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Using a Green’s function approach, we compare the trajectories of classical Hamiltonian point particles in
an expanding space-time to the effectively inertial trajectories in the Zel’dovich approximation. It is shown
that the effective gravitational potential accelerating the particles relative to the Zel’dovich trajectories
vanishes exactly initially as a consequence of the continuity equation, and acts only during a short, early
period. The Green’s function approach suggests an iterative scheme for improving the Zel’dovich
trajectories, which can be analytically solved. We construct these trajectories explicitly and show how
they interpolate between the Zel’dovich and the exact trajectories. The effective gravitational potential acting
on the improved trajectories is substantially smaller at late times than the potential acting on the exact
trajectories. The results may be useful for Lagrangian perturbation theory and for numerical simulations.
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I. INTRODUCTION

An analysis of the trajectories of classical, gravitating
point particles in an expanding (Friedman-Lemaître-
Robertson-Walker) space-time quickly leads to the con-
clusion that the comoving displacement of particles from
their initial positions is finite in reality even in the limit
of infinite times. In sharp contrast, the remarkably suc-
cessful Zel’dovich approximation [1] asserts that particle
trajectories are well approximated by trajectories which
resemble inertial motion in a suitable time coordinate,
which manifestly leads to unbounded displacements. How
can these two approaches be reconciled?
Beginning with the retarded Green’s functions of

classical point particles in a static and in an expanding
space-time, and suitably regrouping the terms in the point-
particle Hamiltonian in an expanding space-time, we derive
the effective gravitational potential acting on point particles
relative to free Zel’dovich trajectories. The result shows
that, while the density field is evolving linearly, this
effective potential acts only for a short period of time at
early cosmic times. This is a direct consequence of the
relation between the initial density contrast and the initial
particle velocities enforced by the matter continuity equa-
tion. This result may contribute to clarifying the astounding
success of the Zel’dovich approximation.
The Green’s function approach further allows the con-

struction of an iterative scheme for deriving free particle
trajectories in an expanding space-time, which can be
solved analytically. These newly derived, improved trajec-
tories interpolate between the free trajectories of the exact
cosmological Hamiltonian and the Zel’dovich trajectories.
They offer several advantages compared to the Zel’dovich
approximation as well as compared to the trajectories of the
exact Hamiltonian.

Compared to Zel’dovich, the new trajectories lead to a
substantial reduction of the unwanted reexpansion of
structures after shell crossing. Compared to the trajectories
of the exact Hamiltonian, the effective gravitational poten-
tial acting on the newly derived trajectories decays much
faster in time than the Newtonian gravitational potential
does. For numerical simulations, this may allow us to
achieve a given spatial and temporal resolution with
substantially fewer time steps. The new trajectories may
also be helpful for extending Lagrangian perturbation
theory (see e.g. [2–7] and [8] for a review).
We describe the Green’s function approach in Sec. II and

apply it to an analysis of the Zel’dovich approximation in
Sec. III. In Sec. IV, we construct the iterative scheme
leading to the new free trajectories, and we summarize our
results in Sec. V.

II. PARTICLE TRAJECTORIES

A. Particles in a static space-time

With the Hamilton function H ¼ ~p2=ð2mÞ of a classical
free point particle with mass m in a static space-time, the
equations of motion for a free particle read

∂tx ¼ J ∂xH ¼ Kx; K ¼
�
0 m−1I3

0 0

�
; ð1Þ

where x ¼ ð~q; ~pÞ is the particle position in phase space.
The 6 × 6 dimensional matrix K is called the force matrix,
J is the usual symplectic matrix

J ¼
�

0 I3

−I3 0

�
ð2Þ

and In is the n-dimensional unit matrix.
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The retarded Green’s function of the Hamiltonian
equations (1) is

ḠRðt; t0Þ ¼
�
I3 m−1ðt − t0ÞI3

0 I3

�
θðt − t0Þ; ð3Þ

see Appendix A. Beginning at the initial position xðiÞ ¼
ð~qðiÞ; ~pðiÞÞ in phase space, the free solution x0ðtÞ evolves as

x0ðtÞ ¼ ḠRðt; tiÞxðiÞ ð4Þ

for t ≥ ti. For a particle moving in a potential v, the
potential gradient ∇qv adds the inhomogeneity

yðtÞ ¼
�

0

−∇qv

�
ð5Þ

to the right-hand side of Hamilton’s equations. Including
this inhomogeneity, the phase-space trajectory is

xðtÞ ¼ ḠRðt; tiÞxðiÞ −
Z

t

ti

ḠRðt; t0Þ
�

0

∇qv

�
dt0: ð6Þ

B. Particles in an expanding space-time

The effective Lagrange function for classical point
particles in an expanding Universe is

Lð~q; _~q; tÞ ¼ m
2
a2 _~q2 −mϕ; ð7Þ

where ~q are now comoving spatial coordinates. The
peculiar gravitational potential ϕ satisfies the Poisson
equation

∇2
qϕ ¼ 4πGa2ðρ − ρ̄Þ; ð8Þ

see [9] and Appendix B.
We proceed by transforming the time coordinate t to a

dimensionless time coordinate τ ¼ Dþ −DðiÞ
þ , where Dþ is

the usual growth factor, i.e. the growing solution of the
linear density perturbation equation. We do this because
the Zel’dovich approximation simply corresponds to free
inertial motion in this time coordinate. For convenience
and without a loss of generality, we define the time τ such

that τ ¼ τi ¼ 0 initially, when Dþ ¼ DðiÞ
þ ¼ 1. We further

normalize the cosmological scale factor a such that
ai ¼ aðτiÞ ¼ 1.
Since

dτ ¼ dDþ ¼ da
dt

dDþ
da

dt ¼ HDþfdt; ð9Þ

time derivatives are related by

d
dt

¼ HDþf
d
dτ

; ð10Þ

with the usual definitions

f ≔
d lnDþ
d ln a

; H ≔
_a
a
: ð11Þ

First-order time derivatives thus transform as

_~q ¼ d~q
dt

¼ HDþf
d~q
dτ

¼ HDþf~q0; ð12Þ

where the prime on the right-hand side denotes for now the
derivative with respect to the new time coordinate τ rather
than the cosmological time t.
This time transformation needs to leave the action

unchanged, hence

S ¼
Z

2

1

dtLð~q; _~q; tÞ ¼
Z

2

1

dτL0ð~q; ~q0; τÞ

¼
Z

2

1

dt
dτ
dt

L0ð~q; ~q0; τÞ: ð13Þ

With (7), (10) and (12), this requirement returns the
effective Lagrange function

L0ð~q; ~q0; τÞ ¼ dt
dτ

Lð~q; _~q; tÞ ¼ m
2
a2HDþf~q02 −

mϕ

HDþf
;

ð14Þ

where the new time coordinate is now τ. Finally, we
factorize the constant mHi out of the effective Lagrange

function, drop the prime on L and replace ~q0 by _~q. Thus,
from now on, we shall use

Lð~q; _~q; τÞ ¼ gðτÞ
2

_~q2 − vð~q; τÞ ð15Þ

as the effective Lagrange function, with

gðτÞ ≔ a2DþfHH−1
i : ð16Þ

In the early Universe, when the Einstein–de Sitter limit
holds, we must have

fjτ¼0 ¼ 1 and gðτÞjτ¼0 ¼ 1: ð17Þ

The effective gravitational potential v appearing in
(15) is

vð~q; τÞ ≔ ϕ

HDþfHi
¼ a2ϕ

gðτÞH2
i

ð18Þ

and thus obeys the Poisson equation
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∇2
qvð~q; τÞ ¼

4πGa
H2

i gðτÞ
ðρ − ρ̄Þ ð19Þ

following from (8), replacing the physical density ρ there
by the comoving density, ρ → a3ρ. From now on, we shall
write ρ for the comoving density. Since the mean comoving
cosmic matter density is

ρ̄ ¼ 3H2
i

8πG
Ωmi ð20Þ

with the matter-density parameterΩmi at the initial time, the
Poisson equation (19) is

∇2
qvð~q; τÞ ¼

3

2

a
gðτÞΩmiδ: ð21Þ

The canonically conjugate momentum is

~p ¼ gðτÞ _~q; ð22Þ

leading to the Hamiltonian

H ¼ ~p · _~q − L ¼ ~p2

2gðτÞ þ vð~q; τÞ ð23Þ

and the Hamiltonian equations of motion

_~q ¼ g−1ðτÞ~p; _~p ¼ −∇qv: ð24Þ

Assuming a vortex-free initial velocity field, we can
introduce a velocity potential ψ such that

_~qðiÞ ¼ ∇ðiÞ
q ψ : ð25Þ

Note that ψ must have the dimension of a length since τ
is dimensionless. The continuity equation for the cosmic
density evaluated at τ ¼ 0 with the initial velocity (25)
requires

_δjτ¼0 ¼ −∇ðiÞ
q · _~qðiÞ ¼ −ð∇ðiÞ

q Þ2ψ : ð26Þ

With δ ¼ δiDþ ¼ δið1þ τÞ initially, we have _δjτ¼0 ¼ δi
and hence the Poisson equation

ð∇ðiÞÞ2ψ ¼ −δi ð27Þ
relating the initial density contrast to the velocity potential
ψ . Since gðτÞ ¼ 1 at τ ¼ 0, the initial conjugate momentum
(22) is identical to the initial velocity,

~pðiÞ ¼ _~qðiÞ ¼ ∇ðiÞ
q ψ : ð28Þ

The retarded Green’s function solving the Hamiltonian
equations (24) is

GRðτ; τ0Þ ¼
�
I3 gqpðτ; τ0ÞI3

0 I3

�
θðτ − τ0Þ ð29Þ

with

gqpðτ; τ0Þ ≔
Z

τ

τ0

dτ̄
gðτ̄Þ ; ð30Þ

see Appendix A. The trajectory is thus given by

~q0ðτÞ ¼ ~qðiÞ þ gqpðτ; 0Þ~pðiÞ −
Z

τ

0

dτ0gqpðτ; τ0Þ∇qvðτ0Þ:

ð31Þ

It is important to note that the propagator gqpðτ; τ0Þ
remains finite for τ → ∞ under realistic circumstances. In
order to see this, we write

gqpðτ; τ0Þ ¼ Hi

Z
τ

τ0

dτ̄
ā2DþHf

¼ Hi

Z
a

a0

dā
ā3H

; ð32Þ

where (9) was used to substitute the scale factor a for τ as
the integration variable. The ansatz H ¼ Hia−n shows that
the right-hand side of (32) is finite for n < 2, which is
satisfied for the matter-dominated era. For an Einstein–de
Sitter Universe,

lim
τ→∞

gqpðτ; τ0Þ ¼
2ffiffiffiffiffiffiffiffiffiffiffiffi

1þ τ0
p : ð33Þ

The free spatial trajectory of a particle in an expanding
space-time,

~q0ðτÞ ¼ ~qðiÞ þ gqpðτ; 0Þ~pðiÞ; ð34Þ

shows that the particle can only travel by the finite amount

j~q0ðτÞ − ~qðiÞj ≤ gqpð∞; 0Þj~pðiÞj ð35Þ

even in an infinite time. This behavior can intuitively be
understood: Relative to the expanding space-time, free
particles slow down in comoving coordinates because their
initial momentum falls behind the cosmic expansion.

III. COMPARISON TO THE ZEL’DOVICH
APPROXIMATION

In apparently sharp contrast to the result (34), the
Zel’dovich approximation [1] asserts that the comoving
particle trajectory ~qðτÞ is approximated by

~qðτÞ ¼ ~qðiÞ þ τ~pðiÞ; ð36Þ

where ~pðiÞ is the initial conjugate particle momentum. This
approximate inertial motion seems to be in conflict with the
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Hamiltonian (23) and with our previous conclusion that the
Green’s function for free Hamiltonian particles in an
expanding space-time remains finite for τ → ∞.
In order to see how the Hamiltonian (23) can be

reconciled with the Zel’dovich approximation, we rewrite
it in the form

H ¼ ~p2

2
þ hðτÞ ~p

2

2
þ v ð37Þ

with

hðτÞ ¼ g−1ðτÞ − 1: ð38Þ

Since, as we saw before, gðτÞ → 1 for τ → 0, the function
hðτÞ → 0 initially, and the Hamiltonian then resembles that
of a particle in static space-time.
We now treat the term h~p2=2 in the Hamiltonian (37) as

an inhomogeneity in the equations of motion. According to
the Hamiltonian equations, the inhomogeneity (5) then
changes to

yðτÞ ¼
�

h~p

−∇qv

�
: ð39Þ

Since the free Hamiltonian then equals that of a free particle
in static space-time, we can write the solution in terms of
the Green’s function (3), with t replaced by τ and the
particle mass m dropped,

xðτÞ ¼ ḠRðτ; 0ÞxðiÞ þ
Z

τ

0

ḠRðτ; τ0Þ
�

h~p

−∇qv

�
dτ0: ð40Þ

In particular, the spatial trajectory ~qðτÞ is

~qðτÞ ¼ ~qðiÞ þ τ~pðiÞ þ δ~q; ð41Þ

where

δ~q ≔
Z

τ

0

ðh~p − ðτ − τ0Þ∇qvÞdτ0 ð42Þ

quantifies the deviation from the Zel’dovich trajectory (36).
Recalling (38), it is easily seen that (41) agrees with (31).
By a partial integration in the first term on the right-hand

side, we can rewrite (42) as

δ~q ¼ −ðτ − τ0Þh~pjτ0
þ
Z

τ

0

ðτ − τ0Þð _h ~pþh _~p −∇qvÞdτ0: ð43Þ

Since the boundary term vanishes and _~p ¼ −∇qv, (43)
shrinks to

δ~q ¼
Z

τ

0

ðτ − τ0Þð _h ~p−g−1ðτ0Þ∇qvÞdτ0: ð44Þ

Compared to the inertial Zel’dovich motion (36), the
particle thus behaves as if it moved under the influence
of an effective force

~f ¼ _h ~p−g−1ðτ0Þ∇qv: ð45Þ

Early in time, the momentum will be

~p ≈ ~pðiÞ ¼ ∇ðiÞ
q ψ ð46Þ

according to (28), where ψ is the velocity potential
introduced in (25). Using the Poisson equations (21) and
(27), we can write

∇ðiÞ
q ψ ¼

Z
d3k
ð2πÞ3

i~k
k2

δ̂iei
~k·~qðiÞ ð47Þ

and

∇qv ¼ −
3

2

aDþ
g

Z
d3k
ð2πÞ3

i~k
k2

δ̂iei
~k·ð~qðiÞþτ~pðiÞÞ ð48Þ

as long as the density contrast grows linearly, δ ¼ Dþδi.
The effective force is now

~f ¼
Z

d3k
ð2πÞ3

i~k
k2

δ̂iei
~k·~qðiÞ

�
_hþ 3

2

aDþ
g2

ei~k·τ~p
ðiÞ
�
: ð49Þ

At early times, the phase factor in (49) is near unity and the
integrand is approximated by

_hþ 3

2

aDþ
g2

¼ g−2
�
3

2
aDþ − _g

�
: ð50Þ

For an Einstein–de Sitter Universe, g ¼ a3=2, further
Dþ ¼ a ¼ 1þ τ, and

g−2
�
3

2
aDþ − _g

�
¼ 3

2a
ð1 − a−3=2Þ: ð51Þ

This function drops to zero for a → 1 and a → ∞. It
reaches a sharp maximum at

amax ¼
�
5

2

�
2=3

≈ 1.84; ð52Þ

where it rises to 9=10ð2=5Þ2=3 ≈ 0.49.
Even though these results were derived for the Einstein–

de Sitter model, other cosmological models show a very
similar behavior because the Einstein–de Sitter limit is
generally valid at early times (see Fig. 1).
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We thus conclude that the effective force accelerating a
point particle relative to the inertial Zel’dovich trajectories
is small and acts only during a short time interval at early
cosmic times. This justifies our evaluating the force field at
early times only: at later times, it quickly drops to zero.
In addition, the expression (49) explicitly (but approx-

imately) specifies the effective gravitational potential vðZÞeff
acting on a Zel’dovich trajectory. Its Fourier transform with
respect to the Zel’dovich coordinates ~q ¼ ~qðiÞ þ τ~pðiÞ is

v̂ðZÞeff ¼ −
δ̂i
k2

�
_he−i~k·τ~p

ðiÞ þ 3

2

aDþ
g2

�
: ð53Þ

IV. IMPROVED PARTICLE TRAJECTORIES

A. Free trajectories

Equation (44) for the deviation from the Zel’dovich
trajectory suggests replacing the inhomogeneity (39) by

yðτÞ ¼
�

0

_h ~p−g−1∇qv

�
: ð54Þ

Since the expression (44) for the perturbation of the
trajectories away from purely inertial motion was obtained
from the original expression (42) merely by partial inte-
gration, the two expressions are equivalent. Thus, the
inhomogeneity (54) leads to spatial trajectories identical
to (41).
For free particles, v ¼ 0. Then, according to (6), the

remaining inhomogeneity implies the free solution

~qðτÞ ¼ ~qðiÞ þ τ~pðiÞ þ
Z

τ

0

ðτ − τ0Þ _h ~p dτ0 ð55Þ

for the spatial trajectory. The momentum changes, however.
For v ¼ 0, the inhomogeneity (54), together with the
Green’s function ḠR, implies the free solution

~pðτÞ ¼ ~pðiÞ þ
Z

τ

0

_h ~p dτ0 ð56Þ

for the particle momentum. A partial derivative of the
spatial trajectory (55) with respect to τ reveals that this new

momentum is simply the particle velocity, ~p ¼ _~q. The
momentum (56) is thus the conjugate momentum to ~q with
respect to the unperturbed, free Hamiltonian H ¼ ~p2=2.
The integral equation (56) for the momentum could be

solved iteratively, beginning with the insertion of ~p ¼ ~pðiÞ
into the integral as the zeroth-order solution. It can,
however, easily be solved analytically after taking a further
time derivative to arrive at

_~p ¼ _h ~p; ð57Þ

which is directly solved by

~pðτÞ ¼ ~pðiÞ exp ðhðτÞÞ: ð58Þ

Inserting this solution into (55), we obtain the expression

~qðτÞ ¼ ~qðiÞ þ ~pðiÞ
�
τ þ

Z
τ

0

ðτ − τ0Þ _hehdτ0
�

ð59Þ

for freeing the spatial trajectories. Writing

_heh ¼ d
dτ

eh ð60Þ

and integrating by parts on the right-hand side of (59)
finally gives

~qðτÞ ¼ ~qðiÞ þ ~pðiÞ
Z

τ

0

exp ðhðτ0ÞÞdτ0: ð61Þ

Integrating (58) directly yields the same result. The
trajectories including the potential are given in the next
subsection.
The results for the momentum (58) and the spatial

trajectories (61) are shown in Fig. 2. The improved
trajectories (61) fall between the inertial Zel’dovich tra-
jectory and the free trajectories under the cosmological
Hamiltonian (23).
As the inhomogeneity (54) shows, the gravitational

potential whose gradient accelerates the particles relative
to these trajectories is g−1v rather than v.
According to (16), g is growing in time during cosmic

history, at least until today, depending on the cosmological
model. In an Einstein–de Sitter Universe, gðτÞ ¼ ð1þ τÞ3=2.
Only in cosmologies with a cosmological constant, g may
decrease in the future. At late times during the relevant
evolution, the potential g−1v is thus substantially smaller
than v, showing that perturbations relative to the trajectories

FIG. 1 (color online). Time evolution of the effective force ~f
experienced by a point particle relative to the Zel’dovich
trajectory.
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(61) are much smaller at late times than those compared to
the Zel’dovich trajectories.
The improvement of the free trajectories given by (58)

and (61) over the Zel’dovich approximation is illustrated in
Fig. 3. Compared to the Zel’dovich trajectories, the newly
derived trajectories offer several advantages. First, they lead
to a substantially less blurred final density field, as Fig. 3
illustrates. This was to be expected because the new
trajectories improve upon the approximate inertial motion
of the Zel’dovich approximation. Second, the effective
gravitational potential acting relative to the new trajectories
decreases with time faster by a factor of g−1 (or a−3=2 in
Einstein–de Sitter) than the potential acting in the cosmo-
logical Hamiltonian (23). This implies that numerical
simulations based on the new trajectories could approximate
exact particle trajectories with fewer time steps. Third, while

the effective gravitational potential acting on Zel’dovich
trajectories, whose Fourier transform is approximated by
(53), mixes the velocity potential ψ at early times with the
gravitational potential v at late times, the effective potential
acting on the new trajectories is simply g−1v, to be evaluated
at the time of the interaction only.
The faster decay with time of the effective potential g−1v

compared to the potential v is possible because part of
the time dependence is moved from the potential to the
free trajectories, i.e. to the Green’s function of the free
propagation.

B. Green’s function and effective potential

To further clarify the effective gravitational potential
acting relative to the improved Zel’dovich trajectories, we
conclude by deriving the Green’s function adapted to the
free trajectories given by (58) and (61). According to (56)
and (54), the equation of motion for the momentum ~p is

_~p ¼ _h ~pþ~f; ~f ≔ −g−1∇qv: ð62Þ

For ~f ¼ 0, the homogeneous solution is easily found to be
given by (58), suggesting the retarded Green’s function

~gppðτ; τ0Þ ¼ exp ðhðτÞ − hðτ0ÞÞΘðτ − τ0Þ ð63Þ

for the momentum. Recall that hð0Þ ¼ 0, hence ~gppðτ; 0Þ ¼
expðhðτÞÞ for τ > 0. With this Green’s function, the
solution to the inhomogeneous equation of motion (62)
for the momentum is

~pðτÞ ¼ ~gppðτ; 0Þ~pðiÞ þ
Z

τ

0

~gppðτ; τ0Þ~fðτ0Þdτ0: ð64Þ

FIG. 2 (color online). The solutions (61) for the free particle
trajectories and (57) for their conjugate momentum are shown
here. For comparison, the trajectories according to the Green’s
function (30) are shown as q0ðτÞ.

FIG. 3 (color online). Comparison of different approximations to large-scale structure formation. The three panels color encode the
dark-matter density on slices through a simulation box evolved to z ¼ 0 from the same cold dark matter initial conditions in an Einstein–
de Sitter Universe in the adhesion approximation (left panel, [10–12]), the Zel’dovich approximation (center panel) and evolved with the
particle trajectories [(61); right panel)]. The box size corresponds to 100 Mpc h−1. The improved particle trajectories result in a visibly
less blurred final density configuration. The maximum density contrasts are 6.56 in the left, 1.35 in the central and 1.72 in the right
panel. The adhesion model mimics fully numerical simulations very well at the resolution given.
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A further time integration now straightforwardly leads to

~qðτÞ ¼ ~qðiÞ þ ~gqpðτ; 0Þ~pðiÞ þ
Z

τ

0

~gqpðτ; τ0Þ~fðτ0Þdτ0; ð65Þ

which allows us to identify the retarded Green’s function

~gqpðτ; τ0Þ ≔
Z

τ

τ0
dτ00 exp ðhðτ00Þ − hðτ0ÞÞΘðτ − τ0Þ ð66Þ

for the position. Given the potential w ≔ g−1v solving the
Poisson equation

∇2
qwð~q; τÞ ¼

3

2

a
g2ðτÞΩmiδ; ð67Þ

the phase-space trajectories are thus given by

xðτÞ ¼ ~GRðτ; 0ÞxðiÞ −
Z

τ

0

dτ0 ~GRðτ; τ0Þ
�

0

−∇qwðτ0Þ
�

ð68Þ

with the matrix-valued retarded Green’s function

~GRðτ; τ0Þ ¼
�
1 ~gqpðτ; τ0Þ
0 ~gppðτ; τ0Þ

�
Θðτ − τ0Þ: ð69Þ

Note that this Green’s function attains the form (3) of the
Green’s function ḠRðt; t0Þ for the Hamiltonian in static
space if we set g ¼ 1 and thus h ¼ 0.

V. SUMMARY

Based on the retarded Green’s functions for particles
moving in a static and in an expanding space-time, we have
derived two essential results:
(1) The effective gravitational potential experienced by

particles moving on Zel’dovich trajectories acts at
early cosmic times and for a short period of time
only, until nonlinear evolution sets in much later. At
the initial time, this effective gravitational potential
vanishes exactly because the initial particle velocity
is constrained by the continuity equation for the
density contrast. This contributes to explaining why
the Zel’dovich approximation is so good even
though its particle trajectories differ grossly from
those expected from the Hamiltonian for point
particles in an expanding space-time: The inertial
motion in the Zel’dovich approximation captures a
substantial fraction of the gravitational interaction
that would otherwise be necessary to accelerate the
bound Hamiltonian trajectories of free particles. The
gravitational acceleration relative to the Zel’dovich
trajectories is much weaker than it needs to be
relative to the bound trajectories.

(2) However, the Zel’dovich approximation overshoots
substantially at late times. The Green’s function

approach suggests a modification to the point-
particle trajectories in an expanding space-time,
which can be solved completely analytically. The
spatial trajectories resulting from this scheme inter-
polate between the inertial Zel’dovich trajectories
and the trajectories of free point particles with the
cosmological point-particle Hamiltonian. The effec-
tive gravitational potential acting relative to these
newly derived trajectories decreases with time much
faster than the Newtonian potential does in an
expanding space-time. These improved trajectories
thus mimic the Zel’dovich approximation in that a
substantial fraction of the gravitational interaction is
included in their shape, but they avoid part of the
overshooting.

The trajectories (61) newly derived here may be useful
for Lagrangian perturbation theory as well as for numerical
simulations, which may be able to achieve a given spatial
and temporal resolution with substantially fewer time steps
because of the more rapidly decaying effective potential.
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APPENDIX A: GREEN’S FUNCTIONS

1. Green’s function for free Hamiltonian particles

Homogeneous equations of the type

ð∂t þ aðtÞÞfðtÞ ¼ 0 ðA1Þ

are solved by

fðtÞ ¼ f0 exp

�
−
Z

t
dt0aðt0Þ

�
or

fðtÞ ¼ f0 exp

�Z
t
dt0aðt0Þ

�
; ðA2Þ

where the first line will turn into a retarded, the second into
an advanced Green’s function. Since we need the retarded
Green’s function only, we shall drop the advanced solution
right away. If a is constant in time, the retarded solution
simplifies to fðtÞ ¼ f0 expð−atÞ.
By variation of constants, the retarded solution of the

inhomogeneous equation

ð∂t þ aðtÞÞfðtÞ ¼ gðtÞ ðA3Þ
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is found to be

fðtÞ ¼
Z

t
dt0gðt0Þ exp

�
−
Z

t

t0
dt̄aðt̄Þ

�
ðt > t0Þ: ðA4Þ

A retarded Green’s function can be read off this result,

gRðt; t0Þ ¼ exp

�
−
Z

t

t0
dt̄aðt̄Þ

�
θðt − t0Þ: ðA5Þ

Again, this Green’s function simplifies considerably if a is
constant in time,

gRðt; t0Þ ¼ e−aðt−t0Þθðt − t0Þ: ðA6Þ

The free Hamiltonian equation of motion (1) is of the
type (A1) with a → −K and K constant in time. Since
K2 ¼ 0,

exp ðKtÞ ¼
X∞
j¼0

ðKtÞj
j!

¼ I6 þKt; ðA7Þ

and the Green’s functions (A6) turns into the matrix-valued
expression

ḠRðt; t0Þ ¼
�
I3 m−1ðt − t0ÞI3

0 I3

�
θðt − t0Þ: ðA8Þ

For free particles in an expanding space-time, the force
matrix expressing the Hamiltonian equations (24) simply
reads

KðτÞ ¼
�
0 g−1ðτÞI3

0 0

�
: ðA9Þ

Its integral over the time τ0, which we require according to
(A5), is

K̄ðτ; τ0Þ ¼
�
0 gqpðτ; τ0ÞI3

0 0

�
ðA10Þ

with

gqpðτ; τ0Þ ≔
Z

τ

τ0

dτ̄
gðτ̄Þ : ðA11Þ

Note that gqpðτ; τ0Þ is dimensionless because both τ and
g are.
Since K̄2ðτ; τ0Þ ¼ 0, we have

exp ðK̄ðτ; τ0ÞÞ ¼ I6 þ K̄ðτ; τ0Þ; ðA12Þ

leaving us with the simple expressions

GRðτ; τ0Þ ¼
�
I3 gqpðτ; τ0ÞI3

0 I3

�
θðτ − τ0Þ

GAðτ; τ0Þ ¼ −
�
I3 gqpðτ; τ0ÞI3

0 I3

�
θðτ0 − τÞ ðA13Þ

for the retarded and advanced Green’s functions for free
particles in cosmology.
In an Einstein–de Sitter model Universe, Dþ ¼ a,

hence f ¼ 1, further τ ¼ a − 1 and H ¼ Hia−3=2, thus
gðτÞ ¼ a3=2 ¼ ð1þ τÞ3=2. Then, according to (A11),

gqpðτ; τ0Þ ¼
2ffiffiffiffiffiffiffiffiffiffiffiffi

1þ τ0
p −

2ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p : ðA14Þ

APPENDIX B: EFFECTIVE LAGRANGE
FUNCTION FOR POINT PARTICLES IN AN

EXPANDING SPACE-TIME

This section briefly summarizes the lucid treatment in
[9]. For classical point particles in an expanding Universe,
we begin with the Lagrange function

Lð~r; _~r; tÞ ¼ m
2
_~r2 −mΦð~rÞ; ðB1Þ

expressed in the physical spatial coordinates ~r, with the
potential Φð~rÞ satisfying the Poisson equation

∇2
rΦ ¼ 4πGρ − Λ ðB2Þ

supplemented with the cosmological constant Λ. We
introduce comoving coordinates ~q by ~r ¼ a~q and transform

Lð~q; _~q; tÞ ¼ m
2
ð _a2~q2 þ a2 _~q2 þ 2a _a ~q · _~qÞ −mΦ; ðB3Þ

where Φ is now also to be expressed in comoving
coordinates.
We augment L by the total time derivative of the function

Fð~qÞ ¼ m
2
a _a~q2; ðB4Þ

and thus obtain the effective Lagrangian

L → L −
dF
dt

¼ m
2
ða2 _~q2 − aä~q2Þ −mΦ: ðB5Þ

We further define an effective potential

ϕ ¼ Φþ 1

2
aä~q2; ðB6Þ

satisfying the Poisson equation

∇2
qϕ ¼ 4πGa2ρ − a2Λþ 3aä ðB7Þ
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in comoving coordinates, and introduce the pressure-free
Friedmann equation

ä
a
¼ −

4πG
3

ρ̄þ Λ
3

ðB8Þ
with the mean background density ρ̄ to write

∇2
qϕ ¼ 4πGa2ðρ − ρ̄Þ: ðB9Þ

This leaves us with the effective Lagrangian

Lð~q; _~q; tÞ ¼ m
2
a2 _~q2 −mϕ: ðB10Þ
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