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Cosmological inflation is discussed in the framework of FðR;GÞ gravity where F is a generic function of
the curvature scalar R and the Gauss–Bonnet topological invariant G. The main feature that emerges in this
analysis is the fact that this kind of theory can exhaust all the curvature budget related to curvature
invariants without considering derivatives of R, Rμν, Rλ

σμν, etc., in the action. Cosmological dynamics
results driven by two effective masses (lengths) are related to the R scalaron and the G scalaron working
respectively at early and very early epochs of cosmic evolution. In this sense, a double inflationary scenario
naturally emerges.
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I. INTRODUCTION

Inflationary paradigm was introduced to address prob-
lems and shortcomings related to the self-consistency of the
Cosmological Standard Model at early stages of its evo-
lution [1–5]. The inflationary mechanism can be achieved
in several different ways considering primordial scalar
fields or geometric corrections into the effective gravita-
tional action. The general aim is to address problems like
the initial singularity, the cosmological horizon, the cosmic
microwave background isotropy (and the related anisotro-
pies generated, in principle, with initial quantum fluctua-
tions), the large scale structure formation and evolution, the
absence of magnetic monopoles, and so on [6–10]. The
main ingredient of all these scenarios is to claim that an
inflationary phase occurs at some stage in the early
Universe and that one or more sources, different from
standard ordinary matter, give rise to accelerated cosmic
expansion. Such an expansion can be a single or a multiple
event often related to the formation of structure at large
and at very large scale. In general, inflationary scenarios
originated from some fundamental theory like quantum
gravity, strings, M-theory, or grand unified theory models.
Reversing the argument, inflationary models and observ-
ables related to inflation can be used to probe fundamental
theories (see, for example, the latest results of the Planck
and BICEP2 collaborations [11–13]).
In particular, quantum fluctuations of a given scalar

field, i.e. the inflaton, give a mechanism for the origin of
large scale structure. In other words, inflation gives rise
to density perturbations that exhibit a scale invariant

spectrum. Such a feature, in principle, is directly observed
by measuring the temperature anisotropies in cosmic
microwave background [13–18]. The possibilities to realize
inflation are several. For example, in the old inflation, the
inflaton is trapped in a false vacuum phase through a first-
order transition, while in the new inflation, expansion
ends up with a second-order phase transition after a
slow-rolling phase [2–4]. According to the problems to
address, there are several different inflationary models, for
example, the power-law inflation, the hybrid inflation, the
oscillating inflation, the trace-anomaly driven inflation,
the k inflation, the ghost inflation, the tachyon inflation,
and so on [19–25]. Furthermore, some of these models have
no potential minimum, and the inflationary mechanism
appears different with respect to the standard one. See, for
example, the quintessential inflation [26] or the tachyon
inflation [27–32].
A natural way to achieve inflation is considering

higher-order curvature corrections in the Hilbert–Einstein
Lagrangian [33–42]. The first and well-known example of
this approach is the Starobinsky model [1] where inflation is
essentially driven by R2 contributions, with R being the
Ricci curvature scalar. After this preliminary model, other
higher-order curvature terms have been taken into account
[43–50]. The philosophy is that, in the early higher-curvature
regime, such further curvature invariants come out as
renormalization terms in quantum field theories in curved
spacetime [51]. Furthermore, under conformal transforma-
tions, the theory becomes minimally coupled in the Einstein
frame. In this frame, the conformal scalar field assumes the
role of inflaton and leads the primordial acceleration [50].
However, more than one scalar field can be achieved by
conformal transformations disentangling the degrees of
freedom present in the Jordan frame.
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Several combinations of curvature invariants, like
RμνRμν; RμνσρRμνσρ, can be considered [52–55]. The goal
is to explain both the early and the late-time acceleration in
a geometrical way [56] without invoking a huge amount of
dark energy or, sometimes, ill-defined scalar fields. Among
these attempts, a key role is played by the Gauss–Bonnet
topological invariant G that naturally arises in the process of
quantum field theory regularization and renormalization in
curved spacetime [51]. In particular, it contributes to the
trace anomaly where higher-order curvature terms are
present [57]. In some sense, considering a theory where
both R and G are nonlinearly present exhausts the budget of
curvature degrees of freedom needed to extend general
relativity since the Ricci scalar and both the Ricci and the
Riemann tensors are present in the definition of G. From
the inflation point of view, introducing G beside R gives the
opportunity to achieve a double inflationary scenario where
the two acceleration phases are led by G and R respectively.
As we will see below, this happens as soon as both R and G
appear in nonlinear combinations since linear R means just
general relativity (and then no inflation) and linear G
identically vanishes in four-dimensional gravitational
action, being an invariant. On the other hand, the combi-
nation of both terms seems to improve the inflationary
mechanism since one achieves an R-dominated phase and a
G-dominated phase. The second leads the Universe at very
early stages of its evolution because G is quadratic in
curvature invariants, and then it is dominant in stronger
curvature regimes. Specifically, using a nonlinear function
of G, inserted into the fðRÞ approach, that is a FðR;GÞ
function, extends the Starobinsky model since the whole
curvature “interactions,” present in the early Universe, are
taken into account. In view of the recent results by the
Planck [11] and BICEP2 [12] collaborations, the potential
advantages of this class of models, with respect to the
original Starobinsky one, could be that curvature degrees of
freedom (in particular the scalaron R) result better con-
strained (see Ref. [13] for a detailed discussion). A first
study in this sense is in the paper by Ivanov and Toporensky
[58], where cosmological dynamics of fourth-order gravity
is studied in presence of the Gauss–Bonnet term.
In this paper, we discuss the possibility to obtain

inflation considering a generic FðR;GÞ theory where, in
principle, both R and G are nonlinear in the action. There
are several recent studies on models of this type [59–66].
All of them put in evidence the fact that the Gauss–Bonnet
topological invariant can solve some shortcomings of the
original fðRÞ gravity and contributes, in a nontrivial way, to
the accelerated expansion.
The paper is organized as follows. In Sec. II, we derive

the field equations for FðR;GÞ. General features of FðR;GÞ
cosmology and inflation are discussed in Sec. III.
Section IV is devoted to the discussion of exact solutions
coming from Noether symmetries giving rise to power-law
inflation. A summary and outlook are given in Sec. V.

II. FIELD EQUATIONS OF FðR;GÞ-GRAVITY

Let us start by writing the most general action for
modified Gauss–Bonnet gravity

S ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p
FðR;GÞ; ð1Þ

where, as we said before, FðR;GÞ is a function of the Ricci
scalar and Gauss–Bonnet invariant defined as

G≡ R2 − 4RαβRαβ þ RαβρσRαβρσ: ð2Þ

Moreover, κ ¼ 8πGN , with GN Newton constant. We are
using physical units c ¼ kB ¼ ℏ ¼ 1. We are discarding,
for the moment, the contribution of standard matter
Lagrangian Lm that we will reconsider below. The variation
of the action (1) with respect to the metric provides the
following gravitational field equations [63]:

Gμν ¼
1

FR

�
∇μ∇νFR − gμν□FR þ 2R∇μ∇νFG

− 2gμνR□FG − 4Rμ
λ∇λ∇νFG − 4Rν

λ∇λ∇μFG

þ 4Rμν□FG þ 4gμνRαβ∇α∇βFG þ 4Rμαβν∇α∇βFG

−
1

2
gμνðRFR þ GFG − FðR;GÞÞ

�
: ð3Þ

The trace is

3½□FR þ VR� þ R½□FG þWG� ¼ 0; ð4Þ

where □ is the d’Alembert operator in curved spacetime
and

FR ≡ ∂FðR;GÞ
∂R ; FG ≡ ∂FðR;GÞ

∂G ð5Þ

are the partial derivatives with respect to R and G. It is
possible to define two different potentials that depend on
the scalar curvature and the Gauss–Bonnet invariant that
enter the trace equation with their partial derivatives

VR ¼ ∂V
∂R ¼ 1

3
½RFR − 2FðR;GÞ�; ð6Þ

WG ¼ ∂W
∂G ¼ 2

G
R
FG: ð7Þ

It is important to emphasize that, from Eqs. (3)–(4),
general relativity is recovered as soon as FðR;GÞ ¼ R.
Furthermore, if G is not considered, we are exactly in the
fðRÞgravitycontext.Clearly,as in thecaseof theStarobinsky
R scalaron, G plays the role of a further scalar field of
which the dynamics is given by the Klein–Gordon-like
Eq. (4). This means that we can expect a natural double
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inflationwhere both geometric fields play a role.As for theR
scalaron, we can expect a mass for the G scalaron which
determines the “strength” of the G-dominated inflation.

III. FðR;GÞ DOUBLE INFLATION

Let us consider now a flat Friedman–Robertson–Walker
(FRW) metric

ds2 ¼ −dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ; ð8Þ
where aðtÞ is the scale factor of the Universe. Inserting this
metric into the action (1) and assuming suitable Lagrange
multipliers for R and G, we obtain the pointlike Lagrangian
[62]

L ¼ 6a _a2FR þ 6a2 _a _FR − 8_a3 _FG

þ a3½FðR;GÞ − RFR − GFG�; ð9Þ
which is a canonical function depending on t and defined in
the configuration space Q≡ fa; R;Gg. Specifically, the
Lagrangian (9) has a canonical form thanks to the Lagrange
multipliers

R ¼ 6ð2H2 þ _HÞ; ð10Þ

G ¼ 24H2ðH2 þ _HÞ ð11Þ

that are also field equations for the related dynamical
system [62]. Here H ¼ _a

a is the Hubble parameter, and the
overdot denotes the derivative with respect to the cosmic
time t. The cosmological equations in term of H are

_H ¼ 1

2FR þ 8H _FG
½H _FR − F̈R þ 4H3 _FG − 4H2F̈G�; ð12Þ

H2 ¼ 1

6FR þ 24H _FG
½FRR − FðR;GÞ − 6H _FR þ GFG�;

ð13Þ
where Eq. (13) is the energy condition, that is the (0, 0)
Einstein equation. The full dynamical system of FðR;GÞ
cosmology is given by Eqs. (10), (11), (12), and (13).
To obtain inflation, the following conditions have to be

satisfied: ���� _H
H2

���� ≪ 1;

���� Ḧ

H _H

���� ≪ 1: ð14Þ

It means that the magnitude of the slow-roll parameters

ϵ ¼ −
_H
H2

; η ¼ −
Ḧ

2H _H
ð15Þ

has to be small during inflation. Moreover, ϵ > 0 is
necessary to have H < 0. The acceleration is expressed as

ä
a
¼ _H þH2; ð16Þ

and then the accelerated expansion ends only when the
slow-roll parameter ϵ is of the unit order.
To discuss a possible inflationary scenario, let us choose,

for example, the Lagrangian

FðR;GÞ ¼ Rþ αR2 þ βG2; ð17Þ

where α and β are constants of the dimension length
squared and length to the fourth power respectively. The
linear term in R is included to produce the correct weak-
field limit. It is easy to see that we have considered an R2

model with a correction which adds new degrees of
freedom due to the presence of the Gauss–Bonnet term.
In the above Lagrangian, the term G2 is the first significant
term in G since the linear one gives no contribution.1 As it is
well known, a theory like fðRÞ ¼ Rþ αR2 is capable of
producing an inflationary scenario [1] not excluded from
the last Planck release [11].
Here we concentrate on the question if such an infla-

tionary scenario can be improved considering the whole
curvature budget that can be encompassed by adding a
nonlinear function of the Gauss–Bonnet invariant. In such a
case, as stressed above, we can have an R-driven inflation
led by the R2 term and a G-driven inflation led by G2 term.
However, this is nothing else but a toy model that should be
improved by realistic forms of the FðR;GÞ function.
To develop our considerations, let us consider the

pointlike Lagrangian (9). It is well known that, in analytical
mechanics, any Lagrangian can be decomposed as

L ¼ Kðqi; _qjÞ −UðqiÞ; ð19Þ

where K and U are the kinetic energy and potential
energy respectively. Here we have qi ≡ fa; R;Gg and
_qj ≡ f _a; _R; _Gg. In the case of Lagrangian (9), considering
the Lagrangian density, i.e. L ¼ a3L, it is

Kða; _a; R; _R;G; _GÞ ¼ 6

�
_a
a

�
2

FR þ 6

�
_a
a

�
_FR − 8

�
_a
a

�
3
_FG;

ð20Þ

UðR;GÞ ¼ −½FðR;GÞ − RFR − GFG

�
: ð21Þ

1In four dimensions, we haveZ
d4x

ffiffiffiffiffiffi
−g

p
G ¼ 0: ð18Þ

This means that only a function of the Gauss–Bonnet invariant
makes this integral nontrivial. On the other hand, in five or higher
dimensions, this equation is different from zero.
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Assuming the model (17), we have

L ¼ 6

�
_a
a

�
2

ð2αRþ 1Þ þ 12α

�
_a
a

�
_R − 16β

�
_a
a

�
3
_G

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{kinetic energy

− ½βG2 þ αR2�|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
potential energy

: ð22Þ

In Fig. 1, a qualitative shape of the potential UðR;GÞ is
reported. A possible slow-roll trajectory is shown.
It is important to stress the effective behavior of the

Lagrangian (17) that assumes the following form:

FðRÞ≃ Rþ αR2 þ βR4: ð23Þ

In other words, the correction to the R2 model due to the
presence of the topological G2 term can be seen as a sort of
∼R4 correction. However, it is important to stress that G2

and R4 have roughly the same dynamical role only at
background level for the homogeneous and isotropic FRW
metric. As soon as one takes into account anisotropies and
inhomogeneities, G2 and R4 assume different roles since
extra diagonal components of the Ricci and Riemann
tensors cannot be discarded. In other words, considering
the definition of the Gauss–Bonnet invariant, given in
Eq. (2), G ∼ R2 only in the FRW context. If more general
situations are assumed, this approximation no longer holds.
This means that G2 and R4 can be observationally distin-
guished only evaluating anisotropies and inhomogeneities
resulting from perturbations where extra diagonal compo-
nents of the Ricci and Riemann tensors are not negligible.
In Fig. 2, the trends of UðR;GÞ sections are reported

according to the dominance of the terms in the potential.
Let us describe now the qualitative evolution of the

model. The behavior is different depending on the strength

of R2 or G2 terms. In fact, they give rise to a potential with
two minima that can be separated by a barrier (see Fig. 2 in
the bottom). This represents a double inflationary scenario
where the G-scalar dominates at early epochs, the R-scalar
dominates at moderate early epochs, and finally the model
converges toward standard general relativity. Due to the
fact that G runs as G≃ R2, it is dominant at very high
curvature improving, in some sense, the Starobinsky
inflation. In the present simple toy model, we considered
G2, and this means, as pointed out above, that G2 ∼ R4.
From the energy condition, given by Eq. (13), we have

12αHḦ þH2 þ 36αH2 _H þ 288βH4 _H2

þ 192βH5Ḧ þ 576βH6 _H − 96βH8 − 6α _H2 ¼ 0; ð24Þ

and from (12), we obtain

576βH2 _H3 þ 768βH3 _H ḦþβH4ð1728 _H2 þ 96H
…Þ

þ 288βH5Ḧ − 384βH6 _H2

þ 18αHḦ þ 24α _H2 þ 6αH
… þ _H ¼ 0: ð25Þ

FIG. 1 (color online). Plot of UðR;GÞ ¼ αR2 þ βG2. We note
that the two fields can both cooperate to the slow-rolling phase.
We assumed α and β of the order unit with negative α and positive
β. The choice of negative α is due to the stability conditions for
the R2 model discussed in Ref. [67].
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FIG. 2. Plots of sections of the potentialUðR;GÞ ¼ αR2 þ βG2.
In the top panel is reported the section of the potential when the
R2 term is dominant. In the central panel is the case where the
term G2 is dominant. In bottom panel, there is the behavior of
UðR;GÞ ¼ αR2 þ βG2 ∼ αR2 þ βR4 with respect to the Ricci
scalar. A symmetry breaking and a phase transition are evident.
The values of α and β are the same as in Fig. 1.
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Considering the slow-roll conditions _H ≪ H2 and
Ḧ ≪ H _H, this implies that ḦH ≪ _H. From Eq. (24), one has

H2 þ 6αð2HḦ þ 6H2 _H − _H2Þ
þ 96βH4ð3 _H2 þ 2HḦ þ 6H2 _H −H4Þ ¼ 0: ð26Þ

To study the evolution of the model, we have to distinguish
among the various regimes. Let us suppose that

6α ≫ 96βH4: ð27Þ

Then Eq. (26) takes the form

H2 þ 6αð2HḦ þ 6H2 _H − _H2Þ ≅ 0; ð28Þ

and we obtain that

m2
R ¼ 1

6α
; ð29Þ

and the solution for the scale factor is

aðtÞ ∼ exp

�
tffiffiffiffiffiffi
6α

p
�
: ð30Þ

This is nothing else but the well-known R2 inflation where
the sign and the value of α determine the number of
e-foldings [68].
On the other hand, we can consider the regime

96βH4 ≫ 6α; ð31Þ

where

H2 þ 96βH4ð3 _H2 þ 2HḦ þ 6H2 _H −H4Þ ≅ 0: ð32Þ

Inflation is recovered for

H6 ∼
1

96β
; ð33Þ

and then it is

aðtÞ ∼ exp

�
tffiffiffiffiffiffiffiffi
96β6

p
�
: ð34Þ

From the above considerations, we can introduce a further
mass term,

m2
G ¼ 1

2
ffiffiffiffiffiffiffiffi
12β3

p ; ð35Þ

due to the Gauss–Bonnet correction that leads to another
earlier inflationary behavior. In conclusion, it seems that
considering the whole curvature budget in the effective

action (i.e. the further combinations of curvature invariants
more than the linear R) means to introduce two effective
masses that lead the dynamics. It is important to stress that
the parameters α and β have to be consistent with the Solar
System constraints according to the chameleon mechanism.
Clearly, in the low energy regime, general relativity has to
be recovered, and then the quadratic and quartic terms in R
must be negligible. Essentially, starting from very early
epochs, one has first to recover the Starobinsky model and
then the Einstein regime. This means that the two-scalaron
regimes, leading the two early inflationary phases, have to
become negligible for R → 0 to recover the standard
Newtonian potential. In such a case, an analysis like
that in Refs. [69,70] leads to assuming the values of the
parameters α and β of the order unit to achieve the con-
sistency with the chameleon mechanism and the Solar
System experiments.

IV. FðR;GÞ POWER-LAW INFLATION

Also power-law inflation can be easily achieved in the
framework of FðR;GÞ gravity. In particular, using the
Noether symmetry approach [71] in the generic action
(1) and choosing appropriate Lagrangian multipliers that
make the pointlike Lagrangian canonical, models where
conserved quantities emerge can be selected (see also
Refs. [72–77] for analog cases). This means to impose

LXL ¼ 0 → XL ¼ 0; ð36Þ

where LX is the Lie derivative with respect to the Noether
vector X acting on the pointlike Lagrangian L. A possible
choice is to consider the class of Lagrangians

FðR;GÞ ¼ F0RnG1−n; ð37Þ

related to the presence of the Noether symmetries [62]. For
n ¼ 2, it is FðR;GÞ ¼ F0R2G−1. Inserting this choice into
the pointlike Lagrangian (9), it becomes

L ¼ 4F0 _a
G

�
3a _aRþ 3a _R − 3a2 _G

�
R
G

�

þ4_a2 _R

�
R
G

�
− 4_a2 _G

�
R
G

�
2
�
: ð38Þ

The same choice can be done into the cosmological
Eqs. (12) and (13) that are nothing else but the Euler–
Lagrange equations of the Lagrangian (38) together with
the Lagrange multipliers (10) and (11). Power-law solu-
tions for (38) are easily found [62,64]. For example, we
have

aðtÞ ¼ ts; with n ¼ 2 and s ¼ 3: ð39Þ

A further interesting solution is
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aðtÞ ¼ ts; with n ¼ 3

4
and s ¼ 1

2
: ð40Þ

General conditions between the exponents n and s are

n ¼ 1þ s
2

and n ¼ 1

1þ 2sðs − 1Þ − 2s: ð41Þ

In one of these conditions, the two constraints are satisfied
and are of the same form. It is easy to verify that solutions
(39) and (40) are in one of these cases.
To discuss inflation, we have to consider Eqs. (12) and

(13). One obtains the following relations:

_H ¼ −
sðn − 1Þ½nð6s − 4Þ − 3sðsþ 1Þ þ 4�

½sðs − 5Þ þ 2nð2s − 1Þ þ 2�t2 ; ð42Þ

H2 ¼ −
2s2ðs − 1Þðn − 1Þ

½sðs − 5Þ þ 2nð2s − 1Þ þ 2�t2 : ð43Þ

A condition for inflation is���� _H
H2

���� ¼
���� 2sðn − 1Þ − 2ðs − 1Þ þ sðs − 1Þ

2sðs − 1Þ
���� ≪ 1: ð44Þ

The slow-roll conditions are

ϵ ¼ 2sð1 − nÞ þ 2ðs − 1Þ − sðs − 1Þ
2sðs − 1Þ ≪ 1; ð45Þ

η ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2ðs − 1Þðn − 1Þ
sðs − 5Þ þ nð4n − 2Þ þ 2

s
≪ 1: ð46Þ

Considering the relation n ¼ ð1þsÞ
2

, slow-roll conditions on
ϵ and η are satisfied for s > 2.171. In conclusion, we can

easily see that, for relatively large s, slow-roll conditions
are satisfied. In Figs. 3 and 4, qualitative pictures of the
parameter space regions where inflation is allowed are
reported.
Furthermore, we can evaluate the anisotropies and the

power spectrum coming from inflation using the slow-roll
parameters. The spectral index ns and the tensor-to-scalar
ratio r are respectively

ns ¼ 1 − 6ϵþ 2η; r ¼ 16ϵ; ð47Þ

while the amplitude of the primordial power spectrum is

Δ2
R ¼ κ2H2

8π2ϵ
: ð48Þ

We obtain that the values ns ∼ 1.01 and r ∼ 0.10 are in
good agreement with the observational values of spectral
index estimated by PlanckþWP data, i.e. ns ¼ 0.9603�
0.0073 (68% C.L.) and r < 0.11 (95% C.L.) [11,13]. These
results are consistent also with the values measured by the
BICEP2 collaboration [12].
Finally, it is possible to estimate the grow factor for

the class of models FðR;GÞ ¼ F0RnG1−n. Let us consider
the equation which governs the evolution of the matter
fluctuations in the linear regime

δ̈m þ 2H _δm − 4πGeffρmδm ¼ 0; ð49Þ
where ρm is the matter density and Geff is the effective
Newton coupling which, in our case, is

Geff ¼
GN

FRðR;GÞ
; ð50Þ

where GN is the Newton gravitational constant. However,
we are considering perfect fluid matter that enters
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FIG. 4 (color online). Plot of ηðn; sÞ parameters. The blue and
green parts in the figure are the allowed solutions.
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minimally coupled in action (1). We use Eq. (13) with
matter density contribution as

4πGρðmÞ ¼
3H2

2
− 4πGρðGBÞ; ð51Þ

with

ρðGBÞ ¼
RFR − FðR;GÞ − 6H _FR þ GFG − 24H3 _FG

16πGN
:

ð52Þ

Inserting Eqs. (50) and (51) into Eq. (49), we obtain the
equation

δ̈m þ 2H _δm þ RFR − FðR;GÞ − 6H _FR þ GFG − 24H3 _FG

4FR

δm ¼ 0: ð53Þ

Now, considering relations (41), we have aðtÞ ¼ a0ts ¼
a0t2n−1 and consequently H ¼ 2n−1

t ; therefore, Eq. (53)
becomes

δ̈m þ 2n − 1

t
_δm þ 3ð6n2 − 6n − 1Þ

2t2
δm ¼ 0: ð54Þ

Equation (54) is an Euler equation of which the general
solution is

δmðtÞ ¼ t
1
2
ð−

ffiffiffiffiffiffiffiffiffi
3−8n2

p
−4nþ3Þðc2t

ffiffiffiffiffiffiffiffiffi
3−8n2

p
þ c1Þ: ð55Þ

Since aðzÞ ¼ ð1þ zÞ−1 we have that

H ¼ H0a−
1

2n−1 ¼ H0

�
1

1þ z

� 1
2n−1

; ð56Þ

where H0 is the Hubble constant that can be chosen as a
prior in agreement with data. The deceleration parameter q
is

q ¼ −1 −
d lnH
d ln a

¼ −1þ 1

2n − 1
: ð57Þ

In Fig. 5, the comparison between a FðR;GÞmodel with the
ΛCDM analog is reported.
By a rapid inspection of the figure, it is evident that there

is no change in the evolution of the curve since, for any
FðR;GÞ ¼ F0RnG1−n model, the deceleration parameter
preserves sign, and therefore the universe always accel-
erates or always decelerates depending on the value of n.
Clearly, for n ¼ 1, the solution is an Einstein–de Sitter
model as it has to be. On the other hand, the accelerated
expansion of the universe (q < 0) is recovered for n > 1,

but, in this case, the universe accelerates forever without the
possibility of structure formation. In conclusion, we have to
stress that more realistic models are necessary in order to fit
the observations.

V. CONCLUSIONS

In this paper, we have considered the possibility to obtain
cosmological inflation starting from a generic function
FðR;GÞ of the Ricci curvature scalar R and the Gauss–
Bonnet topological invariant G. Such a kind of theory, due
to the algebraic relation among the curvature invariants in
G, see Eq. (2), can exhaust the whole curvature budget of
effective gravitational theories where derivatives of curva-
ture invariants are not present. The main feature that
emerges by this approach is the fact that two effective
masses have to be considered, one related to R and the other
related to G. These masses define two different scales that
drive dynamics at early and very early epochs, giving rise to
a natural double inflationary scenario. Here we have
sketched the essential characteristics of this picture con-
sidering exponential and power-law inflation. However, the
theory has to be worked out in order to select reliable
models to be compared with data. In a forthcoming paper,
the matching with data will be addressed in details.

ACKNOWLEDGMENTS

The authors thank the referee for the useful comments
and hints that allowed improving the paper. The authors
acknowledge INFN Sez. di Napoli (Iniziative Specifiche
QGSKY, QNP, and TEONGRAV) for financial support.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

z

f +
(z

) σ
8(z

)

observed points
LCDM
F(R,G)

FIG. 5 (color online). The plot shows the comparison of the
growth rate fþðzÞσ8ðzÞ for FðR;GÞ ¼ F0RnG1−n (green line)
compared to that of ΛCDM (red line). The solid points are the
observed one [78]. For FðR;GÞ we consider the value n ¼ 2. The
parameter F0 is assumed as a “prior” normalized at the ΛCDM
value of the gravitational constant. This means that, in our units, it
can be assumed of order unity. See also Ref. [79] for details.

COSMOLOGICAL INFLATION IN FðR;GÞ GRAVITY PHYSICAL REVIEW D 91, 083531 (2015)

083531-7



[1] A. A. Starobinsky, Phys. Lett. B 91, 99 (1980).
[2] A. H. Guth, Phys. Rev. D 23, 347 (1981).
[3] K. Sato, Mon. Not. R. Astron. Soc. 195, 467 (1981).
[4] K. Sato, Phys. Lett. B 99, 66 (1981).
[5] D. Kazanas, Astrophys. J. 241, L59 (1980).
[6] E. W. Kolb and Turner, The Early Universe (Addison-

Wesley, Redwood City, 1990).
[7] V. F. Mukhanov and G. V. Chibisov, Pis’ma Zh. Eksp. Teor.

Fiz. 33, 549 (1981) [JETP Lett. 33, 532 (1981)].
[8] A. H. Guth and S. Y. Pi, Phys. Rev. Lett. 49, 1110

(1982).
[9] S. W. Hawking, Phys. Lett. B 115, 295 (1982).

[10] A. A. Starobinsky, Phys. Lett. B 117, 175 (1982).
[11] Planck Collaboration, arXiv:1502.02114; arXiv:1502.01590;

arXiv:1502.01589.
[12] BICEP2 Collaboration, Phys. Rev. Lett. 112, 241101

(2014).
[13] Planck Collaboration, Astron. Astrophys. 571, A22

(2014).
[14] D. N. Spergel et al., Astrophys. J. Suppl. Ser. 148, 175

(2003).
[15] H. V. Peiris et al., Astrophys. J. Suppl. Ser. 148, 213

(2003).
[16] M. Tegmark et al. (SDSS Collaboration), Phys. Rev. D 69,

103501 (2004).
[17] M. Tegmark et al. (SDSS Collaboration), Astrophys. J. 606,

702 (2004).
[18] W. J. Percival et al., Mon. Not. R. Astron. Soc. 327, 1297

(2001).
[19] E.W. Kolb, arXiv:hep-ph/9910311.
[20] A. D. Linde, Phys. Lett. B 129, 177 (1983).
[21] A. D. Linde, Phys. Lett. B 108, 389 (1982).
[22] A. Albrecht and P. Steinhardt, Phys. Rev. Lett. 48, 1220

(1982).
[23] K. Freese, J. A. Frieman, and A. V. Olinto, Phys. Rev. Lett.

65, 3233 (1990).
[24] D. Polarski and A. A. Starobinsky, Nucl. Phys. B385, 623

(1992).
[25] A. D. Linde, Phys. Rev. D 49, 748 (1994).
[26] P. J. E. Peebles and A. Vilenkin, Phys. Rev. D 59, 063505

(1999).
[27] M. Fairbairn and M. H. G. Tytgat, Phys. Lett. B 546, 1

(2002).
[28] A. Feinstein, Phys. Rev. D 66, 063511 (2002).
[29] T. Padmanabhan, Phys. Rev. D 66, 021301 (2002).
[30] M. Sami, Mod. Phys. Lett. A 18, 691 (2003).
[31] M. Sami, P. Chingangbam, and T. Qureshi, Phys. Rev. D 66,

043530 (2002).
[32] S. Thomas and J. Ward, Phys. Rev. D 72, 083519 (2005).
[33] S. Capozziello and M. De Laurentis, Phys. Rep. 509, 167

(2011).
[34] S. Nojiri and S. D. Odintsov, Phys. Rep. 505, 59 (2011).
[35] S. Nojiri and S. D. Odintsov, Int. J. Geom. Methods Mod.

Phys. 04, 115 (2007).
[36] S. Capozziello and M. Francaviglia, Gen. Relativ. Gravit.

40, 357 (2008).
[37] S. Capozziello, M. De Laurentis, and V. Faraoni, Open Astr.

J. 2, 1874 (2009).
[38] A. de la Cruz-Dombriz and D. Saez-Gomez, Entropy 14,

1717 (2012).

[39] G. J. Olmo, Int. J. Mod. Phys. D 20, 413 (2011).
[40] F. S. N. Lobo, Dark Energy-Current Advances and

Ideas (Research Signpost, Scarborough, Ontario, 2009),
p. 173.

[41] S. Capozziello and V. Faraoni, Beyond Einstein Gravity: A
Survey of Gravitational Theories for Cosmology and
Astrophysics, Fundamental Theories of Physics (Springer,
New York, 2010), Vol. 170.

[42] S. Capozziello and M. De Laurentis, Invariance Principles
and Extended Gravity: Theories and Probes (Nova Science
Publishers, New York, 2010).

[43] K. i. Maeda and N. Ohta, Phys. Lett. B 597, 400
(2004).

[44] S. Nojiri and S. D. Odintsov, Phys. Lett. B 484, 119
(2000).

[45] S. Nojiri, S. D. Odintsov, and S. Zerbini, Phys. Rev. D 62,
064006 (2000).

[46] S. Nojiri and S. D. Odintsov, Phys. Rev. D 68, 123512
(2003).

[47] S. W. Hawking, T. Hertog, and H. S. Reall, Phys. Rev. D 63,
083504 (2001).

[48] J. R. Ellis, N. Kaloper, K. A. Olive, and J. Yokoyama, Phys.
Rev. D 59, 103503 (1999).

[49] M. C. Bento and O. Bertolami, Phys. Lett. B 228, 348
(1989).

[50] K. I. Maeda, Phys. Rev. D 39, 3159 (1989).
[51] N. D. Birrell and P. C. W. Davies, Quantum Fields in

Curved Space (Cambridge University Press, Cambridge,
England, 1982).

[52] D. Gorbunov and A. Tokareva, Phys. Lett. B 739, 50
(2014).

[53] R. Myrzakulov, S. Odintsov, and L. Sebastiani, arXiv:
1412.1073.

[54] K. Bamba, R. Myrzakulov, S. D. Odintsov, and L.
Sebastiani, Phys. Rev. D 90, 043505 (2014).

[55] L. Sebastiani, G. Cognola, R. Myrzakulov, S. D. Odintsov,
and S. Zerbini, Phys. Rev. D 89, 023518 (2014).

[56] S. Capozziello, Int. J. Mod. Phys. D 11, 483 (2002).
[57] N. H. Barth and S. Christensen, Phys. Rev. D 28, 1876

(1983).
[58] M.M. Ivanov and A. V. Toporensky, Gravitation Cosmol.

18, 43 (2012).
[59] S. Nojiri and S. D. Odintsov, Phys. Lett. B 631, 1 (2005).
[60] A. De Felice and T. Tanaka, Prog. Theor. Phys. 124, 503

(2010).
[61] A. De Felice and T. Suyama, J. Cosmol. Astropart. Phys. 06

(2009) 034.
[62] S. Capozziello, M. De Laurentis, and S. D. Odintsov, Mod.

Phys. Lett. A 29, 1450164 (2014).
[63] M. De Laurentis and A. J. Lopez-Revelles, Int. J. Geom.

Methods Mod. Phys. 11, 1450082 (2014).
[64] M. De Laurentis, Mod. Phys. Lett. A, 30, 1550069

(2015).
[65] E. Elizalde, R. Myrzakulov, V. V. Obukhov, and D.

Sáez-Gómez, Classical Quantum Gravity 27, 095007
(2010).

[66] R. Myrzakulov, D. Sáez-Gómez, and A. Tureanu, Gen.
Relativ. Gravit. 43, 1671 (2011).

[67] J. D. Barrow and A. C. Ottewill, J. Phys. A 16, 2757 (1983).
[68] A. Vilenkin, Phys. Rev. D 32, 2511 (1985).

DE LAURENTIS, PAOLELLA, AND CAPOZZIELLO PHYSICAL REVIEW D 91, 083531 (2015)

083531-8

http://dx.doi.org/10.1016/0370-2693(80)90670-X
http://dx.doi.org/10.1103/PhysRevD.23.347
http://dx.doi.org/10.1093/mnras/195.3.467
http://dx.doi.org/10.1016/0370-2693(81)90805-4
http://dx.doi.org/10.1086/183361
http://dx.doi.org/10.1103/PhysRevLett.49.1110
http://dx.doi.org/10.1103/PhysRevLett.49.1110
http://dx.doi.org/10.1016/0370-2693(82)90373-2
http://dx.doi.org/10.1016/0370-2693(82)90541-X
http://arXiv.org/abs/1502.02114
http://arXiv.org/abs/1502.01590
http://arXiv.org/abs/1502.01589
http://dx.doi.org/10.1103/PhysRevLett.112.241101
http://dx.doi.org/10.1103/PhysRevLett.112.241101
http://dx.doi.org/10.1051/0004-6361/201321569
http://dx.doi.org/10.1051/0004-6361/201321569
http://dx.doi.org/10.1086/377226
http://dx.doi.org/10.1086/377226
http://dx.doi.org/10.1086/377228
http://dx.doi.org/10.1086/377228
http://dx.doi.org/10.1103/PhysRevD.69.103501
http://dx.doi.org/10.1103/PhysRevD.69.103501
http://dx.doi.org/10.1086/382125
http://dx.doi.org/10.1086/382125
http://dx.doi.org/10.1046/j.1365-8711.2001.04827.x
http://dx.doi.org/10.1046/j.1365-8711.2001.04827.x
http://arXiv.org/abs/hep-ph/9910311
http://dx.doi.org/10.1016/0370-2693(83)90837-7
http://dx.doi.org/10.1016/0370-2693(82)91219-9
http://dx.doi.org/10.1103/PhysRevLett.48.1220
http://dx.doi.org/10.1103/PhysRevLett.48.1220
http://dx.doi.org/10.1103/PhysRevLett.65.3233
http://dx.doi.org/10.1103/PhysRevLett.65.3233
http://dx.doi.org/10.1016/0550-3213(92)90062-G
http://dx.doi.org/10.1016/0550-3213(92)90062-G
http://dx.doi.org/10.1103/PhysRevD.49.748
http://dx.doi.org/10.1103/PhysRevD.59.063505
http://dx.doi.org/10.1103/PhysRevD.59.063505
http://dx.doi.org/10.1016/S0370-2693(02)02638-2
http://dx.doi.org/10.1016/S0370-2693(02)02638-2
http://dx.doi.org/10.1103/PhysRevD.66.063511
http://dx.doi.org/10.1103/PhysRevD.66.021301
http://dx.doi.org/10.1142/S021773230300968X
http://dx.doi.org/10.1103/PhysRevD.66.043530
http://dx.doi.org/10.1103/PhysRevD.66.043530
http://dx.doi.org/10.1103/PhysRevD.72.083519
http://dx.doi.org/10.1016/j.physrep.2011.09.003
http://dx.doi.org/10.1016/j.physrep.2011.09.003
http://dx.doi.org/10.1016/j.physrep.2011.04.001
http://dx.doi.org/10.1142/S0219887807001928
http://dx.doi.org/10.1142/S0219887807001928
http://dx.doi.org/10.1007/s10714-007-0551-y
http://dx.doi.org/10.1007/s10714-007-0551-y
http://dx.doi.org/10.3390/e14091717
http://dx.doi.org/10.3390/e14091717
http://dx.doi.org/10.1142/S0218271811018925
http://dx.doi.org/10.1016/j.physletb.2004.07.038
http://dx.doi.org/10.1016/j.physletb.2004.07.038
http://dx.doi.org/10.1016/S0370-2693(00)00629-8
http://dx.doi.org/10.1016/S0370-2693(00)00629-8
http://dx.doi.org/10.1103/PhysRevD.62.064006
http://dx.doi.org/10.1103/PhysRevD.62.064006
http://dx.doi.org/10.1103/PhysRevD.68.123512
http://dx.doi.org/10.1103/PhysRevD.68.123512
http://dx.doi.org/10.1103/PhysRevD.63.083504
http://dx.doi.org/10.1103/PhysRevD.63.083504
http://dx.doi.org/10.1103/PhysRevD.59.103503
http://dx.doi.org/10.1103/PhysRevD.59.103503
http://dx.doi.org/10.1016/0370-2693(89)91557-8
http://dx.doi.org/10.1016/0370-2693(89)91557-8
http://dx.doi.org/10.1103/PhysRevD.39.3159
http://dx.doi.org/10.1016/j.physletb.2014.10.036
http://dx.doi.org/10.1016/j.physletb.2014.10.036
http://arXiv.org/abs/1412.1073
http://arXiv.org/abs/1412.1073
http://dx.doi.org/10.1103/PhysRevD.90.043505
http://dx.doi.org/10.1103/PhysRevD.89.023518
http://dx.doi.org/10.1142/S0218271802002025
http://dx.doi.org/10.1103/PhysRevD.28.1876
http://dx.doi.org/10.1103/PhysRevD.28.1876
http://dx.doi.org/10.1134/S0202289312010100
http://dx.doi.org/10.1134/S0202289312010100
http://dx.doi.org/10.1016/j.physletb.2005.10.010
http://dx.doi.org/10.1143/PTP.124.503
http://dx.doi.org/10.1143/PTP.124.503
http://dx.doi.org/10.1088/1475-7516/2009/06/034
http://dx.doi.org/10.1088/1475-7516/2009/06/034
http://dx.doi.org/10.1142/S0217732314501648
http://dx.doi.org/10.1142/S0217732314501648
http://dx.doi.org/10.1142/S0219887814500820
http://dx.doi.org/10.1142/S0219887814500820
http://dx.doi.org/10.1142/S0217732315500698
http://dx.doi.org/10.1142/S0217732315500698
http://dx.doi.org/10.1088/0264-9381/27/9/095007
http://dx.doi.org/10.1088/0264-9381/27/9/095007
http://dx.doi.org/10.1007/s10714-011-1149-y
http://dx.doi.org/10.1007/s10714-011-1149-y
http://dx.doi.org/10.1088/0305-4470/16/12/022
http://dx.doi.org/10.1103/PhysRevD.32.2511


[69] S. Capozziello and S. Tsujikawa, Phys. Rev. D 77, 107501
(2008).

[70] Y. Ito and S. Nojiri, Phys. Rev. D 79, 103008 (2009).
[71] S. Capozziello, R. de Ritis, C. Rubano, and P. Scudellaro,

Riv. Nuovo Cimento 19, 1 (1996).
[72] S. Capozziello and M. De Laurenits, Int. J. Geom. Methods

Mod. Phys. 11, 1460004 (2014).
[73] S. Capozziello, R. de Ritis, and A. A. Marino, Classical

Quantum Gravity 14, 3259 (1997).
[74] S. Capozziello, G. Marmo, C. Rubano, and P. Scudellaro,

Int. J. Mod. Phys. D 06, 491 (1997).

[75] S. Capozziello and G. Lambiase, Gen. Relativ. Gravit. 32,
295 (2000).

[76] S. Capozziello, M. De Laurentis, and R. Myrzakulov,
arXiv:1412.1471.

[77] S. Capozziello, M. De Laurentis, and R. Myrzakulov,
arXiv:1411.7523.

[78] S. Basilakos, S. Nesseris, and L. Perivolaropoulos, Phys.
Rev. D 87, 123529 (2013).

[79] S. Basilakos, S. Capozziello, M. De Laurentis, A.
Paliathanasis, and M. Tsamparlis, Phys. Rev. D 88,
103526 (2013).

COSMOLOGICAL INFLATION IN FðR;GÞ GRAVITY PHYSICAL REVIEW D 91, 083531 (2015)

083531-9

http://dx.doi.org/10.1103/PhysRevD.77.107501
http://dx.doi.org/10.1103/PhysRevD.77.107501
http://dx.doi.org/10.1103/PhysRevD.79.103008
http://dx.doi.org/10.1007/BF02742992
http://dx.doi.org/10.1142/S0219887814600044
http://dx.doi.org/10.1142/S0219887814600044
http://dx.doi.org/10.1088/0264-9381/14/12/011
http://dx.doi.org/10.1088/0264-9381/14/12/011
http://dx.doi.org/10.1142/S0218271897000297
http://dx.doi.org/10.1023/A:1001935510837
http://dx.doi.org/10.1023/A:1001935510837
http://arXiv.org/abs/1412.1471
http://arXiv.org/abs/1411.7523
http://dx.doi.org/10.1103/PhysRevD.87.123529
http://dx.doi.org/10.1103/PhysRevD.87.123529
http://dx.doi.org/10.1103/PhysRevD.88.103526
http://dx.doi.org/10.1103/PhysRevD.88.103526

