Oð100 GeVÞ (e.g., [16,17]). The discovery of these
particles would simultaneously revolutionize both particle
physics and cosmology.
Equally important to the theory, weakly interactive

massive particles (WIMPs) are within reach of discovery
through a variety of experiments. In astrophysics, one of the

most promising approaches has been the search for dark
matter annihilation into Standard Model particles. The
process of annihilation is, in fact, fundamental to the relic
abundance argument motivating WIMP dark matter. The
measured abundance of dark matter in the Universe sets a
lower bound on the annihilation cross section: if the (s-wave,
velocity-averaged) annihilation cross section hσvi is approx-
imately 2.2 × 10−26 cm3 s−1 [18] the relic abundance of a
WIMP will equal that observed for dark matter, with a
smaller cross section overproducing the dark matter abun-
dance, and a higher cross section (up to limits derived from
quantum mechanical or astrophysical arguments [19–22])
underproducing the amount of dark matter in the Universe
(and implying an additional dark matter component).
This relic abundance (or thermal) cross section provides

a very natural target for experimental sensitivity. In the
same way that new particles are hoped to be seen at the
LHC at the electroweak scale, we may reasonably expect to
discover evidence for dark matter annihilation if we can
probe annihilation cross sections of order 10−26 cm3 s−1

(indeed there is a great mutual interest between these two
searches). Conversely, a study that excludes the possibility
of dark matter with a thermal cross section provides
far-reaching constraints on particle physics beyond the
Standard Model.
The highest flux of gamma rays from dark matter

annihilation likely comes from the Galactic center (GC)
as it is close by and because the dark matter distribution at
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the GC may exhibit a high density cusp [23–28]. In recent
years, several groups using data from the Large Area
Telescope (LAT) onboard the Fermi Gamma-ray Space
Telescope have presented evidence of a gamma-ray excess
towards the GC that can be interpreted as coming from dark
matter annihilation (with a cross section near the thermal
one) [29–37]. However, the confounding difficulty of using
the GC to detect a dark matter signal is the presence of
bright astrophysical sources (pointlike and diffuse) at the
GC and near the plane of the Milky Way. A physical
understanding of all of these backgrounds is required in
order to rule them out as an explanation for the gamma-ray
excess.
This essential problem of backgrounds calls for a search

in quieter, cleaner environments where the detection of a
gamma-ray excess would be much more compelling as a
dark matter signal. This motivates the use of Milky Way
dwarf galaxies as annihilation targets, an idea first sug-
gested by [38] and further explored in [39–58] (among
others). These sources have very high mass-to-light ratios
and are free of any known astrophysical sources of gamma
rays. They are also relatively nearby (at tens to hundreds of
kiloparsecs).
Still, the annihilation signal from a typical dwarf galaxy

is likely an order of magnitude or so smaller than from the
GC (e.g. [59,60]). Therefore, it is necessary to perform a
maximally sensitive analysis of the gamma-ray data, taking
into account everything known about the expected anni-
hilation signal, backgrounds, and detector response.
This includes using data from all the dwarf galaxies

simultaneously. At present, we have a quantitative determi-
nation of the dark matter distribution in 20 dwarf galaxies
[60]. Analyzing two identical dwarfs together is equivalent to
observing one for twice the time. Therefore, it might seem
that Fermi’s six-year all-sky survey is equivalent to 120 years
of high-quality observation of a dwarf galaxy. Such an
observation would overcome the lower luminosity of the
dwarfs relative to the Galactic center. There is, unfortunately,
a caveat: theMilkyWaydwarfs are not all at the samedistance
fromEarth and they do not have the same distribution of dark
matter within them. A joint analysis should take this into
account by, in some sense, weighting the different dwarfs
according to their expected gamma-ray fluxes.
Alternatively, it would seem that atmospheric Cherenkov

telescopes (ACTs) and other pointed instruments might as
well spend their time on the single best target. However, in
this case too there are reasons to allocate time to multiple
sources: accessibility of a source depends on season and
sky position; diversifying observations provides some
control over systematic uncertainties and hedges against
the uncertainty in the dark matter distribution of the various
dwarfs. Therefore, these experiments too will benefit from
a joint analysis [61].
In this paper we present a weighting scheme that is

optimal: it gives rise to a search that is more likely to

discover an annihilation signal than any other (using
the same data). The statistical framework extracts all the
available information in the data by incorporating the
impact of particle physics properties on the expected signal,
the distribution of dark matter in Milky Way dwarf
galaxies, the astrophysical and instrumental backgrounds,
and the detector response. The method uses the framework
of frequentist statistics and the probability distributions of
test statistics under various hypotheses are constructed
exactly, without making large sample size approximations
or relying on background models. Therefore, obtained
confidence intervals have proper coverage by construction
and claims of detection are not biased by imperfect back-
ground modeling.
The framework is quite general and does not have

anything to do with dark matter searches per se (though
it was inspired by this problem) or even with gamma-ray
analysis. However, the presentation will develop the
statistical method in parallel with an application to the
joint analysis of Milky Way dwarfs with the Fermi LAT.
The dark matter analysis can be taken as a template for
other studies using this method.
We begin in Sec. II by reviewing the form of the expected

dark matter signal in dwarf galaxies and then describe the
preparation of the Fermi LAT gamma-ray data. In Sec. III we
introduce the dwarf galaxies used in the analysis and
summarize how their density profiles are determined.
Our statistical framework is developed in Sec. IV. This

section is more formal and pedagogical, defines the
problem as one of frequentist hypothesis testing, and
derives the “most-powerful” form of the test statistic we
use and how to compute its probability distribution.
We then return to the gamma-ray data and describe how

the background is dealt with in Sec. V (though this
empirical technique can apply in other studies generally).
In Sec. VI we begin to apply the statistical technique to the
dark matter search, showing how it allows us to optimize
the data cuts and decide which dark matter hypotheses we
need to test.
Before obtaining results from the observed data, Sec. VII

gives a step-by-step summary of the entire procedure for
applying the statistical framework to the dark matter search.
This section is written more “algorithmically” and can be
read, in lieu of Sec. IV, as instructions for practically
applying the method.
Section VIII presents the results of the search for

annihilation in the 20 Milky Way dwarf galaxies and the
resulting limits obtained on the annihilation cross section
for various channels. Section IX contains a discussion of
many aspects of the study including a comment on a
potential positive detection, the Galactic center signal,
systematic uncertainties, and an exploration of the future
sensitivity of Fermi to dark matter annihilation in dwarfs
(e.g. over the mission lifetime and using the Pass 8 data
reduction).
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Appendixes contain a derivation of the compound
Poisson distribution that governs the test statistic, the
FFT procedure used to numerically obtain it, and details
of the numerical convolution of the dark matter halo J
profiles with the Fermi LAT point spread function.

II. EXPECTED DARK MATTER SIGNAL

A. Dark matter flux

The observable signal of dark matter annihilation in
dwarf galaxies is governed by the distribution of dark
matter within the system as well as the particle physics of
the interactions. The annihilation rate per volume is

r ¼ 1

2
hσvin2; ð1Þ

where hσvi is the total annihilation cross section multiplied
by the relative velocity of two particles and averaged over
the dark matter velocity distribution, and n is the number
density of dark matter particles1 (see e.g. [14,15,62]).
Dark matter annihilation can proceed through multiple

channels (e.g. annihilation into b quark pairs or into τ
leptons). Except for neutrinos, all Standard Model particles
produced generically give rise to gamma rays. The total
number of gamma rays produced per annihilation per
energy interval is given by

dNγðEÞ
dE

¼
X
i

Bi
dNγ;iðEÞ

dE
: ð2Þ

The branching ratio Bi is the probability that an annihila-
tion proceeds through channel i and dNγ;i=dE is the
number of gamma rays produced per annihilation per
gamma-ray energy by the products of channel i. This
energy spectrum depends on the kinetic energy of the
standard model particles produced in an annihilation.
The kinetic energy in turn depends on the mass of the
dark matter particle: for dark matter annihilating at rest,
the available energy for the products is twice the mass of
the particle. Conservation of momentum requires that for
annihilation into a pair of particles of the same mass (e.g.
particle-antiparticle pairs) each member of the pair has an
energy equal to the dark matter particle mass. In this work
we adopt the annihilation spectra of Cirelli et al. [63] that
were generated from fits to a suite of PYTHIA [64]

simulations, and include potentially important electroweak
corrections (see discussion in [63] as well as [65–69]).
When looking in a particular direction n̂, the gamma rays

we detect at Earth are due to annihilation at all points ln̂
along the line of sight (l being distance). The gamma-ray
flux (number of photons from the direction n̂ per energy,
solid angle, area, and time) is given by

dFðE; n̂Þ
dEdΩ

¼
Z

dll2rðln̂Þ dNγðEÞ
dE

1

4πl2

¼ hσvi
8πM2

dNγðEÞ
dE

Z
dlρ2ðln̂Þ; ð3Þ

where we have used the relation ρ ¼ Mn connecting the
dark matter mass density ρ, number density n, and particle
mass M. Equation (3) is valid for the flux from nearby,
zero-redshift objects like Milky Way dwarf spheroidals,
where there is no attenuation of the gamma rays on their
way to Earth. We write the flux using the mass density
rather than the number density because observations of the
motions of stars in dwarf galaxies are used to estimate ρ
(see Sec. III).
The expression for the expected flux separates into two

simple factors. The first depends only on particle physics:
the dark matter mass, annihilation cross section, branching
ratios, and the Standard Model physics of gamma-ray
production. The second term quantifies the distribution
of dark matter in the astrophysical system. We refer to this
term as the J profile

dJðn̂Þ
dΩ

¼
Z

dlρ2ðln̂Þ; ð4Þ

with units of ½GeV2 cm−5 sr−1�.

B. Instrument response

To find the number of events that will actually be
detected we must convolve the dark matter flux Eq. (3)
with the instrument response. The expected number of
events detected by Fermi is given by

dNðEr; n̂rÞ
dErdΩr

¼
Z
E

Z
Ω
dEdΩ

dFðE; n̂Þ
dEdΩ

RðEr; n̂rjE; n̂Þ; ð5Þ

where the subscript r stands for reconstructed. The quantity
RðEr; n̂rjE; n̂ÞdErdΩr is the instrument response: the
probability that a photon with true energy E and direction
n̂ will be reconstructed with an energy in the interval dEr
around Er and in the solid angle dΩr around direction n̂r.
The instrument response is a complicated quantity that

depends on the properties of the detector and the obser-
vation strategy. For a Fermi LAT observation of a fairly
localized, steady source the instrument response can be
broken up into three factors [70]: exposure (ϵ), point spread
function (PSF), and energy dispersion (D):

1Equation (1) assumes that dark matter is its own antiparticle.
If this is not the case, and the abundance of particles and
antiparticles is the same, the factor of 1

2
disappears but each

factor of n must be replaced by 1
2
n (the particles and antiparticles

each constitute half the total dark matter density). The result is
that the annihilation rate is half what it is when dark matter is its
own antiparticle. Throughout this work, we will assume Eq. (1)—
for the case of distinct particles and antiparticles one may replace
hσvi by 1

2
hσvi everywhere (e.g. cross section limits increase by a

factor of 2, but so does the thermal cross section).
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RðEr; n̂rjE; n̂Þ ¼ ϵðEÞPSFðn̂rjE; n̂ÞDðErjEÞ; ð6Þ

where the exposure ϵ has units of area × time and, for a
localized source, depends only on energy.
Except for dark matter annihilation directly into two

photons, the spectrum dNγ=dE is much broader than
Fermi’s energy dispersion. The exposure and point spread
function, as well, have a slowly varying E dependence over
the width of the energy dispersion. Therefore, we neglect
the energy dispersion (equivalent to assuming perfect
energy reconstruction) unless considering annihilation into
a photon final state.
Using Eqs. (3) and (4), the expected number of detected

dark matter events is (dropping the subscript r’s)

dNðE; θÞ
dEdΩ

¼ hσvi
8πM2

dNγðEÞ
dE

½ðJ � PSFÞðE; θÞ�ϵðEÞ; ð7Þ

where J � PSF is the two-dimensional convolution of the J
profile with the PSF, and θ is the angular separation
between the center of the dwarf and the reconstructed
direction of the event.
We consider spherically symmetric dark matter halos so

that dJðn̂Þ=dΩ is a function only of the angular separation
between n̂ and the direction towards the center of the dwarf.
The LAT’s point spread function is also assumed to be
circularly symmetric. Therefore, the 2D convolution can be
performed using one-dimensional Hankel transforms that
we compute numerically (at each energy) using our
implementation of Hamilton’s efficient FFTLog algorithm
[71]. The details of this convolution are discussed in
Appendix B. The upshot is that the relevant “observation”
space of the expected signal is two dimensional: a photon
has an energy and an angular separation from the direction
towards the dwarf.
When we consider annihilation into a photon final state

Eq. (7) is modified by replacing dNγ=dE with the con-
volution of dNγ=dE with the energy dispersion D. We
estimate the energy dispersion as a Gaussian with standard
deviation 10% of the true energy. This seems to be a
reasonable approximation over the relevant energy range
(E > 10 GeV) [70] (Fig. 69). The annihilation spectrum in
this case is a delta function dNγðEÞ=dE ¼ 2δðE −MÞ
centered on the dark matter mass. Convolution with the
energy dispersion is simply a Gaussian, normalized to 2,
with mean M and standard deviation 0.1M.

C. Pass 7 Fermi LAT data

We use the publicly available data from the Fermi
Science Support Center [72], and select Ultraclean events
of evclass ¼ 4 with energies between 0.2 and 1000 GeV
in the mission elapsed time interval of 239557417–
423617437s (August 4, 2008 to June 4, 2014). Events
are selected using the provided GTSELECT tool within a
region of interest of radius 15° centered on each dwarf

and with a zenith angle cut set to ZMAX=100. These data
are processed following all standard recommendations
and caveats [73] regarding good time intervals using
the GTMKTIME tool with the recommended filter of
DATA_QUAL==1 && LAT_CONFIG==1 && ABS

(ROCK_ANGLE)<52. We generate a live time cube
using GTLTCUBE and compute exposure and point
spread functions (PSFs) with GTPSF by using the
P7REP_ULTRACLEAN_V15 instrument response function.

III. DWARF GALAXIES

The dominant systematic uncertainty we face is the
uncertainty in the dwarf J profiles. The estimation of a
dwarf’s density profile is based on the positions and
(spectroscopically obtained) line-of-sight velocities of its
member stars [74,75]. Statistically, these observational
quantities respond to the gravitational potential of the
system as described by the Jeans equation [43,45,76–79].
Because the dwarfs are dark matter dominated, the gravi-
tational potential is determined by the dark matter density
profile.
In Geringer-Sameth et al. [60] we presented a uniform

analysis of the stellar kinematic data (projected positions
and line-of-sight velocities) from the 20 Milky Way dwarfs
for which such data are available. Briefly, a likelihood
function employs the Jeans equation to relate empirical
distributions of position and velocity to a parametric,
spherically symmetric density profile of the form

ρðrÞ ¼ ρs½r=rs�−γ½1þ ðr=rsÞα�ðγ−βÞ=α: ð8Þ
We used the software package MULTINEST [80,81] to
generate samples from the posterior probability distribution
functions (PDFs) of the five free parameters in Eq. (8) as
well as a sixth “nuisance” parameter that specifies the
ratio of the velocity dispersions in radial and tangential
directions.
The results of this analysis can be thought of as exploring

the parameter space to find regions which give a reasonable
fit to the available kinematic data. Due to the degeneracy
between mass and velocity anisotropy, as well as the
limited number of observed stars, the likelihood function
is agnostic to very different types of halos so long as they fit
a basic relationship between ρs and rs. For example, the
analysis allows halos with very large values of ρs coupled
with small rs. These halos correspond to density spikes at
the centers of the dwarf galaxies. We are able to rule
these out using a cosmological plausibility argument—
essentially requiring that the perturbation that formed the
halo was not too rare. Additionally, the likelihood is unable
to distinguish between different values of rs once rs is
beyond the distance of the measured stars. This makes
sense as the stars do not feel the potential far outside their
current orbits. We adopt the most conservative choice (in
terms of expected annihilation signal) by truncating the
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halos at the distance to the outermost member star
(corresponding to an angle θmax). This prevents the halos
with unreasonably large rs values from inflating the integral
in Eq. (4). Finally, the likelihood function does not
distinguish between cusped (γ > 0Þ and cored (γ ¼ 0)
profiles. We do not apply any external judgement to this
question and our sample halos reflect the large allowed
range of inner slopes 0 < γ < 1.2. See [60] for detailed
explanations of the procedure.
The Jeans analysis should be thought of as generating

realizations of halos which reasonably fit the stellar
kinematic data. For the dark matter search this induces a
systematic uncertainty. When we present the results of the
search and limits on the annihilation cross section we will
separate this systematic uncertainty from the statistical
uncertainty induced by our finite photon statistics. This is
done by redoing the analysis separately for different
realizations of halo parameters. The systematic “band”
that results from this repetition should be thought of as
reflecting our imperfect knowledge of the dwarf density
profiles. As our knowledge of the dwarfs’ internal structure
improves, these bands will shrink.
Assumptions of the Jeans analysis include adopting

dynamic equilibrium and spherical symmetry, a Plummer
profile for the stellar distribution, and a constant velocity
anisotropy parameter. It is important to note that these are
approximations, which may not hold in the Milky Way
dwarfs. We refer the reader to Bonnivard et al. [82], who
find that relaxing some of these assumptions has an
effect for classical dwarfs with large kinematic samples.
However, in the case of ultrafaint dwarfs, uncertainties in

density profiles are dominated by errors due to limited
numbers of observed stars, not by modeling assumptions.
In our results, it is the uncertainty in the ultrafaint dwarf
profiles that dominates the systematic uncertainty in the
cross section limits.
Integrating the J profile over a solid angle of radius θ

yields the “J value” JðθÞ. This is a measure of the
amplitude of the dark matter annihilation flux from a
dwarf. Figure 1 is reproduced from [60] and shows the
JðθmaxÞ values of the 20 dwarfs used in this analysis.
In this work we perform a joint analysis of the 20 dwarfs

whose J profiles were determined in [60]: Boötes I, Canes
Venatici I, Canes Venatici II, Carina, Coma Berenices,
Draco, Fornax, Hercules, Leo I, Leo II, Leo IV, Leo V, Leo
T, Sculptor, Segue 1, Segue 2, Sextans, Ursa Major I, Ursa
Major II, and Ursa Minor. When we perform the search for
annihilation in individual dwarfs we also include the nearby
satellite Willman 1. However, we cannot reliably determine
the density profile of this object as it shows strong evidence
for tidal disruption and/or nonequilibrium kinematics
[83], violating an assumption underlying the Jeans equa-
tion. In our framework, combining data from different
dwarfs requires knowledge of the J profiles and so we do
not include Willman 1 in the joint analysis.

IV. STATISTICAL FRAMEWORK

In the frequentist paradigm we interrogate the data
through the framework of hypothesis testing. For example,
to find out whether observations of a dwarf show evidence
for dark matter annihilation we may start by testing the

FIG. 1 (color online). Annihilation J values for all dwarf galaxies used in this analysis, as presented in Geringer-Sameth et al. [60].
The error bars show the 1σ allowed range in the value of JðθmaxÞ based on the analysis of stellar velocities.
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hypothesis Hb: the observed data D were generated from
background processes only. We find a way to calculate the
probability PðDjHbÞ of observingD if Hb were true. If this
probability is small, say PðDjHbÞ ¼ 0.01, the hypothesis is
“rejected at 99% significance”; i.e. it is very unlikely to
have measured the data we did if there were no dark matter
annihilation.
Confidence intervals on dark matter model parameters

can be generated by performing an ensemble of hypothesis
tests. For simplicity, imagine that dark matter annihilation
is governed by two parameters, the particle mass M and
the velocity-averaged annihilation cross section hσvi.
For every possible pair of values of these parameters we
perform the hypothesis test “dark matter has mass M and
annihilation cross section hσvi.” We classify a point in
parameter space by whether its associated hypothesis is
rejected at a given level α (e.g. α ¼ 0.05 for a 95%
confidence region). That is, we divide the parameter
space into allowed regions where PðDjM; hσviÞ > α and
excluded regions where PðDjM; hσviÞ < α. The allowed
region constitutes an α-level confidence region for mass
and cross section. The interpretation of the two regions is
straightforward (e.g. for α ¼ 0.05): whatever the true
values of M and hσvi are, there is only a 5% chance that
the hypothesis associated with those true values will be
rejected. Equivalently, there is a 95% chance that the
constructed confidence region contains the true parameters.
The implementation of this scheme is made possible by

the construction of a test statistic T, a single number that is
a function of the data we measure. The test statistic is a
random variable and when we make a measurement we
sample this variable. For a given hypothesis, a PDF governs
the measurement of T, with the observed value denoted
Tobs. Before making the measurement, we decide on a
critical region C of T space such that PðT ∈ CjHÞ ¼ α.
Should Tobs be measured to lie in the critical region we
reject the hypothesis H at level α.
The use of a test statistic allows us to make precise the

“probability of observing the data given a hypothesis.” For
this purpose it is useful to choose a test statistic that reflects
how “signal-like” or “backgroundlike” the data are, with
larger values of T indicating the presence of a signal (e.g.
dark matter annihilation). For instance, when testing the
hypothesis Hb that there is no dark matter annihilation we
may identify a special value T� and define the critical
region as C∶ T > T�, where PðT > T�jHbÞ ¼ 0.01 (i.e.
α ¼ 0.01). The interpretation of C is that there is only a 1%
chance of the data being so “signal-like” if there were no
dark matter annihilation. If the measured Tobs is larger than
T� the hypothesis Hb is rejected at 99% significance.
Constraints on the particle physics parameters take the

form of upper limits on the annihilation cross section.
Upper limits on hσvi are generated by choosing the critical
region to be C∶ T < T�, where PðT < T�jM; hσviÞ ¼ α.
We will reject the hypothesis that dark matter has a

particular mass M and cross section hσvi if Tobs is found
to be smaller than T� (i.e. the measurement is too back-
groundlike). This choice of critical region for T (i.e. T < T�
as opposed to T > T�) generates upper limits on the cross
section: for large cross sections T� will increase since the
data are likely to be more “signal-like.” For sufficiently
large cross sections the associated hypothesis will always
be rejected, leading to upper limits on hσvi.

A. General form of the test statistic

In principle, T can be an arbitrary function of the data.
However, some functions are better, in a well-defined
sense, than others. Here we detail the construction of an
optimal test statistic.
The gamma-ray data are in the form of a list of discrete

detector events. We wish to jointly analyze the gamma-ray
signal from multiple targets simultaneously and to take full
advantage of the information contained in the data. Each
event is assigned a numerical weight wðQÞ based on its
properties Q and the hypothesis we are testing. We use a
test statistic that is simply the sum of the weights of all the
events in the entire data set

T ¼
XN
i¼1

wðQiÞ; ð9Þ

where i runs over all detected events. The total number of
events N and the collection fQig are random variables.
For the data set we are working with, the dark matter

physics is encoded in three properties of each detected
event: which dwarf field the event came from ν, the
reconstructed energy of the photon E, and the reconstructed
direction of the photon θ (i.e. the angular separation between
the event and the direction toward the dwarf galaxy).
Therefore, in our study Q ¼ ðν; E; θÞ is the set of these
three variables, the first being discrete and the latter two
continuous.
This general form for the test statistic is capable of

reproducing many other analyses by making particular
choices for the weight function. For example, a standard
event counting analysis can be performed by setting
wðQÞ ¼ 1 for events in some energy range and within
some angular separation of one of the dwarfs, and setting
wðQÞ ¼ 0 for all other events. In this case the test statistic T
just counts the number of events detected. As a second
example, the analysis performed in [48] is recovered by
having wðQÞ be a function only of which dwarf field the
event came from (and not of the energy or angular separation
of the event). The test statistic then becomes a simple
weighted sum of counts observed from each dwarf.

B. Designing the weight function

Given this general form of test statistic the important
work lies in designing the weight function. Here we show
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that there is a statistically most-powerful choice of weight
function.
Recall that α denotes the probability of rejecting the

hypothesis when the hypothesis is true. The power of a
statistical test is the probability of rejecting the hypothesis
when the hypothesis is false (i.e. when it ought to be
rejected). Therefore, we seek a test statistic that maximizes
the power for a given α. The power of a test is an
ambiguous concept because it depends on what the truth
actually is. That is, a test that is powerful at rejecting H0

when H1 is true may not be powerful at rejecting H0 when
H2 is true [[84] (Secs. 21.16–18)]. We therefore restrict our
task to finding the test statistic that maximizes the power of
rejecting H0 for a single suitable alternative hypothesisH1.
As discussed above, for constructing limits we test

hypotheses of the form “the dark matter particle has mass
M and annihilation cross section hσvi.” For these cases we
take the alternative hypothesis to be Hb, the background-
only hypothesis of no dark matter annihilation. This gives
the most constraining upper limits on hσvi if dark matter has
an annihilation cross section too low for the instrument to
detect. When performing a search for annihilation we ask
whether we can reject the hypothesisHb. In this case the test
statistic is chosen to maximize the power vs an alternative
hypothesis that dark matter has a particular mass and a small
annihilation cross section. That is, the test is designed to be
sensitive to weak signals. The choice of particle parameters
besides the cross section will be dealt with using a “trials
factor”: we may test Hb against hypotheses corresponding
to several different masses and branching ratios.
Below we present two approaches for constructing a

most-powerful weight function wðQÞ. The first is heuristic
and more intuitive, the second more rigorous. Both yield
similar conclusions.
It will be useful to write the test statistic Eq. (9) in an

alternate form by introducing a new set of random variables
that are easier to work with. The random variable ZQ is the
number of events that are detected having properties in an
infinitesimal bin centered onQ. Using the setQ ¼ ðν; E; θÞ
described above, ZQ is the number of events from dwarf ν
that have energy between E and Eþ dE and were detected
between θ and θ þ dθ from the location of the dwarf. The
sizes of these bins are infinitesimal so that ZQ is almost
always 0 and is occasionally 1. Making a measurement is
equivalent to measuring the infinite collection of ZQ for all
possible Q: D ¼ fZQg (for a finite set of Q, ZQ will be 1;
for the rest ZQ will be 0). The weight of an event with
propertiesQ is denoted wQ. The test statistic can be written
in terms of the variables ZQ as

T ¼
X
Q

wQZQ; ð10Þ

where the sum is over all possible properties of a detected
event. In our case the notation

P
Q is shorthand for

P
ν

R
E

R
θ. The test statistic is determined by the infinite

collection of random variables fZQg and the infinite
collection of numerical weights fwQg. Defining a weight
function wðQÞ is equivalent to fixing values for each of
the wQ.
In our situation it is useful to write each ZQ as the sum

ZQ ¼ XQ þ YQ; ð11Þ

where XQ is the number of events detected with properties
Q that originated from dark matter annihilations in a dwarf
galaxy (signal events) and YQ is the number of detected
events originating from all other sources (background
events). The collection fXQg are independent random
variables and are also independent of all of the fYQg.
The probability distribution for XQ is

PðXQÞ ¼
�
1 − sQ for XQ ¼ 0;

sQ for XQ ¼ 1;
ð12Þ

where sQ is the (infinitesimal) expected number of detected
dark matter events having propertiesQ. For the dark matter
search sQ will be given by Eq. (7) multiplied by the
infinitesimal element dEdΩ; i.e. it is the expected number
of dark matter annihilation events detected from dwarf ν
with energy between E and Eþ dE and angular separation
between θ and θ þ dθ.
The probability distribution describing YQ may not be as

simple because different YQ may be correlated (e.g. if the
background has a contribution from unresolved sources). In
deriving an optimal choice of weights we will make the
assumption that the YQ’s are independent and each is
described by

PðYQÞ ¼
�
1 − bQ for YQ ¼ 0;

bQ for YQ ¼ 1;
ð13Þ

with bQ the expected number of background events having
properties Q. Because of this assumption of independence,
the choice of weights may not be strictly the most powerful
but we expect the deviations from optimality to be minimal.
However, it is important to note that the calculation of
the PDF of T will not use this simplifying assumption and
will correctly incorporate any correlations present in the
background.

1. Signal-to-noise method

To construct confidence regions we test the hypothesis
that dark matter is present and has a particular set of particle
physics parameters. This test is to be most powerful against
the alternative that the data are generated by background
processes only. The two hypotheses are referred to as Hsþb
and Hb.
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The problem of maximizing the power of Hsþb vs Hb
can be visualized as trying to maximally separate the PDFs
of T for the two hypotheses (see Fig. 2 as an illustration).
The specific shapes of the PDFs are controlled by the
weight function wðQÞ. An approximate way of describing
the PDFs is by their means and standard deviations: μsþb,
μb, σsþb, and σb. The “separation” of the two PDFs can be
quantified by a signal-to-noise ratio:

SNR ¼ μsþb − μb
σb

: ð14Þ

We will write the quantities in the above equation in
terms of the weights wQ and find the collection of wQ that
maximizes the signal-to-noise ratio. Using Eqs. (10)–(13),
the independence of the fXQg and fYQg, and the fact that
all sQ ¼ 0 if Hb is true, it is straightforward to show that

μb ≡ E½TjHb� ¼
X
Q

wQbQ;

μsþb ≡ E½TjHsþb� ¼
X
Q

wQðsQ þ bQÞ;

σ2b ≡ Var½TjHb� ¼
X
Q

w2
QbQ;

where E½TjH� and Var½TjH� are the mean and variance of T
under the hypothesisH. Inserting these results into Eq. (14)
yields

SNR ¼
P

wQsQffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
w2
QbQ

q : ð15Þ

We find the weights that maximize this quantity by
differentiating it with respect to an arbitrary weight wR
and setting the derivative to zero. This leads to the
following condition that holds for each set of properties R:

wR
bR
sR

¼
P

w2
QbQP

wQsQ
:

The solution to this set of equations is

wQ ¼ sQ
bQ

: ð16Þ

Had we used σsþb instead of σb in the definition of the SNR
[Eq. (14)] the resulting optimal weights would be

wQ ¼ sQ
sQ þ bQ

: ð17Þ

Note that even though sQ and bQ are each infinitesimal
their ratio is finite.

This argument tells us that each event should be given a
weight determined by the ratio of the expected signal to the
expected background for events of that type. This makes
intuitive sense: events which are more likely to be signal are
given a larger weight than those likely to be due to
background processes. One consequence of this weighting,
applied to the dark matter search, is that events which have
an energy larger than the mass of the dark matter particle
we are considering in Hsþb will be ignored (given a weight
of 0) because they must be due to background.
Inserting the weights in Eq. (16) back into Eq. (15) gives

a useful interpretation for the test statistic’s numerical
value:

SNR2 ¼
X

wQsQ ¼ E½TjHs�: ð18Þ

The expected value of the test statistic due to signal events
(e.g. dark matter annihilation) is simply the square of the
expected signal-to-noise ratio of detection. This relation
provides a computationally trivial method for approximat-
ing the expected results of experiments. For a given set of
parameters describing the source of interest (e.g. dark
matter mass and annihilation cross section), one can
quickly see at what level an optimally sensitive search
can distinguish signal from background. The sum

P
wQsQ

in Eq. (18) incorporates information about the signal,
background, and detector properties.

2. Likelihood ratio method

An alternative derivation of the optimal weights is based
on a theorem from classical statistics. The Neyman-Pearson
lemma [[84,85] (Sec. 21.10)] states that the most-powerful
test between two simple hypotheses, such as Hsþb and Hb,
can be performed by using the likelihood ratio as the test
static. The likelihood PðDjHÞ is the probability of observ-
ing the data D if the hypothesis H were true. In our case, to
test the hypothesis Hsþb against the alternative Hb we use
the likelihood ratio

Λ ¼ PðDjHsþbÞ
PðDjHbÞ

ð19Þ

and reject the hypothesis Hsþb if Λ is found to be smaller
than a critical value Λ�. This critical value is determined by
α, the desired level of the test: PðΛ < Λ�jHsþbÞ ¼ α.
In the case under consideration (independent fXQg and

fYQg) it is easy to write down the likelihoods under the two
hypotheses. Let fQi∣i ¼ 1…Ng denote the properties Q of
the N observed events. That is, ZQ was found to be 0 for all
but the finite set fQig for which ZQ ¼ 1. The probability of
measuring this collection of ZQ under the two hypotheses is
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PðfZQgjHbÞ ¼
Y
Q

ð1 − bQÞ
Y
i

bQi
;

PðfZQgjHsþbÞ ¼
Y
Q

ð1 − sQ − bQÞ
Y
i

ðsQi
þ bQi

Þ: ð20Þ

In these equations, the first product contains the infinite set
of all Q except for the finite set fQig while the second
product only contains N factors corresponding to the fQig.
In the limit that the binning of event space becomes
infinitesimal, bQ and sQ approach zero and it makes no
difference whether the first product omits a finite collection
of Q. One can also show that in this limit the infinite
products converge exactly to exponentials:

Y
Q

ð1 − bQÞ → exp

�
−
X
Q

bQ

�
;

Y
Q

ð1 − sQ − bQÞ → exp

�
−
X
Q

ðsQ þ bQÞ
�
: ð21Þ

Using Eqs. (20) and (21), the likelihood ratio Eq. (19) is
given by

Λ ¼ exp

�
−
X
Q

sQ

�Y
i

�
1þ sQi

bQi

�
:

It makes no difference if we use logΛ as the test statistic
since the logarithm is a monotonic function:

logΛ ¼ −
X
Q

sQ þ
XN
i¼1

log

�
1þ sQi

bQi

�
:

The first term is a constant that does not depend on the data
and can be ignored. This leaves us with a test statistic that is
most powerful at distinguishing Hsþb from Hb:

T ¼
XN
i¼1

log

�
1þ sQi

bQi

�
; ð22Þ

where Hsþb should be rejected if T is below T�, specified
by the condition PðT < T�jHsþbÞ ¼ α. Comparing Eq. (22)
with Eq. (9) we see that if we set the weight function to be

wðQÞ ¼ log

�
1þ sQ

bQ

�
; ð23Þ

the test statistic Eq. (9) is equivalent to a likelihood ratio
test statistic. Therefore, using the weight function Eq. (23)
gives rise to the most-powerful test statistic. This will be the
test statistic we use throughout this work. Note that if we
are testing the hypothesis Hb and want the test to be
optimally sensitive to Hsþb we can use precisely the same
weight function as in Eq. (23). The only difference is that

Hb will be rejected when T is larger than T�, where T� is
determined by PðT > T�jHbÞ ¼ α.
It is interesting to observe that the log-weighting

in Eq. (23) is, in some sense, a compromise between
the two weighting schemes presented in Eqs. (16) and (17).
Considered as functions of x≡ sQ=bQ, we see that
x=ð1þ xÞ ≤ logð1þ xÞ ≤ x for all physical values of x
(non-negative sQ and bQ). When we are considering a very
weak signal (sQ ≪ bQ) all three become equivalent to
Eq. (16). In this case the test statistic is actually indepen-
dent of the annihilation cross section since hσvi enters as a
multiplicative factor in sQ [Eq. (7)] and two test statistics
are equivalent if they differ by a constant factor. This
implies that when searching for the presence of a small
signal (i.e. testing the background-only hypothesis) the test
statistic is optimal against alternatives Hsþb with any
(small) cross section (keeping other model parameters
fixed). The issue of sensitivity to weak signals is discussed
again at the end of Sec. VI C.

C. Probability distribution of the test statistic

Here we derive the PDF of the test statistic defined by
Eq. (9) for any choice of weight function wðQÞ. First note
that T is the sum of two terms

T ¼ Ts þ Tb; ð24Þ
where Ts is the total weight of all detected photons
originating from dark matter annihilation in dwarfs (signal)
and Tb is the total weight of all other detected events
(background). The signal events and background events are
statistically independent of one another. Therefore, the PDF
of T is the convolution of the PDFs of Ts and Tb. In this
study, determination of the PDF of Tb will be done by
empirically sampling a background region as described in
Sec. V. The background may also be treated in the same
way as Ts, which we now proceed to describe.
To find the PDF of Ts note that the number of detected

signal events Ns is a random variable distributed according
to a Poisson distribution. The weights of the detected signal
events fwðQiÞ∣i ¼ 1…Nsg are independent and identically
distributed random variables. Therefore, the random var-
iable Ts is the sum of independent variables where the
number of terms in the sum is itself a Poisson random
variable. Such a quantity is distributed according to a
compound Poisson distribution (e.g. [86,87]).
This compound Poisson distribution is determined by

two quantities. The first is the mean μ of the Poisson
distribution determining the total number of signal events
observed. In terms of the definitions given in Eq. (12) we
have μ ¼ P

QsQ. The second input is the single-event
weight distribution fðwÞ. Specifically, fðwÞdw is the
probability that a detected signal event has properties Q
that cause it to be given a weight wðQÞ between w and
wþ dw. It is completely determined from the collection sQ
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once the weight function has been chosen. To compute
fðwÞ we divide the Q space into small tiles (i.e. for each
dwarf we divide the E–θ plane into small bins) and find the
weight wQ and the probability sQ in each tile. The weights
wQ are binned into a histogram where each wQ adds a
probability of sQ to the histogram. The histogram is then
normalized to 1, yielding fðwÞ. This procedure can be
made arbitrarily accurate by dividing theQ space into small
enough bins. In practice, we choose the bins to be small
enough so that our results do not depend on the binning.
The Fourier transform ϕTðkÞ of the PDF of a compound

Poisson distribution takes a simple form (see Appendix A):

ϕTðkÞ ¼ exp ½μðϕWðkÞ − 1Þ�; ð25Þ
where ϕWðkÞ is the Fourier transform of the single-event
weight distribution fðwÞ. Numerically, this function can be
computed quickly using FFTs. Working in Fourier space
also makes convolutions efficient—one simply multiplies
the Fourier transforms. Finally, an inverse FFT is used to
obtain the PDF. Details of the numerical computation of the
PDF of T as well as the derivation of Eq. (25) are given in
Appendix A.

V. DIFFUSE BACKGROUND

Knowledge of the diffuse background enters the analysis
in two places. First, all of the weighting schemes we
consider [e.g. Eq. (23)] require bQ, the expected number of
background events with properties Q. Second, no matter
the weighting scheme, the PDF of the test statistic due to
background Tb must be found in order to construct the PDF
for the observed test statistic (see Sec. IV C).

A. Background model for weighting

To construct bQ used in the weighting function we make
the assumption that the background process is isotropic
over the small region surrounding each dwarf (θ < 0.5°).
Therefore, the background is simply defined by an energy
spectrum (different for each dwarf). We estimate the
spectrum by using the detected events in a region of radius
10° centered on the dwarf. Such a region is small enough
that changes in the instrument exposure across the field of
view will not affect the inferred spectrum. Events within
0.8° of sources from the Fermi LAT second source catalog
[88] are masked. The size of the mask is based on the LAT
point spread function at the energies we consider
(E > 1 GeV), though for some very bright sources these
masks are enlarged to prevent contamination (as a check we
doubled all mask sizes and found no effect on any of our
results).
The energy spectrum of these background events is

modeled as a piecewise function fðEÞ. For energies
below 10 GeV we replace each event with a Gaussian
of width 20% of the measured energy, giving a kernel

density estimate. Above 10 GeV we splice on a power
law with exponential cutoff. The form is fðEÞ ¼
f0ðE=E0Þγ exp½ðE − E0Þ=Ec�, where E0 ¼ 10 GeV and
f0 is the kernel density estimate of the spectrum at
10 GeV. We choose this smooth fitting function to avoid
noise in the kernel density estimator due to the relatively
low number of observed events with high energies. It is
nonetheless flexible enough to model the shape of the
observed background spectrum. The energy spectrum is
divided by the solid angle of the background region to give
an expected number of background events per energy
interval per solid angle.
We note that we try only to model the shape of the

observed background and do not seek to understand the
sources of background or even estimate its intrinsic flux.
Thus, the background spectrum we derive already includes
the effects of the energy-dependent effective area.2

The function bQ, the expected number of background
events with energy between E and Eþ dE and angular
separation between θ and θ þ dθ, is simply

bQ ¼ fðEÞdE2π sinðθÞdθ; ð26Þ

where fðEÞ is the estimate of the background energy
spectrum per solid angle.

B. Test statistic due to background

There are two ways to derive the PDF of the test statistic
due to background events (Sec. IV C). The simplest is to
assume that Eq. (26) fairly describes the background
processes. This requires that individual background events
are independent of one another, are described by the energy
spectrum fðEÞ, and that the background is isotropic within
the central region of interest (ROI) centered on the dwarf.
The probability distribution of Tb of Eq. (24) is then a
compound Poisson distribution, completely analogous
to Ts.
However, there is good reason to believe that the

processes which give rise to the actual background violate
all of these assumptions. For example, the presence of
unresolved sources gives rise to a non-Poisson counts
distribution. It will also induce correlations between the
number of counts and the energy distribution of the events.
The function fðEÞ, though a good fit to the average energy
distribution, cannot describe the variation in energy spec-
trum caused by unresolved sources.
Therefore, following Geringer-Sameth and Koushiappas

[48,89], we perform a sampling of the background region to
empirically construct the distribution of Tb. This procedure
works no matter what weighting function is chosen. We

2It would be straightforward to include knowledge of the
exposure across the field of view to estimate the background
spectrum in the central θ < 0.5° region. This would be necessary
if the exposure varied strongly across the field of view.
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place trial ROIs throughout the background region.
Specifically, the trial ROIs are overlapping circles of radius
0.5° with centers spaced by approximately 0.25° covering
the field of view out to 10°. Trial ROIs that overlap with the
central ROI, any of the source catalog masks, or the
boundary of the 10° region are discarded.
The events in each trial ROI are weighted according to

the chosen weighting scheme and then summed, giving a
total background weight for each trial ROI. The probability
distribution of these weights over all the trial ROIs is an
empirical determination of the PDF of Tb due to back-
ground in the central ROI. This relies on the assumption
that the same processes giving rise to the background
nearby each dwarf galaxy are also at work in the direction
of the dwarf.
This procedure is robust to the choice of bQ [e.g.

Eq. (26)]. No matter what weighting function is chosen,
the sampling will give the correct distribution of Tb for that
weighting. If the form of bQ does not reflect the true
background the test statistic will not be optimal (see
Sec. IV B) but confidence limits will still have proper
coverage and detection significances will have the correct
probabilistic interpretation.
It is important to note that this procedure is not based

on any physical understanding of what generates the
background—it seeks only to describe the distribution of
a single observed quantity Tb. It therefore includes any
correlations caused by unresolved sources and detector
effects such as misreconstructed cosmic rays. The pro-
cedure does not directly require any knowledge of the
instrument response of the detector (effective area, point
spread function), though these weakly enter in the choice of
the size of the field of view and the size of the masks on
known point sources. Incidentally, the empirical back-
ground distribution can be used in a “PðDÞ analysis” to
understand the physical sources of background including
dark matter annihilation (see e.g. [90–92]). We discuss the
effects of assuming a compound Poisson origin of Tb in
Sec. IX A.

VI. DESIGNING SEARCHES AND LIMITS

A. Hypothesis tests

The search for a dark matter signal and placing limits on
the mass and cross section are done with separate hypoth-
esis tests. First, we perform the search by asking whether
the observed data are consistent with the hypothesisHb that
there is no annihilation in the dwarf galaxies (the alternative
is Hsþb, that dark matter has a particular mass, cross
section, and branching ratios).
If Hb cannot be rejected we construct limits by testing

the ensemble of hypothesesHsþb to find which dark matter
properties are ruled out (i.e. what collection of masses and
cross sections are rejected at, say, 95% confidence). In both
cases the optimal test statistic is determined by two

hypotheses under consideration, Hsþb and Hb, one being
the null hypothesis and the other the alternative.

B. Expected results

A powerful benefit of being able to find the PDF of T for
any hypothesis is the straightforward computation of
expected results. Computing the PDF of the test statistic
is equivalent to simulating the results of the observations
under a particular hypothesis. Instead of simulating large
numbers of realizations of the raw data (e.g. collections of
signal and background events) we can compute, exactly, the
probability distribution of the test statistic that would have
been derived from the raw data. Therefore, without
“uncovering” the actual photon data we can easily predict
how our methods are likely (in a well-defined sense) to
perform.
For example, suppose we wish to predict how strong our

upper limits will be if there was no dark matter annihilation
in the dwarf galaxies. We can perform the usual hypothesis
test of Hsþb. However, instead of using the actual observed
data to compute Tobs we can assume that the observed test
statistic will just be sampled from the background-only
PDF of T. That is, we compute PðT∣HbÞ and take Tobs to be
some quantile of this distribution. A central estimate of the
expected limit can be found by taking Tobs to be the median
of the background-only distribution. To find the statistical
uncertainty in the limit we can compute limits when Tobs is
at the 16th and 84th percentiles of the background
distribution. This gives a range where the upper limit is
likely to be found (under the background-only hypothesis).
Likewise, we can simulate the results of a search for dark

matter annihilation by sampling Tobs from the PDF of T
including the component Ts due to dark matter annihila-
tion. That is, we test the hypothesis Hb but take the
observed test statistic to be a quantile of the distribution
PðT∣HsþbÞ. We can therefore ask, “How likely are we to
make a detection if the cross section has a particular
value?,” i.e. the power of the test.
When searching for a signal we will need to test the

background-only hypothesis Hb against multiple signal
hypothesesHsþb, with different dark matter properties. It is
important to determine how “finely grained” the Hsþb’s
must be. For example, how many trial dark matter masses
should be searched for? Should the search be performed for
different annihilation channels? Or will a dark matter signal
be detected regardless of the specific alternative hypothesis
we are testing against?
There are several additional benefits to being able to

compute the distribution of expected results. In frequentist
statistical analysis it is vital that the choice of test statistics
and critical regions not be influenced by the observed data.
One issue that has not been addressed is the decision on
which events to include in the analysis. In our case this
entails selecting which dwarf galaxies to consider. We also
need to decide on the energy range of the events we
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consider and the maximum angular separation from a dwarf
an event can have. These choices define our ROIs for each
dwarf galaxy. We can use the expected limits formalism to
find out how different choices of ROIs will affect the
particle physics limits.
Finally, we can use this formalism to make predictions

for future experiments: with more observation time, differ-
ent detector properties, and different targets, how strong are
the dark matter limits expected to be? Examples of such
projections are carried out in Sec. IX F.

C. Smallest detectable signal

As discussed at the end of Sec. IV B 2, when searching
for weak signals with sQ ≪ bQ (e.g. for sufficiently small
hσvi) the weighting becomes independent of hσvi (since
hσvi just acts to scale the test statistic by a constant factor).
However, to squeeze as much power out of the search as
possible we will always use the most-powerful set of
weights, Eq. (23), which requires choosing a scaling
for the signal (equivalently, choosing hσvi) used in the
weighting.
We wish to make the search sensitive to the weakest

possible signal we can hope to detect. We therefore find the
smallest cross section hσvi90 such that there is a 90%
chance of making a 3σ detection if the true cross section
were hσvi90 [and hσvi90 is used in the weighting Eq. (23)].
In other words, we cannot reasonably hope to make a
detection if the dark matter particle has a smaller cross
section. The quantity hσvi90 is a useful measure of the
sensitivity of a dark matter search (i.e. instrument and
observation þ analysis framework).
The specific value of hσvi90 will depend on the mass and

branching ratios of the particle we are searching for. The
definition of hσvi90 is illustrated below in Fig. 2.
If the true value of the cross section is different from

hσvi90 then the search will not be the most powerful. For a

range of masses, cross sections, and annihilation channels
we have compared the power of a search using the true
value of hσvi in the weighting to that when using hσvi90.
The increase in power is negligible except for cross sections
much smaller than hσvi90 where we would have no hope of
making a detection even if using the true value of hσvi in
the weighting.

D. ROI size and energy range to consider

We must first decide, for each dwarf, what energy range
of events to consider and over what angular range. For
example, the Fermi LAT detects photons down to a few tens
of MeV. But is it really helpful to include all these low
energy events in the analysis?
In principle, the event weighting method can only benefit

by including more data. This can be seen heuristically by
plugging the weights Eq. (16) back into Eq. (15) to find that
the expected signal-to-noise ratio when using optimal
weights is ðP s2Q=bQÞ1=2. Including a larger parameter
space of events corresponds to including more Q terms in
the sum, increasing the signal-to-noise ratio (since each
term is positive).
We face diminishing returns, however, by including

terms that contribute little to the sum. And, in practice,
including low energy events as well as those at large
angular separations from the dwarf can be detrimental. The
reason is contamination by nearby gamma-ray sources. For
instruments such as Fermi, the point spread function
becomes quite broad toward lower energies. It is important
that events from a nearby source do not leak into the ROI
containing a dwarf galaxy. Such excess events are not
accounted for by the background component and would be
mistakenly attributed to dark matter annihilation. Making
the radius of the ROI as small as possible also helps with
this issue. Furthermore, when masking the known gamma-
ray sources in the background region, we would prefer to
use as small masks as possible in order to have many
independent samples of the background. Finally, the
power-law-like spectra of the events causes the data set
to be dominated by huge numbers of low energy events. If
low energy events are not helpful in searching for or
constraining dark matter annihilation it is computationally
efficient to ignore them (which also avoids any systematic
errors they may introduce).
To quantify the tradeoff between search sensitivity and

ROI size and energy range we explore how hσvi90 depends
on the ROI parameters. We expect that lowering the low
energy threshold will decrease hσvi90 up to a point. Beyond
this point the inclusion of lower energy events will not
make the search much more sensitive. A similar result
should hold with the radius of the ROI: including events at
large separations from the dwarf will not measurably
improve sensitivity.
Figure 3 illustrates the dependence of hσvi90 on the

choice of ROI parameters. Each curve in the figure

FIG. 2. Definition of hσvi90, the cross section for which there is
a 90% chance of making a 3σ detection. The PDF on the left is the
distribution of the test statistic if there is no dark matter
annihilation (background only). On the right is the PDF for T
if dark matter has mass M and cross section hσvi90. If the actual
cross section is hσvi90 there is a 90% chance of observing the test
statistic in the shaded region.
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corresponds to a dark matter particle mass, with M ¼ 10,
20, 30, 40, 50, 100, and 500 GeV going from the top left to
the bottom right. The two panels correspond to the
annihilation channels bb̄ and τþτ−. The curve for a given
mass passes through the ROI parameters which result in
hσvi90 being 1.5 times greater than the minimum possible
hσvi90. This minimum is found by including events with
energy above 0.4 GeV and a ROI radius of 2° (at 0.4 GeV
the PSF is approximately 2°, larger than the distance from
many dwarfs to their nearest gamma-ray sources).
The figure shows that the two properties of the ROI (its

minimum energy and angular radius) are essentially inde-
pendent: in order to achieve a given hσvi90 one needs to

meet requirements for both minimum energy and ROI
radius. There is very little tradeoff between the two; i.e. we
cannot substantially increase sensitivity by reducing ROI
radius while including lower energy events, for example.
Figure 4 presents a different way of looking at the issue.

Here we plot the fractional increase in hσvi90 from its
minimum value as a function of mass (x axis) and
annihilation channel (solid vs dashed lines).
For annihilation into tau leptons, we are assured full

sensitivity if we use a minimum energy of 2 GeVand a ROI
radius of 0.3°. This holds for any dark matter particle mass.
For annihilation into quarks the situation is different for low
mass WIMPs because the photon spectrum for bb̄ is softer

FIG. 3. Dependence of search sensitivity on ROI parameters. Each contour corresponds to a different mass of the dark matter particle
with M ¼ 10, 20, 30, 40, 50, 100, and 500 GeV going from top left to bottom right. The contour shows the ROI parameters which
increase hσvi90 by 50% from the minimum possible hσvi90 found using minimum energy ¼ 0.4 GeV and ROI radius ¼ 2°. The left and
right panels are for annihilation into bb̄ and τþτ−. (For the τþτ− channel the 100 and 500 GeV contours are outside the range of the
figure.)

FIG. 4 (color online). Dependence of search sensitivity on ROI parameters. Each curve corresponds to a choice of minimum energy
and ROI radius. The y axis measures the relative increase in hσvi90 from its minimum value (found using minimum energy ¼ 0.4 GeV
and ROI radius ¼ 2°) as a function of dark matter particle mass. The two panels are for annihilation into bb̄ and τþτ−.
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than for τ’s. For the lowest mass WIMPs it may be
necessary to use events down to 0.6 GeV and ROI sizes
of 0.5° in order to achieve the best sensitivity. However, as
discussed above using such low energy events may be
detrimental because of source contamination.
Figures 3 and 4 were produced using the instrument

response functions corresponding to the sky location of the
dwarf Segue 1 and by assuming that the dwarf under
consideration is a point source of gamma rays. The situation
is complicated by the extended emission expected from
some of the dwarf galaxies. In Fig. 5 we show how the
sensitivity depends on the ROI parameters for the dwarf
Draco, one of the most spatially extended dwarfs [only
Sextans is more extended, but its flux is likely an order of
magnitude fainter, see [60] (Table 2)]. The figure is con-
structed as in Fig. 4 but now the shaded regions show the
�1σ uncertainty when considering all the allowed halos for
Draco. The solid lines are the median ratio, over all density
profiles, of hσvi90 to the minimum possible hσvi90. The left
panel is for annihilation into bb̄ and the right is for τþτ−.
As expected, for extended dwarfs like Draco, the

reduction in sensitivity when using a small ROI radius is
more severe. For annihilation into τþτ−, using a ROI radius
of 0.5° and a minimum energy of 1 GeV will be enough for
near-optimal search sensitivity, regardless of the level of
spatial extension. For annihilation into bb̄ the same ROI
parameters are suitable for dark matter masses above
around 30 GeV. For lower masses, however, a minimum
energy of 0.5 GeV is required for near-optimal sensitivity
(in the absence of nearby sources).
When setting cross section limits we use a similar

procedure to find suitable ROI parameters. For any choice
of minimum energy and ROI radius we can compute an
expected limit. We have found that when hσvi90 is replaced

by the expected cross section limit, the analogs of Figs. 3–5
are very similar. Therefore, ROI parameters chosen for the
search are suitable for computing cross section limits as well.

E. Event classes

We have also considered the more discrete choice of
which Fermi LAT event class to use. The LAT event classes
are involved sets of cuts applied to the raw data that
produce the processed event files used in high-level
analyses. The Fermi Collaboration recommends the
Source class for analyzing localized sources (such as
dwarf galaxies). More stringent filtering to remove
cosmic-ray backgrounds is used in the Clean and
Ultraclean event classes intended for diffuse analysis of
large sky regions and for studies where it is vital to push the
rate of misidentified cosmic rays below the level of the
isotropic gamma-ray background (the high purity coming
at the expense of reduced detector effective area). In our
framework it is straightforward to compute expected limits
for data reduced with each of these event classes. We have
found that the effects are negligible: using Ultraclean
instead of Source weakens the expected limits by a few
percent. The Ultraclean class, however, has a greatly
reduced event rate which makes our unbinned analysis
more computationally efficient. All results in this paper are
derived using Pass 7 Reprocessed Ultraclean data.

F. Searching for a point source vs an extended source

Here we characterize the reduction in sensitivity if we
perform the search using a point source alternative hypoth-
esis when the truth is, in fact, that the dwarf is extended.
It is desirable to perform searches against as few alternative
hypotheses as possible. If we do not lose sensitivity when

FIG. 5 (color online). Dependence of sensitivity on ROI parameters for an extended source. The figure is constructed the same as for
Fig. 4 but using the extended emission expected from Draco. The shaded bands are the �1σ quantiles for the ratio of sensitivities when
considering all the allowed halos for Draco. The solid lines are the median ratios. The left panel is for annihilation into bb̄while the right
is for τþτ−.
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searching for point source emission, even for an extended
halo, we are justified in performing a single search for
pointlike emission.
We calculate hσvi90 using two different weighting

schemes but always assuming the halo is an extended
object. The minimum possible hσvi90 occurs when the
signal model used for the weighting coincides with the true
signal, i.e. for the weighting scheme using an extended
source model. We then compute hσvi90 using a point source
signal model in the weighting [i.e. replace the J profile in
Eq. (7) with a two-dimensional delta function]. That is, if
we mistakenly search for pointlike emission when the
actual emission is extended, what is the minimum hσvi we
are sensitive to?
For a minimum energy of 1 GeV and a ROI radius of

0.5° the reduction in sensitivity is around 30% for Draco’s
most extended profiles and significantly smaller for the
rest. For dwarfs besides Draco the effect will be much less.
Therefore, for searches in individual dwarfs we use point
source models.

G. How many trial masses?

In the event weighting framework, a search for annihi-
lation is performed by testing the background-only hypoth-
esis Hb against an alternative hypothesis Hsþb that dark
matter has a specific mass, set of branching ratios, and
annihilation cross section hσvi90 (which depends on the
branching ratios and mass). A search using a particular
alternative Hsþb may not be very sensitive if the truth is, in
fact, different from Hsþb.
This is dealt with by performing, one at a time, tests of

Hb against an array of alternative hypotheses with different
masses and branching ratios. We can quantify how many
alternatives are necessary by computing the power of the
tests for a given true mass and set of branching ratios.
For every pair of masses (M;Mtr) we assume that dark

matter has a true mass Mtr and cross section hσvi90
(associated with Mtr). We then find the power (probability
of making a 3σ detection) when testing the background-
only hypothesis against an alternative that dark matter has
mass M and cross section hσvi90 (associated with M).
WhenM ¼ Mtr the power of the test will be 90% since this
condition defines hσvi90. We wish to find out how different
M can be from the true Mtr before the power of the test
suffers.
Figure 6 shows the power when searching for dark

matter with mass M (y axis) when the true mass is Mtr
(x axis). The color represents the probability of making a 3σ
detection. The three panels are for dark matter annihilating
into b quarks, τ leptons, and directly into two gamma rays.
The white contours indicate where the power has dropped
by 10% from its maximum of 90% (occurring along the
line y ¼ x).
It is apparent that searching for a very few trial masses is

sufficient to explore the full range of dark matter masses.

FIG. 6 (color online). Statistical power of the search when the
true mass differs from that used in the alternative hypothesis. The
color shows the probability of making a 3σ detection if dark matter
has true mass Mtr (x axis) but the search is performed using mass
M (y axis) as the alternative hypothesis in the weighting. The white
contours show where the power is reduced by 10% from its
maximum (occurring along the line y ¼ x). The top panel is for
annihilation into b quarks, middle for τ leptons, and bottom for
gamma-ray line emission. Very few alternative hypotheses need to
be tested in order to have near-maximum power for any dark matter
mass in the range 10 GeV to 1 TeV for bb̄ and τþτ−. For line
emission it is important to search with a finer spacing in dark
matter mass (equivalently, photon line energy).
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For example, in a search for annihilation into bb̄, we need
only perform three searches (at, say, 10 GeV, 100 GeV, and
1 TeV) to be sure we are sensitive to any mass in the range
from 10 GeV to 1 TeV. For annihilation into τþτ− searches
for masses of 10, 40, and 300 GeV are sufficient.
For a line search we need more trials, about 15 to cover

the line energies between 10 GeV to 1 TeV. The shape of
the band reflects the “window function” nature of the
weighting. I.e. the optimal weighting scheme gives zero
weight to events outside a narrow energy region where the
line photons are expected. The width of the window is
determined by the energy dispersion of the detector,
estimated as 10%.
The strange behavior at the top right is due to two effects.

The broadening in the vertical direction at around 400 GeV
occurs because above this energy we expect zero back-
ground. Therefore, any weighting scheme that gives a
nonzero weight to signal photons above 400 GeV will yield
a detection (as long as at least one event above this energy
is observed). This is confirmed by noticing that the
expected number of signal events, for a cross section of
hσvi90, tends towards 2.3 as the line energy increases. In a
background-free experiment a 3σ detection is made by
observing a single event and so the probability of a
detection is 1 − expð−2.3Þ ¼ 0.9 as expected.
The broadening of the band only occurs in the direction

of larger trial masses because the weighting for lower
masses will include energies where some background is
likely. The broadening ends in a “kink” where the trial mass
weighting “window” no longer includes the true line energy.

VII. SUMMARY OF PROCEDURE

The previous sections have been presented in a general
way to develop the framework and indicate that it can apply
to many types of studies. Here we will detail the procedure
used to conduct searches and produce limits on dark matter
annihilation in dwarf galaxies. This section is presented in a
step-by-step manner and can be used as a template for other
analyses.
The first step is to decide on a set of ROI parameters. In

this study we include Ultraclean events with energies
between 1 and 300 GeV that are reconstructed within
0.5° of each of 20 dwarf galaxies. This choice of energy and
ROI radius is a compromise between sensitivity and the
need to avoid contamination by nearby point sources (most
of the dwarfs have a gamma-ray point source between 1°
and 2° away; see Secs. III, VI D, and VI E regarding this
choice).

A. The weighting function

Every test requires a weighting function (see Secs. IVA
and IV B) and we adopt the weighting function defined by
Eq. (23). This function assigns a numerical weight to an
event given three properties: the dwarf field it came from ν,

its reconstructed energy3 E, and the angular separation of
the event from the direction toward the dwarf θ. Explicitly,

wðQÞ ¼ wðν; E; θÞ ¼ log

�
1þ sðν; E; θÞ

bðν; E; θÞ
�
; ð27Þ

where s and b are the expected number of detected
signal and background events from dwarf ν, with energy
between E and Eþ dE and angular separation between
θ and θ þ dθ. (These functions are the sQ and bQ of
Sec. IV B, just with the event properties Q written
explicitly.) In computing the weight, the differentials cancel
and one can just use the expected number of events per
energy per solid angle for s and b in Eq. (27).
The weighting depends on the dark matter massM, cross

section hσvi, and branching ratios Bi through the function
sðν; E; θÞ,

sðν; E; θÞ ¼ dNðν; E; θÞ
dEdΩ

dE2π sinðθÞdθ; ð28Þ

with dN=dEdΩ defined in Eqs. (7) and (2). Note that in
Eq. (7) that the symbols J, PSF, and ϵ should all be
considered to contain a subscript ν since they differ for
each dwarf.
The energy spectrum for background events bðν; E; θÞ is

defined in Eq. (26). See Sec. VA for details.
We denote the set of particle parameters ðM; hσvi; BiÞ

used in the weighting function by Pw. To be explicit about
the dependence of the weight on all parameters we can
write the weighting function as wðν; E; θ∣PwÞ.
Figure 7 illustrates the weighting function for the

dwarf Segue 1 using a dark matter mass of 100 GeV
and annihilation into b quarks. The color represents the
weight that would be assigned to an event with a particular
energy and angular separation from Segue 1. The contours
show the expected number of signal events (black contours)
and background events (light gray), with the successive
contours enclosing 25%, 50%, 75%, and 90% of the events.
The small circles are the observed events, with color
indicating the weight they are assigned. We see that there
is a “sweet spot” at an energy around a tenth of the dark
matter mass, where events are given the highest weight:
events at this energy have the highest odds of being due to
dark matter annihilation rather than background.

B. Computing the PDF of T

The weighting function defines the test statistic T
through Eq. (9). The probability distribution describing
T must be determined under the hypothesis Hsþb: dark
matter has massM, cross section hσvi, and branching ratios

3In our implementation we use log10 E as the energy variable
for convenience.
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Bi. It is important to note that this set ofM, hσvi, and Bi can
differ from that used to define the weighting function. In
particular, Hb (the background-only hypothesis) is just the
special case of Hsþb where hσvi ¼ 0.
The procedure for computing the PDF of T under the

hypothesisHsþb is described in Sec. IV C. It is easiest to do
this with FFTs: use Eq. (25) to find the FFT of Ts. For each
dwarf, compute the PDF of Tb using the sampling
procedure described in Sec. V B and take the FFT of each
dwarf’s Tb distribution. Multiply all the FFTs together and
perform the inverse FFT to convolve Ts with Tb and obtain
the PDF of the test statistic T.

C. Search for annihilation

The search for a signal is the testing of the null
hypothesis Hb: background only, against the alternative
Hsþb; dark matter has mass M, cross section hσvi90, and
branching ratios Bi.
Given a choice of mass and branching ratios, find hσvi90.

This is done by constructing a function that returns the
power of the search as a function of hσvi. Find the value
hσvi90 such that the power is 90%. To compute the power
given a value of x for the cross section:

1. Adopt a weighting function which uses hσvi ¼ x
in Pw.

2. Determine the PDF of T under the background-only
hypothesis Hb (i.e. that hσvi ¼ 0).

3. Find the critical value of the test statistic T�
corresponding to a 3σ detection. I.e. the value of
T� such that PðT < T�∣HbÞ ¼ 0.9987.

4. Determine the PDF of T under the hypothesis Hsþb
that hσvi ¼ x.

5. Compute the probability of making a 3σ detection by
finding the probability that T is greater than T�. I.e.
find PðT > T�∣HsþbÞ. This is the power of the
search for dark matter with cross section hσvi ¼ x.

See Fig. 2 for an illustration of the definition of hσvi90.
Once hσvi90 has been found, performing the actual

search is simple:
1. Adopt a weighting function which uses a cross

section hσvi90 in Pw.
2. Find the observed value of the test statistic: apply the

weighting function to the observed events in the
ROIs for the dwarfs. Add up the weights of all
the observed events to obtain the observed test
statistic Tobs. Explicitly,

Tobs ¼
X
i

wðνi; Ei; θi∣PwÞ; ð29Þ

where i runs over all the events in the ROIs centered
on the dwarfs [see Eq. (9)].

3. Determine the PDF of T under the background-only
hypothesis Hb (i.e. that hσvi ¼ 0).

4. Find the probability of measuring T to be less than
Tobs under the background-only hypothesis [i.e.
PðT < Tobs∣HbÞ]. This is the “significance” of the
detection of an annihilation signal (see Sec. IV).

D. Constructing limits

To find upper limits on the annihilation cross section the
procedure is similar to that used for the search. For a given
mass and set of branching ratios, construct a cumulative
distribution function (CDF) for the test statistic. This is a
function of hσvi that returns the probability that T is
smaller than observed if hσvi were the true value of the
cross section. The 95% upper limit on the cross section is
the value of hσvi for which this function is 0.05. To find the
value of the CDF for a given cross section x:

1. Adopt a weighting function which uses hσvi ¼ x
in Pw.

2. Find the observed value of the test statistic: apply
the weighting function to the observed events in the
ROIs for the dwarfs. Add up the weights of all the
observed events to obtain the observed test statistic
Tobs [see Eq. (29)].

3. Determine the PDF of T under the hypothesis Hsþb
that hσvi ¼ x.

4. Find the probability of measuring T to be smaller
than Tobs under the Hsþb hypothesis. I.e. find
PðT < Tobs∣HsþbÞ. If this probability is less than
5% then hσvi ¼ x is rejected at 95% confidence.

FIG. 7 (color online). Illustration of the weighting scheme for a
100 GeV particle annihilating into bb̄. Color represents the
weight given to an event with a particular energy and angular
separation from the dwarf (going from zero in blue to a maximum
value in red). The black (light gray) contours show where the
signal (background) events are expected to be detected, with
successive contours enclosing 25%, 50%, 75%, and 90% of the
expected events (bottom to top for signal contours, left to right for
background). The circles show the observed events from the
dwarf Segue 1.
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E. Expected limits

To find the range of hσvi where the limit is likely to be
found construct a CDF slightly modified from the one used
to find the observed limits. Replace step 2 as follows:

1. Determine the PDF of T under the background-only
hypothesis Hb (i.e. that hσvi ¼ 0).

2. Set Tobs to be an appropriate quantile from this
distribution. E.g. the 16th, 50th, or 84th percentile.

For example, the expected limit hσviE found using the 16th
percentile has the following interpretation: if there were no
dark matter annihilation (background only) there is a 16%
chance that the observed limit will be stronger than hσviE.
So if the expected limits for both the 16th and 84th
percentile are found (call them hσviE1 and hσviE2) we
can say that there is a 68% chance that the observed limit
will lie in the range between hσviE1 and hσviE2.

VIII. RESULTS

A. Search for annihilation in individual dwarfs

As discussed in Sec. VI F when performing a search we
lose minimal sensitivity by assuming the dwarf emission
profiles are point sources. Under this assumption, the
spatial emission profile is described simply by an amplitude
J ¼ JðθmaxÞ. The annihilation cross section is completely
degenerate with this J value. Therefore, when searching for
emission from an individual dwarf we can remain com-
pletely agnostic about its J value. The assumed J value
does not influence the results of the search (it just changes
hσvi90 used in the alternative hypothesis).
Figure 8 shows the results of the search for annihilation

in individual dwarfs. A search is performed separately for
each mass and separately for annihilation into b quarks (left
panel), into τ leptons (middle panel), and into γγ (right
panel). Figure 9 separates the results for each dwarf galaxy,
showing all three annihilation channels in the same plot
(solid red lines for bb̄, dashed blue for τþτ−, and solid black
for γγ). We include the object Willman 1 when performing

the individual searches. This object is nearby but due to its
irregular kinematics we cannot reliably estimate its J
profile (see discussion in Sec. III). Therefore, it cannot
be included in the joint search described in the next section.
The significance of the detection is found using the

method in Sec. VII C. The probability of measuring T to be
less than Tobs is converted into “sigma units” using the
inverse CDF of a standard normal distribution and is plotted
as the y coordinate in Fig. 8. If the events in the ROI are
drawn from the background distribution there is a 68%
chance that the significance lies between −1σ and 1σ, a
95% chance the significance is between −2σ and 2σ, etc.
The distribution of significances in Fig. 8 is consistent

with the background-only hypothesis. None of the dwarfs
individually show a significant Tobs that could be due to
dark matter annihilation. It is important to note that the
significances shown are “local”: they represent the results
of a single hypothesis test. The more appropriate statistical
question is to find the probability that any of the searches
give an unusually large Tobs. The correction to the
significance can be made using a “trials factor,” which
would take into account the number of independent masses,
annihilation channels, and dwarfs that were tested. Because
none of the dwarfs show any evidence for a signal,
it is unnecessary to precisely quantify the trials factor—
incorporating a trials factor can only decrease the
significance.
The kinks in the curves occur due to the presence of

individual high energy events. For high mass dark matter
(especially for the hard τ spectrum) the weighting scheme
gives large weights to the high energy photons. The kinks
occur where the mass of the particle rises above a high
energy event, causing the observed weight to suddenly
jump. That is, a single high energy event “outweighs” a
large number of low energy events—the search is signal
dominated for these dark matter masses. Notice that the
kinks are always followed by an increase in significance,
never a decrease, as expected.

FIG. 8 (color online). Results of the search for annihilation in each dwarf separately. For each mass, annihilation channel, and dwarf
galaxy the significance of the events in the central ROI is computed according to the background-only probability distribution. The y
axis shows the corresponding “sigma value” obtained from a standard normal distribution. Each line represents one dwarf galaxy. There
is no strong detection of annihilation in any of the dwarfs individually.
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B. Joint search

One of the main novelties of the technique presented
here is that it enables an optimally sensitive search of
the entire data set. That is, we can include all the events

from all the dwarfs in the weighting to do a simultaneous
search among all the dwarfs. For this procedure knowledge
of the dark matter distributions in the dwarfs becomes
important since the weighting requires the relative

FIG. 9 (color online). Results of the search for annihilation in each dwarf separately. For each mass, annihilation channel, and dwarf
galaxy the significance of the events in the central ROI is computed according to the background-only probability distribution. The y
axis shows the corresponding “sigma value” obtained from a standard normal distribution. Each line represents one dwarf galaxy. There
is no strong detection of annihilation in any of the dwarfs individually.

COMPREHENSIVE SEARCH FOR DARK MATTER … PHYSICAL REVIEW D 91, 083535 (2015)

083535-19



strength of the signal amongst the dwarfs [see Eqs. (3)
and (23)].
As discussed in Sec. III, there is a systematic uncertainty

in the determination of J profiles. To deal with this
uncertainty we perform multiple hypothesis tests where
we explore the range of allowed density profiles.
Specifically, we draw sample halos for the dwarfs accord-
ing to their posterior probability distributions (see Sec. III)
and then perform the joint search using this realization of J
profiles. We repeat this procedure many times, generating
an ensemble of significance curves which explore the
possible dark matter distributions in the dwarfs. The J
profiles are just used in the weighting function—the
hypothesis being tested is that the data come from back-
ground processes only.
The results of the joint search are plotted in Fig. 10

where we consider annihilation separately into bb̄ (left
panel), into τþτ− (middle panel), and into γγ (right panel).
For each value of mass, among the ensemble of signifi-
cance curves, we find the median (black line) and 16th and
84th percentiles (dashed lines) of the significances.
Combining all observations in this way results in the

most sensitive search for dark matter annihilation in dwarf
galaxies. There does not appear to be an excess signal over
background in the combined data set. We therefore proceed
to set limits on the dark matter annihilation cross section.

C. Cross section limits

Limits on the annihilation cross section are computed
using the procedure of Sec. VII D. We combine the data
from the 20 dwarf galaxies analyzed in [60] to produce a
single set of limits. The cross section limits are computed
for each annihilation channel assuming a 100% branching
ratio. Figure 11 shows the cross section upper limits.
The shaded band in each figure quantifies the systematic

uncertainty in the limit due to our uncertain knowledge of
the J profiles of the individual dwarfs. If we had perfect
knowledge of the density profiles we could construct a
single upper limit curve. In this work we take the approach

of separating out the uncertainty in the dark matter density
profiles from the statistical upper limits.
To produce the bands we sample J profiles from their

posterior distributions as described in Sec. III and [60]. For
each realization of density profiles we compute upper limits
as described in Sec. VII D. This gives a collection of limit
curves, one per realization, with roughly 1300 to 2500
realizations in total (depending on channel). At each mass
we find the 16th, 50th, and 84th percentiles among the
realizations. These define the lower and upper edges of
the band and the solid line in the middle. The interpretation
of these systematic bands will be discussed further in
Sec. IX C.
The horizontal solid gray line is the relic abundance (or

thermal) cross section computed by Steigman et al. [18].
The dotted gray line is hσvi ¼ 3 × 10−26 cm3 s−1, the
rough “canonical” value used over the past two decades,
before experiments attained their current sensitivities. As
discussed in the Introduction, these curves are lower limits
on the annihilation cross section. Therefore, dark matter
masses for which our upper limits lie below the thermal
cross section are ruled out (assuming 100% branching
fraction into the given channel).
In addition to systematic uncertainties in the limit we

quantify the magnitude of statistical fluctuations in the
limit. That is, if it were possible to repeat the gamma-ray
observations while holding the J profiles fixed we would
obtain different observed limits each time. This is due to
fluctuations in the finite number of signal and background
events detected. The statistical uncertainty is found by
computing expected limits as described in Sec. VII E. For
each realization of J profiles we find the range of hσvi in
which there is a 68% chance of finding the limit if the data
are due to background processes only. The median
expected limit is found the same way. This 68% statistical
uncertainty can be visualized as an error bar centered on
the median expected limit. We have found that while
the median varies greatly with different realizations of J
profiles, the width of the error bar is constant. Therefore,

FIG. 10. Results of the joint search for annihilation in 20 dwarf galaxies. Dwarfs are assumed to be point sources with J values drawn
from the posterior chains (one-bin chains for the ultrafaints). At each mass, 250 searches are performed by drawing J values from their
distributions, and the bands represent the 16th to 84th percentiles of the significance of detection. The significance on the y axis does not
take into account any trials factor resulting from performing the search at multiple masses and for multiple realizations of the J values.
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we can quantify the statistical uncertainty in the limit by a
single band.
These statistical fluctuations are shown in Fig. 12. The

figure is produced assuming a single realization of the
density profiles for each dwarf (the realization is chosen so
that the median expected limit lies close to the median
observed limit of Fig. 11). The dashed line shows the
median expected limit. There is an 84% (16%) chance of
observing an upper limit below the upper (lower) edge of
the green band (for the yellow band these probabilities are
97.7% and 2.3%). The green and yellow coloring is
inspired by collider searches [see e.g. [94] (Fig. 8)] and
has the same interpretation: there is a 68% chance that the
observed limit lies in the green band and a 95% chance the

observed limit lies in the yellow band (if the data were
generated by backgrounds). We also plot the observed limit
(solid line) for this particular realization of density profiles.
The yellow band goes to hσvi ¼ 0 because of our decision
to compute 95% upper limits. There is a strong overlap
between the results of the search (Fig. 10) and where the
observed limit lies relative to the expected limit.
The lower edge of the yellow band is hσvi ¼ 0 because

of our decision to compute 95% upper limits. We are
assuming the background-only hypothesis hσvi ¼ 0.
When testing this hypothesis there is a 5% chance that
we mistakenly reject it, i.e. draw the upper limit at
hσvi ¼ 0. This is a consequence of the limits having
95% coverage. It is a manifestation of common occurrence

FIG. 11 (color online). Annihilation cross section limits from the joint analysis of 20 dwarf galaxies. The shaded band is the systematic
1σ uncertainty in the limit derived from many realizations of halo J profiles of the dwarfs consistent with kinematic data. The solid line
depicts the median of this distribution of limits over the halo realizations. The thin dashed line corresponds to the benchmark value of the
required relic abundance cross section (3 × 10−26 cm3=s), while the solid horizontal line corresponds to the detailed calculation of this
quantity derived by Steigman et al. [18]. The observed limits are below this latter curve for masses less than [0, 26, 54] GeV (for
annihilation into bb̄), [18, 29, 62] GeV (τþτ−), [21, 35, 64] GeV (uū; dd̄; ss̄; cc̄, and gg), [87, 114, 146] GeV (γγ), and [5, 6, 10] GeV
(eþe−), where the quantities in brackets are for the −1σ, median, andþ1σ levels of the systematic uncertainty band. A machine-readable
file tabulating these limits is available as Supplemental Material [93].
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in frequentist statistics: negative fluctuations of the back-
ground can cause empty confidence intervals.
It is important to note that this “statistical uncertainty in

the limit” is not an uncertainty in the same sense as that due
to the halo profiles. The shaded bands in Fig. 12 quantify
wherewewould have expected the limits to be found prior to
their measurement, or alternatively, how much the observed
limits would fluctuate over multiple measurements.

IX. DISCUSSION

A. Comment on an apparent excess

The current work is a generalization of two previous
studies [48,89]. In parallel, the Fermi Collaboration has
recently published results of a dark matter search in a
sample of Milky Way dwarfs [95]. That work makes use
of a likelihood-based search, where a many-component

background model is fit to a 15° region surrounding each
dwarf. The model consists of known point sources, a
diffuse galactic component, and an isotropic flux (modeling
extragalactic and unresolved sources as well as instrumen-
tal backgrounds).
In a joint analysis of 15 of the dwarfs an initial

interpretation of the likelihood ratio test statistic indicated
a signal significance of about 3σ (corresponding to a
profile likelihood test statistic value of 8.7) for dark matter
annihilating into bb̄ with a mass between 10 and 25 GeV.
The “excess” was due primarily to Segue 1, Willman 1, and
Ursa Major II, the dwarfs assigned the largest J values in
that study. As will be discussed below, [95] found it
necessary to calibrate the detection significance using a
post hoc background sampling procedure.
In this work we find that the observed data are consistent

with background for each of the dwarf galaxies individually

FIG. 12 (color online). Expected limits are used to show where the observed limit is likely to be found. There is a 68% (95%) chance of
observing the cross section upper limit to lie in the green (yellow) region. The dashed line is the median expected limit (i.e. there is a
50% chance of observing the limit to be below this line). These ranges are computed for a particular realization of halo density profiles.
When sampling different profiles the curves shift up and down but the width of the bands is constant. The solid line is the observed upper
limit for this particular realization—Fig. 11 shows the observed limits including the uncertainty induced by the dwarf density profiles.
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as well as in a joint analysis. This difference is perhaps due
to the different way that we treat the background compared
to the likelihood-based modeling approach. Whereas the
Fermi Collaboration study assumed that the diffuse back-
ground is described by a Poisson process our empirical
sampling of the background does not enforce that
assumption. To the contrary, we observe that the back-
ground is not well described by a Poisson process. In
particular, the PDF of the test statistic due to background
often has an extended tail to high T values not predicted by
a compound Poisson distribution. Thus an observation of a
“large” Tobs can be misinterpreted as significant if the
background is not understood correctly.
This effect can be seen explicitly in Fig. 13. For each

dwarf we plot the PDF of the test statistic due to back-
ground. The black curve is the empirically derived dis-
tribution (Sec. V B) while the blue curve is a compound
Poisson distribution based on the observed background
energy spectrum (Sec. VA). In both cases we adopt a
weighting function for a search for a 25 GeV particle
annihilating into b quarks. The vertical dashed line shows
the observed test statistic. The signal significance is shown
assuming the two different background PDFs. An
assumption of a Poisson background does not describe
the actual background in many cases and can lead to a
mistakenly large detection significance.
The difficulty in fitting a multicomponent Poisson

background model is illustrated in Fig. 4 of [95]. There,
“blank sky locations” are used to test whether the like-
lihood ratio test statistic is accurately described by an
“asymptotic” χ2 distribution. This sampling of blank sky
locations is analogous to the empirical background sam-
pling developed in [48] and employed in the present work.
Ackermann et al. [95] found that the blank sky PDF of the
test statistic deviated from the χ2 distribution at large values
of the test statistic. One of the reasons for the deviation
could be that the background model is not flexible enough
to describe the true background. Carlson et al. [57] present
evidence that unresolved blazars and radio sources are at
least partly responsible for the insufficiency of the back-
ground treatment used in [95].
The blank sky location sampling of Ackermann et al.

[[95] (Fig. 4)] reduces the tail probability of a TS ¼ 8.7
observation to a local p value of 0.13. This corresponds to a
significance of 2.2σ which can be directly compared to the
values shown in our Figs. 8–10. Thus, when calibrating
the detection significance using an empirical sampling of
the background, the results of Ackermann et al. [95] are
closer in line with what we find. We note that the empirical
background sampling is a simple and central component of
our framework rather than an additional step used to
recalibrate significances derived through a complicated
model fitting method.
While the blank sky procedure reduces the maximum

local significance in [95] to 2.2σ, the largest significance

we find in the bb̄ channel is still only around 1.5σ (see
Fig. 10). Note that, in contrast to [95], we do not include
Willman 1 in the joint search because its J profile cannot be
reliably determined. We repeated our search using the same
set of 15 dwarfs as in [95], treating them as point sources
and adopting the JNFW values from Table I of that work.
Even in this case, the maximum significance we find is
1.7σ (for masses between roughly 10 and 150 GeV). The
inclusion of Willman 1 does not seem to be responsible for
the discrepancy in detection significance between the two
studies.

B. Galactic center

Over the past few years several groups have used Fermi
LAT data to search the Galactic center region for evidence
of dark matter annihilation [29–37]. These groups report
evidence for a spherically symmetric excess of gamma rays
over what is expected from diffuse background processes
and point sources. Interpreted as dark matter annihilation,
the excess can be best fit with an ∼30 GeV dark matter
particle annihilating into quarks (e.g. [35], but see also
[96]). Several alternative explanations of the data have been
suggested (e.g. [31–34,37,97–100]), while Bringmann et al.
[101] conclude that cosmic-ray data are already in tension
with the dark matter hypothesis. However, since a relative
dearth of plausible alternatives have been put forward,
it is vital to consider the implications of a dark matter
explanation.
It is important to note that while many groups have

presented evidence of an excess with concordant dark
matter properties all of the studies use the same data set,
namely Fermi LAT observations of the inner galaxy. It is,
therefore, of paramount importance to test the dark matter
explanation in an independent observation. Gamma-ray
observations of dwarf galaxies provide a robust, indepen-
dent test. If dark matter annihilates in the Galactic center it
also does so in the dwarfs and will generate gamma rays in
a predictable way. The only uncertainty involved is the dark
matter distribution within the systems.
Figure 14 is a zoom-in of Fig. 11, showing our observed

cross section limits in the mass range suggested by the
Galactic center observations. The black contours are the 1σ
and 2σ best-fitting models from [35,102] for dark matter
annihilating in the Galactic center (the bb̄ channel is
shown; the relative positions of the curves for other
channels are similar). As before, the red band shows the
uncertainty in the limit due to our incomplete knowledge of
the dark matter distribution within the dwarfs.
What this plot indicates is that the dwarfs, despite their

larger distance and lower density than the Galactic center,
are able to probe the same dark matter parameter space
suggested by the Galactic center observations. This is
achieved by jointly analyzing the data from different dwarfs
as well as by constructing a maximally powerful analysis
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FIG. 13 (color online). The probability distribution of the test statistic due to background for each dwarf galaxy. The black curve is the
empirical background PDF based on field surrounding each dwarf. The blue curve is the PDF assuming that the background is generated
by a Poisson process having a spectrum and normalization derived from the surrounding field of view. The vertical dashed line is the
observed value of the test statistic in the central ROI surrounding each dwarf. The sigma values shown are the detection significance
when the background is modeled empirically (black) or as a Poisson process (blue). The weighting for this search is performed for a
25 GeV particle annihilating into b quarks. This mass and channel correspond to the most significant Fermi detection (10–25 GeV, bb̄)
in Segue 1, Ursa Major II, and Willman 1.
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framework which uses all the information available in
the data.
While perhaps not satisfying, our current state of knowl-

edge leads us to conclude that observations of the dwarfs
may be in conflict with the dark matter interpretation of the
Fermi Galactic center observations. That is, there are many
dark matter density profiles, perfectly consistent with the
stellar kinematic data, which exclude the Galactic center
models. At the same time, other allowed density profiles
give rise to limits that are too weak to rule out these models.
However, the stellar kinematic data do not allow arbi-

trarily weak cross sections. As dynamical analyses improve
[77–79] the systematic band will shrink and our claims
about the Galactic center models will sharpen. Already,
they point to the important fact that the dark matter
interpretation of the Galactic center data will be confirmed
or ruled out by gamma-ray observations of the Milky Way
dwarf population with near-current technology.

C. Systematic uncertainty in dwarf density profiles

In presenting limits on the annihilation cross section we
take the approach of separating the statistical uncertainty
due to finite photon counts and the systematic uncertainty
due to uncertain knowledge of the dwarf halo profiles. This
makes clear how our sensitivity to the particle physics
depends on what we know about the astrophysics. Our
sampling of “realizations” of the dwarf J profiles should be
thought of as exploring the parameter space of possible
dark matter halos that are consistent with the stellar
kinematic data. For each realization we compute a sta-
tistically rigorous 95% upper limit on the annihilation cross
section. It is difficult, in our opinion, to quote a single upper
limit on the cross section which has an unambiguous

frequentist statistical interpretation. If, in the future, the
range of allowed profiles decreases, the systematic error
band will shrink accordingly.
Ackermann et al. [49,95] incorporate the uncertainty

in J as a term in the likelihood function. The idea is
essentially to treat the scalar J value as being measured
(subject to statistical uncertainty) [103] at the same time
as the gamma rays. In reality, the “measurement” of J is
actually a Monte Carlo scan of the parameter space
describing the halo properties in a Bayesian framework
[43,45,59,60,104]. The scan gives rise to a posterior
probability distribution for J that is often log-normal and
is centered on a “best-fit” value J̄. This posterior distribu-
tion is then reinterpreted as the likelihood function for
measuring J̄ given a true J. As a result, a single limit curve
is obtained by decreasing the true J values as the cross
section is increased until the likelihood decreases by some
set amount.
However, performing this “inversion” of the posterior to

get the likelihood is not trivial. It does appear to be a
simple algebraic manipulation of Bayes’s theorem:
posterior ¼ likelihood × prior. If the posterior is log-
normal and the prior is flat it seems that the likelihood
is also log-normal (but with the true J in the denominator of
the prefactor, not the “measured” J̄) [103]. However, the
Bayesian analysis that shows the posterior to be log-normal
does not use a flat prior on J. In fact it does not explicitly
use a prior on J at all. Instead there are priors on the
multiple parameters α; β;… describing the dark matter
halo (and in [95,104] additional hyperparameters describ-
ing the population of dwarf galaxies). These priors
could, in principle, be integrated against a delta function
δðJ − Jðα; β;…ÞÞ to yield a prior on J but this prior is not
necessarily flat. And even if this J prior were found and
used to divide the log-normal posterior it would be difficult
to interpret the resulting function as the likelihood for J
given the “measurement” of the number J̄. The quantity J̄ is
an estimator found by performing the Bayesian analysis of
the stellar data, producing a posterior distribution for
log10 J, approximating it by a normal distribution, and
extracting the mean log10J (and standard deviation σ) from
this fitted distribution. The sampling distribution of the
estimator J̄ (a function of the stellar kinematic data) need
not have any relation to the posterior from the Bayesian
analysis.
In the limit of “large sample sizes” the central limit

theorem shows that the posterior distribution for a param-
eter approaches a Gaussian centered on the maximum
likelihood estimate (MLE) of the parameter with standard
deviation σ [105]. A second version of the theorem says
that the sampling distribution of the MLE is Gaussian,
centered on the true value, with the same variance σ. Such
logic may form the basis for using the posterior on log10 J
to approximate the sampling distribution of log10J.
However, the log-normal form for the likelihood is

FIG. 14 (color online). Detail of the 95% cross section upper
limits for annihilation to bb̄, comparing with the dark matter
interpretation of the Galactic center gamma ray presented in [35].
As in Fig. 11 the red band represents the range of plausible
models for the dark matter distribution in the dwarfs galaxies.
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inappropriate and, more importantly, it is far from clear that
the stellar kinematic data on the dwarfs constitute a “large
enough” sample. The sampling distribution of log10J must
be quantified by analysis of simulated sets of stellar
observations (e.g. [106–108]).
In this work, we prefer the clean separation of the particle

physics uncertainties from the astrophysical uncertainties.
This is the most candid way to represent the impact of
various uncertainties on the particle physics conclusions. It
also separates, as much as possible, the Bayesian scan over
dark matter halo parameter space from the rigorous
frequentist method used to derive confidence intervals
and detection significances. Of course, this separation
comes at a cost in the presentation of the results: we
cannot quote a single number for a limit or a significance.
We show, quantitatively, the impact of the systematic
uncertainties on the frequentist statements.

D. Sensitivity scaling

The framework introduced in this work can be used to
derive expected results from future observations or by
experiments with different instrumental characteristics.
Equation (18) is a good starting point to see how

results will scale with, for example, increased observation
time. For background-dominated regimes (sQ ≪ bQ) we
have SNR2 ∼ s2Q=bQ, while for small backgrounds we
have SNR2 ∼ sQ.
Increasing the observation time will scale the signal and

background by the same factor, while hσvi is a multipli-
cative factor in sQ. Therefore, cross section limits and
sensitivities scale at a rate between t−1 and t−1=2 depending
on whether the observation is signal or background
dominated. For Fermi LAT observations, whether we are
signal- or background-dominated depends on the mass of
the dark matter particle and the annihilation channel. For
high mass particles and/or hard spectrum channels we
approach the signal-dominated regime since the back-
grounds fall sharply with increasing energy.
The cosmic ray backgrounds for Clean and Ultraclean

events are already thought to be subdominant to the
extragalactic diffuse gamma-ray emission [[70] (Fig. 28)]
so further improvements to cosmic ray discrimination are
unlikely to reduce the background substantially. This also
indicates that the effective area enters in the same way as
observation time and so limits the scale with the effective
area just as with time for instruments which can reject
cosmic rays sufficiently well.
The inclusion of additional dwarf galaxies is more

unpredictable. In general doubling the number of dwarf
galaxies doubles both signal and background. So again,
“number of dwarfs” scales limits in the same way as
observation time. All J values (and backgrounds) being
equal, observing one dwarf for eight years or two dwarfs
for four yields the same cross section sensitivity.

Of course the J profiles of newly discovered dwarfs are
not guaranteed to be similar to those of the known dwarfs.
The inclusion of a single nearby object could improve
limits substantially. By the same token, the discovery of
many distant, low mass dwarfs (e.g. Leo IV and Leo V)
will not change the sensitivity to dark matter since they
bring in as much background as the promising dwarfs but
very little signal.
It is important to note that, in principle, including more

dwarfs can only increase the sensitivity. However, this is
only true if the proper weighting is used. Adding additional
dwarfs in a simple “stacking” of the data can actually be
detrimental, as can be seen from Eq. (15). If wQ ¼ 1, as in a
basic stacking analysis, including dwarfs with lots of
background but small expected signal can decrease the
signal-to-noise ratio.

E. The statistical method

This work (along with [48]) presents a novel method to
treat diffuse and unresolved backgrounds in gamma-ray
studies. It can be specifically contrasted with studies where
the background takes an assumed form (perhaps with free
parameters which are fit). Our procedure has advantages
and disadvantages.
Most importantly, the treatment of the background is

model independent. That is, the background is empirically
discovered, not modeled. We do not have to understand the
sources of diffuse gamma rays, or possible misreconstruc-
tion of cosmic rays or other instrumental noise. In fact, the
empirical sampling makes no use of the instrument response
functions at all, save that the exposure is constant across the
field of view. We thereby avoid any associated systematics.
The correctness of this method depends on the

assumption that processes near the dwarf are also at work
in the direction of the dwarf. However, this assumption can
fail if there are actual background gradients across the field
of view, if the sources are not masked appropriately, or if
effective area changes across the field of view.
Specifically, it is difficult to use this sampling procedure

in a crowded environment. If there are sources very near to
the dwarfs (or even overlapping them) it will be necessary
to account for them somehow. There are no tuneable knobs
in our background model. Therefore, it is not clear how to
include a systematic uncertainty (e.g. uncertain effec-
tive area).
The statistical method, in general, is also designed to be

robust. Probability distributions are computed exactly,
without relying on asymptotic theorems about the behavior
of a test statistic. Therefore, confidence regions have the
correct coverage. In contrast it is not clear that the profile
likelihood method used in many studies gives confidence
regions with proper coverage. It seems that coverage was
checked in Ackermann et al. [95] using simulated event
maps. However, as that study showed, the models used for
the simulations do not accurately describe the gamma-ray
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sky. Do the asymptotic theorems apply if the likelihood
model is not flexible enough to include the truth? This is a
point that merits further study.
The event weighting method we have introduced is quite

general and the “optimal weighting” function nicely
interpolates between background-dominated and signal-
dominated regimes. That is, if certain parts of “observation
space” (e.g. certain event energy ranges) are signal domi-
nated they are given a higher weight.
In fact, the weighting can be thought of as a subtle and

automatic way of making cuts on the data. For example,
consider the “sliding window technique” used to search for
a gamma-ray line (e.g. [109–111]). In those studies an
optimized cut on event energies must be made for each trial
line energy. In the line search performed in this work such a
window is effectively created by the weight function:
events with energies far from the line energy are given a
zero weight. A “cut” on the data corresponds to a weighting
which can only take the values 0 and 1. In this light, the
event weighting is seen as a generalized way of optimally
cutting the data. We have shown that the “correct” (i.e. most
powerful) way to do this is by weighting events according
the probability that they are due to signal divided by the
probability that they are due to background.
The method does not apply simply to dark matter

searches or even to gamma-ray observations. It can likely
be adapted to many different analyses. The idea is simple:
weight different parts of the data according to how likely
they are to contain information you care about. Then use
the “total weight” as a test statistic. It is especially useful
for combining observations and can be thought of as a
generalization of “stacking,” which is widely used through-
out astronomy. It is currently being applied to an ACT
study of dark matter annihilation in dwarfs [61] but could
be simply extended to search for any faint gamma-ray
sources. It is an improvement over the commonly used on/
of method as it uses the energy and direction information of
events and could even be used to weight different data-
taking runs according to the varying backgrounds on
different nights. At higher energies, experiments like
HAWC can likely make use of the event weighting to
optimally detect high energy sources of cosmic rays.

F. Ten years of “Pass 8” data

We perform a rough estimate of the sensitivity that Fermi
can achieve after the completion of the mission. The results
presented in this work have used Pass 7 Reprocessed data.
Pass 8, currently under development by the Fermi
Collaboration, is a complete rebuild of the data reduction
(see e.g. [112]). We make use of preliminary estimates of
the Pass 8 instrument response functions and assume a
mission lifetime of ten years in order to predict the future
sensitivity.
As far as this work is concerned, the most important

effect in changing from Pass 7 to Pass 8 will be the

increased effective area and observation time. We do not
take into account the improvement in point spread function
as we cannot model the PSF based only on estimates of its
68% and 95% containment angles (see e.g., slide 8 in
[113]). For example, the 68% containment angle may
decrease by as much as 20% at energies above 1 GeV
and would be used to lower the background by down-
weighting events far from the location of the dwarf.
Therefore, including the improved PSF may result in a
somewhat stronger gain in sensitivity than what we present.
For the LAT, the effective area AeffðE; θÞ is a function of

energy and off-axis angle (the angle of the source with
respect to the spacecraft “boresight”). The effective area
curve AeffðEÞ, a function of energy only, is the live-time-
weighted average of AeffðE; θÞ and depends on the position
of the source and on the spacecraft pointing history.
We approximate the effective area curve for Pass 8 by
multiplying the Pass 7 curve (for each dwarf position) by
the ratio of on-axis effective areas AeffðE; θ ¼ 0Þ for
P8_SOURCE vs P7REP_SOURCE [114]. Similar results
are obtained by using the ratio of acceptances [solid angle-
weighted average of AeffðE; θÞ] [112,115]. Note that we
only include events with E > 1 GeV. We write “Pass 8” in
quotes to indicate we are using an unofficial approximation
to the Pass 8 instrument response functions.
The new exposure ϵðEÞ used in Eq. (7) is the current Pass

7 exposure multiplied by the (energy-dependent) ratio of
on-axis effective areas and by the increase in observation
time: 10 yr=5.8 yr ¼ 1.7. The background spectrum used
in the weighting Eq. (26) is multiplied by the same ratio
(i.e. the background being mostly gamma rays will scale
with effective area and time). The background sampling
described in Sec. V B no longer describes the “Pass 8”
background. Instead we use a compound Poisson distri-
bution where the expected number of background events is
given by bQ in Eq. (26).
For each realization of halo density profiles we find the

sensitivity hσvi90 with the current Pass 7 data and with ten
years of “Pass 8,” assuming a compound Poisson back-
ground in both cases. The ratio of these two quantities gives
the expected increase in sensitivity. We then find hσvi90 for
the current data using the correct empirical background.
Scaling this latter sensitivity by the “Pass 8”/Pass 7 ratio
gives an estimate of the expected sensitivity for ten years of
Pass 8 observations. We are also interested in the cross
section for which there is, say, a 50% or 10% chance of
detection. To this end we noticed that the ratio between
such a cross section and hσvi90 does not strongly depend on
the observation time, which effective areas are used, or on
which halo parameters are chosen (the relative variations
in the cross section ratios are at the percent level when
changing observation time, effective area, etc.). Therefore,
we compute, for each mass and using a fiducial set of halo
parameters, the cross section required for a 50% and 10%
chance of detection for the current observations using the
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empirical sampled background. We use these to scale the
“Pass 8” hσvi90 values to estimate the cross sections for
which there is a 50% and 10% chance of making a 3σ
detection after ten years with Pass 8 data.
Figure 15 shows the results of this exercise for dark

matter annihilation into b quarks (left panel) and τ leptons
(right panel). The solid, dashed, and dotted curves are the
cross sections for which there is a 90%, 50%, and 10%
chance of making a 3σ detection with ten years of “Pass 8”
data. The lines may be interpreted simply: dark matter with
a cross section above the 90% curve is likely to be
discovered; if the cross section is below the 10% curve
discovery in the dwarfs is unlikely. As in previous figures,
the shaded band represents the systematic uncertainty in the
dark matter density profiles in the dwarfs. That is, all three
sensitivity curves may be shifted (together) up and down
within the shaded region, depending on the actual density
profiles. The band is shown centered on the 50% curve. (It
is a coincidence that the band’s width is so similar to the
distance between the 90% and 10% curves.) The horizontal
lines show the relic abundance cross section (solid for the
Steigman et al. [18] value, dotted for the “canonical”
3 × 10−26 cm3 s−1). For the bb̄ channel we also plot the 1σ
and 2σ contours from [35,102], corresponding to a dark
matter interpretation of Fermi observations of the Galactic
center.
The lower panels of Fig. 15 show the ratio between the

cross section that Fermi will be sensitive to in the future and
the one it is sensitive to today (i.e. in the search performed

in this work). The horizontal dashed lines show what might
be expected from a naive scaling with time, either propor-
tional to t (lower line) or to

ffiffi
t

p
upper line. We see that there

is a mass-dependent improvement in sensitivity. For high
mass dark matter the search is more signal dominated and
the sensitivity scales more favorably with time.
Note that all of these projections are based on the current

sample of 20 dwarf galaxies and our current understanding
of the density profiles in these systems. The discovery of
new, nearby dwarfs can only make the search more
sensitive (see, for example, [52]). A better understanding
of the density profiles in the current sample of dwarfs will
shrink the systematic bands.

X. CONCLUSIONS

We have developed and applied a new statistical frame-
work for analyzing multiple data sets to search for dark
matter annihilation. The method performs maximally
powerful tests (in the frequentist sense) by weighting
individual detected events based on their spatial and
spectral properties. The weighting is influenced by knowl-
edge of the instrument response, the particle physics
properties affecting the expected signal, and an empirical
determination of the background. The framework is general
and likely can be applied to other studies searching for
weak signals in noisy data and extracting particle physics
constraints from multiple sets of data.
Using Fermi LAT gamma-ray observations, we have

applied the method to search for dark matter annihilation in

FIG. 15 (color online). Future sensitivity to dark matter annihilation in dwarf galaxies over a ten year mission lifetime and using an
approximation to the Pass 8 instrument response functions. The solid, dashed, and dotted lines show the cross sections for which there is
a 90%, 50%, and 10% chance of making a 3σ detection. The shaded band represents the uncertainty in the dark matter density profiles in
the dwarfs. The band is centered on the 50% curve and the systematic uncertainty shifts all three curves together. The lower panels show
the cross section sensitivity of future observations divided by the sensitivity of current observations. The dashed lines show the ratio of
current vs Pass 8 observation times (lower line) and the square root of this ratio (upper line).
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a joint analysis of 20 Milky Way dwarf galaxies, the
complete population for which the dark matter distribution
is constrained by stellar kinematics. No evidence for
emission beyond background is found in any individual
dwarf, or in the combined sample. We therefore set upper
limits on the annihilation cross section for various channels,
carefully taking into account the systematic uncertainty
in the dwarf density profiles. We have found that for
quarks and heavy leptons, the annihilation cross section
upper limit is less than the relic abundance value
(2.2 × 10−26 cm3 s−1) for dark matter masses less than a
few tens of GeV, while for annihilation to a two-photon
final state the cross section limit is around 10−27 cm3 s−1 in
this mass range.
These results show the importance of dwarf galaxies in

searching for a dark matter signal from the sky. Current
observations combined with new methods of analysis have
reached the sensitivity to probe long-sought dark matter
particle models. Such approaches are perhaps the most
robust complements to the search for dark matter in the
Galactic center. We therefore expect that future gamma-ray
observations of dwarf galaxies will be crucial in discovering,
confirming, or ruling out dark matter at the weak scale.
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APPENDIX A: COMPUTATION OF PDFS

1. Compound Poisson distributions

We give a short derivation of the compound Poisson
distribution function Eq. (25). The use of such distributions
was introduced into astrophysics as “PðDÞ analysis” [116]
(see also [90] and references within).
Consider the sum over N “events,” where each event i

carries a weight Wi:

T ¼
XN
i¼1

Wi: ðA1Þ

Each random variable Wi is drawn from the same prob-
ability distribution fðwÞ. The number of terms in the sumN

is a random variable drawn from a discrete distribution: qj
(for j ¼ 0; 1;…) is the probability that N ¼ j. We wish to
find the PDF of the quantity T: pðtÞdt is the probability that
T has a value between t and tþ dt.
The PDF of the sum of j-independent random variables

is the j-fold convolution of the PDFs of the individual
variables. Therefore, the PDF of T can be written as

pðtÞ ¼
X∞
j¼0

qjf�jðtÞ: ðA2Þ

The quantity f�j is the PDF of the sum of exactly j
variables, each distributed according to f. In words, each
term in the sum in Eq. (A2) represents the probability
that the sum in Eq. (A1) has j terms and that the j terms
add up to t. Note that f�1ðtÞ ¼ fðtÞ and that f�0ðtÞ ¼ δðtÞ,
the Dirac delta function; i.e. if N ¼ 0 then the sum T
must be 0. Rigorously, the j-fold convolution f�j can be
defined recursively by f�jðxÞ ¼ R

f�ðj−1ÞðyÞfðx − yÞdy
with f�0ðxÞ ¼ δðxÞ.
We now take the Fourier transform F of both sides of

Eq. (A2):

½F ðpÞ�ðkÞ ¼
X∞
j¼0

qj½F ðf�jÞ�ðkÞ: ðA3Þ

Next, we use the fact that the Fourier transform of a
convolution is the product of the Fourier transforms.
Letting the symbols ϕT and ϕW denote the Fourier trans-
forms of pðtÞ and fðwÞ [i.e. ϕTðkÞ≡ ½F ðpÞ�ðkÞ and
ϕWðkÞ≡ ½F ðfÞ�ðkÞ], this property is written as

½F ðf�jÞ�ðkÞ ¼ ½ϕWðkÞ�j: ðA4Þ

Note that the j ¼ 0 term retains its meaning as the empty
sum, N ¼ 0, since ½ϕWðkÞ�0 ¼ 1 is the Fourier transform of
the delta function. We can now write down the Fourier
transform ϕT of the PDF of T:

ϕTðkÞ ¼
X∞
j¼0

qj½ϕWðkÞ�j ¼ GNðϕWðkÞÞ: ðA5Þ

The last equality introduces the probability-generating
function GN of the discrete random variable N:

GNðxÞ ¼
X∞
j¼0

qjxj ¼ E½xN �: ðA6Þ

If N is a Poisson variable with mean μ the qj’s are given by

qj ¼ e−μ
μj

j!
; ðA7Þ
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and the probability-generating function Eq. (A6) is
therefore

GNðxÞ ¼
X∞
j¼0

�
e−μ

μj

j!

�
xj;

¼ e−μ
X∞
j¼0

ðμxÞj
j!

;

¼ eμðx−1Þ: ðA8Þ

Inserting this result into Eq. (A5) gives the Fourier trans-
form of the compound Poisson variable T:

ϕTðkÞ ¼ exp ½μðϕWðkÞ − 1Þ�: ðA9Þ

2. Numerical evaluation

The closed form of the Fourier transform of the com-
pound Poisson distribution facilitates its numerical evalu-
ation and manipulation. First, note that in our situation ϕT
must still be convolved with the probability distribution
governing the component of T due to background Eq. (24).
This convolution is most easily done in Fourier space where
ϕT is simply multiplied with the Fourier transform of the
PDF of T due to background.
In the current work Fourier transforms are carried out

numerically by means of FFTs. A FFT is a discrete version
of the Fourier transform that acts on a finite array. We must
deal with two properties of FFTs that distinguish them
from continuous Fourier transforms: discreteness and end
effects.

a. Discreteness

The PDF of the single-event weight fðwÞ is a continuous
function. In order to apply the FFT (to find ϕW) the PDF
must be suitably discretized (or arithmetized) onto equally
spaced grid points. To do this, distributions are considered
as being sequences of delta function spikes localized at the
M points fiΔ∣i ¼ 0;…;M − 1g. That is, the weight is
allowed to take the discrete values 0;Δ; 2Δ;…; ðM − 1ÞΔ.
There is no unique way to assign an amplitude to the spike
at iΔ. Following [87] it suffices to consider three methods
to arithmetize the function fðwÞ:

fmid
i ≡

Z ðiþ1
2
ÞΔ

ði−1
2
ÞΔ

fðwÞdw;

flowi ≡
Z ðiþ1ÞΔ

iΔ
fðwÞdw;

fhighi ≡
Z

iΔ

ði−1ÞΔ
fðwÞdw: ðA10Þ

We choose Δ to be small enough so that results do not
depend on the choice of arithmetization.

b. Wrap-around effects

Two arithmetized functions may be convolved using
FFTs: the FFTof the convolution is the product of the FFTs
of the individual functions. However, the convolution
performed in this way is a circular convolution [see e.g.
[117] (Chap. 13.1)]. If the distributions have tails which do
not go to zero quickly enough this circular convolution
induces a wrap-around error (also called an aliasing
error) [87].
There are two ways to mitigate this issue. Grübel and

Hermesmeier [118] suggest a tilting procedure. In this
method the two functions to be convolved are initially
multiplied by expð−MxÞ, which dampens the tails sub-
stantially [the recommended M is such that the functions
are damped by a factor of expð−20Þ for the largest values of
x [87]]. The FFTs of the two functions are found,
multiplied together, and followed by an inverse FFT.
The tilting is undone by multiplying the resulting function
by expðMxÞ. It is straightforward to show that the tilting
“commutes” with the convolution.
We have found that as long as we describe the PDFs with

long enough arrays (i.e. compute the PDFs out to large
enough values of test statistic) the aliasing does not affect
the results and the tilting procedure is unnecessary.
In our implementation, the PDFs are stored in vectors with
lengths corresponding to a range from T ¼ 0 out to (at
least) 10 standard deviations above the mean, where the
mean and standard deviation are those for the final,
convolved distribution. The PDFs become extremely
small at such large T and the wrap-around effect is
negligible.

APPENDIX B: CONVOLUTION OF J PROFILES
WITH THE POINT SPREAD FUNCTION

Computing the expected annihilation signal at a particu-
lar angular separation from the dwarf requires convolving
the intrinsic emission [J profile, Eq. (4)] with Fermi’s point
spread function [see Eq. (7)]. Both the J profile and PSF are
localized over a small enough angle that the spherical sky
can be approximated as flat. The convolution is most
efficiently done in Fourier space: the J profile and PSF
are Fourier transformed (in two dimensions), multiplied,
and the result is inverse transformed.
Because both the J profile and Fermi’s PSF are modeled

as radially symmetric functions the problem is essentially

one dimensional. The 2D Fourier transform Fð~kÞ of a
radially symmetric function fð~xÞ ¼ fðrÞ depends only on

the magnitude k of the Fourier mode ~k. In polar coordinates
the θ integral can be done first:
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Fð~kÞ ¼
Z

fð~xÞe−i~k·~xd2~x

¼
Z

∞

0

Z
2π

0

fðr; θÞe−ikr cos θrdrdθ

¼
Z

∞

0

2πrfðrÞJ0ðkrÞdr; ðB1Þ

where J0 is the zeroth order Bessel function of the first
kind. The integral in Eq. (B1) is (up to a factor of 2π) the
Hankel transform of the function fðrÞ. The same calcu-
lation shows that the inverse Fourier transformation is
another Hankel transform:

fðrÞ ¼ 1

2π

Z
∞

0

kFðkÞJ0ðkrÞdk: ðB2Þ

To convolve the J profile with the PSF we take the
Hankel transform of the J profile and of the PSF. The
transforms are multiplied and then a another Hankel
transform is applied to return the convolution ðJ � PSFÞðrÞ.
This is repeated for each energy (the PSF being energy
dependent).
The Hankel transforms are numerically performed using

an implementation of Hamilton’s FFTLog algorithm
[71,119]. The algorithm operates in log-space; i.e. the
function fðrÞ is sampled at log-spaced values of r. This is
beneficial since the J profile has power law behavior in r.
FFTLog treats the sampled values of fðrÞ as defining a
function that is periodic in log-space. Specifically, the
function gðrÞ ¼ fðrÞr1−q obeys the property gðreLÞ ¼ gðrÞ

for some period L and “bias” q. There is freedom to chose
the edge r ¼ r0 and the length L of the periodic interval—
i.e. so that gðrÞ is defined between r0 and r0eL. The bias q
can be adjusted to try to make the function gðrÞ go to 0 at
large and small r, though in practice we found q ¼ 0 to be
most suitable. We took r0 ¼ 10−4 deg, r0eL ¼ 5000 deg,
and the number of sample points (size of the FFT) to be
N ¼ 214. To take into account the diverging J profile at
angles less than r0 we computed the integral of the J profile
within 10−3 deg (called Jcore). The J profile is then set to a
constant within 10−3 deg before the convolution is per-
formed. Afterwards we add a term JcorePSF to the J � PSF
function.
After multiplying the Hankel transforms of J and PSF

and taking the inverse, the resulting J � PSF is clipped to
positive real values and smoothed using a moving average
(with window length 21).
FFTLog is numerically efficient—requiring just two

FFTs to perform the Hankel transform in Eq. (B1)—and
simply implemented in PYTHON. An alternative method for
performing the convolution is described by Lande et al.
[120]. There, the radial part of the 2D convolution integral
can be performed analytically because of the specific
functional form chosen to parametrize the LAT PSF.
This leaves a single numerical integral to be performed
at each energy. Using FFTLog has the benefit of perform-
ing all integrals using FFTs and works with generic radially
symmetric PSFs (even those not defined by a functional
form). It may be useful in speeding up general searches for
extended sources with Fermi.
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