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During and after recombination, in addition to Thomson scattering with free electrons, photons also
couple to neutral hydrogen and helium atoms through Rayleigh scattering. This coupling influences both
cosmic microwave background (CMB) anisotropies and the distribution of matter in the Universe. The
frequency dependence of the Rayleigh cross section breaks the thermal nature of CMB temperature and
polarization anisotropies and effectively doubles the number of variables needed to describe CMB intensity
and polarization statistics, while the additional atomic coupling changes the matter distribution and the
lensing of the CMB. We introduce a new method to capture the effects of Rayleigh scattering on
cosmological power spectra. Rayleigh scattering modifies CMB temperature and polarization anisotropies
at the ∼1% level at 35 GHz (scaling ∝ ν4), and modifies matter correlations by as much as ∼0.3%. We show
the Rayleigh signal, especially the cross-spectra between the thermal (Rayleigh) E-polarization and
Rayleigh (thermal) intensity signal, may be detectable with future CMB missions even in the presence of
foregrounds, and how this new information might help to better constrain the cosmological parameters.

DOI: 10.1103/PhysRevD.91.083520 PACS numbers: 98.80.-k, 95.30.Dr, 95.30.Jx, 98.70.Vc

I. INTRODUCTION

Most descriptions of the cosmic microwave background
(CMB) anisotropies assume that before recombination at
z≃ 1090, photons are tightly coupled to baryons through
Thomson scattering with electrons and afterwards free
stream from the surface of last scattering to us [1–3].
However, in fact photons were coupled not only to free
electrons through Thomson scattering, but also to neutral
hydrogen and helium through Rayleigh scattering. The
Rayleigh scattering cross section depends approximately
on photon frequency to the fourth power and, since it
modifies the opacity near decoupling at the few percent
level [4], has been neglected in most of the literature to
simplify analysis. In this work we revisit the impact of
Rayleigh scattering on cosmological perturbations, quan-
tify its effects, and suggest potential ways that this effect
may be detected in the future.
In the past decade the Wilkinson Microwave Anisotropy

Probe has provided us with precise measurements of CMB
anisotropies [5] and, complemented by next-generation
ground-based experiments (SPT [6], ACT [7]), the Planck
satellite has now characterized the microwave background
anisotropies even to a higher precision [8]. Future mea-
surements may even probe CMB anisotropies with more
frequencies and higher precision (e.g., PRISM [9] or PIXIE
[10]). With this dramatic improvement in experimental
capability in mind it is timely to include the physics of

Rayleigh scattering in cosmological perturbations theory
both to find accurate solutions and forecast whether these
effects might be measured with proposed instruments.
A conceptually straightforward method to calculate the

effect of Rayleigh scattering on photon perturbations,
as its cross section is frequency dependent, is to consider
separate Boltzmann hierarchies with different scattering
source and visibility functions at each frequency of interest.
While this captures the effects of the extra opacity that
photons experience, it does not account for either the
momentum transferred to the atoms or the effect of spectral
distortion on gravitational perturbations. In order to model
these effects, the photon perturbation at each frequency
must be integrated over to determine the photon density and
momentum density which influence gravitational perturba-
tions and the photon-baryon coupling. Existing work
has modeled the effect of Rayleigh scattering on CMB
anisotropies but has avoided determining the baryonic
backreaction in detail [11,12]. We introduce here a new
approach to solve this problem and accurately treat baryons
and frequency-dependent photon perturbations simultane-
ously, allowing us to quantify the impact of Rayleigh
scattering on matter perturbations and validate the results of
existing CMB anisotropy calculations. The key innovation
in our approach is to track perturbations in photon spectral
distortions rather than photon perturbations at a particular
frequency.
Rayleigh scattering changes the rate at which photons

and baryons decouple from each other, and extra photon*elham@phas.ubc.ca
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drag modifies exactly how baryon perturbations are influ-
enced by photon perturbations. As we quantify below, this
alters the shape of the matter correlation function and
makes a small shift to the baryon acoustic oscillation
(BAO) scale. Like prior work on this subject we find that
Rayleigh scattering results in percent-level frequency-
dependent distortions to CMB power spectra. These dis-
tortions break the thermal nature of CMB temperature and
polarization anisotropies so that primary CMB intensity
and polarization patterns at different frequencies are not
perfectly correlated with each other. We show below that
to a very good approximation this effectively doubles the
number of random variables needed to completely describe
the CMB sky, and determine for the first time the set of
intensity and E-polarization eigenspectra needed to capture
this statistical information. Finally, we forecast how well
future CMB missions might detect these eigenspectra and
show that a PRISM-like experiment may be able to detect
the Rayleigh signal.
The paper is organized as follows: In Sec. II, the relevant

Rayleigh scattering cross sections for hydrogen and
helium are presented. Section III reviews the cosmological
equations governing the evolution of perturbations in
the presence of Rayleigh scattering and presents our
new method to calculate the effect of this additional
frequency-dependent opacity. The effect of Rayleigh
scattering on the matter two-point correlation function
and on the CMB power spectra is calculated in Secs. IV
and V respectively. In Sec. VI, we present the two sets
of variables needed to describe the CMB intensity and
E-polarization statistics. Section VII investigates the
possibility of detecting the Rayleigh signal and Sec. VIII
concludes.

II. RAYLEIGH SCATTERING CROSS SECTION

The cross section for Rayleigh scattering of a long-
wavelength photon from an atom is

σRðνÞ ¼ σT jSj2; ð1Þ

where σT is the Thomson cross section and the dimension-
less scattering amplitude S is given by [13]

S ¼
X∞
j¼2

f1j
ν2

ν21j − ν2
: ð2Þ

Here ν is the photon frequency, f1j is the Lyman series
oscillator strength, and ν1j is the Lyman series frequencies.
Note that the summation includes an implied integration
over unbound states j.
At the time of recombination, when T ≃ 0.25 eV, typical

photon frequencies are much smaller than ν1j and it is
therefore appropriate to Taylor expand the dimensionless
scattering amplitude as

S ¼
X∞
k¼0

a2kþ2ðhνÞ2kþ2; ð3Þ

where the coefficients are

a2kþ2 ¼
X
j≥2

f1jðhν1jÞ−2k−2 þ
Z

∞

EI

df
dE

E−2k−2dE: ð4Þ

Here we have written the integral over continuum states
explicitly. The integral starts at the ionization energy EI
of the relevant atom. The Rayleigh scattering cross section
is then

σR ¼ σT
X∞
k¼0

b2kþ4ðhνÞ2kþ4; ð5Þ

where

b2kþ4 ¼
Xk
p¼0

a2pþ2a2ðk−pÞþ2: ð6Þ

The coefficients can be evaluated provided that the oscil-
lator strength distributions are known. For H, these are
known exactly: for the discrete spectrum (1s → np), the
oscillator strengths are [14]

f1s;np ¼ 256n5ðn − 1Þ2n−4
3ðnþ 1Þ2nþ4

; ð7Þ

with hν1s;np ¼ ð1 − n−2ÞRy. Above EI ¼ 1Ry ¼ 13.6 eV
there is a continuous spectrum of oscillator strengths,

df
dE

¼ 128e−4v arctanðv−1Þ
3ðE=RyÞ4ð1 − e−2πvÞRy

−1; ð8Þ

where v ¼ ðE=Ry − 1Þ−1=2 is the principal quantum num-
ber of the continuum state.
For He, the electric dipole selection rules allow the

ground 1s2 1S state to have nonzero oscillator strength only
with the 1P discrete and continuum states. We have taken
the oscillator strengths and energies for the 1s2 1S →
1s np 1P transitions from Refs. [15,16] for n ≤ 9 and used
the asymptotic formula of Ref. [17] for n > 9. For the
continuum states we used the TOPbase cross sections [18],
which are trivially converted into oscillator strengths. The
resulting b2kþ4 coefficients that we adopt for the rest of this
work are shown in Table I. The radiative transfer equations
also require the angular distribution and polarization of
Rayleigh-scattered radiation. For scattering with initial and
final states of zero orbital angular momentum (S → S), and
neglecting spin-orbit coupling, the scattering is of a pure
“scalar” nature (in the language of Ref. [19] Sec. 61) and
has the same angular and polarization dependence as
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Thomson scattering, dP=dΩ ∝ 1þ cos2 θ. Near a reso-
nance such as Lyman α, fine structure splitting makes the
electron spin important, and the scattering by hydrogen
takes on a different form that is a combination of scalar,
antisymmetric, and symmetric scattering; the full equations
for the angular scattering distribution as a function of
frequency through the resonance can be found in e.g.
Appendix B of Ref. [20]. The equations in Appendix B of
Ref. [20] show that the angular distribution approaches
the scalar case with corrections of order Δν2fs=ðνLyα − νÞ2
as one moves away from the resonance, where the fine
structure splitting is Δνfs ∼ 11 GHz. For cases considered
in this paper (frequencies up to 857 GHz observer frame, or
0.52νLyα at z ¼ 1500), we are thus safely below the lowest
resonant frequency, and the scalar angular distribution—
already incorporated in the CMB Boltzmann hierarchy
formalism—is applicable.

III. COSMOLOGICAL EQUATIONS

To include the effects of Rayleigh scattering on cosmo-
logical perturbations, we must modify the evolution equa-
tions for photon temperature, photon polarization and
baryon velocity perturbations. We use synchronous gauge
in this paper as it is convenient for most numerical
computations. The full cosmological evolution equations
in this gauge are given in a number of papers [1,21],
and therefore we only explicitly show the equations that
need modification. In particular, using the Boltzmann
equation in this gauge we find the evolution equations
for the temperature perturbation ΘI and E-polarization ΘE
hierarchies are

_ΘI0 ¼ −kΘI1 þ
_a
a
ν
∂ΘI0

∂ν − _h
6
; ð9Þ

_ΘI1 ¼
k
3
ΘI0 − 2k

3
ΘI2 þ

_a
a
ν
∂ΘI1

∂ν
− _κ

�
−ΘI1 þ

1

3
vb

�
; ð10Þ

_ΘI2 ¼
2k
5
ΘI1 − 3k

5
ΘI3 þ

_a
a
ν
∂ΘI2

∂ν þ
_hþ 6_η

15

− _κ

�
−ΘI2 þ

1

10
Π
�
; ð11Þ

_ΘIl ¼
k

2lþ 1
½lΘIðl−1Þ − ðlþ 1ÞΘIðlþ1Þ�

þ _a
a
ν
∂ΘIl

∂ν þ _κΘIl l ≥ 3; ð12Þ

_ΘE2 ¼
2k
5
ΘE1 − k

3
ΘE3 þ

_a
a
ν
∂ΘE2

∂ν
þ _κ

�
ΘE2 − 2

5
Π
�
; ð13Þ

_ΘEl ¼
k

2lþ 1

�
lΘEðl−1Þ − ðlþ 3Þðl − 1Þ

lþ 1
ΘEðlþ1Þ

�

þ _a
a
ν
∂ΘEl

∂ν þ _κΘEl l ≥ 3; ð14Þ

where an overdot denotes derivatives with respect to
conformal time τ, k is the wave number of the perturbations,
h and η are the synchronous gauge metric perturbations,
Π is the combination ΘI2 þ 3

2
ΘE2, a the scale factor and

_κ is the comoving opacity defined as

−_κ ¼ −_κT − _κR

¼ neσTaþ nHσHRaþ nHeσ
He
R a: ð15Þ

Here ne, nH and nHe are respectively the number densities
of free electrons, neutral hydrogen and helium atoms. The
comoving opacity for Rayleigh and Thomson scattering as
a function of conformal time is plotted in Fig. 1 for a couple
of observed frequencies.
In the standard case when opacity does not depend on

frequency, the baryons evolve according to equations

_δb ¼ −kvb − 1

2
_h; ð16Þ

TABLE I. The cross-section coefficients b2kþ4Ry2kþ4 for H and
He in the Rydberg-based units that we adopt for this work.

2kþ 4 H He

4 1.265625 0.120798
6 3.738281 0.067243
8 8.813931 0.031585
10 19.153795 0.014153
12 39.923032 0.006226

200 300 400 500 600
10 8

10 6

10 4

0.01

1

Mpc

M
pc

1

FIG. 1 (color online). The comoving opacity as a function of
comoving time. The black (solid) line is for Thomson scattering
while the blue (large dashed), red (small dashed), green (dot
dashed) and brown (dotted) lines are for Rayleigh scattering at
frequencies 857, 545, 353, and 217 GHz respectively.
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_vb þ
_a
a
vb − kc2sδb ¼

1

ρ̄b

Z
d3p
ð2πÞ3 ð−pμÞC½fð~pÞ�

¼ 4ρ̄γ
3ρ̄b

_κð−3ΘI1 þ vbÞ; ð17Þ

where δb and vb are baryon overdensity and velocity,
cs is the intrinsic baryon sound speed, fðpÞ is the photon
distribution function, C½fð~pÞ� ¼ df

dt is the collision term in
the Boltzmann equation for photon temperature perturba-
tions, μ ¼ p̂ · k̂, and ρ̄γ and ρ̄b are the mean photon and
baryon energy densities.
Including Rayleigh scattering will make the opacity

frequency dependent; therefore the scattering term in the
baryon velocity must be modified to
Z

d3p
ð2πÞ3 ð−pμÞC½fð~pÞ�

¼
Z

d3p
ð2πÞ3 p

2
∂f
∂p μ_κðpÞðΘI0ðpÞ − ΘIðpÞ þ μvbÞ:

ð18Þ
As discussed above, a straightforward method to solve

the above system of equations is to consider a separate
Boltzmann hierarchy for each frequency of interest, each
with different scattering sources and visibility function, and
then integrate over each photon frequency bin to get the
total baryon-photon coupling [11,12]. However there is
another computationally efficient method that can be used.
If at the times that atoms are present the typical CMB
photon energies are much smaller than Rydberg energy
hν ≪ Ry, then we can writeΘIl andΘEl as the Taylor series
in the comoving frequency aν where each term in the series
describes spectral-distortion perturbations that scale with
increasing powers of frequency. Specifically we write

ΘIlðνÞ ¼
X∞
r¼0

Θð2rÞ
Il

�
ahν
a�Ry

�
2r
; ð19Þ

ΘElðνÞ ¼
X∞
r¼0

Θð2rÞ
El

�
ahν
a�Ry

�
2r
: ð20Þ

Note that only even powers of ν appear because the
scattering cross section contains only even powers of ν.
We expanded the perturbations in terms of ahν=a�Ry
because this ratio does not evolve with time for a given
photon and a� ¼ 0.001 is a reference epoch for normalizing
the coefficients in the series expansion (its value has
no physical consequences). Similarly we can write the
opacity as

_κðνÞ ¼
X∞
r¼0

_κ2r

�
ahν
a�Ry

�
2r
; ð21Þ

where _κ0 ¼ −neσTa is the standard Thomson scattering
rate, _κ1 ¼ 0 and

−_κ2r ¼ ðnHbH2r þ nHebHe
2r ÞσTa

�
a�
a

�
2r
: ð22Þ

Substituting these Taylor expansions into evolution
equations for photon temperature and polarization pertur-
bations leads to the following evolution equations for each

Θð2nÞ
Il and Θð2nÞ

El term:

_Θð2nÞ
I0 ¼ −kΘð2nÞ

I1 − _h
6
δn;0; ð23Þ

_Θð2nÞ
I1 ¼ k

3
Θð2nÞ

I0 − 2k
3
Θð2nÞ

I2

−
Xn
r¼0

_κ2r

�
−Θ2ðn−rÞ

I1 þ vb
3
δn−r;0

�
; ð24Þ

_Θð2nÞ
I2 ¼ 2k

5
Θð2nÞ

I1 − 3k
5
Θð2nÞ

I3 þ
_hþ 6_η

15
δn;0

−
Xn
r¼0

_κ2r

�
−Θ2ðn−rÞ

I2 þ Π2ðn−rÞ
10

�
; ð25Þ

_Θð2nÞ
Il ¼ k

2lþ 1

h
lΘð2nÞ

Iðl−1Þ − ðlþ 1ÞΘð2nÞ
Iðlþ1Þ

i

þ
Xn
r¼0

_κ2rΘ
2ðn−rÞ
Il l ≥ 3; ð26Þ

_Θð2nÞ
E2 ¼ 2k

5
Θð2nÞ

E1 − k
3
Θð2nÞ

E3

þ
Xn
r¼0

_κ2r

�
Θ2ðn−rÞ

E2 − 2

5
Π2ðn−rÞ

�
; ð27Þ

_Θð2nÞ
El ¼ k

2lþ 1

�
lΘð2nÞ

Eðl−1Þ −
ðlþ 3Þðl − 1Þ

lþ 1
Θð2nÞ

Eðlþ1Þ

�

þ
Xn
r¼0

_κ2rΘ
2ðn−rÞ
El l ≥ 3: ð28Þ

To find the evolution equation for baryon velocity we first
must calculate the following integral

In ¼ − 1

4ρ̄γTn

Z
∞

0

dν
2π2

νnþ4
∂f
∂ν

¼ 15

4π4
ðnþ 4Þ!ζ½nþ 4�; ð29Þ

where ζ is the Riemann ζ function. Therefore the baryon
velocity in the presence of Rayleigh scattering evolves
according to
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_vb ¼ − _a
a
vb þ kc2sδb

þ 4ρ̄γ
3ρ̄b

X∞
r¼0

_κ2r

�
−3X∞

n¼0

Θð2nÞ
I1 I2ðnþrÞ

�
aT
a�Ry

�
2ðnþrÞ

þ vbI2r

�
aT
a�Ry

�
2r
�
: ð30Þ

As shown in Eq. (2), the Rayleigh cross section blows
up near the resonant frequencies. Therefore photons with
these frequencies remain tightly coupled to baryons.
Photons do not self-interact so these resonant photons
are unlikely to change the CMB power spectrum. However
they do enhance the pressure or sound speed of baryons.
There is typically of order 1 photon per baryon near the
Lyman-α line and since the photon energy is 10.2 eV, and
the baryon mass is 1 GeV, the baryon sound speed increases
by roughly 10−8. This only alters perturbations at very
small scales below those of interest in this work.
Since metric perturbation evolution depends on the total

photon overdensity and velocity, the final modification is
to calculate the change in the photon stress-energy tensor
in the presence of frequency-dependent scattering. The
fractional photon energy density perturbation is

δγ ¼ − 1

ρ̄γ

Z
ν4dν

∂f
∂νΘI0ðνÞ

¼ 4
X∞
r¼0

Θð2rÞ
I0 I2r

�
aT
a�Ry

�
2r
; ð31Þ

and the photon momentum density is

Θγ ¼ − 3k
4ρ̄γ

Z
ν4dν

∂f
∂νΘI1ðνÞ

¼ 3k
X∞
r¼0

Θð2rÞ
I1 I2r

�
aT
a�Ry

�
2r
: ð32Þ

This appears to replace the problem of summing over
many perturbations at different frequencies with summing
over many perturbations with different spectral-distortion
shapes. However, we find in practice that these sums
rapidly converge after including only a few of the spec-
tral-distortion terms which allows the entire system to be
solved for efficiently and accurately.

IV. MATTER POWER SPECTRUM

One of the physical effects of Rayleigh scattering is a
change in the matter two-point correlation function. The
matter correlation function is the excess probability, com-
pared with what is expected from a random distribution, of
finding a matter overdensity at a distance ~r apart and its
Fourier transform is the matter power spectrum,

ξð~rÞ ¼ hδð~xÞδð~xþ ~rÞi ¼
Z

d3k
ð2πÞ3 PðkÞe

i~k:~r: ð33Þ

Rayleigh scattering increases the total baryon-photon
coupling which delays the time of recombination. As
shown in Fig. 2, the correlation function has a peak near
a radius of ∼150 Mpc, the BAO scale, which represents the
sound horizon at the time of recombination. This changes
due to the delay in the time of photon-baryon decoupling.
The percentage change in the two-point correlation func-
tion due to Rayleigh scattering is plotted in Fig. 3. Adding
Rayleigh scattering to the opacity changes the correlation
function by up to ∼0.3%. Unless otherwise stated we show
all results in a fiducial model where we adopt the best-fit
parameters from Planck [8].
Another way of visualizing how much the matter power

spectrum is changed in the presence of Rayleigh scattering
is by looking at the evolution of a concentrated matter
overdensity in real space. In Fig. 4, the redshift evaluation
of a narrow Gaussian-shaped adiabatic density fluctuation
in real space is displayed.

0 50 100 150
0.00

0.01

0.02

0.03

0.04

0.05

r Mpc

r
2

r

FIG. 2 (color online). The matter two-point correlation
function, r2ξð~rÞ, as a function of the distance between two
overdensities for our fiducial cosmological parameters.

0 50 100 150
0.3

0.2

0.1

0.0

0.1

r Mpc

10
0

FIG. 3 (color online). The percentage change in the matter
correlation function due to Rayleigh scattering for our fiducial
cosmological parameters.
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At very early stages, when the photons and baryons
were tightly coupled, Fig. 4(a), the baryon-photon plasma
density wave travels outward from the initial overdensity.
Figure 4(b) shows a snapshot of the density waves at
redshift z ¼ 1050. At this time the temperature is low
enough that the neutral atoms can form; therefore the
photons begin to decouple from baryons and the sound
speed starts to drop. Thus the baryon density wave slows
down compared to the photon density wave. In Fig. 4(c),
the waves are shown at z ¼ 500 when photons and
baryons are completely decoupled. The photon perturba-
tion smooths itself out at the speed of light. But because the
sound speed is much smaller than the speed of light the
baryon density wave stalls. Figure 4(d) presents the late-
time picture. The photons free stream until now when we
can observe them as the cosmic microwave background
and the baryon perturbation clusters around the initial
overdensity and in a shell ∼150 Mpc radius.

r h 1 Mpc

r

r h 1 Mpc

r

r h 1 Mpc

r

r h 1 Mpc

r

z=2000 z= 1050

z=500 z=100

0.000

0.002

0.004

0.006

0.008

0.000

0.002

0.004

0.006

0.008

0.010

0.000

0.002

0.004

0.006

0.008

0.000

0.005

0.010

0.015

0.020

0.025
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10 1005020 3015 15070 1005020 30 15070

100 200150 100 200150

(a) (b)

(c) (d)

FIG. 4 (color online). The redshift evaluation of a narrow Gaussian-shaped adiabatic density fluctuation in real space. The blue (solid)
and red (dashed) lines are respectively the baryon and photon density waves. At very early times [panel (a)], baryons and photons are
tightly coupled and their density waves travel together. As time goes by [panels (b)–(d)], they decouple, photons free stream to us and
baryons cluster around the initial overdensity and in a shell at about 150 Mpc radius.

0.2

0.0

0.2

0.4

0.6

r h 1 Mpc

10
0

10 1005020 2003015 15070

FIG. 5 (color online). The percentage change in physical
baryon density fluctuations in real space due to Rayleigh
scattering at different redshifts. The blue (solid), red (dashed),
green (dot dashed) and brown (dotted) lines correspond to
redshifts 0, 100, 500 and 1050 respectively.
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In Fig. 5, the percentage change in physical baryon
density fluctuations in real space due to Rayleigh
scattering is plotted at different redshifts. Note that
while Δδ=δ is up to 0.6% at some points the percentage
change in the location of the peak in baryon density wave
or the BAO scale due to Rayleigh scattering is less than
0.01% in this example, and so the detailed effect of
Rayleigh scattering is not well modeled as a simple shift
in the BAO scale.

V. PHOTON POWER SPECTRA

To calculate the power spectra for both photon temper-
ature and E-polarization perturbations, we use the line-of-
sight integration approach of Ref. [22]. In this approach, the
solutions of Eqs. (23)–(28) can be written as an integral
over the product of a source term and a geometrical term
which is just the spherical Bessel function,

ΘIlðτ0Þ ¼
Z

τ0

0

dτSIðk; τÞjl½kðτ0 − τÞ�; ð34Þ

ΘElðτ0Þ ¼
Z

τ0

0

dτSEðk; τÞjl½kðτ0 − τÞ�: ð35Þ

The source functions for temperature and E-polarization
perturbations are given in many previous studies [21,22],

SIðk; τÞ ¼ e−κ
�
− _h
6
þ k
3
σ þ σ̈

k

�
ð36Þ

þ gðτÞ
�
2
_σ

k
þ ΘI0 þ

_vb
k
þ Π

4
þ 3

4k2
Π̈
�

þ _gðτÞ
�
σ

k
þ vb

k
þ 3

4k2
2 _Π

�
þ g̈ðτÞ 3

4k2
Πð0Þ;

SEðk; τÞ ¼ gðτÞ 3
4
Π

1

½kðτ0 − τÞ�2 ; ð37Þ

where σ ¼ ð _hþ 6_ηÞ=2k and gðτÞ ¼ −_κe−κ is the visibility
function. In the presence of Rayleigh scattering the
visibility function is frequency dependent and can be
written as a Taylor series in ahν=a�Ry. The total visibility
function for several frequencies is plotted in Fig. 6. Note
that the total photon visibility function shifts toward later
time with increasing frequencies.
Substituting the Taylor expansions of the visibility

function and temperature and E-polarization perturbations
into the above equations gives the source functions for each

of the Θð2nÞ
Il and Θð2nÞ

El terms,

Θð2nÞ
Il ðτ0Þ ¼

Z
τ0

0

dτSð2nÞI ðk; τÞjl½kðτ0 − τÞ�; ð38Þ

Θð2nÞ
El ðτ0Þ ¼

Z
τ0

0

dτSð2nÞE ðk; τÞjl½kðτ0 − τÞ�; ð39Þ

where

Sð0ÞI ¼ e−κ0
�
− _h
6
þ k
3
σ þ σ̈

k

�
þ g0

�
2
_σ

k
þ Θð0Þ

I0 þ _vb
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FIG. 6 (color online). The total visibility function as a function
of conformal time for several frequencies. The black (solid),
red (dotted), blue (dot dashed) and green (dashed) lines are the
total visibility functions for frequencies 0, 545, 700 and 857 GHz
respectively. The total photon visibility function shifts toward
later times with increasing frequency.
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Sð6ÞI ¼ e−κ0
�
− _h
6
þ k
3
σ þ σ̈

k

�
ð−κ6Þ þ ðg0ð−κ6Þ þ g6Þ

�
2
_σ

k
þ Θð0Þ

I0 þ _vb
k
þ Πð0Þ

4
þ 3

4k2
Π̈ð0Þ

�

þ g0

�
Θð6Þ

I0 þ Πð6Þ

4
þ 3

4k2
Π̈ð6Þ

�
þ ð_g0ð−κ6Þ þ g0ð−_κ6Þ þ _g6Þ

�
σ

k
þ vb

k
þ 3

4k2
2 _Πð0Þ

�

þ _g0
3

4k2
2 _Πð6Þ þ g̈0

3

4k2
Πð6Þ þ ½g̈0ð−κ6Þ þ 2_g0ð−_κ6Þ þ g0ð−κ̈6Þ þ g̈6�

3

4k2
2Πð0Þ; ð42Þ

Sð0ÞE ¼ 3

4½kðτ0 − τÞ�2 g0Π
ð0Þ; ð43Þ

Sð4ÞE ¼ 3

4½kðτ0 − τÞ�2 ðg0½Π
ð4Þ þ Πð0Þð−κ4Þ� þ g4πð0ÞÞ;

ð44Þ

Sð6ÞE ¼ 3

4½kðτ0 − τÞ�2 ðg0½Π
ð6Þ þ Πð0Þð−κ6Þ� þ g6πð0ÞÞ:

ð45Þ

Here g2r ¼ −_κ2re−κ0 . The anisotropy spectrum can be
obtained by integrating over the initial power spectrum of
the metric perturbation, Pψ ðkÞ:

CXY
l ðν; ν0Þ ¼

Z
∞

0

k2dkPψ ðkÞðΘXlðν; kÞΘYlðν0; kÞÞ

¼
X∞
r;r0¼0

CXYð2r;2r0Þ
l

�
ahν
a�Ry

�
2r
�
ahν0

a�Ry

�
2r0

; ð46Þ

where

CXYð2r;2r0Þ
l ¼

Z
∞

0

k2dkPψðkÞðΘð2rÞ
Xl ðkÞΘð2r0Þ

Yl ðkÞÞ: ð47Þ

We used a modified version of CAMB [23] to numeri-

cally calculate CTTð2r;2r0Þ
l and CEEð2r;2r0Þ

l power spectra.
These results are shown in Figs. 7 and 8. Note that while
Eq. (47) describes unlensed power spectra from the surface
of last scattering, here and elsewhere, these power spectra
include the effect of gravitational lensing from structure
along the line of sight implemented in CAMB.
Using Eq. (47), the relative difference in the (lensed)

scalar CMB power spectra due to Rayleigh scattering is
calculated for four different frequencies and presented in
Fig. 9. As expected, the relative difference in the CMB
power spectrum is bigger for higher frequencies. In the
limit of very low frequencies the only modification in these
power spectra arises from the increase in the total baryon-
photon coupling due to Rayleigh scattering which is of
order 0.05%.
On small scales, Rayleigh scattering leads to damping of

both temperature and polarization anisotropies. Rayleigh
scattering increases the rate of photon-baryon interaction
and hence it reduces the photon-diffusion length. Since
the amplitude of Silk damping depends on the integrated
photon-diffusion length, it is also reduced by Rayleigh
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FIG. 7 (color online). The cross-correlation temperature power spectrum CTTð2r;2r0Þ
l of the Θð2rÞ
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Il intensity coefficients for the

ν0, ν4 and ν6 spectral distortions.
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scattering. But there is another reason why the small-scale
anisotropies are more damped in the presence of Rayleigh
scattering. The damping factor at a given wave number is
weighted by the photon visibility function. As we have
seen above, adding Rayleigh scattering shifts the visibility
function toward lower redshifts where Silk damping is
more important and as a result, the anisotropy spectra at
small scale decreases.
We also find Rayleigh scattering leads to a boost in

large-scale E polarization. The reason for this is that the
low-multipole polarization signal is sourced by the CMB
quadrupole. Since the visibility function is shifted toward
later time, where the quadrupole is larger, by Rayleigh
scattering the low-multipole E-polarization signal is
increased. In contrast, the effect of Rayleigh scattering
on the lensing B modes is significantly smaller at low
multipole because these modes are produced by the
gravitational lensing of E modes from a wide range of
scales, so the Rayleigh contribution for them partly
averages out.
Another effect worth noting is that, the oscillations of

δCl=Cl show that the peaks in anisotropy spectra are
shifted in the presence of Rayleigh scattering. Since the
photon cross section is frequency dependent, the location
of the surface of last scattering τRþT� will depend on
frequency too and the higher the frequency, the bigger
τRþT� ðk; νÞ. Therefore the sound horizon at the last
scattering

rRþT
s ¼

Z
τRþT�

0

csdτ ð48Þ

will be larger than the sound horizon at last scattering
when we only include the Thomson scattering rTs and it
will increase with increasing frequencies. The shift in the
location of the peaks will be

δl=l ¼ δk=k ¼ 1 − rRþT
s ðτRþT� Þ=rTs ðτT� Þ ð49Þ

in the direction of decreasing l.

VI. RAYLEIGH DISTORTED STATISTICS

Since the terms in the expansion of temperature and
E-polarization perturbations, Eqs. (19) and (20), fall off
quickly like ðahν=a�RyÞ2 only the two leading terms

play an important role at frequencies smaller than
800 GHZ.We therefore effectively need two sets of random
variables to describe the statistics of temperature and E
polarization. In this section we find a compressed repre-
sentation of the power spectra for independent random
variables. First we introduce the antenna temperature
which is defined as

TantðνÞ ¼ 2πνfðνÞ; ð50Þ

where fðνÞ is the photon phase space distribution function
and ν is the frequency. For the CMB, the antenna temper-
ature has the form

TantðνÞ
T

¼ hν=kBT

ehν=kBT − 1
þ Θ

ðhν=kBTÞ2ehν=kBT
ðehν=kBT − 1Þ2 : ð51Þ

The first term is the monopole which does not interest us
here and we ignore it. The second term gives the spectral
shape of CMB anisotropies. Keeping only the first two
nonzero terms in Eqs. (19) and (20), the antenna temper-
ature for the CMB is

TX
antðνÞ
T

¼ Θð0Þ
X Fð0ÞðνÞ þ Θð4Þ

X Fð4ÞðνÞ; ð52Þ

where Fð0ÞðνÞ ¼ ðhν=kBTÞ2ehν=kBT

ðehν=kBT−1Þ2 is the black body shape

function and Fð4ÞðνÞ ¼ ðhνRyÞ4Fð0ÞðνÞ is the shape function
for the Rayleigh signal and X is either I for intensity
perturbations or E for E-polarization perturbations. The
angular power spectrum covariance matrix for the antenna
temperature is

CXX
l ðν; ν0Þ ¼ CXXð00Þ

l Fð0ÞðνÞFð0Þðν0Þ
þ CXXð04Þ

l ðFð0ÞðνÞFð4Þðν0Þ þ Fð4ÞðνÞFð0Þðν0ÞÞ
þ CXXð44Þ

l Fð4ÞðνÞFð4Þðν0Þ: ð53Þ

This structure indicates that TantðνÞ and Tantðν0Þ are
correlated to each other but are not perfectly correlated
like in the standard thermal case. We diagonalize the
anisotropy spectrum in frequency space for a given
X ∈ fI; Eg to obtain the two uncorrelated eigenvalues:

λXX1;2 ðlÞ ¼
�
CXXð00Þ
l G00 þ 2CXXð04Þ

l G04 þCXXð44Þ
l G44

�

ðCXXð00Þ

l G00 þ 2CXXð04Þ
l G04 þCXXð44Þ

l G44Þ2 − 4ððCXXð04Þ
l Þ2 −CXXð00Þ

l CXXð44Þ
l ÞððG04Þ2 −G00G44Þ

q �
=2; ð54Þ

where Gij ¼ R
FðiÞðνÞFðjÞðνÞdν. The two orthogonal eigenvectors are
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vX1;2lðνÞ ¼ NX
1;2

h
ðCXXð04Þ

l λXX1;2 þ CXXð00Þ
l CXXð44Þ

l G04 − ðCXXð04Þ
l Þ2G04ÞFð0ÞðνÞ

þ ðCXXð44Þ
l λXX1;2 − CXXð00Þ

l CXXð44Þ
l G00 þ ðCXXð04Þ

l Þ2G00ÞFð4ÞðνÞ
i
; ð55Þ

where NX
1;2 is the normalization factor. If we expand the

antenna temperature in terms of spherical harmonics,

TX
antðνÞ=T ¼

X∞
l¼1

Xl

m¼−l
aXlmYlm; ð56Þ

then we can write the coefficients aXlm in the new basis
spanned by the eigenvectors fvT1lðνÞ; vT2lðνÞ; vE1lðνÞ; vE2lðνÞg,

aXlm ¼ αX1lmv
X
1lðνÞ þ αX2lmv

X
2lðνÞ: ð57Þ

The covariance matrix in this new basis takes the compact
form

Clδm;m0

¼
�

CI
l CIE

l

CIE
l CE

l

�
δm;m0

¼

0
BBB@

hαI1lmαI1lm0 i 0 hαI1lmαE1lm0 i hαI1lmαE2lm0 i
0 hαI2lmαI2lm0 i hαI2lmαE1lm0 i hαI2lmαE2lm0 i

hαE1lmαI1lm0 i hαE1lmαI2lm0 i hαE1lmαE1lm0 i 0

hαE2lmαI1lm0 i hαE2lmαI2lm0 i 0 hαE2lmαE2lm0 i

1
CCCA:

ð58Þ

Using this diagonalization, we reduced the number of
power spectra needed to describe the theoretical CMB
covariance matrix from ten to eight. These eight nonzero
elements in the covariance matrix are shown in Fig. 10.
hαI1lmαI1lm0 i and hαE1lmαE1lm0 i are almost proportional to the
primary thermal signal (no Rayleigh scattering included)
and we call them the primary temperature and polarization
signal. The second eigenvalues of intensity and polarization
spectra hαI2lmαI2lm0 i and hαE2lmαE2lm0 i, which are due purely
to Rayleigh scattering and uncorrelated to the first eigen-
values, we call the Rayleigh intensity and E-polarization
signal. Note that since intensity and E-polarization
perturbations must be separately diagonalized their eigen-
vectors are not orthogonal to each other. Thus all possible
temperature-polarization cross-spectra are nonzero and
present in Fig. 10.

VII. DETECTABILITY

Measurement of the Rayleigh signal is very challenging
since at high frequencies that Rayleigh scattering becomes
important, there are very few photons and very high levels
of foreground contamination including galactic dust, and

the cosmic infrared background (CIB). Yet if many high
frequency channels are measured in future CMB missions,
in principle, foregrounds can be removed. The reason for
this is that the spectral shape of the foregrounds is different
from one another and from the spectral shape of the
Rayleigh signal. In addition, the Rayleigh power spectrum
looks very different from all the foregrounds since it is
oscillatory and it spans the full range of scales whereas
most of the foregrounds are important either at lower or
higher l values. For example, the CIB and thermal SZ have
small amplitude at large scales but larger amplitude at
smaller scales, while galactic dust is important at lower l
and is less so at higher l. A future CMB mission that could
be a candidate for detecting the Rayleigh signal is one
similar to the proposed PRISM experiment [9], which has
many high frequency bands with more than 7000 detectors.
In this section we take a PRISM-like experiment as
an example of what capabilities a next-generation CMB
satellite might have and explore the detectability of the
Rayleigh signal with this experiment.

A. Signal-to-noise ratio of Rayleigh signal

Our goal is to find the signal-to-noise ratio for the eight
nonzero elements of the CMB covariance matrix. As an
example, we use the foreground removal method described
in Ref. [24] and closely follow its notation. In this method,
the foregrounds are treated as an additional source of noise
which is correlated between frequency channels. If the
frequency dependence, the scale dependence and also the
variation in frequency dependence across the sky are
known for each physical component of foregrounds, this
leads to a natural way of removing them.
Let us say that our experiment has F frequency

channels. The F-dimensional vectors aIlm and aElm, which
are the measured multipoles at F different frequencies, are
assumed to be composed of signal plus noise:

ylm ¼ Alxlm þ nlm; ð59Þ

ylm ¼
�

aIlm
aElm

�
; xlm ¼

0
BBB@

αI1lm
αI2lm
αE1lm
αE2lm

1
CCCA; ð60Þ

Al ¼
�
vI1lðνÞ vI2lðνÞ 0 0

0 0 vE1lðνÞ vE2lðνÞ
�
: ð61Þ

Al is the 2F × 4 scan strategy matrix for a given (l,m). nlm
is the sum of detector noise and K different foreground
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FIG. 10 (color online). The eight nonzero power spectra in the Rayleigh-distorted CMB covariance matrix as a function of l. The first
eigenvalues of intensity and polarization are almost proportional to the primary thermal signal and the second eigenvalues of intensity
and E polarization are purely Rayleigh signals which are uncorrelated to the first eigenvalues.
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FIG. 11 (color online). The eight nonzero elements of the Rayleigh-distorted CMB covariance matrix (blue, solid) and their signal-to-
noise ratio at each l (red, dashed) as well as the accumulative signal-to-noise ratio for the PRISM-like experiment. Note that the signal-
to-noise ratio for the temperature-polarization cross power spectrum can be negative at some l values due to anticorrelation of the
temperature and polarization. However the accumulative signal to noise added in quadrature is always positive.
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components such as galactic dust, synchroton emission or
CIB. The covariance matrix for the noise is obtained by

Nl ¼
�

NI
l NIE

l
NIE

l NE
l

�
; ð62Þ

where NX
l ¼ PKþ1

k¼1 CX
l ðkÞ is an F × F matrix. CX

l ðk ¼ 1Þ
is the covariance matrix for detector noise, and CX

l ðkÞ
is the angular power spectrum for different foreground
components.
To see how accurately we can remove the foregrounds

and measure the CMB power spectra xlm, we need to
invert the noisy linear problem of Eq. (59). It is shown in
Ref. [25] that the minimum-variance estimate of the xlm is
~xlm ¼ Wt

lylm where

Wl ¼ N−1
l Al½At

lN
−1
l Al�−1

¼
�
wI

1l wI
2l wE

1l wE
2l

wI0
1l wI0

2l wE0
1l wE0

2l

�
: ð63Þ

wX
il’s are the F-dimensional weight vectors where

~αIilm ¼ wIt
ila

I
lm þ wI0t

il a
E
lm;

~αEilm ¼ wEt
il a

E
lm þ wE0t

il a
I
lm: ð64Þ

The weight vectors are different for each l value, so that at
each angular scale, the frequency channels with smaller
foregrounds contribution have more weight.
The estimated solution ~xlm is unbiased such that

h ~xlmi ¼ xlm and the covariance matrix of the pixel noise
εlm ¼ ~xlm − xlm is Σlδm;m0 ¼ hεlmεtlm0 i where

Σl ¼ ½At
lN

−1
l Al�−1 ¼

�
~NI
l

~NIE
l

~NIE
l

~NE
l

�
: ð65Þ

Here ~NI
l , ~NE

l and ~NIE
l are 2 × 2 cleaned power spectrum

matrices of the noncosmic signals. The covariance matrix
of our estimate ~xlm is

~Clδm;m0 ¼ h ~x�
lm ~x

t
lmi ¼

�
~CI
l

~CIE
l

~CIE
l

~CE
l

�
δm;m0 ; ð66Þ

where ~CX
l ¼ CX

l þ ~NX
l is the total power spectrum in the

cleaned maps. To find how accurately we can measure
any of the eight nonzero elements of the cosmic power
spectrum, we must compute the 8 × 8 Fisher matrix:

Flαβ ¼
1

2
Tr

�
~C−1
l

∂ ~Cl

∂α ~C−1
l

∂ ~Cl

∂β
�
; ð67Þ

where α and β could be any of the eight nonzero elements.
Up to this point, we have used only one multipole xlm to
calculate the Fisher matrix, but for each l value we have

ð2lþ 1Þfsky independent modes where fsky is the frac-
tion of sky covered. Therefore the full Fisher matrix is
ð2lþ 1Þfsky times what we calculated in Eq. (67). Inverting
this matrix gives the constraints on the eight nonzero
elements of the cosmic covariance matrix.
We compute this Fisher matrix for a PRISM-like experi-

ment with the same frequency channels between 30 and
800 GHz as PRISM. For the noise, we choose the
resolution to be 1 arc min and the sensitivity to be 1 nK
for channels with frequencies less than 500 GHz and 10 nK
for channels with frequencies higher than 500 GHz.
For the dominant foreground components, the temperature
and E-polarization power spectra of galactic dust and the
temperature power spectra of CIB, we used the power
spectra given in a series of Planck papers [26–29].
For other foreground components which are subdominant
for detecting the Rayleigh signal, we used the power
spectra given in Table 2 of Ref. [24]. The eight nonzero
elements and their signal-to-noise ratio for each l value
as well as accumulative signal-to-noise ratio are plotted
in Fig. 11.
Since the power spectra hαI1lmαI1lm0 i, hαE1lmαE1lm0 i and

hαI1lmαE1lm0 i are almost the same as the primary thermal
signal, their signal-to-noise ratio is huge. For the autocor-
relation of the primary temperature and E polarization,
the signal-to-noise ratio is almost equal to the cosmic-
variance limit up to l ¼ 2000. Among the remaining
elements, hαI1lmαE2lm0 i and hαI2lmαE1lm0 i have larger accu-
mulative signal-to-noise ratios and these two are detectable
for this PRISM-like experiment. The accumulative signal
to noise for hαI1lmαE2lm0 i is almost 5.4 and for hαI2lmαE1lm0 i
it is around 5.2. A detection of these Rayleigh-distorted
statistics would be an interesting and nontrivial cross-
check of the CMB physics and the assumed cosmological
model.

TABLE II. The percentage constraints on cosmological param-
eters (100σpi

=pi) for a hypothetical cosmic-variance-limited case
with and without accounting for the Rayleigh signal. Note that
although the Rayleigh signal is detectable with the PRISM-like
experiment, this signal does not add much constraining power for
cosmological parameters as its accumulative signal-to-noise ratio
is modest. The constraints on parameters with the PRISM-like
experiment are nearly identical to the third (primary CV limited)
column in this table.

Parameter values
PlanckþWP

Primary CV
limited

Primaryþ Rayleigh
CV limited

Ωbh2 0.02205 0.25657 0.10136
Ωch2 0.1199 0.3570 0.1149
τ 0.089 2.4033 1.0887
ns 0.9603 0.2623 0.0950
As 2.1955 × 10−9 0.4009 0.1829
H 67.3 0.2667 0.0870
Yp 0.24770 1.4288 0.3375
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FIG. 12 (color online). Accumulative signal-to-noise ratios for the eight nonzero elements of the CMB covariance matrix. The
blue (solid), red (dashed), green (dotted) and black (dot dashed) lines are the signal-to-noise ratios respectively for a PRISM-like
experiment. For case I: improved foregrounds removal method. For case II: improved detector noise, and for case III which combines
cases I and II.
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B. Constraints on cosmological parameters

There is independent information contained in the
Rayleigh signal which might help to better constrain the
cosmological parameters. To show how much potential
information we can get from the Rayleigh signal, we
consider an ideal experiment with no foregrounds and
negligible detector noise so that the signal-to-noise ratios
for both the primary and Rayleigh signals are cosmic-
variance limited. To find the constraints on seven cosmo-
logical parameters, Ωb;Ωc; τ; ns; As; H; Yp, we calculate
the Fisher matrix using the standard equation:

Fij ¼
Xlmax

l

ð2lþ 1Þfsky
1

2
Tr

�
~C−1
l

∂ ~Cl

∂pi

~C−1
l

∂ ~Cl

∂pj

�
; ð68Þ

where pi and pj could be any of the seven cosmological
parameters considered. The constraints on cosmological
parameters for the cosmic-variance-limited experiment are
presented in Table II. Note that in this calculation we only
included moments up to lmax ¼ 2000. In principle the extra
information contained in the Rayleigh sky is quite power-
ful. For instance, adding the Rayleigh signal potentially
could help to improve the constraint on the helium fraction
Yp by a factor of 4. Furthermore, the fundamental limit on
ns from the CMB only is less than 10−3 which could be of
interest for inflation studies.
We also calculate how much of a constraint one can

except for the PRISM-like experiment. In this case,
although the Rayleigh signal is detectable, the Rayleigh
signal adds very little constraining power for cosmological
parameters as its accumulative signal-to-noise ratio is
small.
It is also reasonable to ask how biased each cosmological

parameter will be by ignoring the Rayleigh scattering.
These biases will move the central measured values of
each parameter relative to their actual values. The observed
power spectrum is a sum of the primary power spectrum,
Rayleigh power spectrum and generalized noise (including
foregrounds)

~Cl ¼ CPrimary
l þ CRayleigh

l þ ~Nl: ð69Þ

To calculate the bias, we need to find the difference
between the expectation value of the parameter estimator,
hp̂ii, and the true value p̄i, using

bi ¼ hp̂ii − p̄i ¼ Fð00Þ−1
ij Bj; ð70Þ

where Fð00Þ−1
ij and Bj are the Fisher matrix and bias vector

respectively for the power spectrum CP
l ¼ CPrimary

l þ ~Nl,

Fð00Þ−1
ij ¼

Xlmax

l

ð2lþ 1Þ 1
2
Tr

�
CP−1

l
∂CP

l

∂pi
CP−1

l
∂CP

l

∂pj

�
; ð71Þ

Bj ¼
Xlmax

l

ð2lþ 1Þ 1
2
Tr

�
CP−1

l
∂CP

l

∂pj
CP−1

l CRayleigh
l

�
: ð72Þ

The biases (relative to standard deviation) introduced
by ignoring the Rayleigh scattering for the PRISM-like
experiment are bi=σi ¼f−0.13;0.08;−0.06;−0.20;−0.02;
−0.18;−0.28g for the set of parameters fΩb;Ωc; τ; ns;
As;H; Ypg. While these potential biases are worrisome
and Rayleigh scattering should be incorporated into a
future analysis, they are still smaller than the forecasted
constraints on each parameter.
The potential constraints that could be achieved using

a cosmic-variance-limited experiment, motivate us to
consider how larger signal-to-noise measurements might
be made.
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FIG. 13 (color online). The biases and constraints on cosmo-
logical parameters that could potentially occur if one ignores the
Rayleigh signal. The blue contours are the 1σ and 2σ constraints
on parameters using only the primary signal centred at the
fiducial value of the parameters. The red, green, orange and
black dots represent the bias introduced by ignoring the Rayleigh
signal respectively in a PRISM-like experiment, case I (improv-
ing foreground removal), case II (reducing detector noise) and
case III (combination of both).
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C. Improvements to the signal-to-noise ratio

There are a few ways to improve the signal-to-noise ratio
of the Rayleigh signal and bring it closer to the idealized
cosmic-variance limit. One is to have a more effective
foreground removal method. The scheme we discussed
assumes an isotropic power spectrum for each foreground
component and aims to detect the signal in the presence of
foregrounds using only this knowledge. Since Rayleigh
scattering is more important at frequencies higher than
300 GHz and at high frequencies the dominant foregrounds
are galactic dust and CIB, one might do a better job at

foreground removal by measuring galactic dust and CIB
maps at very high frequency (for example higher than
600 GHz), and then extrapolating their spectrum and
removing them at the map level from lower frequencies
such as 300 or 400 GHz. While we will still be left with
some residual foreground power spectra they should have a
smaller amplitude than the original foreground power
spectra. Furthermore, as long as the Rayleigh signal in
not limited by cosmic variance, instead of probing the
whole sky one could concentrate observing time on regions
of the sky where foreground contamination is less.

FIG. 14 (color online). The 2σ constraints on cosmological parameters by considering both the primary and Rayleigh signal. The
smallest and darkest contour represents the cosmic-variance limited case. The lighter contours show the case III, case II, case I and the
PRISM-like experiment respectively as we go from smallest-darkest to largest-lightest contours. Note that the largest contours
essentially delineate the conventional (primary only) cosmic-variance limit, and smaller contours represent an improvement in parameter
constraints beyond this limit.
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Another way to enhance the signal-to-noise ratio is to
improve the experiment. To do so, we can either reduce the
detector noise by having more detectors (better sensitivity)
or by including more frequency channels so that we can
model foregrounds with higher fidelity and remove them
more effectively.
To examine how sensitive the signal-to-noise ratio of

the Rayleigh signal is to each of these improvements, we
study three cases: Case I. In the first case, we keep the
specification of the experiment the same as our PRISM-like
experiment but imagine a more effective foreground
removal method. More specifically, in this case, by meas-
uring the foregrounds at very high frequencies or optimiz-
ing observation to the low foreground region, we assume
we can remove most of the foreground contribution from
lower frequencies and are left with only 5% of the original
foreground spectra as residuals. Case II. In the second case
we use the same normal foreground levels but improve the
specification of the experiment. For illustrative purposes
we consider an extremely ambitious experiment with 50
frequency channels between 30 and 800 GHz and a noise in
each frequency channel of 0.01 nK. Case III. The third case
is the combination of I and II.
In Fig. 12, we show the accumulative signal-to-noise

ratios for the all eight nonzero elements of the CMB
covariance matrix for these improved cases. The blue,
red, green and black lines are the signal-to-noise ratios
respectively for a PRISM-like experiment, case I, case II and
case III. For example, the accumulative signal-to-noise ratio
for the cross spectra between the primary temperature signal
and Rayleigh E-polarization signal, which was around 5 for
the PRISM-like experiment, is amplified to 26 by improving
the foregrounds removal method (case I), to 71 by decreas-
ing the detector noise (case II) and to 218 by combining
cases I and II (case III). As can be seen from this graph, in
case III the accumulative signal-to-noise ratio of all the
power spectra is greater than 100 and could provide us with
valuable information about cosmological parameters.
The effects of improving the signal-to-noise ratio on

cosmological parameters are illustrated in Figs. 13 and 14.
In Fig. 13 we plotted the 1σ and 2σ constraints on cosmo-
logical parameters using only the primary signal. Since the
signal-to-noise ratio for the primary signal is cosmic-variance
limited in all the cases considered here, the constraints on the
parameters remain the same for all cases. We also show the
bias introduced by ignoring the Rayleigh signal in this figure.
In almost all the cases (save for one) the bias for each
parameter is less than 1σ and only when the foreground
contamination is large and the detector noise is small, case II,
we are left with biases larger than 2σ for some parameters.
In Fig. 14, we plotted the 2σ constraints on cosmological

parameters using both the primary and Rayleigh signal and
show that by improving the PRISM-like experiment, as we
go through cases I, II and III, the constraints on parameters
become smaller since the signal-to-noise ratio of the

Rayleigh signal becomes larger. For instance, the percent-
age error on Yp in case III is half the constraint of the
PRISM-like experiment.

VIII. CONCLUSIONS

In this paper, we have calculated the effect of Rayleigh
scattering on CMB temperature and polarization anisotro-
pies as well as the impact on cosmic structure. We also have
investigated the possibility of detecting the Rayleigh signal
in the CMB. A new method was introduced to account
for the frequency dependence of the Rayleigh cross section
by solving for a hierarchy of spectral-distortion perturba-
tions, which allows for an accurate treatment of Rayleigh
scattering including its backreaction on baryon perturba-
tions with only a few spectral-distortion hierarchies. We
have found that Rayleigh scattering modifies the distribu-
tion of matter in the Universe at the 0.3% level.
Since the Rayleigh cross section is frequency dependent,

the CMB temperature and polarization anisotropies depend
on frequency too. For each frequency of interest, Rayleigh
scattering reduces the Cl power spectrum at high l multi-
poles because the visibility function shifts to lower redshifts
when the Silk damping is more important. For reference, at
857 GHz, the highest frequency of the Planck experiment,
both temperature and E-polarization anisotropies decrease
as much as 20% near l ∼ 1000 and at 353 GHz they
decrease as much as 0.6%. Low-multipole E-polarization
anisotropies increase because the visibility function shifts
toward later time when the CMB quadrupole is larger. The
increase in the E-polarization signal at l ∼ 50 is 35% at
857 GHz and 0.8% at 353 GHz.
We showed that due to these distortions, the primary

intensity and E-polarization power spectra at different
frequencies are not perfectly correlated with each other
like in standard treatments of the CMB. Furthermore
we have found, to a very good approximation, we need
two sets of random variables to completely describe the
statistics of primordial intensity and E-polarization patterns
on the sky we observe. There is a second Rayleigh-
distorted CMB sky beyond the primary CMB sky that
contains additional information. We have determined a
compressed representation of the joint power spectra of
these two temperature/intensity and E-polarization skies.
Detecting the Rayleigh signal is very challenging

because at high frequencies the number of CMB photons
is low and the signal is contaminated by foregrounds.
However since both the spectral shape and power spectra of
the Rayleigh sky are different from all the foregrounds, the
Rayleigh signal might be detectable if many high frequency
channels are included in future CMB missions. We have
shown that with a PRISM-like experiment that has many
frequency bands, and using a simple power-spectrum-based
foregrounds removal method, the cross spectrum between
the primary E-polarization and Rayleigh temperature signal
and the cross spectrum between the primary temperature
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and Rayleigh E-polarization signal should be detectable
with accumulative signal-to-noise ratios of 5.2 and 5.4
respectively.
Measuring the Rayleigh signal could provide powerful

constraints on cosmological parameters including the
helium fraction and scalar spectral index. A more ambitious
experiment either observing in low foreground contami-
nated regions or using a more sophisticated foreground
removal method might detect the Rayleigh CMB sky at
high signal to noise. This would tighten CMB constraints
on cosmological parameters beyond what was, even in
principle, previously thought possible.
Furthermore, as the Rayleigh opacity is more prominent

at high frequencies, one may be able to use this signal to
constrain other new physics such as dark matter annihila-
tion into Standard Model particles that inject energy into
primordial gas and/or distort the high energy CMB spec-
trum (e.g., Ref. [30]). If these effects alter the Rayleigh
signal then detecting it may provide corroborating evidence
for such new physics. The detail of such effects and how
the Rayleigh signal might constrain them is an interesting
topic for future studies.
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Note added.—After implementing this method for includ-
ing Rayleigh scattering in cosmological perturbation
calculations, Ref. [12] appeared discussing an alternative
method. We have verified these distinct methods agree
very well, with remaining differences consistent with the
size of the baryon backreaction effects we find
here (Ref. [31]).
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