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In this work we study superinflation in the context of the emergent universe (EU) scenario. The existence
of a superinflating phase before the onset of slow-roll inflation arises in any emergent universe model. We
found that the superinflationary period in the EU scenario produces a suppression of the CMB anisotropies
at large scale which could be responsible for the observed lack of power at large angular scales of the CMB.
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I. INTRODUCTION

Cosmological inflation has become an integral part of the
standard model of the Universe. Apart from being capable
of removing the shortcomings of the standard cosmology,
it gives important clues for large scale structure formation
[1–4] (see [5] for a review).
The scheme of inflation is based on the idea that there

was an early phase, before the big bang, in which the
Universe evolved through a nearly exponential expansion
during a short period of time at high-energy scales. During
this phase, the Universe was dominated by a potential VðϕÞ
of a scalar field, which is called the inflaton ϕ. The idea of
cosmological inflation was first developed by Guth [1] and
later refined simultaneously by Linde [3,4] and Albrecht
and Steinhardt [2] in a version known as slow-roll inflation.
In the standard inflationary universe, quantum fluctua-

tions of the inflaton field give rise to a curvature perturba-
tion that is constant for modes outside the horizon. This
curvature perturbation is then the seed for structure for-
mation in the Universe. The quantum fluctuations of the
inflaton could be calculated using the semiclassical theory
of quantum fields in curved spacetime; see [6–10]. In
particular, for a very flat inflaton potential, the inflaton can
be taken to be massless and the quantum fluctuation
becomes δϕðkÞ ¼ Hk=ð2πÞ at the moment of crossing
the horizon, where H is the Hubble parameter during
inflation and k is the comoving momentum related with the
fluctuation. The notation on the right-hand side emphasizes
the following property: Modes of different momenta exit
the horizon at different times, with the larger k being the
later. Once a given mode exits the horizon, its amplitude
freezes. This perturbation then reenters the horizon during
the postinflationary era and becomes the seed for the
structure formation, leaving its imprint on the CMB.
The standard slow-roll inflation predicts a slightly red-

tilted power spectrum of the primordial perturbation. This
means that large scale (small k) perturbation has more

power than small scale perturbation. This red tilt arises
from the fact that the Hubble parameter slowly decreases
with time as the scalar field rolls downwards to its potential.
The recent cosmological observations are entirely

consistent with the simplest slow-roll inflationary models
[11–13]. Probing that the observed universe is almost flat,
the bispectral non-Gaussianity parameter fNL measured is
consistent with zero. The scalar perturbation spectral
index ns is less than one, which is a measure of the tilt
discussed above (ns < 1 red tilt, ns > 1 blue tilt and
ns ¼ 1 scale invariant spectrum). All these results are
predicted by the simplest slow-roll inflationary models.
However, there are intriguing observations on cosmic

microwave background radiation, suggesting a lack of
power at large angular scales (very low multipoles,
l < 40). These results were first obtained by COBE [14]
and WMAP [11] and now are confirmed by Planck [12].
Although these results are well within our cosmic variance
and statistically their significance is still low, the power
deficit is not insignificant. The Planck Collaboration
reported a power deficit in the low multipoles CMB power
spectrum of order 5%–10% (with respect to the Planck
best-fit ΛCDM model [15,16]) with statistical signifi-
cance 2.5 ∼ 3σ.
This situation is interesting because the very low l modes

in the CMB spectrum at present time correspond to very
large wavelength modes. Since these modes have been
superhorizon sized between inflation and now, they have
not been contaminated by the later evolution of the Universe.
For this reason, we could attribute the new feature observed
in the spectrum at low l to physics at the very earliest
Universe, perhaps before slow-roll inflation [17].
There are different approaches developed in order to

explain this problem. One possibility is to consider the
hypothesis of the “small universe” with a compact top-
ology. In this case, perturbations on scales exceeding the
fundamental cell size are suppressed; see [18–24]. Another
possibility is hyperspherical topology corresponding to a
closed universe [25,26], or consider an anisotropic universe
[27–29]. The topological approach has some problems with*plabrana@ubiobio.cl
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the S-statistic and the matched circle test [30]. On the other
hand, Planck searches yield no detection of the compact
topology [31].
Another approach is to introduce a cutoff in the primordial

power spectrum [32–41]. This cutoff is normally introduced
by hand but linked to the spatial curvature scale [26], string
physics [37,39,40], the bouncing universe scheme [40,41],
or a fast-rolling stage in the evolution of the inflaton field
[34]. This approach is interesting since it has been claimed
that from the observed angular power spectrum, it is possible
to deconvolve the primordial power spectrum for a given set
of cosmological parameters. The most prominent feature of
the recovered primordial power spectrum is a sharp, infrared
cutoff on the horizon scale [42,43].
In this respect, it has been suggested that the low-l power

could be related to a period of superinflation, previous to
the standard slow-roll inflationary regimen [44–46], where
the superinflationary period is characterized by the con-
dition _H > 0. In particular, in Ref. [44], this possibility was
studied in the context of bouncing universes and was
discussed regarding the emergent universe scheme.
It is interesting to note, see [44], that a superinflationary

period is related to any mechanism which attempts to solve
the cosmological singularity problem [47–51] in a semi-
classical spacetime description. There are two ways to
avoid the singularity problem in this context. One pos-
sibility is to consider a nonsingular bounce [41,52–70]; the
other possibility is to consider the emergent universe
scenario [71–73].
The emergent universe (EU) refers to models in which

the universe emerges from an Einstein static state, inflates,
and is then submitted into a hot big bang era. Such models
are appealing since they provide specific examples of
nonsingular (geodesically complete) inflationary universes.
These models have been studied in different contexts
during recent years; see [71–92].
In this paper, we study the period of superinflation in the

context of the EU scenario. The existence of a super-
inflating phase before the onset of slow-roll inflation arises
in any EU scenario [44] and has not been studied thus far.
As an arena to explore the superinflation phase, we
consider the EU model developed in Ref. [71,72]. This
EU model is based on general relativity and considered a
closed universe dominated by a scalar field minimally
coupled to gravity. We found that the superinflationary
period in the EU scenario produces a suppression of the
CMB anisotropies at large scale which could be responsible
of the observed lack of power at large angular scales of the
CMB [11,12,14].
The paper is organized as follows. In Sec. II we present

the principal characteristics of the EU scenario and the
superinflationary regimen. In Sec. III we calculate the
primordial perturbation generated during the superinfla-
tionary phase in the context of the EU scenario. In Sec. IV
we estimate the effective power spectrum generated by the

EU model which takes into account the early period of
superinflation and the subsequent period of standard slow
roll. In Sec. V we compute the theoretical CMB power
spectrum of this model by using CLASS code [93,94].
In Sec. VI we summarize our results.

II. THE EMERGENT UNIVERSE SCENARIO

In the emergent universe scenario, the Universe is
initially in a past-eternal classical Einstein static state
which eventually evolves into a subsequent inflationary
phase; see [71–78]. During the past-eternal static regime, it
is assumed that the scalar field is rolling on the asymp-
totically flat part of the scalar potential with a constant
velocity, providing the conditions for a static universe. But
once the scalar field exceeds some value, the scalar
potential slowly drops from its original value. The overall
effect of this is to distort the equilibrium behavior breaking
the static solution. If the potential has a suitable form in this
region, slow-roll inflation will occur.
In the EU scenario, the evolution of the scale factor could

be modeled by the following expression (see [71,72]):

aðtÞ≃ a0 þ AeH0t; ð1Þ

where a0, A,H0 are positive constants. This universe is past
asymptotic to an Einstein static state, since aðtÞ → a0 as
t → −∞. Thus, a0 is identified with the radius of the
Einstein static universe. At late times, on the other hand,
aðtÞ → AeH0t and the model approache a de Sitter expan-
sion phase.
For example, in Ref. [72], the scalar potential has been

reconstructed from the evolution Eq. (1), where we can note
that this reconstructed potential exhibits the same shape of
the effective potential Fig. 1.
We can note that a generic characteristic of the EU

scenario is the existence of a superinflation phase where
_H > 0 before slow-roll inflation. In this model the evolution
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FIG. 1 (color online). Schematic representation of a potential
for a standard emergent universe scenario.
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described in Eq. (1) corresponds precisely to the superinfla-
tionary phase of the evolution of the EU, which asymptoti-
cally approaches the de Sitter expansion phase.
Figure 2 shows a generic evolution of H as a function of

the cosmological time obtained from Eq. (1). We can note
that H increases with time from zero (the static regimen) to
the constant value H0 (the onset of slow-roll inflation).
The prediction of a superinflating phase before the onset

of slow-roll inflation arises in any EU scenario since the
behavior of H as a function of the cosmological time
depicted in Fig. 2 is general for all the EU models.
As was recently mentioned in the context of bouncing

universes [44] and early in Ref. [45], a superinflation period
could modify the spectral tilt at low l by making it blue-tilt
before the conventional slow-roll inflation in which a
decreasing H yields a red-tilted spectrum. This possibility
will be studied in the next section for the EU scenario.
The mechanism which generates this superinflationary

period depends on the particular EU model under consid-
eration, but it is a generic characteristic of the EU scenario.
For example, in the models in [71,72], it is considered a
closed universe. Then, in this case, the spatial curvature is
responsible for the superinflationary period.

III. THE PRIMORDIAL PERTURBATION IN EU

The scalar perturbations to the FRW geometry, in the
longitudinal gauge, can be written as follows:

ds2 ¼ ð1þ 2ΦÞdt2 − ð1 − 2ΦÞaðtÞ2d~x2; ð2Þ

where Φ is the Newtonian gravitational potential.
Normally in the emergent universe scenario, the Universe

is positively curved; see for example [71,72]. In this first
approach to the problem, we have neglected the contribu-
tions of the space curvature to the primordial perturbation,
but we have included a first approach to this point in
Appendix A; see also [95].

The equation for the perturbations in momentum space
is given by

v00k þ k2vk −
z00

z
vk ¼ 0; ð3Þ

where we have used the Mukhanov variable [6,96],

vk ¼ a

�
δϕk þ

ϕ0

h
Φk

�
; ð4Þ

where δϕk are the perturbations in the inflaton field and 0 is
derivative with respect to the conformal time η ¼ R dt=a
and we have used units Mp ¼ ð8πGÞ−1=2 ¼ 1. Also, we
have defined

z ¼ aϕ0

h
; ð5Þ

h ¼ a0

a
: ð6Þ

In order to solve Eq. (3), we consider the evolution of the
scale factor aðtÞ given in Eq. (1) written in the conformal
time,

aðηÞ ¼ a0
1 − ea0H0η

; η < 0: ð7Þ

From Eq. (3) and using Eq. (7), we obtain

v00k − ða0H0Þ2ea0H0η

� ð1þ ea0H0ηÞ
ð−1þ ea0H0ηÞ2

�
vk þ k2vk ¼ 0; ð8Þ

where we have considered z00=z ≈ a00=a. This equation is
solved by

vkðηÞ ¼
1ffiffiffiffiffi
2k

p
�

e−ikη

1 − ea0H0η

�

× 2F1

 
−1 −

ik
a0H0

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
k

a0H0

�
2

s
;

− 1 −
ik

a0H0

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
k

a0H0

�
2

s
;

1 − 2
ik

a0H0

; ea0H0η

!
; ð9Þ

where 2F1 is the hypergeometric function.
In the solution (9) we have considered (and appropriately

normalized) the solution of Eq. (8) such that in the short
wavelength limit, the normalized positive frequency modes
correspond to the minimal quantum fluctuations,
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FIG. 2 (color online). Evolution of H as a function of the
cosmological time.
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vk ≈
e−ikηffiffiffiffiffi
2k

p ; aH ≪ k: ð10Þ

Following [34], we consider the spectrum of Q≡ v=a
which becomes constant at late time,

PQ ¼ k3

2π2
jQj2 ⟶ H2

0

π2
χ2Γ½x1�Γ½x�1�

Γ½x2�Γ½x�2�Γ½x3�Γ½x�3�
; ð11Þ

where we have defined

x1 ¼ 1 − 2iχ ð12Þ

x2 ¼ 2 − iχ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

q
ð13Þ

x3 ¼ 2 − iχ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

q
ð14Þ

χ ¼ k
a0H0

: ð15Þ

We can note that in the short wavelength limit(k ≫ H0),
we recovered the standard result of a nearly scale-invariant
spectrum,

PQ →

�
H0

2π

�
2

: ð16Þ

At superhorizon scales, the two modes Qk and Φk are
related by a k-independent rescaling so that the spectrum
given by Eq. (11) directly translates into the spectrum of Φ.
In Fig. (3) we have plotted the spectrum of PQ as a function
of χ obtained from the analytical calculation Eq. (11), solid
line. We can note that there is a suppression of the long
wave modes as we expected given the superinflationary
regimen.

IV. THE EFFECTIVE POWER SPECTRUM

In the last section we study the spectrum generated during
the superinflationary regimen. From this result and by
following Ref. [41], we can estimate an effective power
spectrum generated by the EU model which takes into
account the early period of superinflation and the subsequent
period of standard slow roll. In this respect, from the result
of previous section, we can note that the scale invariance of
the spectrum is the result of inflationary evolution after the
superinflationary stage. Then, if the inflationary period is
generated by the standard slow-roll conditions, we can
expect the usual slight red-tilted spectrum during this period.
From Eq. (11) and by following Ref. [41], we could model
this situation by considering the following scalar spectrum:

PΦ ¼ Akns−1
χ2Γ½x1�Γ½x�1�

Γ½x2�Γ½x�2�Γ½x3�Γ½x�3�
: ð17Þ

For small k, this spectrum reproduces the behavior of
spectrum Eq. (11), i.e., suppression of the long wave modes.
On the other hand, when k≳H0a0, the spectrum reproduces
the usual slightly red spectrum of slow-roll inflation.
Another possibility is to consider a cutoff in the spectrum.

This cutoff is related to the transition from the superinfla-
tionary regimen to slow-roll inflation which occurs when the
mode kmax exits the horizon, after which we would get the
usual red-tilted power law spectrum. In this case, we can
write

PΦ ¼
8<
:

Ā χ2Γ½x1�Γ½x�1�
Γ½x2�Γ½x�2�Γ½x3�Γ½x�3� ; k < kmax

Að k
kmax

Þns−1; k > kmax
: ð18Þ

The constants A and Ā are chosen in order to match the
superinflationary power spectrum Eq. (11) with the slow-
roll inflationary power spectrum at k ¼ kmax.

V. CMB ANISOTROPIES

We compute the theoretical CMB power spectrum of this
model by using CLASS code [93,94]. In this first approxi-
mation, in the context of the EU scenario, for the study of
the consequences of the superinflationary phase to the
CMB power spectrum, we have simplified the code for
computing the Cl by considering an approximation of the
spectrums Eqs. (17), and (18). In particular, we approxi-
mate the spectrum of the superinflation phase Eq. (11) with
the following expression (see for example [44]),

PQ ∼
H2

0

4π2
χ2

ð1þ χÞ2 ; ð19Þ

which is obtained by considering the evolution of the scale
factor given by Eq. (1) and the Hubble crossing condition,
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FIG. 3 (color online). Power spectrum for Q. The analytical
computation Eq. (11), solid line. The approximate spectrum,
dashed line Eq. (19).
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k ¼ aH ⇒ k ¼ H0AeH0t: ð20Þ
In Fig. 3 we have plotted the spectrum Eq. (19), where

we can compare it with the analytic calculation Eq. (11).
We can note that the approximated spectrum reproduces
very well the spectrum obtained by the analytic calculation.
In order to show the suppression at large scales coming

from the EU scenario, we have plotted in Fig. 4 the
temperature power spectrum obtained from the pure power
law (dashed line), from the EU scenario (solid line), and
from the EU scenario with a cutoff (dotted line). The points
show the Planck data. We can note that compared to the
standard power-law model, the Cl spectrum in the emergent
universe scenario is suppressed at large scales.
In these examples, we have considered the following

values for the parameters in the case of the EU scenario
in Eqs. (17) and (19): A ¼ 2.07 × 10−9, ns ¼ 0.9603,
and a0H0 ¼ 0.0002 Mpc−1. In the case of the EU scenario
with the cutoff Eqs. (18) and (19), we consider
A ¼ 2.42 × 10−9, ns ¼ 0.967, a0H0 ¼ 0.0003 Mpc−1,
and kmax ¼ 0.0015 Mpc−1. At this moment we are not
doing a best-fit calculation of theses parameters, just
showing two particular cases and how they produce a
suppression of the spectrum at large scales.
We have to mention that there is a tuning between the

turn-around from superinflation to slow-roll inflation and
when the comoving scale corresponding to the current
horizon crosses the Hubble radius during inflation. This is
typical for trying to account for the suppression of the
low multipoles due to preinflationary dynamics; see for
example [34,38,39,97–99]. In particular, in this work we
consider that this scale, which is determined by the
combination (a0H0), is a free parameter. However, there
is the possibility of linking this scale with the stability
conditions of the ES solution. In this case, we could obtain
bounds on this scale which could be related with the current
horizon scale, similar to the case where stability conditions

of the ES solution impose an upper bound on the cosmo-
logical constant [91]. We expect to return to this point in
future work.

VI. CONCLUSIONS

In recent cosmological observations, there are intriguing
results on the cosmic microwave background radiation
suggesting a lack of power at large angular scales. This
situation is interesting because it may give us clues towards
physics at the very early Universe, perhaps before slow-roll
inflation. In this context, the EU models are an interesting
arena to explore preinflationary physics and its possible
implications for the CMB anomalies.
In this paper we study the primordial perturbations in the

context of the EU scenario. In particular, we focus on the
primordial perturbations generated during the superinfla-
tionary phase. We find that the superinflationary period in
the EU scenario produces a suppression of the primordial
perturbations at large scale which could be responsible for
the observed lack of power at large angular scales of
the CMB.
In particular, in this work we considered the EU model

developed in Ref. [71,72] as an arena in which to explore
the consequences of the superinflationary regimen. We
calculated the primordial perturbations generated during
the superinflationary phase and the effective power spec-
trum generated by the EU model, which take into account
the early period of superinflation and the subsequent period
of standard slow-roll inflation. By using the CLASS code,
we compute the theoretical CMB power spectrum gener-
ated by this model and compare it with the standard results
of slow-roll inflation and the Planck data.
In this first approach to the problem, we have neglected

the contributions of the space curvature to the primordial
perturbation (most of the EU models consider closed
universes), but we have included a first approach to this
point in Appendix A.
In this model, the scale of transition from superinflation

to slow-roll inflations is determined by the combination
(a0H0), which is considered a free parameter. Preliminary
results show that the global behavior (suppression of the
CMB anisotropies at large scale and agreement with Planck
data at large l) is not particulary sensitive to the election of
this combination once the scale a0H0 is smaller than a
typical scale of order ≈0.002 Mpc−1. However, there is the
possibility of linking this scale with the stability conditions
of the ES solution. In this first approach to the problem, we
have not considered a best-fit calculation of the parameters
of the model. We expect to return to these points in the near
future by including a best-fit calculation and by considering
bounds on the free parameters of the model that come from
stability conditions of the ES solution; see [91].
In summary, in this work we show that the superinflation

phase, which is a characteristic shared by all EU models,
could be responsible for part of the anomaly in the low
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FIG. 4. Temperature power spectrum for the pure power law
(dashed line), EU scenario (solid line), and EU scenario with a
cutoff (points line). The points show the Planck data.
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multipoles of the CMB, in particular, for the observed lack
of power at large angular scales.
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APPENDIX

In this appendix we study the period of superinflation in
the specific EU model developed in Ref. [71,72]. This EU
model is based on general relativity and considered a closed
universe dominated by a scalar field minimally coupled to
gravity.
The energy density, ρ, and the pressure, P, are expressed

by the following equations,

ρ ¼ 1

2
_ϕ2 þ VðϕÞ; ðA1Þ

p ¼ 1

2
_ϕ2 − VðϕÞ; ðA2Þ

where VðϕÞ is the scalar potential show in Fig. 1. The
Friedmann and the Raychaudhuri field equations become

H2 ¼ 8πG
3

�
1

2
_ϕ2 þ VðϕÞ

�
−

1

a2
; ðA3Þ

ϕ̈þ 3H _ϕ ¼ −
∂VðϕÞ
∂ϕ : ðA4Þ

The other nonindependent equation is

_H ¼ −4πG _ϕ2 þ 1

a2
: ðA5Þ

During the past-eternal static regime, it is assumed that
the scalar field is rolling on the asymptotically flat part of
the scalar potential with a constant velocity, providing the
conditions for a static universe. But once the scalar field
exceeds some value, the scalar potential slowly droops
from its original value. The overall effect of this is to
distort the equilibrium behavior breaking the static sol-
ution. If the potential has a suitable form in this region,
superinflation and slow-roll inflation will occur. In this
case, the evolution of the scale factor could be modeled by
Eq. (1); see Ref. [72] and the discussion in Sec. II.

From Eq. (A5) we can note that, in this model, the
mechanism which generated the superinflationary period
is the effect of the curvature of the closed universe.
The scalar perturbations to the closed FRW geometry, in

the longitudinal gauge, can be written as follows,

ds2 ¼ ð1þ 2ΦÞdt2

− ð1 − 2ΦÞaðtÞ2
�

dr2

1 − r2
þ r2ðdθ2 þ sin2θdϕ2Þ

�
;

ðA6Þ

where Φ is the Newtonian gravitational potential.
The equation for the perturbations in momentum space is

similar to the one discussed in Sec. III and it is given by

v00k þ k2vk −
z00

z
vk ¼ 0; ðA7Þ

where we have considered that the scalar potential is nearly
constant, and we have neglected terms proportional to
dV=dϕ. Also, we have used the Mukhanov variable [6,96]

vk ¼ a

�
δϕk þ

ϕ0

h
Φk

�
; ðA8Þ

where δϕk is the perturbation in the inflaton field and 0 is
derivative with respect to the conformal time η ¼ R dt=a,
and we have used units Mp ¼ ð8πGÞ−1=2 ¼ 1. Also, we
have defined

z ¼ aϕ0

h

�
1þ 3

Δ

�
1=2

; ðA9Þ

h ¼ a0

a
: ðA10Þ

Here, the Laplacian should be understood as a c number,
representing the corresponding eigenvalue [96].
In order to solve Eq. (A7), we consider the evolution of

the scale factor aðtÞ given in Eq. (1) written in the
conformal time Eq. (7). Then, from Eq. (A7) and by using
Eq. (7), we obtain the following equation,

v00k − ða0H0Þ2ea0H0η

� ð1þ ea0H0ηÞ
ð−1þ ea0H0ηÞ2

�
vk þ k2vk ¼ 0;

ðA11Þ

where we have considered the eigenvalues of the Laplacian
operator for a closed space (see [100]):

Δvk ¼ −k2vk ðA12Þ

¼ −ðβ2 − 1Þvk: ðA13Þ
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In this case β ¼ 3; 4; 5;…. The modes β ¼ 1; 2 are pure
gauge modes and are not included in the spectrum [100].
Also, we have considered z00=z ≈ a00=a.
Equations (A11) are solved by Eq. (9), where k is now

defined in Eqs. (A12) and (A13). From this solution and
by following a similar procedure as in Sec. III, we found

the spectrum of primordial perturbations. We can note
that the qualitative behavior of these primordial pertur-
bations is similar to that discussed in Sec. III: a flat
spectrum for short wavelengths and a suppression of the
long wave modes, as we expect given the superinflation
regimen.
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