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We describe a simple class of cosmological models called α-attractors, which provide an excellent fit to
the latest Planck data. These theories are most naturally formulated in the context of supergravity with
logarithmic Kähler potentials. We develop generalized versions of these models which can describe not
only inflation but also dark energy and supersymmetry breaking.
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I. INTRODUCTION

The results obtained by Wilkinson Microwave
Anisotropy Probe (WMAP) and Planck satellite have
attracted growing attention to a mysterious fact that several
different cosmological models proposed many years ago
lead to almost exactly coinciding predictions, providing the
best fit to most of the presently available observational data.
This includes the Starobinsky model [1], the first model of
chaotic inflation in supergravity proposed more than 30
years ago by Goncharov and Linde (GL model) [2,3], and
Higgs inflation [4,5]. During the two years since the Planck
2013 data release, several broad classes of such models
have been found and implemented in the context of
supergravity and superconformal theory. We call them
the cosmological attractors [6–11].
One of the most general classes of such models are

α-attractors [6–8]. The reason why these models can be
interesting for cosmology becomes apparent when one
studies their simplest representative, the T-models [6,8],
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where α can take any positive value. In the large α limit,
this theory coincides with the simplest model of chaotic
inflation with a quadratic potential. A canonically normal-
ized field φ in this theory is related to the original field ϕ
as follows: ϕ ¼ ffiffiffiffiffiffi

6α
p

tanh φffiffiffiffi
6α

p . In terms of the canonically

normalized field φ, this theory has a potential shown in
Fig. 1,

VT ¼ αμ2tanh2
φffiffiffiffiffiffi
6α

p ; ð1:2Þ

where μ2 ¼ 3m2.
In the leading order in the inverse number of e-foldings

1=N, for α ≪ N, the slow roll parameters ns and r for
T-models are

1 − ns ¼
2

N
; r ¼ 12α

N2
: ð1:3Þ

For large α, the prediction for ns practically does not
change, but the growth of r slows down: r ≈ 12α

NðNþ3α=2Þ [8].
The exact interpolating values of ns and r for the theory
V ¼ tanh2 φffiffiffiffi

6α
p are plotted in Fig. 2 by a thick purple vertical

line superimposed with the results for ns and r from the
Planck 2015 data release [12]. This line begins at the point
corresponding to the predictions of the simplest quadratic
model m

2

2
ϕ2 for α > 103 (red star), and then, for α≲ 40, it

enters the region most favored by the Planck data. For
α ¼ 1, these models give the same prediction r ∼ 12=N2 as
the Starobinsky model, the Higgs inflation model [4], and
the broad class of superconformal attractors [6]. Then the
same vertical line continues further down toward the
prediction r ∼ 4=3N2 of the GL model [2,3] corresponding
to α ¼ 1=9. Then it goes even further, all the way down to
r → 0 in the limit α → 0. The blue star in Fig. 2 covers
simultaneously all above-mentioned models with α≲ 1.

FIG. 1 (color online). Blue, brown, and green lines show the
potentials of the T-models αμ2tanh2 φffiffiffiffi

6α
p for α ¼ 1; 2; 3 corre-

spondingly. For comparison, the red line in the center shows the
potential of the GL model [2], which is an α-attractor with
α ¼ 1=9. The potential is shown in units of αμ2, the field is shown
in Planck units. Smaller α corresponds to more narrow minima of
the potentials.
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One can show that not only ns but also the amplitude of
scalar perturbations in this class of models in the large N
limit does not depend on α; it depends only on N and μ.
For N ¼ 60, this amplitude matches the Planck 2015
normalization if μ ≈ 10−5.
Moreover, for sufficiently small α≲Oð1Þ, the predic-

tions of α-attractors in the large N limit almost do not
depend on whether we take the potential tanh2 φffiffiffiffi

6α
p or use a

general class of potentials f2ðtanh φffiffiffiffi
6α

p Þ for a rather broad

set of choices of the functions f. This stability of pre-
dictions, as well as their convergence to one of the two
attractor points shown in Fig. 2 by the red and blue stars, is
the reason why we call these theories the cosmological
attractors. The latest Planck 2015 result ns ¼ 0.968�
0.006 [12] almost exactly coincides with the prediction
of the simplest T-models for N ¼ 60. These properties of
T-models are quite striking. Since their predictions can
match any value of r from 0.14 to 0, see Fig. 2, these
models may have lots of staying power.
As we already mentioned, the first model of this class

was found more than 30 years ago [2]. Later on, it was
nearly forgotten because the plateau potentials have not
been popular at that time. It took some time until the

original version of the Starobinsky model [1] was reformu-
lated as the theory Rþ R2 and cast in the form with a very
similar plateau potential for φ > 0. It took even longer until
we learned several different ways to solve the problem of
initial conditions for such models [13]. The general class of
T-models and their attractor behavior were discovered only
very recently. From the point of view of the theory of
fundamental interactions, it is interesting that these models
naturally appear in the context of conformal and super-
conformal theories. In this context, the parameter α is
related to the inverse curvature of the Kähler manifold
[7–9]. The attractor behavior resulting in the stability of
predictions with respect to various deformations of poten-
tials is a result of a nontrivial structure of the moduli space
with a boundary [6,8]. Equivalently, one can interpret the
existence of attractors as a consequence of the existence of
a pole in the kinetic term for the inflaton field in (1.1) [11].
Now that inflationary predictions of α-attractors are

well understood, one may wonder whether one can take
a next step and generalize these models to achieve two
additional goals. First of all, the potentials V ∼ tanh2 φffiffiffiffi

6α
p

vanish in the minimum at φ ¼ 0, but we would like to
describe a universe with a tiny but nonzero vacuum energy
V0 ∼ 10−120. Second, many particle phenomenologists
assume that we live in the world with weakly broken
supersymmetry (SUSY), with the gravitino mass m3=2 ∼
10−13–10−15 in Planck units. This assumption of the low
value of SUSY breaking will be tested at the LHC during
the next few years. However, in the simplest supergravity
versions of the T-models, supersymmetry is unbroken,
m3=2 ¼ 0.
This is not a real problem since the difference between

10−120, 10−13, and 0 is pretty small, so we are almost there
already. One can always make a small remaining step by
adding some new fields to the system, such as the Polonyi
fields, to break SUSY and uplift the potential; see e.g.
Ref. [14]. However, this would force us to study a
combined evolution of many moduli fields and strongly
stabilize the Polonyi field to avoid the cosmological
Polonyi field problem, which bothered cosmologists for
more than 30 years.
An alternative solution is to utilize new possibilities

offered by the recent cosmological constructions involving
a nilpotent chiral multiplet which describes a Volkov–
Akulov goldstino fermion [15–17] and has no fundamental
scalars; see Refs. [18–22] for cosmological applications.
This possibility can be studied for T-models models

using canonical Kähler potentials such as ðΦ − Φ̄Þ2.
However, even though it is possible to reproduce T-models
in theories with such Kähler potentials, the main feature
defining α-attractors (a singular boundary of the moduli
space) does not naturally emerge in this context. Therefore,
in this paper we will concentrate on logarithmic Kähler
potentials, which more naturally appear in the context
related to extended supergravity and string theory and

FIG. 2 (color online). Predictions of the simplest α-attractor
T-models with the potential V ¼ αμ2tanh2 φffiffiffiffi

6α
p cut through the

most interesting part of the Planck 2015 plot for ns and r [12].
They are shown as a purple vertical line starting at the predictions
of the simplest quadratic model m2

2
ϕ2 for α > 103 (red star),

going down through r ∼ 0.05 for α ¼ 25 and r ∼ 0.027 for
α ¼ 10, through the predictions of the Starobinsky model
r ∼ 0.003 for α ¼ 1, through the predictions of the GL model
r ∼ 0.0004 for α ¼ 1=9, and continuing all the way down to
r → 0 for α → 0 (blue star). This line is shown for N ¼ 60.
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naturally lead to attractor models. In this paper we will only
briefly describe the main results of our investigation,
leaving many details for a subsequent publication [23].

II. T-MODELS WITH UNBROKEN SUSY AND
VANISHING VACUUM ENERGY

Here we will describe a supergravity realization of a
T-model based on the theory of the field Φ coupled to the
field S with the following Kähler potential:

K ¼ −3 log
�
1 − ZZ̄ þ α − 1

2

ðZ − Z̄Þ2
1 − ZZ̄

−
SS̄
3

�
: ð2:1Þ

The simplest T-model has a superpotential

W ¼ ffiffiffi
α

p
μSZð1 − Z2Þ: ð2:2Þ

The field S can be stabilized at S ¼ 0 by adding to the
Kähler potential a term of the form ðSS̄Þ2. Alternatively,
one can take a nilpotent superfield S, satisfying the
S2ðx; θÞ ¼ 0 condition. In both cases the potential of the
field z ¼ ReZ in this theory expressed in terms of a
canonically normalized inflaton field φ is

VðzÞ ¼ αμ2z2 ¼ αμ2tanh2
φffiffiffiffiffiffi
6α

p ; ð2:3Þ

where z ¼ tanh φffiffiffiffi
6α

p . Vacuum energy vanishes, and super-

symmetry is unbroken in the minimum of the potential with
S ¼ 0, Z ¼ 0.
A different supergravity embedding of the α-attractor

T-model with an identical inflaton potential was given
earlier in Ref. [8]:

K ¼ −3α log
�
1 − ZZ̄ −

SS̄
3α

�
ð2:4Þ

and

W ¼ ffiffiffi
α

p
μSZð1 − Z2Þð3α−1Þ=2: ð2:5Þ

In some cases, one should add terms such as SS̄ ðZ−Z̄Þ2
1−ZZ̄ or

SS̄ ðZ−Z̄Þ2
ð1−ZZ̄Þ2 to the Kähler potential for stabilization of the

imaginary component of the field Z.
At the minimum at φ ¼ 0 in this model, supersymmetry

is unbroken, DZW ¼ DSW ¼ W ¼ 0. This is fine if the
field S is stabilized at S ¼ 0 in accordance with Ref. [8].
However, if one would like to use a nilpotent field S, one
should break SUSY at the minimum, which is what we
were planning to do anyway.

III. T-MODELS WITH BROKEN SUSY AND
NONVANISHING VACUUM ENERGY

If we want to use the same class of models but describe
simultaneously two other effects, SUSY breaking and the
nonvanishing cosmological constant, we should be pre-
pared to pay the price. One can use the same Kähler
potentials (2.1), or (2.4), but one should modify the
superpotential. Technically it means that W must contain
a term independent on S, in addition to the term linear in S,
which was already present in inflationary models. Since we
deal with α-attractors, one can make some changes in the
inflaton potential without altering the observational pre-
dictions. Therefore, one can make the corresponding
modification in several different ways. One option is to
achieve a modification which reproduces exactly the
same potential αμ2tanh2 φffiffiffiffi

6α
p in the limit of small SUSY

breaking. Yet another possibility is to allow modifications
of the potential which do not change the observational
predictions.

A. Preserving the inflaton potential

To reproduce the potential αμ2tanh2 φffiffiffiffi
6α

p (up to term with
SUSY breaking in de Sitter vacua), one can take

W ¼
ffiffiffi
α

p
μ

2
X

3
2

�
X

3
ffiffi
α

p
2 − cX−3

ffiffi
α

p
2

��
Sþ 1

b

�
: ð3:1Þ

Here X ≡ 1 − Z2, and c ¼ 1 − 2Mffiffi
α

p
μ
. For the special case

α ¼ 1, the superpotential of our model takes a simple form:

W ¼
�
μ

2
ðX3 − 1Þ þM

��
Sþ 1

b

�
: ð3:2Þ

Away to derive these expressions will be explained in a
subsequent more detailed publication [23]; here we only
present our main results. Leaving only the leading terms in
the expansion in small parameters M and b2 − 3, one finds
the inflaton potential

V ¼ αμ2tanh2
φffiffiffiffiffiffi
6α

p þM2ð1 − 3=b2Þ þ � � � ð3:3Þ

The last term provides the required uplifting to a de Sitter
vacuum with a cosmological constant V0 ∼ 10−120. This
term can be neglected during inflation. At the minimum at
φ ¼ 0, supersymmetry is spontaneously broken,

DSW ¼ M; DZW ¼ 0; m3=2 ¼
M
b
; ð3:4Þ

and vacuum energy is nonzero,

V0 ¼ M2 − 3m2
3=2 ¼ M2

�
1 −

3

b2

�
: ð3:5Þ
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Note that the uplifting is proportional to M2, so de Sitter
uplifting is possible only because supersymmetry is spon-
taneously broken at the minimum.
Thus, the main difference between the earlier model

(2.2) and the new model (3.1) is in the structure of the
superpotential involving two new parameters, SUSY break-
ing parameter M and the parameter b controlling the value
of the cosmological constant Λ ¼ V0 ¼ M2ð1 − 3=b2Þ.
In earlier models of inflation in supergravity such as (2.2),
the minimum of the potential typically was in a state with
Λ ¼ 0 and unbroken supersymmetry with DW ¼ 0 in all
directions in the moduli space. The origin of the universal
positive contribution M2 canceling the negative gravitino
term −3m2

3=2 in the potential (3.5) is the consequence of the
presence in our models of the purely fermionic goldstino
multiplet [15] of the Volkov–Akulov type.
Alternatively, one may consider models with the Kähler

potential (2.4) and a slightly different superpotential,

W ¼
ffiffiffi
α

p
μ

2
X

3α
2

�
X

3
ffiffi
α

p
2 − cX−3

ffiffi
α

p
2

��
Sþ 1

b

�
: ð3:6Þ

Here, as before, X ≡ 1 − Z2, and c ¼ 1 − 2Mffiffi
α

p
μ
. SUSY

breaking is described by (3.4), and the potential is given
by Eq. (3.5).
The inflaton potentials are the same in both cases, but in

(3.1) the stabilization of the inflationary trajectory occurs
automatically (i.e. without adding stabilization terms such

as SS̄ ðZ−Z̄Þ2
1−ZZ̄ ) for small α, whereas in the models (3.6)

stabilization occurs automatically for large α [23].

B. Modifying the inflaton potential while preserving
the cosmological predictions

Now we will consider a model with a different super-
potential with Kähler in (2.1),

W ¼ X

�
1

b
X þ S

�
ð ffiffiffi

α
p

μZ2 þMÞ; ð3:7Þ

with X ¼ 1 − Z2. In this theory, just as in the model studied
above, the magnitudes of uplifting and SUSY breaking
parameters are given by (3.4) and (3.5). Meanwhile the
expression for the inflaton potential for b2 ≈ 3 and M ≪ μ
is somewhat different,

VðzÞ ¼ μ2z2

9
ð4 − 16z2 þ 3ð7þ 3αÞz4 − 9z6Þ; ð3:8Þ

where z ¼ tanh φffiffiffiffi
6α

p . However, the height of the potential at

the boundary of the moduli space at z ¼ 1 remains the same
as in the theory (2.3): Vð1Þ ¼ αμ2. Therefore, one can show
that, due to the magic of α-attractors, the observational
predictions of this model remain the same as in the simplest
model (2.3). As we will show in a separate publication, it

happens not for all values of α, but it does happen in the
two most interesting cases, for α ¼ Oð1Þ and for α ≫ 1.
An advantage of this version of the model is that the
superpotential is represented by a rather simple function,
and the Kähler potential does not require any stabiliza-
tion terms.
The same inflaton potential (3.8) can be obtained also in

the theory with the Kähler potential (2.4) with a slightly
modified superpotential,

W ¼ X
3α−1
2

�
1

b
X þ S

�
ðαμZ2 þMÞ; ð3:9Þ

with the de Sitter uplifting given by (3.5).

C. Models with logarithmic superpotentials

One can obtain the T-model with the simplest potential
(2.3) using an alternative approach, which is based on a
Kähler potential containing both the logarithmic and the
power law part:

K ¼ −3 log
�
1 − ZZ̄ þ α − 1

2

ðZ − Z̄Þ2
1 − ZZ̄

�
þ SS̄: ð3:10Þ

This is achieved by using the superpotential which has a
lnð1 − Z2Þ contribution,

W ¼ X
3
2

� ffiffiffiffiffiffi
3α

p

2
μb lnX þM

��
1

b
þ S

�
; ð3:11Þ

where X ¼ 1 − Z2. The potential at the minimum at Z ¼ 0,
and the parameters describing SUSY breaking, as in all of
our models, are given by (3.4). Thus, when b ¼ ffiffiffi

3
p

the
cosmological constant vanishes. The axion field Z − Z̄ is
heavy during inflation where the potential depends on
z ¼ tanh φffiffiffiffi

6α
p and the inflaton potential at b2 ¼ 3 (i.e.

ignoring the uplifting) is described by Eq. (2.3). Yet another
way to reach the same goal is to use a different Kähler
potential,

K ¼ −3α logð1 − ZZ̄Þ þ SS̄; ð3:12Þ

and a slightly different superpotential,

W ¼ X
3α
2

� ffiffiffi
3

p
α

2
μb lnX þM

��
1

b
þ S

�
: ð3:13Þ

In both cases, the inflaton potential is simple, as in
Sec. III A, but the price for this simplicity is the “hybrid”
form of the Kähler potential involving both canonical and
logarithmic terms as well as the presence of an unusual
logarithmic term in the superpotential.
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IV. E-MODELS

Yet another class of α-attractors is equally interesting.
Instead of explicit dependence on tanh2 φffiffiffiffi

6α
p , the potential of

such models depends on e−
ffiffiffi
2
3α

p
φ. Therefore, in this paper

we will call them E-models. The potential in the simplest
class of such models is given by

VE ¼ αμ2ð1 − e−
ffiffiffi
2
3α

p
φÞ2: ð4:1Þ

For α ¼ 1, this potential coincides with the potential of
the Starobinsky model. A consistent implementation of
E-models in supergravity for general α was found in
Refs. [7,8]. Predictions of these models are shown in Fig. 3.
As we see, predictions of T-models and E-models are

similar, but not identical. The difference follows from the
different shape of the inflationary potentials; see Figs. 1
and 4.
The simplest E-model (for b2 ¼ 3 with V ¼ 0 at the

minimum, for simplicity) has the Kähler potential [9]

K ¼ −3 log
�
T þ T̄ þ α − 1

2

ðT − T̄Þ2
T þ T̄

�
þ SS̄ ð4:2Þ

and superpotential

W ¼
ffiffiffiffiffiffi
2T
3

r
ð1þ

ffiffiffi
3

p
SÞð3μαðT lnT − T þ 1Þ þ 2MTÞ:

ð4:3Þ

The inflaton potential in terms of the canonically normal-
ized field φ is given by (4.1). For the particular case α ¼ 1,
this model was presented in Ref. [22]; its potential
coincides with the potential of the Starobinsky model.
Our generalization of this model allows one describe all
points along the blue line in Fig. 3. As one can see from this
figure, the predictions of these models are in very good
agreement with the Planck 2015 data for α≲ 102.
Alternatively, one can use the purely logarithmic Kähler

potential (2.1) and the superpotential

W ¼ ð ffiffiffi
α

p
μZ2 þMÞ

�
1ffiffiffi
3

p ð1þ 2ZÞð1 − ZÞ2 þ Sð1 − Z2Þ
�
:

ð4:4Þ

The potentials of these models are more complicated than
(4.1), but they lead to the same observational predictions as
the simplest E-models (4.1) for α ¼ Oð1Þ and for α ≫ 1.
An advantage of such models is the absence of a rather
unusual logarithmic term in the superpotential (4.3).

V. SPECIAL CASE: GONCHAROV–LINDE
MODEL WITH α ¼ 1=9

We will conclude this paper with a discussion of the GL
model [2,3]. From the point of view of the general
classification outlined above, this model represents a
single-field α-attractor with α ¼ 1=9. The original formu-
lation of this model was based on the theory with

K ¼ −
1

2
ðΦ − Φ̄Þ2; W ¼ μ

9
sinh

ffiffiffi
3

p
Φ tanh

ffiffiffi
3

p
Φ:

ð5:1Þ

FIG. 3 (color online). Predictions of E-models with

V ∼ ð1 − e−
ffiffiffi
2
3α

p
φÞ2. They are shown as a thick blue curve starting

at the predictions of the simplest quadratic model m2

2
ϕ2 for

α > 103, going down through the predictions of the Starobinsky
model r ∼ 0.003 for α ¼ 1, the predictions of the E-model
generalization of the GL model (5.7) r ∼ 0.0004 for α ¼ 1=9,
and continuing all the way down to r → 0 for α → 0. This line is
shown for N ¼ 60. The red circles, from the bottom up,
correspond to α ¼ 10, α ¼ 102, and α ¼ 103.

FIG. 4 (color online). E-model potential αμ2ð1 − e−
ffiffiffi
2
3α

p
φÞ2 in

units of αμ2 ¼ 1 for α ¼ 1; 2; 3; 4. Smaller α corresponds to more
narrow minima of the potentials.
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This model has an interesting superconformal interpreta-
tion to be discussed in a more detailed version of this paper.
The inflaton potential in this model is given by

VðϕÞ ¼ μ2

27

�
4 − tanh2

ffiffiffi
3

2

r
φ

�
tanh2

ffiffiffi
3

2

r
φ: ð5:2Þ

It has a minimum at φ ¼ 0, where it vanishes; see Fig. 1. At
φ≳ 1, the potential coincides with

VðφÞ ¼ μ2

9

�
1 −

8

3
e−

ffiffi
6

p jφj
�
; ð5:3Þ

up to exponentially small higher-order corrections

Oðe−3
ffiffi
6

p jφjÞ [2]. These corrections can only lead to
higher-order corrections in 1=N to ns and r, where
N ∼ 60 is the number of e-foldings. With our definition
of the parameter μ, the potential of this model matches the
normalization of other α models in this paper, so that V
asymptotically approaches αμ2 ¼ μ2=9. This model pre-
dicts ns ¼ 1 − 2

N ≈ 0.967 and r ¼ 4
3N2 ≈ 4 × 10−4 for

N ≈ 60, in excellent agreement with the Planck 2015 data.
It can describe not only inflation but also dark energy
and SUSY breaking if one adds to it a nilpotent chiral
multiplet with a superpotential [3].
Interestingly, the model with the GL inflaton potential

(5.2) can be also obtained in the context of α-attractors with
a single-field logarithmic Kähler potential

K ¼ −3 log
�
1 − ZZ̄ þ α − 1

2

ðZ − Z̄Þ2
1 − ZZ̄

�
ð5:4Þ

with α ¼ 1=9. The superpotential in this representation of
the GL model is particularly simple:

W ¼ μ

9
Z2ð1 − Z2Þ: ð5:5Þ

One can easily check that the inflaton potential of this
model coincides with the potential of the original version of
the GL model (5.2), which is a T-model shown by the red
line in Fig. 1.
The GL model allows various generalizations [3], which

look especially simple in our approach. For example, if one
multiplies the superpotential (5.5) by 1þ cZ with jcj ≪ 1,
the height of the plateau of the inflaton potential at φ > 0
will be different from its height at φ < 0. Furthermore, if
one takes

W ¼
ffiffiffi
2

3

r
μZ2ð1 − ZÞ; ð5:6Þ

one finds the potential of an E-model,

VðφÞ ¼ μ2

9
ð1 − e−

ffiffi
6

p
φÞð1 − e−2

ffiffi
6

p
φÞ: ð5:7Þ

Note that, unlike the original GL model, the potential of
this model depends not on jφj but on φ. This potential
blows up at large negative φ, has a minimum at φ ¼ 0, and
approaches a flat plateau at large positive φ, just as the
family of potentials of E-models shown in Fig. 4. This
model has the same observational predictions as the
original GL model.
Note that the field S is not required for the consistency of

this family of models, which makes them most economical.
However, the nilpotent field S helps to break supersym-
metry and uplift the minimum of the inflaton potential. This
can be achieved, for example, by using the Kähler potential
(2.1) and adding a simple S-dependent term to the GL
superpotential (5.5):

W ¼ μ

9
Z2ð1 − Z2Þ þMðSþ 1=bÞ: ð5:8Þ

This theory has the SUSY breaking parameters and the
vacuum energy given by (3.4), (3.5). Thus, in this simple
model, one can simultaneously describe inflation, dark
energy/cosmological constant, and SUSY breaking of a
controllable magnitude.

VI. DISCUSSION

In this paper we discussed the simplest models belonging
to the general class of α-attractors. These models lead to
cosmological predictions providing an excellent match to
the latest cosmological data for a very broad range of α.
We described several different ways to implement such
models in supergravity in a manner directly related to their
attractor nature. We also developed a set of α-attractors
describing not only inflation but also dark energy and
supersymmetry breaking of a controllable strength. A more
detailed description of our results will be given in the
subsequent publication [23].
The flexibility of the scale of supersymmetry breaking in

these models may be important for considering an interplay
between the cosmological data and the future data from
the LHC. The often-made assumption of a small scale of
SUSY breaking usually requires small reheating temper-
ature, to avoid the cosmological gravitino problem. This
constraint is removed if the gravitino mass is sufficiently
large, in the range of 102 TeV or above. In its turn, the
reheating temperature affects the required number of
e-foldings and therefore the value of ns. This effect is
not large, but it may become noticeable with an increase of
precision of the measurement of the cosmological param-
eters. In this way the results to be obtained at LHC may
help us to optimize our choice of inflationary models based
on supergravity.
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