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We explore the phenomenological implications of generalizing the causal patch and fat geodesic
measures to a multidimensional multiverse, where the vacua can have differing numbers of large
dimensions. We consider a simple model in which the vacua are nucleated from a D-dimensional parent
spacetime through dynamical compactification of the extra dimensions, and compute the geometric
contribution to the probability distribution of observations within the multiverse for each measure. We then
study how the shape of this probability distribution depends on the time scales for the existence of
observers, for vacuum domination, and for curvature domination (tobs; tΛ, and tc, respectively.) In this work
we restrict ourselves to bubbles with positive cosmological constant, Λ. We find that in the case of the
causal patch cutoff, when the bubble universes have pþ 1 large spatial dimensions with p ≥ 2, the shape
of the probability distribution is such that we obtain the coincidence of time scales tobs ∼ tΛ ∼ tc. Moreover,
the size of the cosmological constant is related to the size of the landscape. However, the exact shape of the
probability distribution is different in the case p ¼ 2, compared to p ≥ 3. In the case of the fat geodesic
measure, the result is even more robust: the shape of the probability distribution is the same for all p ≥ 2,
and we once again obtain the coincidence tobs ∼ tΛ ∼ tc. These results require only very mild conditions on
the prior probability of the distribution of vacua in the landscape. Our work shows that the observed
double coincidence of time scales is a robust prediction even when the multiverse is generalized
to be multidimensional; that this coincidence is not a consequence of our particular Universe being
(3þ 1)-dimensional; and that this observable cannot be used to preferentially select one measure over
another in a multidimensional multiverse.
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I. INTRODUCTION

The measure problem is concerned with the issue of
making predictions in an eternally inflating multiverse. As
every single event that can happen, happens infinitely many
times in such a multiverse [1], it is necessary to introduce a
regulator of some sort in order to define relative proba-
bilities [2]. This regulator is called a measure. Several
reasonable measures have been put forward, which give
different phenomenological predictions for relative proba-
bilities of events occurring in the multiverse [3–8]. At first
sight the existence of an eternally inflating multiverse
might appear to be inconvenient and disconcerting, espe-
cially since the calculation of probabilities within such a
multiverse is sensitively dependent on the choice of
measure, and there is no way at present of establishing a
particular choice of measure as the correct one. However,
Weinberg’s prediction of the cosmological constant [9]
showed that the existence of a multiverse can be used to
explain the smallness of the observed value of Λ, and the
fact that Λ ≠ 0, by using anthropic arguments. This result
has become a compelling reason for studying the calcu-
lation of probabilities within a multiverse, in the hopes
that we can find measures that will explain some of the

observations that we make in our own Universe, such as the
values we measure for certain physical constants, or the
coincidence of the time scales of vacuum domination, and
the time scale at which observations are made [10–23]. If
we assume the existence of an infinite and eternally
inflating multiverse, where these constants take different
values in each of the bubble universes, then it could be
that we are highly likely to find ourselves in a universe
where the parameters of physical theories take the values
that we observe.
One such observable that is a feature of our own Universe

is the coincidence of three separate time scales: for the
existence of observers, for vacuum domination, and for
curvature domination (tobs; tΛ, and tc respectively), so that
tobs ∼ tΛ ∼ tc. Recent work by Bousso et al. showed that this
coincidence can be predicted from a variety of different
measures using solely geometrical arguments [19,20]. This
analysis assumed that all of the vacua in the multiverse
under consideration are ð3þ 1Þ-dimensional; however,
there is no guarantee that this is the case. In fact, it is easy
to envision a fundamental theory which allows for the
nucleation of vacua with different numbers of large
dimensions, with the extra dimensions being compactified
on an internal manifold: the string theory landscape, for
example, is expected to contain a large landscape of vacua
with different numbers of dimensions.*hyeyoun@physics.harvard.edu
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This point naturally raises an interesting question: is the
coincidence of time scales tobs ∼ tΛ ∼ tc still predictable
using a measure [24] when the multiverse is multidimen-
sional? And is the double coincidence that we observe,
somehow a consequence of our universe being (3þ 1)-
dimensional? We address this problem in this paper. First
we consider two local measures that have been found to be
phenomenologically satisfactory in the case of (3þ 1)-
dimensional vacua—the causal patch measure [6,7], and
the fat geodesic measure [2,4,5]—and generalize them
straightforwardly to the case of a multidimensional multi-
verse. We then study how these measures can be used to
predict the time scales of vacuum domination, curvature
domination, and observation (tΛ; tc, and tobs) in the various
vacua, by applying the measures to a specific, yet suffi-
ciently generic model of a multiverse with vacua of
differing numbers of large dimensions. Note that in this
work, we restrict ourselves to analyzing vacua with a
positive cosmological constant Λ.
We follow the approach of Bousso et al., who inves-

tigated the ways in which the geometry of various measures
could affect their phenomenological predictions [19,20].
The general method is to determine the probability dis-
tribution of observations in the multiverse over the three
time scales tΛ; tc, and tobs, by factoring the distribution into
a part corresponding to the prior probability of the
formation of bubbles characterized by the parameters
(tΛ; tc), a part corresponding to the density of observers
per unit mass per logarithmic time interval, averaged over
the different types of bubbles, and a part corresponding to
the mass inside the cutoff. By arguing that the first two
factors have a constrained form that we can determine
through logical reasoning, and that the leading contribution
to the probability distribution comes from the third and last
term, which can be explicitly calculated, we can then study
important features of the probability distribution.
There are several ways in which the probability distri-

bution of observations calculated in this manner could
display some qualitative differences in the multidimen-
sional case, as compared to the (3þ 1)-dimensional case. If
we assume that the vacuum bubbles in the multidimen-
sional case are open Friedmann-Robertson-Walker (FRW)
universes with the extra dimensions compactified on a
sphere, then the evolution of the FRW scale factor inside
the bubble, and thus the mass contained inside the cutoff,
will depend on the number of large dimensions. The
parameter tΛ, which is related to the effective cosmological
constant inside the bubble, is also related to the number of
large dimensions. Thus the probability distribution could
change depending on the number of large dimensions there
are in the bubbles that we are considering. Moreover,
the probability distribution could depend, not just on the
number of large dimensions in the bubble, but on the
number of large dimensions relative to the total dimension
D of the original higher-dimensional space. In practice we

find that the shape of the probability distribution is largely
determined by just one factor: the number of large
dimensions in the bubble. For the causal patch measure,
the results can be classed into three main groups: the case of
two large spatial dimensions, three large spatial dimen-
sions, and all spatial dimensions larger than three.
However, although the probability distributions differ in
all three cases, for three spatial dimensions or larger, we
predict the coincidence tobs ∼ tΛ ∼ tc. For the fat geodesic
measure, the results can be classed into two groups: the
case of two large spatial dimensions, and the case of three
or more large spatial dimensions. Finally, for both the
causal patch measure and the fat geodesic measure, the
smallness of the cosmological constant is related to
the number of vacua in the multiverse.
This paper is structured as follows. In Sec. II, we

describe the causal patch and fat geodesic measures and
outline how they can be generalized to the case of a
multiverse with multidimensional vacua. In Sec. IV, we
describe the specific model that we will use for such a
multiverse, so that we can carry out concrete calculations
using the measures. In Sec. VI we explore the phenom-
enological properties of the measures by applying them to
this multiverse model. We conclude in Sec. VII.

II. THE MEASURES AND THEIR
GENERALIZATIONS TO A MULTIDIMENSIONAL

MULTIVERSE

We can immediately generalize twowell-knownmeasures
to the case of amultidimensionalmultiverse: the causal patch
measure [6,7], and the fat geodesicmeasure [2,4,5]. Both are
local measures, which define the relative probabilities of
different events by only counting events in a finite neighbor-
hood of a single inextendible timelike geodesic in the
multiverse (where the neighborhood is defined differently
for each measure), and then taking an average over initial
conditions andpossible decoherent histories for thegeodesic.
IfNI is the number of times that outcome I occurs within the
specified neighborhood of the geodesic, and hNIi indicates
the expectation value after averaging over initial conditions
and decoherent histories, then the relative probability of
outcomes I and J are given by

pI

pJ
¼ hNIi

hNJi
: ð1Þ

We can find the expectation value hNIi by constructing an
ensemble of geodesics, and then taking the ensemble
average. This is done by selecting an initial spacelike
hypersurface Σ0, and then constructing a geodesic orthogo-
nal to that hypersurface. If we then take Z identical copies of
Σ0 and choose the same starting point for the geodesic in each
copy, the resulting Z geodesics, and their corresponding
neighborhoods, represent different decoherent histories for
the multiverse. In order to account for different initial
conditions, we can then take a weighted average over
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different initial surfaces Σ0, which correspond to different
initial vacua.
The causal patch measure is a local measure for which

the local neighborhood of the geodesic is taken to be the
causal patch of the end point of the geodesic. The fat
geodesic measure is a local measure for which the local
neighborhood of the geodesic is a fixed infinitesimal
orthogonal cross-sectional volume dV, which we take to
be spherical. Both of these measures can be directly
generalized to the case of a multidimensional multiverse
with no change in their definitions.

III. DETERMINING THE PROBABILITY
DISTRIBUTION OF OBSERVATIONS

Here we outline the general approach taken in
Refs. [19,20] to determine the essential features of the
probability distribution of observations in the multiverse.
This probability distribution over the time of existence of
observers, the time of curvature domination, and the time of
vacuum domination, ðlog tobs; log tc; log tΛÞ, takes the form

d3p
d logtobsd log tΛd log tc

¼ d2 ~p
d log tΛd log tc

×Mðlog tobs; logtc; logtΛÞ
×αðlogtobs; log tc; log tΛÞ: ð2Þ

The first factor is the prior probability distribution, which
corresponds to the probability of nucleating a bubble with
parameters ðlog tc; log tΛÞ inside the cutoff region. The
second and third factors combined give the probability
density for observations within a given bubble. This
probability density is further divided into the mass M
inside the cutoff region, and α, which is the average number
of observations per unit mass per time.
It is possible to calculateM explicitly for each cutoff. We

carry out this calculation in Sec. VI, for both the causal
patch and fat geodesic cutoffs. We also argue that α can be
written as a function purely of log tobs, which requires only
weak assumptions [19,20]. Furthermore, we expand the
form of the prior probability density ~p as

d2 ~p
d log tΛd log tc

∼ t−2Λ gðlog tcÞ ð3Þ

for some function gðlog tcÞ, as we are considering small
values of Λ ∼ t−2Λ and can thus Taylor expand in Λ [9].

IV. A MODEL FOR A MULTIDIMENSIONAL
MULTIVERSE

In order to explicitly explore the phenomenological
predictions of these generalized measures, we must specify
a concrete model for a multiverse where the vacua can have
different numbers of large dimensions, and apply the
measures to this model. We would like the model to be

fairly generic, so that we can identify the qualitative
properties of the measures that result from extending them
to multidimensional models, without our results being too
much influenced by the particular model we have chosen.
Starting with a fundamental theory in D dimensions, we

would like to consider a model that allows for the dynamic
nucleation of vacua with varying numbers of large dimen-
sions, while the remaining spatial dimensions are compac-
tified. In general, the Lagrangian for the fundamental
theory will have the form

SD ¼
Z

dDx
ffiffiffiffiffiffiffiffiffiffiffi
−~gðDÞ

q
½MD−2

D
~Rþ LðψÞ þ L̂ð ~RÞ�; ð4Þ

where ~gðDÞ is the metric on the full D-dimensional
spacetime, MD is the D-dimensional Planck mass, ~R is
the Ricci scalar, and LðψÞ gives the contribution of matter
sources. The term L̂ð ~RÞ represents possible curvature
corrections to the Einstein-Hilbert Lagrangian. In this work
we assume that there are no terms that mix ψ and ~R.
Theories of this form were studied by Giddings in

Ref. [25], where the metric was assumed to have the form

ds2 ¼ e2AðyÞds24 þ R2ðxÞgmnðyÞdymdyn; ð5Þ

where ds24 is the metric for (3þ 1)-dimensional de Sitter
space. There are four large dimensions, andD − 4 compact
dimensions. A radial dilaton field RðxÞ ¼ eϕðxÞ, that
depends only on the coordinates of the large dimensions,
encodes the size of the compact dimensions. By assuming
that RðxÞ varies slowly on scales of order the compacti-
fication size, the equations for the matter fields can be
solved to give ψ ¼ ψ0. Substituting these solutions into the
full action, and then integrating over the compact dimen-
sions, gives an effective potential for the radial dilaton. The
dimensionally reduced action has the form

S ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−g4

p �
R4 −

1

2
ðD − 4ÞðD − 2Þð∇ϕÞ2 þ VðϕÞ

�

ð6Þ
where VðϕÞ is the effective potential for ϕðxÞ. Thus the
dimensionally reduced theory has the form of Einstein
gravity in ð3þ 1Þ dimensions coupled to a scalar field, the
radial dilaton, whose dynamics are governed by an effective
potential VðϕÞ.
If this potential has stable ormetastable localminima, then

the nucleation of vacua with different numbers of large
dimensions is possible in this theory. For example, if the
potential has a local minimum such that the value of the
potential at thatminimum is positive, then this corresponds to
a positive cosmological constant in the dimensionally
reduced theory. The local minimum is a stable solution for
the dilaton field, and so represents a de Sitter vacuum in
ð3þ 1Þ dimensions where the extra dimensions are
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compactified on aD − 4-dimensional sphere. If the value of
the potential at the local minimum is negative, then the
minimum is an anti–de Sitter (AdS) vacuum in ð3þ 1Þ
dimensions; if the value of the potential is zero, then the
minimum is a Minkowski vacuum. It is also possible for the
effective potential to have several local minima and thus
allow for several possible vacua. It is possible that some or all
of these vacua are metastable; however, if the decay rates of
these vacua are sufficiently low, then the metastable vacua
correspond to valid, viable universes within the multiverse
that could exist for long enough for observers to evolve.
The nucleation of a ð3þ 1Þ-dimensional vacuum in this

theory can occur through the process of compactification,
which is exactly analogous to the nucleation of bubbles via
Coleman-DeLuccia (CdL) instantons [26] or Hawking-
Moss instantons. In the Coleman-DeLuccia instanton, we
consider a scalar field coupled to Einstein gravity that is in
its false vacuum state throughout the whole of space. This
corresponds to the scalar field taking its value at a local
minimum of its potential. A vacuum of true vacuum can
nucleate within the false vacuum, if the scalar field tunnels
through the potential barrier to the global minimum of the
potential. In the Hawking-Moss instanton, a bubble is
nucleated in which the scalar field has tunneled to its value
at a local maximum of the potential, and then rolls down
into the global minimum, so that the bubble becomes a
bubble of true vacuum. If we think of the radion field ϕðxÞ
as a scalar field coupled to gravity in the ð3þ 1Þ large
dimensions, then bubbles of vacua can nucleate in which
ϕðxÞ takes its values at local minima of the potential, which
corresponds to the extra dimensions being compactified. It
is also possible for vacua to be formed through decom-
pactification transitions, in which bubbles of vacua nucle-
ate through ϕðxÞ tunneling through the potential barrier in
the other direction, from some finite value to ϕ → ∞, so
that the extra dimensions go from being compact to large.
Giddings considered various possible matter sources for

the dilaton potential, including fluxes in the compact
dimensions, and branes wrapped around the compact
dimensions. In both cases, he finds that the sources
contribute terms to the effective potential that are expo-
nentials of the dilaton field ϕðxÞ. Thus we can generically
assume that the effective potential for ϕðxÞ is a sum of
exponentials of ϕðxÞ, independently of the particular model
under consideration.
One explicit model of this form is that discussed by

Carroll, Johnson, and Randall in Ref. [27] and by Blanco-
Pillado, Schwartz-Perlov, and Vilenkin in Ref. [28], which
considers a fundamental theory of Einstein gravity in D
dimensions with a cosmological constant, coupled to one or
more q-form field strengths. The action for the higher-
dimensional theory is

SD ¼ 1

2

Z
dDx

ffiffiffiffiffiffiffiffiffiffiffi
−~gðDÞ

q �
~RðDÞ − 2ΛD −

1

2q!
~F2
q

�
; ð7Þ

where we have used ΛD to denote the D-dimensional
cosmological constant in order to distinguish it from the
effective cosmological constant inside the FRW bubble
universes that we will describe later. Assuming spherical
symmetry in the compact dimensions, we can write the
metric in the form

ds2 ¼ ~gpþ2
μν ðxÞdxμdxν þ R2ðxÞdΩ2

q; ð8Þ

where we have decomposed the metric into ðpþ 2Þ large
dimensions and q compact dimensions, and the entire space
has D ¼ pþ 2þ q dimensions. The radion field RðxÞ and
the pþ 2-dimensional metric ~gpþ2

μν are functions of the
pþ 2-dimensional coordinates x. The magnetic q-form
field strengths solving Maxwell’s equations and respecting
the q-dimensional spherical symmetry are given by

~Fq ¼ Qsinq−1θ1… sin θq−1dθ1∧…∧dθq: ð9Þ

We consider solutions with only a single fixed q, so that
multiple q-form charges are not turned on simultaneously.
We can now integrate over the q compact dimensions to
obtain the dimensionally reduced theory in pþ 2 dimen-
sions. We also perform a conformal transformation in order
to express our results in the pþ 2-dimensional Einstein
frame, so that we can view the theory as Einstein gravity
coupled to a scalar field. The conformal transformation is

gμν ¼ R2
q
p ~gμν ð10Þ

and the dimensionally reduced action in the Einstein
frame is

Spþ2¼
Z

dpþ2x
ffiffiffiffiffiffi
−g

p �
1

2
R−

1

2

qðpþqÞ
pR2

gμν∂μR∂νR−VðRÞ
�
;

ð11Þ

where VðRÞ is an effective potential for the radion field
RðxÞ. We can define a canonically normalized radion field
ϕ by making the change of variables

R ¼ exp

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

qðpþ qÞ
r

ϕ

Mpþ2

�
: ð12Þ

In terms of ϕ, the dimensionally reduced action is

Spþ2¼
Z

dpþ2x
ffiffiffiffiffiffi
−g

p �
1

2
R−

1

2
gμν∂μϕ∂νϕ−VðϕÞ

�
ð13Þ

where the effective potential VðϕÞ is
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VðϕÞ ¼ 1

2

�
−qðq − 1Þ exp

�
−2

ffiffiffiffiffiffiffiffiffiffiffiffi
pþ q
pq

r
ϕ

�

þ 2ΛD exp

�
−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q

pðpþ qÞ
r

ϕ

�

þQ2

2
exp

�
−2ðpþ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q

pðpþ qÞ
r

ϕ

��
: ð14Þ

In general, we can have J copies of a q-form, with ei being
the gauge coupling for each copy, and ni being the number
of units of fundamental charge, in which case Q in the
above formula is replaced with

Q2 ≡XJ
i¼1

Q2
i ¼

XJ
i¼1

e2i n
2
i : ð15Þ

Thus, for a given number D of dimensions in the funda-
mental theory, we have three independent parameters that
we can vary: the number of compact dimensions q, the
charge Q, and the higher-dimensional cosmological con-
stant ΛD. These parameters determine the form of the
effective potential VðϕÞ. It was shown in Ref. [27] that the
nucleation of vacua in this theory through decompactifi-
cation transitions is exponentially suppressed relative to the
probability of nucleating vacua through compactification
transitions, so we will consider only the latter in this work.
The possible forms VðϕÞ were studied in Ref. [27], and it

was found that we require ΛD ≠ 0 for the existence of
solutions that allow for the dynamical nucleation of bubbles
with compactified dimensions. The results are qualitatively
similar when ΛD < 0 compared to when ΛD > 0, so we will
only consider the case ΛD > 0. For certain values of Q, the
effective potential can have a local minimum and a local
maximum, showing that there can be pþ 2-dimensional
metastable vacua (as illustrated in Fig. 1). The value of the
potential at the local minimum can be positive, zero, or
negative, so that the metastable vacua can be de Sitter,
Minkowski, or anti–de Sitter.
We would like to further generalize this model to allow

for the presence of pressureless macroscopic matter, so that

we can have regions of matter, curvature, and vacuum
domination inside the bubbles nucleated in the multiverse.
This can be done quite easily by using the Einstein
equations in the pþ 2-dimensional Einstein frame:

Rμν −
1

2
gμνR ¼ Tμν; ð16Þ

where we have chosen units so that 8πG ¼ 1. If we
compute the Ricci tensor and Ricci scalar for the pþ 2-
dimensional metric gμν, then on the right-hand side we can
substitute the energy-momentum tensor Tμν by summing
the energy-momentum tensor for the scalar field ϕ, and the
energy-momentum tensor for pressureless matter, which
has the form

Tμν
matter ¼ ρUμUν for μ ¼ ν ¼ 0; ð17Þ

Tμν
matter ¼ 0 otherwise; ð18Þ

for some constant density ρ, where the density is calculated
with respect to the large dimensions (as we are considering
macroscopic matter.)

V. OPEN FRW UNIVERSES WITH
COMPACTIFIED DIMENSIONS

In order to compute the mass contained within the cutoff
region, the calculation in Refs. [19,20] proceeded by
assuming that every bubble in the multiverse is an open
FRW universe, as is usually formed by Coleman-DeLuccia
tunneling. The metric has the form

ds2 ¼ −dt2 þ aðtÞ2ðdχ2 þ sinh2χdΩ2Þ: ð19Þ
The Friedmann equations for aðtÞ have the form�

_a
a

�
¼ tc

a3
þ 1

a2
� 1

t2Λ
ð20Þ

and can be solved for aðtÞ piecewise, in terms of tΛ; tc,
by ignoring all but one term on the right-hand side
for each region in time. The nature of the solution
depends on whether the cosmological constant Λ

(related to tΛ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
pðpþ1Þ
2jΛj

q
) is positive or negative, and

whether tc ⋙ tΛ or tc ⋘ tΛ.
We can adapt this analysis to our model (though in this

work we only consider a positive cosmological constant
Λ > 0.) A bubble universe can nucleate in the background
D-dimensional multiverse through a process analogous to
Coleman-DeLuccia tunneling [27], with the radion field ϕ
playing the role of the scalar field in the CdL instanton, as
described in Sec. IV. The spacetime after nucleation is
given by a configuration analogous to a thick-walled CdL
bubble. The region inside the bubble is given by an open
FRW universe, where the metric in the pþ 2-dimensional
Einstein frame has the form

FIG. 1 (color online). An effective potential for the radial
dilaton field ϕðxÞ that has a metastable minimum corresponding
to a vacuum with a positive effective cosmological constant.
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ds2 ¼ −dt2 þ aðtÞ2ðdχ2 þ sinh2χdΩ2
pÞ: ð21Þ

In order to match to the solution outside the bubble, the
solution inside the bubble must satisfy the conditions
a ¼ 0, _ϕ ¼ 0 at t ¼ 0.
The equations of motion for aðtÞ and ϕðtÞ give us the

multidimensional analogue of the Friedmann equations,
which take the form

�
_a
a

�
2

¼ tp−1c

apþ1
þ 1

a2
� 1

t2Λ
þ 2

pðpþ 1Þ
�
_ϕ2

2
þ VðϕÞ − V0

�
;

ð22Þ

ϕ̈þ ðpþ 1Þ _a
a
_ϕ ¼ −V 0ðϕÞ ð23Þ

where VðϕÞ is the potential for ϕ, and V0 is the constant
part of VðϕÞ (which gives the cosmological constant term
1
t2Λ
.) The term tp−1c

apþ1 on the right-hand side of the Friedmann

equation for aðtÞ corresponds to the contribution of non-
dynamical, pressureless matter. We assume that the matter
is macroscopic, so that it scales as ∼ 1

apþ1. It would also be
possible to analyze the effect of microscopic matter that is
at the scale of the compact dimensions, by introducing a
term ∼ 1

apþ1Rq, where R is the radion field. Preliminary
computations indicate that this does not make a significant
qualitative difference to our results, so we will consider
only macroscopic matter in this paper and leave a more
detailed analysis to a future work.
We cannot solve these equations analytically. However,

we can solve them numerically. The potential VðϕÞ can be
specified following the model given in Ref. [27] (which, as
shown in Ref. [25], is a fairly generic potential that can be
obtained by dimensionally reducing different fundamental
theories, and so can be considered to be largely model
independent.) The potential depends on the number of large
spatial dimensions ðpþ 1Þ, the number of compact dimen-
sions q, the cosmological constant in the full pþ 2þ q-
dimensional theory Λ, and the sum of charges of the q-form
fluxes in the compact dimensions, Q. By scanning over
these parameters, we can find a large set of solutions for
different values of tc and tΛ, and see how these solutions
vary with each of the parameters.
In general, a solution for a bubble is obtained through a

Coleman-DeLuccia instanton for ϕ, where ϕ tunnels
through a potential barrier in VðϕÞ before emerging at
some value ϕ− as illustrated in Fig. 2, and then rolls down
into a local minimum of VðϕÞ, then oscillates about that
minimum before settling down to a constant value, to give
an FRW universe with q compact dimensions with ϕ at
some finite value ϕmin. If the value of the potential at ϕmin is
positive then we obtain an asymptotically de Sitter bubble,
and aðtÞ increases monotonically from zero to infinity, and
if the value of the potential at ϕmin is positive then we obtain

an asymptotically AdS bubble, and aðtÞ crunches back to
zero. If the value of the potential at ϕmin is zero, then we
obtain an asymptotically Mpþ2 bubble.
Thus, technically we would need to calculate the value

ϕ− in order to obtain the correct initial value of ϕwithin the
FRW bubble. However, we have verified numerically that
starting with a fairly arbitrary initial value of ϕ−, between
the local minimum and local maximum of the potential,
does not significantly affect the final solutions aðtÞ;ϕðtÞ.
Therefore, as it is difficult to compute the CdL instanton
precisely, in order to numerically solve the Friedmann
equations we start with an arbitrary initial value for ϕðtÞ,
chosen to be halfway between the values of ϕ at the local
minimum and local maximum of the effective potential.
The work of Bousso et al. solved the equations analyti-

cally by ignoring the scalar field ϕ that drives the Coleman-
DeLuccia tunneling process (note that in general the field ϕ
is not necessarily the radial dilaton field, but any scalar field
that can lead to bubble nucleation.) We could do the same in
this case, by considering only the time period after which the
contribution of ϕ to the differential equations for aðtÞ
becomes subdominant, or conditioning on this being the
case. Numerical analysis shows that in the case of p ¼ 2,
where there are three large spatial dimensions (precisely the
case studied in previous investigations of the phenomenol-
ogy of measures) this gives the same results for the
probability density of observations as directly solving the
coupled equations for aðtÞ and ϕðtÞ, and thus it is valid to
ignore the evolution of ϕðtÞ. However, we find that when
p ≠ 2, taking into account the time dependence ofϕðtÞ leads
to qualitatively different results compared to the analytical
results obtainedwhenϕðtÞ is ignored. Thuswe proceedwith
the full numerical analysis. As we are interested in the
general trends in the probability density of observations (i.e.
whether the probability density favors larger or smaller
values of tc and tΛ), rather than the precise shape of the

FIG. 2 (color online). An effective potential for the radial
dilaton field ϕðxÞ that has a metastable minimum corresponding
to a vacuum with a positive effective cosmological constant.
Compactification can occur dynamically when the field ϕ tunnels
through the potential barrier between ϕþ and ϕ−, and then rolls
down into a local minimum of VðϕÞ, which corresponds to a de
Sitter universe in this case, as the value of VðϕÞ at this minimum
is positive.
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probability density function, we believe that specifying a
particular model for the potential VðϕÞwill not detract from
the general applicability of our results, especially since (as
we have already noted)VðϕÞ itself is fairly generic and takes
similar functional formswhen derived from several different
fundamental models. Thus we are taking into account not so
much the effect of the precise shape of VðϕÞ, but rather the
existence of a time-dependent scalar field ϕðtÞ whose
evolution is related to the evolution of the scale factor
aðtÞ. AsϕðtÞ in this case is the radial dilaton that encodes the
size of the compact dimensions, and we are specifically
considering how the number of large vs compactified
dimensions affects the phenomenology of measures in a
multiverse, it is appropriate that we consider the full coupled
equations that describe the time evolution of both ϕðtÞ and
aðtÞ. Moreover, this allows us to consider a wider range of
possible tc and tΛ, without having to assume that ϕ is
subdominant in the region that we are considering.

VI. THE PHENOMENOLOGY OF THE MEASURES

We can now proceed to calculate the mass contained
within the cutoff in a typical bubble, and thus find part of
the contribution to the probability distribution of observa-
tions in the multiverse.

A. The causal patch measure

For the causal patch measure, we first use boost
symmetries to say that the center of the causal patch is
at the origin of a particular bubble, given by χ ¼ 0. Then for
each time t inside the bubble, the maximum value of χ
contained inside the cutoff region is given by

χCPðtÞ ¼
Z

tf

t

1

aðt0Þ dt
0; ð24Þ

as this is the range of χ contained in the past light cone of a
comoving geodesic that begins at the origin. As we are only
considering Λ > 0, where Λ is the effective cosmological
constant inside the bubble (as opposed to the D-
dimensional cosmological constant ΛD), then we may take
tf → ∞, by neglecting late-time decays inside the bubble.
We now want to calculate the mass of observers

contained within the causal patch. Recall that we have
assumed the observers are macroscopic, and thus scale as
∼ 1

apþ1, i.e. the volume of the large dimensions in the
spacetime, as explained in Sec. V. Thus the mass of
observers is given byMCP ¼ ρapþ1VCP ¼ tp−1c VCP, where
ρ is the matter density, and VCP is the macroscopic volume
of the large dimensions inside the bubble available to
observers at tobs (not the total volume inside the bubble,
which we would need to compute if we were considering
nonmacroscopic matter and observers.) This quantity may
be calculated by

VCP ¼ S½χCPðtobsÞ�; ð25Þ

where S½χ� is the comoving volume inside a sphere of
radius χ. If we were considering nonmacroscopic observers
that scale as ∼ 1

apþ1Rq, where R is the radion field, then we
would have to compute the total volume inside the bubble,
V tot
CP. The mass inside the volume would be given by

MCP ¼ ρapþ1RqV tot
CP ¼ tp−1c V tot

CP, as in this case we would
have tp−1c ¼ ρapþ1Rq.
The probability distribution of observations made in the

landscape is then given by

d3p
d log tobsd log tΛd log tc

¼ ∼t−2Λ gðlog tcÞ

× αðlog tobs; log tc; log tΛÞ
×MCPðlog tobs; log tc; log tΛÞ:

ð26Þ
If we assume that the factors gðlog tobsÞ and αðlog tobs;
log tΛ; log tcÞ do not provide the leading contributions to
the probability distribution, but rather the factor
Mðlog tobs; log tΛ; log tcÞ does, then we can calculate the
contribution of MCP to the probability density and analyze
the resulting trends.
In order to calculate the probability distribution over the

three variables tobs; tΛ; tc, we considered a range of p and q,
and identified values of the parameters Q and Λ that would
give a potential with a positive-valued local minimum, so
that we could look at vacua with a positive effective
cosmological constant. Scanning over different ranges of
Q and Λ gave us a range of tΛ to work with. We solved the
differential equations for aðtÞ and ϕðtÞ for a large range of
tΛ and tc (where tc was input by hand), and then calculated
MCP for a range of tobs, choosing values for the three time
scales so that they were well separated. We considered the
following regions of parameter space:

Region I tobs < tc < tΛ ð27Þ

Region II tc < tobs < tΛ ð28Þ

Region III tc < tΛ < tobs ð29Þ

Region IV tΛ < tobs ð30Þ

Region V tobs < tΛ ð31Þ
where we fixed tc ⋘ tΛ in Regions I, II, and III, and
tΛ ⋘ tc in Regions IV and V. In the cases of Regions IV
and V, we do not need to consider the size of tc relative to
tobs, as curvature domination never occurs when tΛ ⋘ tc.
We then plotted the calculable parts of the probability
distribution, namely t−2Λ MCP, for each region and a variety
of ðp; q;Q;ΛÞ to see if there were any discernible patterns
in the results.
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We found that the qualitative results are largely inde-
pendent of the number of compact dimensions q (regardless
of the total number of dimensionsD ¼ pþ 2þ q), and the
values of Q and Λ. The overall trends in the probability
distribution are instead largely determined by the number
pþ 1 of large dimensions in the nucleated bubbles. These
results are discussed in Secs. VI A 1–VI A 3.

1. The case p ¼ 2

Asmay be expected, in the casep ¼ 2, which corresponds
to a (3þ 1)-dimensional universe (with the possibility of q
small dimensions compactified on a sphere), our results are
similar to thoseofRefs. [19,20].These results are illustrated in
the force diagram in Fig. 3. In Region I, corresponding to
tobs < tc < tΛ, the probability remains almost constant over
log tΛ, but increases with decreasing log tc. In Region II,
corresponding to tc < tobs < tΛ, the probability remains
almost constant over log tΛ, but increases with increasing
log tc. In Region III, corresponding to tc < tΛ < tobs, the
probability increaseswithboth log tΛ and log tc. InRegion IV,
corresponding to tΛ < tobs, the probability remains constant
over log tc but increases with log tΛ, whereas in Region V,
corresponding to tobs < tΛ, the probability remains constant
over log tc and decreases as log tΛ increases.
This information allows us to draw the force diagram for

the probability distribution over log tc and log tΛ for fixed
tobs, where we have assumed that the factors gðlog tcÞ ×
αðlog tobs; log tc; log tΛÞ do not provide the leading con-
tribution to the probability of observations. We see that for
any fixed tobs, the maximum of the probability distribution
lies along the lines log tobs ∼ log tΛ and log tobs ∼ log tc. By
assuming that gðlog tcÞ decreases mildly, like an inverse
power of log tc [9], and by making mild assumptions on the
form of α, as given in Refs. [19,20], we can predict that the
maximum of the probability distribution, when all three
time scales are allowed to vary, is at

log tobs ∼ log tc ∼ log tΛ ∼ log tmax
Λ ; ð32Þ

where log tmax
Λ corresponds to the smallest cosmological

constant in the landscape, when considering bubbles with
pþ 1 ¼ 3 large dimensions. This scale is set by the
number N of such vacua in the landscape, according
to tmax

Λ ∼N 1=2.

2. The case p ≥ 3

In the case p ≥ 3, which corresponds to universes with a
larger number of large dimensions than our own, we obtain
slightly different results. In Region I, corresponding to
tobs < tc < tΛ, the probability increases with log tΛ, but
decreases with log tc. In Region II, corresponding to
tc < tobs < tΛ, the probability increases with both log tΛ
and log tc. In Region III, corresponding to tc < tΛ < tobs,
the probability is sharply peaked at large log tΛ and
increases with log tc. In Regions IV and V, corresponding
to tΛ < tobs and tobs < tΛ respectively, the probability
remains constant over log tc but increases with log tΛ.
Once again, we can draw a force diagram, shown in Fig. 4,

for the probability distribution over log tc and log tΛ for fixed
tobs. We see that for any fixed tobs, there is a runaway of the
probability distribution towards large values of log tΛ, and
the distribution is peaked along the line log tobs ∼ log tc.
Thus once again, as long as the factors gðlog tcÞ ×
αðlog tobs; log tc; log tΛÞ do not dominate the probability
distribution, we can predict that the maximum probability,
when all three time scales are allowed to vary, is at

log tobs ∼ log tc ∼ log tΛ ∼ log tmax
Λ ; ð33Þ

where log tmax
Λ corresponds to the smallest cosmological

constant in the landscape, when considering bubbles with
pþ 1 large dimensions. So we see the same coincidence as
in the case p ¼ 2, even though the probability distribution
itself looks different. As before, we see that the scale log tobs
is set by the smallest cosmological constant in the landscape,

FIG. 4. The force diagram for the probability distribution when
p ≥ 3 for fixed tobs, obtained using the causal patch measure. The
arrows indicate directions of increasing probability. The distri-
bution exhibits a runaway towards large tΛ and tc ∼ tobs.

FIG. 3. The force diagram for the probability distribution when
p ¼ 2 for fixed tobs, obtained using the causal patch measure. The
arrows indicate directions of increasing probability. The distri-
bution is peaked along the degenerate half-lines forming the
boundary between Regions I and II.
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when considering bubbles with pþ 1 ¼ 4 large dimensions.
This scale is set by the number N of such vacua in the
landscape, according to tmaxΛ ∼N 1=2.

3. The case p ¼ 1

Finally we consider the case p ¼ 1, which covers
universes with one fewer large dimension than our own.
In Regions I and II, corresponding to tobs < tc < tΛ and
tc < tobs < tΛ respectively, the probability decreases as
log tΛ increases, but remains constant over log tc. In
Region III, corresponding to tc < tΛ < tobs, the probability
decreases with log tΛ, seeming to reach a local maximum
near the minimum value of log tΛ, and remains constant
over log tc. In Region IV, corresponding to tΛ < tobs, the
probability remains constant over log tc but decreases with
log tΛ, whereas in Region V, corresponding to tobs < tΛ, the
probability remains constant over log tc and increases as
log tΛ increases.
We can now draw the force diagram, shown in Fig. 5, for

the probability distribution over log tc and log tΛ for fixed
tobs. We see that for any fixed tobs, there is a runaway of the
probability distribution towards small values of log tΛ in
Regions I, II, and III, and the distribution is peaked along
the line log tobs ∼ log tΛ in Regions IVand V. This situation
is more complicated than in the cases p ≥ 2, as we cannot
make any definitive statements about coincidences of the
time scales without more detailed calculations.

B. The fat geodesic measure

For the fat geodesic measure, we can use the fact that we
count observations in a fixed physical volume around the
geodesic, and the solution for aðtÞ found using the
Friedmann equation, to determine the volume available
to observers living at tobs. Since we are counting observers
in a fixed physical volume, the mass of observers within the
cutoff region is proportional to the matter density:

MFGαρm ∼
tp−1c

apþ1
: ð34Þ

The probability distribution of observations made in the
landscape is then given by Eq. (26), but withMFG, the mass
of observers inside the region defined by the fat geodesic
cutoff, replacing MCP, the mass of observers inside the
region defined by the causal patch cutoff.
As with the causal patch cutoff, we scanned over a

range of tΛ by varying the parameters p, q, Q, and Λ, and
solved the differential equations for aðtÞ and ϕðtÞ for a
large range of tΛ and tc (where tc was input by hand), and
then calculatedMFG for a range of tobs, choosing values for
the three time scales so that they were well separated.
We considered the same Regions I–Vof parameter space as
with the causal patch measure. We then plotted the
calculable parts of the probability distribution, namely
t−2Λ MFG, for each region and a variety of ðp; q;Q;ΛÞ to
see if there were any discernible patterns in the results.
As with the causal patch measure, we found that the

qualitative results depend only on the number pþ 1 of
large dimensions. However, unlike the causal patch
measure, in the case of the fat geodesic measure the shape
of the probability distribution is the same in all cases where
the number pþ 1 of large dimensions is ≥ 3. These results
are discussed in Secs. VI B 1–VI B 2.

1. The case p ≥ 2

In the case p ≥ 2, our results are similar to those of
Refs. [19,20] in the case p ¼ 2, and are illustrated in the
force diagram in Fig. 6. In Region I, corresponding to tobs <
tc < tΛ, the probability remains constant over log tc, but
decreases with log tΛ. In Region II, corresponding to tc <
tobs < tΛ, the probability decreases with log tΛ, but increases
with log tc. InRegion III, corresponding to tc < tΛ < tobs, the
probability increaseswithboth log tΛ and log tc. InRegion IV,
corresponding to tΛ < tobs, the probability remains constant

FIG. 5. The force diagram for the probability distribution when
p ¼ 1 for fixed tobs, obtained using the causal patch measure. The
arrows indicate directions of increasing probability. The distri-
bution is peaked along log tobs ∼ log tΛ in Regions IV and V, and
exhibits a runaway towards small log tΛ in the rest of parameter
space.

FIG. 6. The force diagram for the probability distribution when
p ≥ 2 for fixed tobs, obtained using the fat geodesic cutoff. The
arrows indicate directions of increasing probability. The distri-
bution is peaked along the line separating Regions IV and V.
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over log tc but increases with log tΛ, whereas in Region V,
corresponding to tobs < tΛ, the probability remains constant
over log tc and decreases as log tΛ increases.
This information allows us to draw the force diagram for

the probability distribution over log tc and log tΛ for fixed
tobs, where we have assumed that the factors gðlog tcÞ ×
αðlog tobs; log tc; log tΛÞ do not provide the leading con-
tribution to the probability of observations. We see that for
any fixed tobs, the maximum of the probability distribution
lies along the line separating Regions IV and V. A mild
assumption on the prior probability distribution that favors
small log tc [19,20] thus predicts the coincidence

log tobs ∼ log tc ∼ log tΛ: ð35Þ

We have confirmed numerically that MFG decreases with
tobs. Assuming that the factor gðlog tobsÞ in Eq. (26) also
decreases with tobs, and that αðlog tobsÞ does not grow too
quickly with tobs, we can say that there is a strong
preference for tobs, and thus tΛ, to be small.

2. The case p ¼ 1

Finally we consider the case p ¼ 1, which covers
universes with one fewer large dimension than our own.
In all the Regions I–V, the probability distribution is
constant over log tc. In Regions I–III and Region V, the
probability decreases with log tΛ, whereas in Region IV the
probability increases with log tΛ to reach a local maximum
at some large value of log tΛ at the upper limit of its range,
such that tΛ < tobs.
We can now draw the force diagram, shown in Fig. 7, for

the probability distribution over log tc and log tΛ for fixed
tobs. We see that for any fixed tobs, there is a runaway of the
probability distribution towards small values of log tΛ in
Regions I, II, III, and V. In Region IV, the probability

distribution increases with increasing log tΛ towards a
local maximum near the top of the range of tΛ, when tΛ <
tobs and tΛ⋘tc. This situation is more complicated than in
the cases p ≥ 2, as we cannot make any definitive state-
ments about coincidences of the time scales without more
detailed calculations and better knowledge of prior
probabilities.

VII. DISCUSSION

In conclusion, we find that the prediction of the double
coincidence of time scales tobs ∼ tΛ ∼ tc, and the relation of
the smallness of the cosmological constant to the size of the
landscape, holds even when the multiverse is generalized to
be multidimensional, both for the causal patch measure and
the fat geodesic cutoff. Thus, the observed coincidence
cannot be used to preferentially select one measure over the
other when we are considering a multidimensional multi-
verse. Furthermore, this prediction holds regardless of the
number pþ 1 of large dimensions in a given vacuum,
which indicates that this observable cannot be interpreted
as a consequence of our particular universe having three
large spatial dimensions. In the case of the causal patch
measure, the coincidence of time scales occurs for a
different reason in the case when p ¼ 2 compared to when
p ≥ 3, as the probability distribution of observations has
very different properties in the two cases. When the fat
geodesic cutoff is generalized to a multidimensional multi-
verse, we find that the measure is even more robust: in
addition to predicting the coincidence of the time scales
tobs ∼ tΛ ∼ tc in all cases when the parameter p ≥ 2, the
shape of the probability distribution of observations is
independent of the value of p. This makes intuitive sense
when you consider that the generalization of the fat
geodesic cutoff gives the same weighting to any unit of
proper volume within a multiverse, regardless of the
number of large dimensions. Thus, the probability distri-
bution of observations remains independent of the number
of large dimensions. We are thus led towards the conclusion
that the coincidence of the time scales that we observe
within our own Universe is not a special feature of the
particular features of our world.
There are many possibilities for further investigations

along these lines. For example, although we have argued
that the multiverse model we have considered is fairly
generic, it could be worthwhile to investigate other models
of multiverses with multidimensional vacua to see if the
same patterns emerge, to make sure that these results are
not model dependent. It would also be profitable to carry
out a more detailed analysis of the probability distribution
in this model, to see if more distinctive features of the
distribution could be uncovered in addition to identifying
the maxima. It would be interesting to see, for instance,
whether the agreement between log tobs, log tΛ, and log tc
varies with p, or whether the distribution becomes more
sharply peaked along the lines of coincidence as p varies.

FIG. 7. The force diagram for the probability distribution when
p ¼ 1 for fixed tobs, obtained using the fat geodesic cutoff. The
arrows indicate directions of increasing probability. The distri-
bution is peaked along log tobs ∼ log tΛ in Regions IV and V, and
exhibits a runaway towards small log tΛ in the rest of parameter
space.
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In general, the qualitative statement that the probability
distribution of observations appears to change significantly
when p > 2 compared to p ¼ 2 suggests that it would be
worthwhile to extend the study of measures from multi-
verses with only (3þ 1)-dimensional vacua to multiverses
with vacua of many different dimensions.
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