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We consider higher-derivative quantum gravity where the renormalization-group-improved effective
action beyond the one-loop approximation is derived. Using this effective action, the quantum-corrected
Friedmann-Robertson-Walker (FRW) equations are analyzed. The de Sitter universe solution is found. It is
demonstrated that such a de Sitter inflationary universe is unstable. The slow-roll inflationary parameters
are calculated. The contribution of the renormalization-group-improved Gauss-Bonnet term to the
quantum-corrected FRW equations as well as to the instability of the de Sitter universe is estimated.
It is demonstrated that in this case, the spectral index and tensor-to-scalar ratio are consistent with
Planck data.
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I. INTRODUCTION

Recent more precise observational WMAP data [1] as
well as corrected Planck constraints [2] increased the
interest in the theoretical models for the inflationary
universe. There are a large variety of inflationary models
(for review, see, for instance, Refs. [3]) which may comply
with observational data, at least to some extent (see also
Ref. [4] about the BICEP experiment).
In fact, during recent years there was much activity

concerning the quantum effects of general relativity in the
construction of the inflationary universe (for an introduc-
tion and review, see Ref. [5]). Furthermore, recent study [6]
indicates that the quantum effects of specific models of
(nonrenormalizable) higher-derivative FðRÞ gravity may
give consistent inflation which complies with Planck
data. The next natural step is the extension of the quantum-
corrected inflationary scenario for the multiplicatively
renormalizable higher-derivative gravity (for a general
review, see Ref. [7]). A very interesting attempt in this
direction has been recently made in Ref. [8]. Note that
since it is multiplicatively renormalizable, higher-derivative
quantum gravity is based on the use of a higher-derivative
propagator. As a result, such a theory eventually leads to a
problem with unitarity which is related to the well-known
Ostrogradski instability of higher-derivative theories. In
fact, some attempts to resolve this problem were made by
proposing that unitarity may be restored at the nonpertur-
bative level. However, there is no complete proof of the
nonperturbative restoration of unitarity. Hence, so far this
theory may be considered as an effective theory teaching us
different general aspects of quantum gravity.

The purpose of the current work is the study of the
inflationary universe in general higher-derivative quantum
gravity [7]. Making use of the fact that one-loop beta
functions of such a theory are well known and their
asymptotically free regime is well investigated, we apply
the renormalization group (RG) considerations to get the
RG-improved effective action in general higher-derivative
gravity. This technique is well developed in quantum field
theory in curved spacetime [9]. It permits us to get the
effective action beyond one-loop approximation, making a
sum of all leading logs of the theory.
The paper is organized as follows. In Sec. II, we present

the renormalization-group-improved effective action of
the multiplicatively renormalizable higher-derivative
gravity. In order to do so, the one-loop effective coupling
constants are used. Subsequently, the quantum-corrected
equations of motion are derived on the flat Friedmann-
Robertson-Walker spacetime. In Sec. III, using the asymp-
totic behavior of the gravitational running constants, the
de Sitter inflationary universe is constructed. The asymp-
totically free regime is discussed in detail. Section IV is
devoted to the study of the dynamics of such quantum-
corrected inflation. It is shown that de Sitter space is
unstable and can lead to a large amount of inflation.
Slow-roll conditions are discussed and the expressions for
slow-roll parameters are found. In Sec. V, we consider the
contribution from total derivative and surface terms (the
topological Gauss-Bonnet term and the d’Alembertian of
the curvature) to the RG-improved effective action. It is
demonstrated that with these terms the spectral index can
be compatible with Planck data. Conclusions and final
remarks are given in Sec. VI.
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II. RENORMALIZATION-GROUP-IMPROVED
EFFECTIVE ACTION AND QUANTUM-

CORRECTED FRW EQUATIONS

In this section we start from the general action of
the higher-derivative gravity which is known to be a
multiplicatively renormalizable theory (see Ref. [7] for a
general introduction and review). The starting action has
the following form,1

I ¼
Z
M

d4x
ffiffiffiffiffiffi
−g

p

×

�
R
κ2

− Λþ aRμνRμν þ bR2 þ cRμνξσRμνξσ þ d□R

�
;

ð2:1Þ

where g is the determinant of the metric tensor gμν,M is the
spacetime manifold, R; Rμν; Rμνξσ are the Ricci scalar, the
Ricci tensor, and the Riemann tensor, respectively, and
□≡ gμν∇μ∇ν is the covariant d’Alembertian, with ∇μ

being the covariant derivative operator associated with
the metric gμν. Here, κ2 > 0, Λ; a; b; c, and d are constants
which characterize the gravitational interaction. The above
Lagrangian contains some terms not important in four
dimensions. First of all, we note that □R is a surface term
which does not give any contribution to the dynamical
equations. Second, we have

RμνRμν ¼ C2

2
−
G
2
þ R2

3
;

RμνξσRμνξσ ¼ 2C2 −Gþ R2

3
; ð2:2Þ

where G and C2 are the Gauss-Bonnet term and the
“square” of the Weyl tensor,

G ¼ R2 − 4RμνRμν þ RμνξσRμνσξ;

C2 ¼ 1

3
R2 − 2RμνRμν þ RξσμνRξσμν: ð2:3Þ

The Gauss-Bonnet term is a topological invariant in four
dimensions, and we can drop it from the action. Thus, we
can rewrite the higher-derivative terms with the help of the
Weyl squared tensor.
Let us express the constants which appear in the starting

action in terms of more convenient coupling constants
which stress that the theory under consideration is an
asymptotically free one. In order to do it, we follow the
notations of Ref. [7]. To take into account quantum gravity

effects, we use the RG-improved effective action. The
calculation of the RG-improved effective action has been
developed in multiplicatively renormalizable quantum field
theory in curved spacetime. In general terms, this technique
is described in detail in Refs. [7,9]. Recently, the
RG-improved scalar potential in curved spacetime has
been applied in the study of inflation [11]. In the simplest
version [9], the RG-improved effective action follows from
the solution of the RG equation applied to the complete
effective action of the multiplicatively renormalizable theory.
The final result is very simple: one has to replace constants in
the classical action by one-loop effective coupling constants
where the corresponding RG parameter is defined as a log
term of the characteristic mass scale in the theory.
Applying the above considerations to higher-derivative

quantum gravity, one can get the RG-improved effective
action as the following:

I ¼
Z
M

d4
ffiffiffiffiffiffi
−g

p �
R

κ2ðt0Þ −
ωðt0Þ
3λðt0ÞR

2 þ 1

λðt0ÞC
2 − Λðt0Þ

�
:

ð2:4Þ

The effective coupling constants λ≡ λðt0Þ, ω≡ ωðt0Þ,
κ2 ≡ κ2ðt0Þ, and Λ≡ Λðt0Þ obey the one-loop RG equa-
tions [12]:

dλ
dt0

¼ −β2λ2 ≡ −
�
133

10

�
λ2; ð2:5Þ

dω
dt0

¼ −λðωβ2 þ β3Þ≡ −λ
�
10

3
ω2 þ 183

10
ωþ 5

12

�
; ð2:6Þ

dκ2

dt0
¼ κ2γ ≡ κ2λ

�
10

3
ω −

13

6
−

1

4ω

�
; ð2:7Þ

dΛ
dt0

¼ β4
ðκ2Þ2 − 2γΛðt0Þ≡ λ2

ðκ2Þ2
�
5

2
þ 1

8ω2

�

þ λΛ

�
28

3
þ 1

3ω

�
: ð2:8Þ

Note that κ2ðt0Þ is positive defined, and in general λðt0Þ and
Λðt0Þ are also positive defined to have a positive contri-
bution to the Weyl tensor and a positive effective cosmo-
logical constant in the action; on the other hand, ωðt0Þ is
expected to be negative to have a positive R2 term. In the
above expressions, β2;3;4 and γ correspond to [7]

β2 ¼
133

10
; β3 ¼

10

3
ω2 þ 5ωþ 5

12
;

β4 ¼
λ2

2

�
5þ 1

4ω2

�
þ λ

3
ðκ2Þ2Λ

�
20ωþ 15 −

1

2ω

�
;

γ ¼ λ

�
10

3
ω −

13

6
−

1

4ω

�
: ð2:9Þ

1Note that higher-derivative theory of the type in (2.1) as well
as other higher-derivative modified gravities may even pass solar
system tests, for instance, due to the chameleon scenario [10] and
so on.
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The RG parameter t0 is given by

t0 ¼ t00
2
log

�
R
R0

�
2

; ð2:10Þ

where t00 > 0 is dimensionless constant introduced for the
sake of completeness and R0 is the mass scale for the Ricci
scalar. We set R0 as the value of the Ricci scalar in the
current nearly de Sitter universe (R0 ¼ 4Λ, Λ being the
cosmological constant), such that t0ðR ¼ R0Þ ¼ 0 today,
while in the past 0 < t0ðR0 < RÞ. Note that the de Sitter
solution of the current accelerated expansion is a final
attractor of Friedmann universe.
For Eq. (2.5) we also have the explicit solution

λðt0Þ ¼ λð0Þ
1þ λð0Þβ2t0

; ð2:11Þ

where λð0Þ is the integration constant corresponding to the
value of λ at t0 ¼ 0, namely λðt ¼ t0Þ≡ λðR ¼ R0Þ ¼ λð0Þ.
One important remark is in order: when we introduce

the effective running constants in (2.1), we also get a
contribution from the Gauss-Bonnet and □R in the
RG-improved effective action, since it is not more possible
to write the Gauss-Bonnet term like a total derivative and
□R in terms of a flux in three dimensions. This fact will be
discussed in below, but for the moment we work with the
simplified action.
Let us consider the flat Friedmann-Robertson-Walker

(FRW) spacetime, whose general form is given by

ds2 ¼ −NðtÞ2dt2 þ aðtÞ2ðdx2 þ dy2 þ dz2Þ; ð2:12Þ
where a≡ aðtÞ is the scale factor depending on the
cosmological time t and N ≡ NðtÞ is an arbitrary lapse
function, which describes the gauge freedom associated
with the reparametrization invariance of the action. For the
above metric, the Ricci scalar and the square of the Weyl
tensor read

R ¼ 1

N2

�
6

�
_a
a

�
2

þ 6

�
ä
a

�
− 6

�
_N
N

��
_a
a

��
; C2 ¼ 0;

ð2:13Þ
where the dot denotes the derivative with respect to the
cosmological time t. The fact that the Weyl tensor is zero on
the general form of the metric indicates that its contribution

to the action and, therefore, to the derivation of the field
equations of the theory is null. In fact one can write on
FRW background

δIC2 ¼ 1

λðt0Þ δð
ffiffiffiffiffiffi
−g

p
C2Þ þ ð ffiffiffiffiffiffi

−g
p

C2Þδ
�

1

λðt0Þ
�

¼ 1

λðt0Þ δð
ffiffiffiffiffiffi
−g

p
C2Þ; ð2:14Þ

but

1

λðt0Þ δð
ffiffiffiffiffiffi
−g

p
C2Þ ¼ 0; ð2:15Þ

and it is well known that the square of the Weyl tensor does
not enter in the Friedmann-like equations.
To derive the equations of motions, we will use a method

based on the Lagrangian multiplayer [13–16]. If we plug
the expression for the Ricci scalar (2.13) into the action
(2.4), we get the higher-derivative Lagrangian theory. In
order to derive a standard (first order) Lagrangian theory,
we introduce a Lagrangian multiplier ξ as [13,14],

I ¼
Z
M

d4
ffiffiffiffiffiffi
−g

p �
R

κ2ðt0Þ −
ωðt0Þ
3λðt0ÞR

2 − ΛðtÞ

−ξ
�
R −

1

N2

�
6

�
_a
a

�
2

þ 6

�
ä
a

�
− 6

�
_N
N

��
_a
a

����
;

ð2:16Þ
where we have taken into account (2.13). By making the
derivation with respect to R, one finds

ξ ¼ −2R
ωðt0Þ
3λðt0Þ þ

1

κ2
− Δðt0Þ dt

0

dR
; ð2:17Þ

where

Δðt0Þ ¼
�

R
ðκ2ðt0ÞÞ2

dκ2ðt0Þ
dt0

þ R2
d
dt0

�
ωðt0Þ
3λðt0Þ

�
þ dΛðt0Þ

dt0

�
;

ð2:18Þ

since it is understood that the functions κ2ðt0Þ;Λðt0Þ; λðt0Þ
and ωðt0Þ depend on R throught t0 as in Eq. (2.10).
Therefore, by substituting (2.17) and making an inte-

gration by parts one obtains the (standard) Lagrangian

Lða; _a;N; R; _RÞ ¼ −Na3Λðt0Þ − 6_a2a
κ2ðt0ÞN þ 6_aa2 _ðκ2ðt0ÞÞ

Nðκ2ðt0ÞÞ2 þ ωðt0Þ
3λðt0Þ a

3N

�
R2 þ 12R

N2

_a2

a2
þ 12_a _R

aN2

�

þ d
dt0

�
ωðt0Þ
3λðt0Þ

��
dt0

dR
_R

�
12Ra2 _a

N
þ 6a3N

�
R
6
þ _a2

a2N2

�
Δðt0Þ dt

0

dR

þ 6_a

�
a2

N

��
dΔðt0Þ
dt0

�
dt0

dR

�
2

þ Δðt0Þ d
2t0

dR2

�
_R: ð2:19Þ
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If we derive this Lagrangian with respect to NðtÞ and, therefore, we choose the gauge NðtÞ ¼ 1, we get

0 ¼ −a3Λðt0Þ þ 6_a2a
κ2ðt0Þ −

6_aa2 _ðκ2ðt0ÞÞ
ðκ2ðt0ÞÞ2 þ ωðt0Þ

3λðt0Þ a
3

�
R2 − 12R

_a2

a2
−
12_a _R
a

�
− 12Ra2 _a

d
dt0

�
ωðt0Þ
3λðt0Þ

��
dt0

dR
_R

�

þ 6a3
�
R
6
−

_a2

a2

�
Δðt0Þ dt

0

dR
− 6_aa2

�
dΔðt0Þ
dt0

�
dt0

dR

�
2

þ Δðt0Þ d
2t0

dR2

�
_R: ð2:20Þ

The variation with respect to aðtÞ leads to

0 ¼ −3a2Λðt0Þ þ 6

κ2ðt0Þ ð _a
2 þ 2äaÞ þ 6

κ2ðt0Þ
�
2a2 _ðκ2ðt0ÞÞ2
ðκ2ðt0ÞÞ2 −

2_aa _ðκ2ðt0ÞÞ
κ2ðt0Þ −

a2ð ̈κ2ðt0ÞÞ
κ2ðt0Þ

�

þ ωðt0Þ
λðt0Þ ðR

2a2 − 4R _a2 − 8 _R _a a − 8Räa − 4R̈a2Þ − 24
d
dt

�
ωðt0Þ
λðt0Þ

�
½ _Ra2 þ Ra _a� − 12

d2

dt2

�
ωðt0Þ
λðt0Þ

�
Ra2

þ ð3a2R − 6_a2 − 12aäÞΔðt0Þ dt
0

dR
− ð12a _a _Rþ6a2R̈Þ

�
dΔðt0Þ
dt0

�
dt0

dR

�
2

þ Δðt0Þ d
2t0

dR2

�

− 6a2 _R2

�
d2Δðt0Þ
dt02

�
dt0

dR

�
3

þ 3
dΔðt0Þ
dt0

�
dt0

dR

�
d2t0

dR2
þ Δðt0Þ d

3t0

dR3

�
; ð2:21Þ

where we have set NðtÞ ¼ 1 again and d=dt≡ _Rðdt0=dRÞd=dt0. Finally, the variation of the Lagrangian with respect to R,
remembering that t0 is a function of R, returns to be the expression in (2.13), and by putting NðtÞ ¼ 1, we have

R ¼ 6

�
_a
a

�
2

þ 6

�
ä
a

�
: ð2:22Þ

We obtained a system of three second order equations (2.20)–(2.22), where one is redundant (in the absence of matter
contributions), namely it can be derived from the other two.
Equations (2.20) and (2.22) can be rewritten as

0 ¼ −Λðt0Þ þ 6H2

κ2ðt0Þ −
6H

ðκ2ðt0ÞÞ2
dκ2ðt0Þ
dt0

�
t00 _R
R

�
þ ωðt0Þ
3λðt0Þ ½6R

_H − 12H _R� − 12H
d
dt0

�
ωðt0Þ
3λðt0Þ

�
ð _Rt00Þ

þ 6ðH2 þ _HÞΔðt0Þ t
0
0

R
− 6H

�
dΔðt0Þ
dt0

�
t00
R

�
2

− Δðt0Þ t
0
0

R2

�
_R; ð2:23Þ

R ¼ 12H2 þ 6 _H; ð2:24Þ

where we have introduced the Hubble parameter H ¼ _a=a and we have used (2.10) to write dt0=dR ¼ t00=R. In the
following expression, we explicitly develop Eq. (2.23) in terms of the functions λðt0Þ;ωðt0Þ; κ2ðt0Þ, and Λðt0Þ by using the set
of equations (2.5)–(2.8) and Eq. (2.24) for the Ricci scalar,

0 ¼ 12ωð−6H2 _H − 2HḦ þ _H2Þ
λ

−
Hλt00ð40ω2 − 26ω − 3Þð4H _H þ ḦÞ

2κ2ωð2H2 þ _HÞ þ 6H2

κ2

−
t00

360κ4ω3ð2H2 þ _HÞ2 ðHð4H _H þ ḦÞðλt00ð120κ4ω3ð4ωþ 3Þð2ωð100ωþ 549Þ þ 25Þð2H2 þ _HÞ2

− 2κ2λωð24H2ðωðωð20ωð100ωþ 409Þ − 2121Þþ 210Þ þ 15Þþ 12 _Hðωðωð20ωð100ωþ 409Þ − 2121Þ þ 210Þþ 15Þ
þκ2Λð4ωð1616ω − 355Þ − 45ÞÞ − 15λ2ðωð2ωð4ωð50ωþ 97Þ − 25Þ − 71Þ − 5ÞÞ − 180κ2ω2ð2H2 þ _HÞ
× ð20κ2ωð4ωð2ωþ 3Þ þ 1Þð2H2 þ _HÞ þ λð−40ω2 þ 26ωþ 3ÞÞÞ þ 15ωð2H4 þ 7H2 _H þHḦ þ _H2Þ
× ð120κ4ω2ð4ωð2ωþ 3Þ þ 1Þð2H2 þ _HÞ2 þ 4κ2λωð6H2ð−40ω2 þ 26ωþ 3Þ þ _Hð6ð13 − 20ωÞωþ 9Þ
−2κ2Λð28ωþ 1ÞÞ − 3λ2ð20ω2 þ 1ÞÞÞ þ 10Ht0ð8ω2 þ 12ωþ 1Þð4H _H þ ḦÞ − Λ: ð2:25Þ
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Here, λ≡ λðt0Þ, ω≡ ωðt0Þ, κ2 ≡ κ2ðt0Þ and Λ≡ Λðt0Þ. One
should remember that t0 is related to R as in Eq. (2.10), and
only λðt0Þ is given by (2.11). Note that the above approach
suggests the consistent way to account for quantum effects
of higher-derivative gravity. Note also that different
approach to take into account such quantum effects at
the inflationary universe was developed in Ref. [8].
On the de Sitter solution RdS ¼ 12H2

dS, where HdS is a
constant, the system is simplified as

0 ¼ 6H2

κ2
−

t00
48ðκ2Þ2ω2

ð480H4ðκ2Þ2ω2ð4ωð2ωþ 3Þ þ 1Þ

þ4κ2λωð6H2ð−40ω2 þ 26ωþ 3Þ − 2κ2Λð28ωþ 1ÞÞ
−3λ2ð20ω2 þ 1ÞÞ − Λ; ð2:26Þ

where the functions λ;ω; κ2 and Λ are assumed to be
constant and H ≡HdS.
Hence, we obtained consistent system of quantum-

corrected FRW equations from the RG-improved effective
action corresponding to higher-derivative quantum gravity.

III. THE ASYMPTOTIC BEHAVIOR OF THE
EFFECTIVE COUPLING CONSTANTS
AND THE DE SITTER SOLUTION

FOR INFLATION

In order to solve the system (2.25), we need to inves-
tigate the asymptotic behavior of the implicitly given
effective coupling constants ωðt0Þ; κ2ðt0Þ;Λðt0Þ, when
t0 → ∞, namely, at the high curvature limit (R → ∞)
describing inflation [see (2.10)]. Equation (2.6) has two
fixed points at

ω1 ≃ −0.02; ω2 ≃ −5.47; ð3:1Þ

and the analysis of the solution around the fixed points
ωðt0Þ ¼ ω1;2 þ δωðt0Þ, with jδωðt0Þj ≪ 1, leads to

dωðt0Þ
dt0

≃ −λðt0Þ
�
20

3
ωþ 183

10

�����
ω1;2

δωðt0Þ − λðt0Þ2β2

×

�
dt0

dωðt0Þ
��

10

3
ω2 þ 183

10
ωþ 5

12

�����
ω1;2

δωðt0Þ

¼ −λðt0Þ
�
20

3
ωþ 158

5

�����
ω1;2

δωðt0Þ; ð3:2Þ

such that,

ωðt0Þ ¼ ω1;2 þ
c0

ð1þ λð0Þβ2t0Þq
;

q ¼ 1

β2

�
20

3
ωþ 158

5

�����
ω1;2

;

jc0j ≪ 1; ð3:3Þ

where c0 is a constant and we have introduced λðt0Þ as in
(2.11). We immediatly see that q≃ 2.37 for ω1 rendering
the solution stable when t0 → ∞, but for ω2 one gets
q≃ −0.37 and the solution is unstable when t0 → ∞. Thus,
we expect that for large values of t0 the function ωðt0Þ tends
to the attractor ω1. Since between ω1 and ω2 the derivative
dωðt0Þ=dt0 with 0 < λðt0Þ is positive, ωðt0Þ grows up with
t0 and approaches to ω1 being ωðt0Þ < ω1. When
ω2 < ωðt0Þ < ω1 we may estimate from (3.2),

dωðt0Þ
dt0

¼ −
λðt0Þ
2

�
20

3

�
ðω1 − ω2Þδωðt0Þ: ð3:4Þ

Therefore, the solution (3.3) is rewritten as (see third Ref.
in [12]),

ωðt0Þ ¼ ω1 þ
c0

ð1þ λð0Þβ2tÞp
;

p ¼
�
10

3

� ðω1 − ω2Þ
β2

≃ 1.36; jc0j ≪ 1: ð3:5Þ

Note that related study for the behavior of above
dimensionless coupling constants in relation with
dimensional transmutation is given in Ref. [17].
In order to study the behavior of κ2ðt0Þ and Λðt0Þ, we

introduce

~Λðt0Þ ¼ ðκ2ðt0ÞÞ2Λðt0Þ; ð3:6Þ

and Eq. (2.8) with Eq. (2.7) lead to

d ~Λðt0Þ
dt0

¼ β4 ≡ λðt0Þ2
2

�
5þ 1

4ωðt0Þ2
�

þ λðt0Þ ~Λðt0Þ
�
20

3
ωðt0Þ þ 5 −

1

6ωðt0Þ
�
: ð3:7Þ

In the asymptotic limit ωðt0Þ≃ ω1 we get

~Λ ¼ −
3λð0Þð1þ 20ω2

1Þ
4ω1ð1þ λð0Þβ2t0Þð−1þ 30ω1 þ 6β2ω1 þ 40ω2

1Þ
þ ~Λ0ð1þ λð0Þβ2t0ÞW=β2 ;

W ¼ 20

3
ω1 þ 5 −

1

6ω1

¼ 13.2: ð3:8Þ

As a consequence,

~Λðt0Þ≃ ~Λ0ð1þ λð0Þβ2t0ÞW=β2 ; ð3:9Þ

where the constant ~Λ0 is assumed to be positive. On the
other side, from Eq. (2.7) we have at ωðt0Þ≃ ω1,
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κ2ðt0Þ≃ κ20ð1þ λð0Þβ2t0ÞZ=β2 ;

Z ¼
�
10

3
ω1 −

13

6
−

1

4ω1

�
≃ 10.27; ð3:10Þ

such that finally

Λðt0Þ≃ ~Λ0

ðκ20Þ2
ð1þ λð0Þβ2t0ÞX=β2 ;

X ¼ ðW − 2ZÞ≃ −7.34: ð3:11Þ

Let us summarize the results. From the investigation of the
asymptotic region, we can derive the effective running
coupling constants of the model (2.4) as

λðt0Þ ¼ λð0Þ
ð1þ λð0Þβ2t0Þ

; ω≃ ω1 þ
c0

ð1þ λð0Þβ2t0Þ1.36
;

κ2ðt0Þ≃ κ20ð1þ λð0Þβ2t0Þ0.77;

Λðt0Þ≃ Λ0

1

ð1þ λð0Þβ2t0Þ0.55
: ð3:12Þ

Here, Λ0 ¼ ~Λ0=ðκ20Þ2 and jc0j ≪ jω1j, and we will omit its
contribution at large t0. One remark is in order. In principle
these expressions correspond to the behavior of the coupl-
ing constants in the high energy limit, when t0 → ∞ and
R0 ≪ R, R0 being the Ricci scalar at the present time, and
they are valid as soon as ωðt0Þ is close to ω1. However, we
may assume that the structure of the coupling constants
keeps the same form at every epoch, since in fact out of
inflation the curvature of the universe drastically decreases,
t0 → 1, and the coupling constants are expected to be
constant: in fact, we can consider ωðt0Þ sufficiently close
to −ω1 at every time; namely, we will not consider the
additional corrections at small curvature. In particular, at the
present de Sitter epoch with R ¼ R0 and t00 ¼ 0 (see
Eq. (2.10) and the comment below), we must find

κ2ðt00Þ≡ κ20 ¼
16π

M2
Pl

; Λðt00Þ≡ Λ0 ¼ 2Λ; ð3:13Þ

where MPl is the Planck mass and Λ is the cosmological
constant, which is much smaller than the curvature at the
inflation scale. By considering λð0Þ of the order of the unit to
avoid the R2-correction at the present epoch, at the time of
inflation one can put Λðt0Þ ¼ 0.
Let us assume that R ¼ RdS describes the curvature of

(de Sitter) inflation. Since it must be R0 ≪ RdS ≡ 12H2
dS,

where R0 ¼ 4Λ, one has

log
�
RdS

R0

�
¼ log ½H2

dSκ
2
0� − log

�
Λ
3
κ20

�
≃ − log

�
Λ
3
κ20

�
:

ð3:14Þ

Thus, from (2.10) we get

t0 ≃ −t00 log
�
Λ
3
κ20

�
; 1 ≪ t0; ð3:15Þ

namely t0 expresses the rate of the curvature of the current
Universe with respect to the Planck mass on logaritm
scale: this approximation is valid as soon as RdS is near to
M2

Pl during inflation, where “near” is understood as “with
respect to the cosmological constant scale.” In fact, the
solution of Eq. (2.26) depends on the value of today λð0Þ,
which fixes the bound of inflation. From (2.26), we derive
the following solution,

H2
dSκ

2
0 ≃ 0.0146

t00ðλð0Þt0Þ0.77
≡ 0.0146

t01.770 ðλð0ÞÞ0.77
1

½− log ½Λ
3
κ20��0.77

;

ð3:16Þ

where we have taken into account that 1 ≪ t0. If we use the
recent cosmological data [1] for the evaluation of Λ in
Planck units (see also Ref. [18]),

Λκ20 ≃ 1.7 × 10−121; ð3:17Þ

and we set for simplicity t00 ¼ 1, we finally obtain

H2
dSκ

2
0 ≃ 19 × 10−5

λð0Þ0.77 : ð3:18Þ

For example, for λð0Þ ¼ 1, we have

−
ω2

3λð0Þ ð4Λκ
2
0ÞR≃ 4.53 × 10−123R ≪ R;

1.7 × 10−121

3
M2

Pl ≃
�
Λ
3

�
≪ H2

dS ≃ 3.8 × 10−6M2
Pl:

ð3:19Þ

The first condition guarantees that at the present epoch the
R2
0-contribution to the action (2.4) is negligible with respect

to the Hilbert-Einstein term R0=κ20, where R0 ¼ 4Λ. The
second condition shows that de Sitter solution of inflation
takes place at very high curvature near to the Planck scale,
such that the approximation (3.14) is well satisfied. We also
note that during inflation,

R
κ2ðt0Þ≃ 1.6 × 10−9M4

Pl ≪ −
ωðt0Þ
3λðt0ÞR

2 ≃ 5.1 × 10−8M4
Pl;

ð3:20Þ

and the second term in (2.4) is dominant with respect to the
Hilbert-Einstein contribution at the early Universe, thanks
to the fact that the running constant κ2ðt0Þ increases back
into the past.
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IV. DYNAMICS OF INFLATION

In this section, we would like to analyze the behavior of the model (2.4) at high curvature, when the de Sitter solution
describing inflation (3.16) takes place. First of all, in order to have the exit from inflation, one must show that the solution is
unstable. Hence, we can try to describe the inflation in terms of the e-folds number and slow-roll parameters.

A. Instability of the de Sitter universe

Let us consider the following form of Hubble parameter which is used in Eq. (2.25),

H ¼ HdS þ δHðtÞ; jδHðtÞj ≪ 1; ð4:1Þ

where δHðtÞ is the perturbation with respect to de Sitter inflation. By making use of Eq. (2.26) and (3.12)–(3.13) with
c0;Λ ¼ 0 in Eq. (2.25), and by multiplying it by κ30, one has at the first order in δHðtÞ≡ δH,

0 ¼ ðκ0 _δHÞ
�
t00

�
ðHdSκ0Þ2

�
34.344 −

0.913t00
t0

�
þ 0.001t0 þ 0.003t00
t03ðHdSκ0Þ2ðλð0Þt0Þ1.54

þ 0.346t00 − 0.086t0

t02ðλð0Þt0Þ0.77
�
þ 19.152t0ðHdSκ0Þ2

�

þ ðκ20δ̈HÞ
t03ðHdSκ0Þ3

�
t02ðHdSκ0Þ4ð6.384t02 þ t00ð11.448t0 − 0.228t00ÞÞ

−
0.043t02t00ðHdSκ0Þ2

ðλð0Þt0Þ0.77 þ 0.001t020
ðλð0Þt0Þ1.54 þ

0.087t0t020 ðHdSκ0Þ2
ðλð0Þt0Þ0.77 þ 2 × 10−4t0t00

ðλð0Þt0Þ1.54
�

þ ðHdSκ0ÞδH
�

0.223
ðλð0Þt0Þ0.77 þ

0.172λð0Þt00
ðλð0Þt0Þ1.77 − 30.528t00ðHdSκ0Þ2

�
: ð4:2Þ

If we assume

1 ≪ ðHdSκ0Þ2t02.27; ð4:3Þ
the above expression is simplified as

D0δH þ t0½19.152ðHdSκ0Þðκ0 _δHÞ þ 6.384ðκ20δ̈HÞ�≃ 0;

ð4:4Þ

where

D0 ¼
�

0.223
ðλð0Þt0Þ0.77 − 30.528t00ðHdSκ0Þ2

�
: ð4:5Þ

Thus, the solution of the equation reads

δH ¼ h� exp ½A�t�;

A� ¼
�
HdS

2

�
−3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 −

0.627D0

ðHdSκ0Þ2t0
s ��

;

jh�j ≪ 1; ð4:6Þ

where h� are the integration constants corresponding to
plus and minus signs inside A�. By choosing the sign plus
in (4.6), the solution is unstable under the condition

D0 < 0: ð4:7Þ

We would like to note that if we ignore the contribution
from δH in (4.4), we get

−
ω

3λ
½ð−216H2

dSÞ_δHðtÞ − 72δ̈HðtÞ�≃ 0; ð4:8Þ

which is the equation for perturbation around the de Sitter
solution in pure R2 theory with Lagrangian L ¼
−ðω=ð3λÞÞR2, ω=3λ being constant. From this equation
it is not possible to know if the solution is stable or not,
since δH mainly goes like δH ∼ const in the time and even
a small contribution from the coefficient in front of δHðtÞ
could make the solution unstable so that a further
analysis is required. In particular, the fact that the coef-
ficient in front to R2 is not a constant contributes to the
instability of the solution, since for the Lagrangian L ¼
−ðωðt0Þ=ð3λðt0ÞÞÞR2 we get the equation

−
ω

3λ
½ð−216H2

dSÞ_δH − 72δ̈H�

þ ð24HdSÞ2ð6HdSÞ3
d
dR

�
ωðt0Þ
3λðt0Þ

�
δH ≃ 0; ð4:9Þ

where we have omitted the additional contributions to
_δH; δ̈H. The term related to δH corresponds to the last term
of D0 in (4.5), and, if it is dominant, it makes the solution
(4.6) unstable.
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Let us discuss the conditions (4.3) and (4.7). If

0.007
t0ðλð0Þt0Þ0.77

< ðHdSκ0Þ2; ð4:10Þ

both of the conditions are well satisfied and by taking into
account the de Sitter solution (3.16), we see that this
formula holds always true and it is independent of the
bound on inflation encoded in λð0Þ. It means that the de
Sitter solution is unstable with

D0 ≃ −
0.223

ðλð0Þt0Þ0.77 ; ð4:11Þ

where we have used (3.16). Moreover,

Aþ ≃ 0.796
HdSt00
t0

; A− ≃ −3HdS; ð4:12Þ

where D0 has been considered very small. For example,
by setting HdSκ0 with (3.16)–(3.17) and by putting t00 ¼ 1

and λð0Þ ¼ 1, one derives

δH ¼ h−e−5833×10
−6MPlt þ hþe5.54×10

−6MPlt: ð4:13Þ

During inflation, as soon as t ≪ 1=Aþ, avoiding the
contribution of h− which quickly disappears, one may
estimate

δH ≃ hþ; _δH ≃ hþAþ; δ̈H ≃ hþA2þ; ð4:14Þ

where Aþ is the instability parameter. The duration of
inflation Δt is of the order of magnitude

Δt ∼
1

Aþ
; ð4:15Þ

but may continue after the linear approximation of the
perturbation. In the case of (4.13), one has

Δt ∼
18 × 104

MPl
: ð4:16Þ

The inflation solves the problems of initial conditions of
the Friedmann universe (horizon and velocities problems),
if _ai= _a0 < 10−5, where _ai; _a0 are the time derivatives of
the scale factor at the big bang and today, respectively,
and 10−5 is the estimated value of the inhomogeneity
(anisotropy) in our Universe. Since in the decelerating
universe, _aðtÞ decreases by a factor 1028, it is required that
_ai= _af < 10−33, with ai the scale factor at the beginning
of inflation and af the scale factor at the end of inflation.
If inflation is governed by a (quasi–) de Sitter solution
where aðtÞ ¼ exp ðHdStÞ, we introduce the number of
e-folds N as

N ¼ ln

�
af
ai

�
≡

Z
tf

ti

HðtÞdt; ð4:17Þ

and inflation is viable if N > 76, but the spectrum of
fluctuations of CMB say that it is enough N ≃ 55 to have
thermalization of the observable Universe. In our case,

N ≃HdSΔt ∼
HdS

Aþ
≃ 1.26

�
t0

t00

�
; ð4:18Þ

due to the fact that the Hubble parameter is almost a
constant during inflation. In order to obtain a viable
inflation, it must be

61 <

�
t0

t00

�
: ð4:19Þ

It means that, from (2.10) and (3.17),

3.1R0 × 1026 < R; ð4:20Þ

and this condition is always satisfied for realistic inflation.
For the case of (3.18), where the Hubble parameter during
inflation is 117 times larger than today and the duration of
inflation is given by (4.16), we get

N ∼ 339; ð4:21Þ

and it is guaranteed that the thermalization of a portion
of the Universe is much larger with respect to the
observed one.
It is clear that a large e-folds number, which corresponds

to a huge amount of inflation, may be related to the fact that
the Universe remains extremely close to the de Sitter
spacetime during inflation. In fact, even if we cannot
impose any upper limit to the e-folds number without
additional data about the decay of the primordial accel-
erated expansion (the so-called “false vacuum”), and we
expect that the homogeneity and isotropy continue for
some distance beyond our observable Universe, the pri-
mordial perturbations at the end of inflation depend on the
e-folds. As a consequence, as we will see in the next
subsection, a large e-folds number could generate the
wrong predictions for the spectral index. In the last part
of the work, wewill find how it is possible to make inflation
shorter, according to a correct prediction of such an
index.

B. Slow-roll parameters and the spectral index

During inflation the Hubble parameter must slowly
decrease, and the following approximations must be met:

���� _H
H2

���� ≪ 1;

���� Ḧ

H _H

���� ≪ 1: ð4:22Þ
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Thus, one introduces the slow-roll parameters,

ϵ ¼ −
_H
H2

; η ¼ −
_H
H2

−
Ḧ

2H _H
≡ 2ϵ −

1

2ϵH
_ϵ; ð4:23Þ

whose magnitude must be small during inflation, and _H is
assumed to be negative. In particular, since the acceleration
is expressed as

ä
a
¼ _H þH2; ð4:24Þ

we see that the Universe expands in an accelerated way as
soon as ϵ < 1. By integrating the formula for the (positive
and almost constant) ϵ parameter in (4.23), we also get

HðtÞ ¼ 1

ϵðtdS þ tÞ ; tdS ≃ 1

ϵHdS
; ð4:25Þ

where tdS is a positive time parameter, and when the time
increases, the Hubble parameter decreases. In the limit
t=tdS ≪ 1, one has

HðtÞ≃HdS −H2
dSϵt; ð4:26Þ

and by taking into account (4.14), we get

ϵ≃ ð−hþÞAþ
ðHdSÞ2

¼ 0.796272

�
t00
t0

� ð−hþÞ
HdS

; ð4:27Þ

where hþ < 0 and Aþ is given by (5.19). This relation is
consistent with a direct evaluation of the slow-roll param-
eter ϵ (4.23) in the slow-roll limit (4.22) of the equation of
motion (2.25),

0 ¼ 2λ2ϵ½480H4κ4ω3ð4ωþ 3Þð2ωð100ωþ 549Þ þ 25Þ þ 2κ4λΛωð4ð355 − 1616ωÞωþ 45Þ
−15λ2ðωð2ωð4ωð50ωþ 97Þ − 25Þ − 71Þ − 5Þ� þ 720κ2ω3ð72H4κ2ωϵþ 6H2λ − κ2λΛÞ
þ 15λωð−480H4κ4ω2ð4ωð2ωþ 3Þ þ 1Þð8ϵþ 1Þ þ 4κ2λωð3H2ð4ω − 3Þð10ωþ 1Þð7ϵþ 2Þ
þ2κ2Λð28ωþ 1ÞÞþλ2ð60ω2 þ 3ÞÞ: ð4:28Þ

By using (3.12)–(3.13) with c0 ¼ Λ ¼ 0, one obtains the solution

ϵ≃ − 3×10−4t0
0

t02ðλð0Þt0Þ1.54 −
0.086λð0Þt0

0
ðHκ0Þ2

ðλð0Þt0Þ1.77 − 0.112ðHκ0Þ2
ðλð0Þt0Þ0.77 þ 7.632t0ðHκ0Þ4

− 0.003ðt0
0
Þ2

t03ðλð0Þt0Þ1.54 þ
0.913ðt0

0
Þ2ðHκ0Þ4
t0 þ t00ðHκ0Þ2ð 0.301λð0Þðλð0Þt0Þ1.77 − 61.056ðHκ0Þ2Þ − 19.152t0ðHκ0Þ4

; ð4:29Þ

and under the condition (4.3), we derive

ϵ≃ 0.006
t0ðλð0Þt0Þ0.77ðHκ0Þ2

−
0.398
t0

: ð4:30Þ

By expandingHðtÞ around the de Sitter solution (3.16), we
finally get

ϵ≃ −2ð0.006Þ
t0ðλð0Þt0Þ0.77ðHdSκ0Þ3

κ0δH

¼ 0.012
t0ðλð0Þt0Þ0.77ðHdSκ0Þ

ϵ

κ0Aþ
; ð4:31Þ

where Eqs. (4.14) and (4.27) are considered: the equation is
well satisfied by using (3.16) again and (5.19). Thus, the ϵ
slow-roll parameter is related to the (initial) amplitude of
perturbation and by using (4.18), one may estimate

ϵ≃ ð−hþÞAþ
ðHdSÞ2

∼
ð−hþÞ
ðHdSÞN

: ð4:32Þ

Moreover, for the η slow-roll parameter in (4.23) with
(4.14), one has

η≃ −
Aþ
2HdS

≃ −
0.398t00

t0
∼

1

2N
: ð4:33Þ

Both of the paramters ϵ; jηj (4.32)–(4.33) are very small
during inflation, and the slow-roll approximations (4.22)
hold true. We also note that, since jhþj ≪ HdS,

ϵ ≪ jηj; ð4:34Þ

like in other scalar-tensor theories for inflation,
where usually ϵ ∼ 1=N2, as in (4.32) if we consider
ð−hþÞ=HdS ∼ 1=N.
Given the slow-roll parameters, one can evaluate the

Universe’s anisotropy coming from inflation by introduc-
ing the spectral indexes. To be specific, the amplitude of
the primordial scalar power spectrum reads

INFLATIONARY UNIVERSE FROM HIGHER-DERIVATIVE … PHYSICAL REVIEW D 91, 083529 (2015)

083529-9



Δ2
R ¼ κ2H2

8π2ϵ
; ð4:35Þ

and for slow-roll inflation the spectral index ns and the
tensor-to-scalar ratio are given by

ns ¼ 1 − 4η; r ¼ 48ϵ2; ð4:36Þ

where we use the results for modified gravity [19]. The last
Planck data [1] constrain these quantities as

ns ¼ 0.9603� 0.0073; r < 0.11: ð4:37Þ

For our model, one has the scalar power spectrum

ΔR ≃ 1.25585ðHdSκ0Þ3
�
t0

t00

�
ð−κ20hþÞ−1; ð4:38Þ

and the spectral index and the tensor-to-scalar ratio,

ns ¼ 1 −
2Aþ
HdS

∼ 1 −
2

N
;

r ¼ 48A2þ
H2

dS

ð−hþÞ2
H2

dS

≪
1

N
; ð4:39Þ

where we have used (4.34). We see that the tensor-to-scalar
ratio can satisfy the Planck results, with the e-folds of
realistic inflation being quite large. On the other side, in
order to find the spectral index ns in agreement with the
Planck data (4.37), we must require

21 <
2Aþ
HdS

�
¼ 2.5117

�
t0

t00

��
< 31: ð4:40Þ

Since Aþ=HdS depends on the ratio between the curvature
of the Universe at the time of inflation and the curvature of
today’s Universe, it results particulary high and does not
satisfy this condition, contributing to render near to one the
spectral index ns of the model. For example, in the case of
(3.18) where the Hubble parameter during inflation is 117
times larger than today and the e-folds N ∼HdS=ðAþÞ≃
339 as in (4.21),

ns ≃ 0.994; r≃ 0.0004
ð−hþÞ2
H2

dS

: ð4:41Þ

Since ð−hþ=HdSÞ ≪ 1, the tensor-to-scalar ratio is much
smaller than 0.11, but the spectral index does not satisfy the
Planck data. This should be compared with analysis of
inflationary parameters for general FðRÞ theory in fluidlike
presentation [20] which maybe consistent with Planck data.
The large e-folds number and the ns spectral index

too close to one are consequences of the small value
of Aþ (5.19), which depends on dðωðt0Þ=3λðt0ÞÞ=dt0, as
we explained under (4.9). In particulary, the fact that

dðωðt0Þ=3λðt0ÞÞ=dt0 ¼ −β3=3, where β3 is given in (2.9),
such that β3 ≪ 1, makes this term too small compared with
the coefficients in front of δ̈HðtÞ; _δHðtÞ in the equation for
perturbation (4.8). In the next section, we suggest a
possible solution of the problem returning to the general
action (2.4) with the Gauss-Bonnet and □R terms which
have been omitted in the above study.

V. THE ACCOUNT OF GAUSS-BONNET
AND □R TERMS AND THE

SPECTRAL INDEX

As was mentioned in Sec. II, to construct the Lagrangian
of higher-derivative gravity, the Gauss-Bonnet and □R
terms must also be taken into account. They may give a
nonzero contribution to the dynamical equations if the
coefficients in front of them are not constant but depend on
the curvature. This is precisely what happens when one
solves the RG equation and gets the RG-improved effective
action. In the first part of this work we did not consider
such contributions. Let us analyze their role on the
dynamics of the inflation induced by higher-derivative
quantum gravity. Let us consider the following additional
piece to the action (2.4),

IG;□R ¼ −
Z
M

d4x
ffiffiffiffiffiffi
−g

p ½γðt0ÞG − ζðt0Þ□R�; ð5:1Þ

where G is given by (2.3) and γðt0Þ; ζðt0Þ are effective
coupling constants depending on t0 (2.10) and, therefore, on
R. We assume

γðt0Þ ¼ γ0ð1þ c1t0Þ;
ζðt0Þ ¼ ζ0ð1þ c2t0Þ; ð5:2Þ

where γ0; ζ0 are generic constants and c1;2 are numerical
coefficients whose explicit values are not necessary in the
below analysis. As is explained in Ref. [7], this is a result of
the one-loop quantum calculation of these terms (vacuum
polarization). For a recent discussion of the contribution of
the GB term in higher-derivative gravity, see Ref. [21].
Actually, the calculation of surface terms may be done in
less or more than four dimensions, with subsequent dimen-
sional continuation.
Hence, when t0 ≪ 1, at the low curvature limit, γðt0Þ; ζðt0Þ

tends to constants, the derivatives do not diverge, and (5.1)
turns out to be zero; on the other side, when 1 ≪ t0, at the
high curvature limit, they give a significant contribution to
the dynamical equations of motion. The Gauss-Bonnet
represents a new curvature invariant. On the FRW metric,
it (2.12) reads

G ¼ 24_a2

a3N5
ðäN − _a _NÞ: ð5:3Þ
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Adding to the Lagrangian (2.16) the piece (5.1), we make an
integration by parts with respect to □R, where □R ¼
ð ffiffiffiffiffiffi−gp Þ−1∂μðgμν ffiffiffiffiffiffi−gp ∂νRÞ≡ −ð ffiffiffiffiffiffi−gp Þ−1∂tð ffiffiffiffiffiffi−gp ∂tRÞ, and
introduce a new Lagrangian multiplier σ for the Gauss-
Bonnet term [15], such that

IG;□R ¼ −
Z
M

d4x
ffiffiffiffiffiffi
−g

p �
γðt0ÞGþσ

�
G −

24_a2

a3N5
ðäN − _a _NÞ

�

−
�
dζ
dt0

dt0

dA
_A2

��
; σ ¼ −γðt0Þ: ð5:4Þ

Here the second expression has been derived from the
variation with respect to G, and A≡ AðN; _N; a; _aÞ is
the explicit form of the Ricci scalar as a function of the
metric (2.13),

AðN; _N; a; _aÞ ¼ 1

N2

�
6

�
_a
a

�
2

þ 6

�
ä
a

�
− 6

�
_N
N

��
_a
a

��
:

ð5:5Þ

Thus, Δðt0Þ in (2.17) reads

Δðt0Þ ¼
�

R
ðκ2ðt0ÞÞ2

dκ2ðt0Þ
dt0

þ R2
d
dt0

�
ωðt0Þ
3λðt0Þ

�

þ dΛðt0Þ
dt0

þ dγðt0Þ
dt0

G

�
; ð5:6Þ

and the additional piece of the Lagrangian (2.19) turns
out to be

LG;□RðN; _N; N̈; a; _a; ä; R; _RÞ

¼ 6_a

�
a2

N

��
dγðt0Þ
dt0

dt0

dR
_G

�
þ 8_a3

N3

dγðt0Þ
dt0

dt0

dR
_R

þ ðNa3Þ
�
dζ
dt0

dt0

dA
_A2

�
; ð5:7Þ

where the first piece comes from the integration by parts of
the second derivative metric functions of the Ricci scalar, the
second term comes from the ones of the Gauss-Bonnet, and
the last piece corresponds to the□R term. Note that now the
Lagrangian depends on the higher derivatives of the metric
due to the introduction of _A2. Equation (2.23), in the gauge
N ¼ 1, is derived as

0 ¼ −Λðt0Þ þ 6H2

κ2ðt0Þ −
6H

ðκ2ðt0ÞÞ2
dκ2ðt0Þ
dt0

�
t00 _R
R

�
þ ωðt0Þ
3λðt0Þ ½6R

_H − 12H _R� − 12H
d
dt0

�
ωðt0Þ
3λðt0Þ

�
ð _Rt00Þ þ 6ðH2 þ _HÞΔðt0Þ t

0
0

R

− 6H

�
dΔðt0Þ
dt0

�
t00
R

�
2

− Δðt0Þ t
0
0

R2

�
_R − 24H3

dγðt0Þ
dt0

t00 _R
R

− 6H

�
dγðt0Þ
dt0

t00 _G
R

�
− 3A _R2 − 2B _R2R

þ 6
d
dt

½2Að4H2 þ 3 _HÞ _Rþ BH _R2� þ 18H½2Að4H2 þ 3 _HÞ _Rþ BH _R2� − 36ð3H2 þ _HÞAH _R − 72H
d
dt

ðAH _RÞ

− 12
d2

dt2
ðAH _RÞ; ð5:8Þ

where

A ¼
�
dζðt0Þ
dt0

t00
R

�
;

B ¼
�
d2ζðt0Þ
dt02

�
t00
R

�
2

−
dζðt0Þ
dt0

t00
R2

�
; ð5:9Þ

and the Ricci scalar R is given by (2.24). The derivative of
the Lagrangian with respect to the Gauss-Bonnet leads to the
Ricci scalar in (2.13), and the derivative with respect to the
Ricci scalar leads to the Gauss-Bonnet one in (5.3), which
reads in the gauge N ¼ 1,

G ¼ 24H2ðH2 þ _HÞ: ð5:10Þ

In the de Sitter solution RdS ¼ 12H2
dS, GdS ¼ 24H4

dS, with
HdS being constant, Eq. (2.26) is corrected as

0 ¼ 6H2

κ2
−

t00
48ðκ2Þ2ω2

ð480H4ðκ2Þ2ω2ð4ωð2ωþ 3Þ þ 1Þ

þ4κ2λωð6H2ð−40ω2 þ 26ωþ 3Þ − 2κ2Λð28ωþ 1ÞÞ

−3λ2ð20ω2 þ 1ÞÞ − Λþ 12H4
dγ
dt0

t00; ð5:11Þ

where the functions λ;ω; κ2;Λ, and γ; dγ=dt0 are constants in
the time. By using (3.12)–(3.13) with c0 ¼ Λ ¼ 0, and
1 ≪ t0, we obtain the solution

H2
dSκ

2
0 ≃ 322.762

ð22085.2 − 34725.2ðdγ=dt0ÞÞt00ðλð0Þt0Þ0.77
;

dγ
dt0

< 0; ð5:12Þ
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where jdγ=dt0j ≪ t02 is used and we require that such a derivative is negative [γ0c1 < 0 in (5.2)]. Thus, given
the form of γt0 ðt0Þ, the de Sitter solution depends on the current value of λðt0 ¼ 0Þ ¼ λð0Þ. Obviously, the □R-term does
not give any contribution to the de Sitter solution. By using again the parametrization (3.12)–(3.13) with c0 ¼ Λ ¼ 0, and,
therefore, by multiplying (5.8) by κ30, and by perturbating it with respect to the de Sitter solution (5.12) as in (4.1),
we get

κ0
t03ðHdSκ0Þ3

½κ0δ̈Hðt02ðHdSκ0Þ4ð6.384t02 þ t0t00ð−18γt0 ðt0Þ þ 18ζt0 ðt0Þ − 6γt0t0 ðt0Þt00 þ 11.448Þ−0.228t002Þ

− 0.043t02t00ðHdSκ0Þ2ðλð0Þt0Þ−0.77 þ 0.001t00
2ðλð0Þt0Þ−1.54 þ 0.087t0t00

2ðHdSκ0Þ2ðλð0Þt0Þ−0.77
þ2 × 10−4t0t00ðλð0Þt0Þ−1.54Þ þ ðHdSκ0Þ_δHðt02ðHdSκ0Þ4ð19.152t02 þ t0t00ð−54γt0 ðt0Þ þ 72ζt0 ðt0Þ
−24γt0t0 ðt0Þt00 þ 34.344Þ − 0.913t00

2Þ − 0.086t02t00ðHdSκ0Þ2ðλð0Þt0Þ−0.77 þ 0.003t00
2ðλð0Þt0Þ−1.54

þ0.346t0t00
2ðHdSκ0Þ2ðλð0Þt0Þ−0.77 þ 0.001t0t00ðλð0Þt0Þ−1.54Þ� þ ðHdSκ0ÞδH

�
0.223

ðλð0Þt0Þ0.77

þt00

�
0.172λð0Þ
ðλð0Þt0Þ1.77 þ ðHdSκ0Þ2ð48γt0 ðt0Þ − 30.528Þ

��
¼ 0; HðtÞ ¼ HdS þ δHðtÞ; jδHðtÞj ≪ 1; ð5:13Þ

where we introduced the notation

γt0 ðt0Þ≡ dγðt0Þ
dt0

; γt0t0 ðt0Þ≡ d2γðt0Þ
dt02

;

ζt0 ðt0Þ≡ dζðt0Þ
dt0

:

ð5:14Þ

If one assumes (4.3) and takes into account that
jγt0 ðt0Þj; jζt0 ðt0Þj ≪ t0, and jγt0t0 ðt0Þj ≪ 1, this expression is
simplified as

~D0δH þ t0½19.152ðHdSκ0Þðκ0 _δHÞ þ 6.384ðκ20δ̈HÞ�≃ 0;

ð5:15Þ

where

~D0 ¼
�

0.223
ðλð0Þt0Þ0.77 − ð30.528 − 48γt0 ðt0ÞÞt00ðHdSκ0Þ2

�
:

ð5:16Þ

Thus, the solution of the above differential equation reads

δH ¼ h� exp ½ ~A�t�;

~A� ¼
"
HdS

2

�
−3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 −

0.627 ~D0

ðHdSκ0Þ2t0

s �#
;

jh�j ≪ 1; ð5:17Þ

where h� are the integration constants corresponding to the
signs: plus and minus inside ~A�. The solution is unstable if
~D0 < 0, namely,

0.223074
ðλð0Þt0Þ0.77 < ½30.528 − 48γt0 ðt0Þ�t00ðHdSκ0Þ2; ð5:18Þ

and, by using (5.12), one sees that this inequality is always
satisfied independently on the value of γt0 ðt0Þ. As a conse-
quence, (4.3) which we have used to derive (5.15) is verified,
and it is interesting to note that ~D0 evaluated with respect to
the de Sitter solution (5.12) is equal toD0 in (4.11) evaluated
with respect to the de Sitter solution (3.16), from which we
can understand that the Gauss-Bonnet term contribution to
the stability of the de Sitter solution behaves like the one of
the R2 term (see (4.8)–(4.9) and the related comment). By
using (5.12), one gets

~Aþ ≃ 36019 × 10−9
HdSt00
t0

ð22085.2 − 34725.2γt0 ðt0ÞÞ;
~A− ≃ −3HdS; ð5:19Þ

where ~D0 is taken to be small. Thanks to the presence of the
Gauss-Bonnet term in the action, the instability parameter
~Aþ can be increased with respect to the case considered
before. Let us introduce our ansatz (5.2). We obtain

H2
dSκ

2
0 ≃ 322.762

½22085.2 − 34725.2γ0c1�t00ðλð0Þt0Þ0.77
;

γ0c1 < 0; ð5:20Þ

~Aþ ≃ 36019 × 10−9
HdSt00
t0

ð22085.2 − 34725.2γ0c1Þ;
~A− ≃ −3HdS: ð5:21Þ

As a consequence, the instability parameter ~Aþ is larger than
Aþ in the absence of Gauss-Bonnet correction if γ0c1 is
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negative, namely, by taking 0 < c1 and γ0 < 0, the Gauss-
Bonnet contribution to the action is positive [see (5.1)]: the
analysis of inflation is similar to the previous case, but the
e-folds and, therefore, the spectral index ns are smaller.
To be specific, the η slow-roll parameter (4.33) and the

spectral index ns in (4.36) read

η≃ −
18 × 10−6t00ð22085.2 − 34725.2γ0c1Þ

t0
;

ns ≃ 1 −
72038 × 10−9t00ð22085.2 − 34725.2γ0c1Þ

t0
;

ð5:22Þ

since we can still use (4.34). The spectral index ns is
consistent with Planck data (4.37) if

450 <
t00
t0
ð22085.2 − 34725.2γ0c1Þ < 653: ð5:23Þ

If we set λð0Þ ¼ t0 ¼ 1 and take (3.15) together with
(3.17), we get from (5.23),

−4.61 < γ0c1 < −2.98: ð5:24Þ

For example, for c1 ¼ 1 and γ0 ¼ −3 we find

ns ≃ 0.96740; ð5:25Þ

which is in agreement with the Planck data (4.37). The de
Sitter solution results to be H2

dS ≃ 3.17 × 10−7M2
Pl, and

inflation takes place near to the Planck scale, such that
(3.15) is valid. In this kind of model, as we noted in
Sec. IV B, the e-folds N ∼ 2=ð1 − nsÞ, and in the present
case we have N ∼ 60: this is an order of magnitude/lower
bound of the e-folds which permits the thermalization of
the observable Universe [the acceleration finishes when
ϵ ¼ 1, and, therefore, the exact amount of inflation depends
on the initial amplitude jhþj as in (4.32)]. Thanks to the
Gauss-Bonnet contribution in the action, we can see that
the value of the e-folds has considerably decreased (see for
example [(4.21)], rendering correct the prediction of the
spectral index. In the present example, a viable inflation is
obtained for 1 ≪ t0=t00, which is always true due to the large
curvature scale of inflation.
We have demonstrated that the contribution from the

RG-improved Gauss-Bonnet term can modify the insta-
bility of de Sitter solution describing inflation given a
viable spectral index. In our derivation, we have taken into
account also the □R contribution, but, due to the ansatz
(5.2), it disappears. However, we furnished the formalism
to treat the Lagrangian (5.1) with generic coefficients: if
they grow up in the early-time Universe, they modify the
dynamics of inflation and can lead to a model compatible
with the Planck data.

As a final result of the work, we are able to present the
very general quantum-corrected Lagrangian constructed
with second-degree corrections to the Einstein gravity,

I ¼
Z
M

d4
ffiffiffiffiffiffi
−g

p �
R

κ2ðt0Þ −
ωðt0Þ
3λðt0ÞR

2 þ 1

λðt0ÞC
2 − γðt0ÞG

þζðt0Þ□R − Λðt0Þ
�
; t0 ¼ t00

2
log

�
R
R0

�
2

; ð5:26Þ

where t0 is a number and R0 ¼ 4Λ is the curvature of
today’s Universe, with Λ being the cosmological constant.
The one-loop running coupling constants λðt0Þ;ωðt0Þ;
κ2ðt0Þ;Λðt0Þ;γðt0Þ and ζðt0Þ are found from higher-derivative
quantum gravity. They can be written as

λðt0Þ ¼ λð0Þ
ð1þ λð0Þð133=10Þt0Þ ;

ωðt0Þ ¼ ω1;

κ2ðt0Þ ¼ κ20ð1þ λð0Þð133=10Þt0Þ0.77;

Λðt0Þ ¼ Λ0

ð1þ λð0Þð133=10Þt0Þ0.55 ; ð5:27Þ

with ω1 ¼ −0.02, κ20 ¼ 16π=M2
Pl, Λ0 ¼ 2Λ. The expres-

sions for ωðt0Þ; κ2ðt0Þ and Λðt0Þ are derived by investigating
the asymptotic behavior of the running constants at high
curvature. However, the derivatives of the coupling con-
stants obey a set of RG equations that we have taken into
account in our analysis. The form of γðt0Þ and ζðt0Þ is
given by

γðt0Þ ¼ γ0ð1þ c1t0Þ;
ζðt0Þ ¼ ζ0ð1þ c2t0Þ;
c1γ0 < 0; ð5:28Þ

γ0; ζ0 and c1;2 constants. Finally, λð0Þ is a number related
to the bound of inflation. At small curvature (t0 ≪ 1), the
action (5.26) reads

I ¼
Z
M

d4
ffiffiffiffiffiffi
−g

p �
R
κ0

þ 0.02
λð0ÞR

2 þ 1

λð0ÞC
2 − 2Λ

�
;

t0 ¼ t00
2
log

�
R
R0

�
2

; ð5:29Þ

and the contributions of the Gauss-Bonnet and □R terms
disappear when the coefficients become constant.
Inflation is described at high curvature for 1 ≪ t0, near to

the Planck mass. The model possesses a de Sitter solution
which depends on λð0Þ. This solution is always unstable
and the model exits from inflation. It is possible to calculate
the behavior of perturbations and show that the slow-roll
conditions of inflation are satisfied with the ϵ slow-roll
parameter much smaller than the η slow-roll parameter.
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The amount of inflation (e-folds) is sufficiently large, the
tensor-to-scalar ratio r is very close to zero, and due to the
contribution of the RG-improved Gauss-Bonnet term in
the action, the spectral index ns satisfies the Planck data.
The RG-improved □R term does not play any important
role in the dynamics of inflation.
After inflation, the reheating process with the particle

production must take place to recover the FRW universe.
These processes occur when the curvature (Ricci scalar)
oscillates and eventually in the presence of the interaction
between the gravity and matter quantum fields. At the end
of inflation t0 → 0 and the model turns out to be a quadratic
correction R2 of Einstein’s gravity (on FRW metric the
square of Weyl tensor gives a zero contribution): this model
has been well investigated in the literature, and it has been
demonstrated that it is compatible with the reheating
scenario.

VI. DISCUSSION

In this work we investigated the inflationary universe,
taking into account quantum gravity effects in frames of the
RG-improved effective action of higher-derivative quantum
gravity. The effective coupling constants in higher-derivative
quantum gravity obey a set of one-loop RG equations found
in Refs. [12] and may show the asymptotically free behavior.
These one-loop RG equations which define the effective
coupling constants are used to derive quantum-corrected
dynamical FRWequations. In order to find the explicit form
of the running coupling constants, their (asymptotically free)
behavior at the high-energy scale is used.
The model possesses a de Sitter solution at high

curvature to describe the expanding inflationary universe.

The bound of the de Sitter solution depends on the value of
the running constant of the R2 term today. We have
demonstrated that the de Sitter solution is always unstable
and takes place near the Planck scale. Thus, it is possible to
evaluate the instability parameter of the model and the
amplitude of perturbations. The slow-roll conditions are
well satisfied, and the η slow-roll parameter is much larger
than the ϵ slow-roll parameter: their behavior with respect
to the e-folds N seems to be the same as the ones in scalar-
tensor theories (see review [22]) for inflation (ϵ ∼ 1=N2 and
jηj ∼ 1=N). The amount of inflation of the model is
sufficiently large, and the tensor-to-scalar ratio r is very
close to zero. However, in order to have the correct spectral
index ns compatible with the Planck data, it is necessary to
take into account the contribution of the RG-improved
Gauss-Bonnet term in the action. Note that the other
RG-improved surface term (□R) does not play any
important role during inflation. At low energy, the effective
running constants become constant, and we recover the
Friedmann universe.
It would be very interesting to compare the inflationary

predictions (including the exit and reheating) of higher-
derivative quantum gravity with those of Einstein quantum
gravity in more detail. This will be considered elsewhere.
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