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We improve predictions of the cosmic microwave background (CMB) power spectrum induced by
cosmic strings by using source terms obtained from Nambu–Goto network simulations in an expanding
universe. We use three high-resolution cosmic string simulations that cover the entire period from
recombination until late-time Λ domination to calculate unequal time correlators (UETCs) for scalar,
vector, and tensor components of the cosmic string energy-momentum tensor. We calculate the CMB
angular power spectrum from strings in two ways. First, to aid comparison with previous work, we fit our
simulated UETCs to those obtained from different parameter combinations from the unconnected segment
model and then calculate the CMB power spectra using these parameters to represent the string network.
Second and more accurately, we decompose the UETCs into their corresponding eigenvalues and
eigenvectors and input them directly into an Einstein–Boltzmann solver to calculate the power spectrum for
each of the three simulation time periods. We combine the three simulations together, using each of them in
its relevant redshift range, and we obtain overall power spectra in temperature and polarization channels.
Finally, we use the power spectra obtained with the latest Planck and BICEP2 likelihoods to obtain
constraints on the cosmic string tension.
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I. INTRODUCTION

Topological defects appear naturally during phase tran-
sitions in the early Universe. The field develops a sponta-
neous symmetry breaking phase, where topological defects
may form: textures, monopoles, strings, and domain walls
(for a review, see Ref. [1]). Of these topological defects,
cosmic strings are one dimensional and may have been
created at the end of inflation. Their large energy per unit
length (μ) is expected to give rise to observable effects,
such as gravitational lensing and gravitational waves. They
induce temperature linelike discontinuities, thus giving a
characteristic signature in the cosmic microwave back-
ground (CMB) power spectrum [2,3].
The CMB is a powerful method for distinguishing

between early Universe models. Results from the Planck
Collaboration [4] provide strong constraints on cosmic
strings, instead giving robust support for a nearly scale-
invariant inflationary model with the standard six param-
eters. At present, however, cosmic string constraints are
determined not from direct Nambu–Goto string simulations
but from either a phenomenological string model, the
unconnected segment model (USM) [5], or from field

theory simulations of the Abelian–Higgs model of increas-
ingly, but still with limited resolution [6]. The resulting
CMB constraints are different, so there is good motivation
for determining the Nambu-Goto results directly, which can
also improve the calibration of the USM model.
A different approach for detecting cosmic strings has

also been investigated, which is based on detecting non-
Gaussian signatures generated by cosmic strings through
CMB maps using higher-order correlation functions such
as the bispectrum [7–9]. These methods have yielded
weaker constraints on the cosmic strings tension so far.
In addition, pulsar timings have been used to constrain the

gravitational wave background, which in turn places strin-
gent constraints on cosmic strings [10,11]. These methods
provide an independent boundon the cosmic string tension to
the CMB one, and in the future they can be significantly
improved by new constraints on gravitational waves.
In this paper, after a general review of cosmic strings in the

literature, we make an estimate of the CMB power spectrum
induced by Nambu–Goto cosmic strings. The main idea is to
determine unequal time correlators (UETCs) at high reso-
lution and precision, relevant for the Planck satellite. We use
three simulations, covering the entire period from before
the radiation to matter transition to late-time Λ domination.
TheseUETCs are then fittedwith analytic ones characterized
in terms of three parameters using the phenomenological
USM [12]. The parameters for which the analytic model best
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fits the simulations are used as parameters in the CMBACT
code [13], which determines the power spectrum of the
cosmic strings. The UETCs are diagonalized, and the
eigenvectors are used directly as sources for the CMB
fluctuations, thus obtaining a very accurate angular power
spectrum. These UETCs are combined for the different
epochs, and the overall power spectra in the temperature
and polarization channels are obtained. Finally, the power
spectrum is used to estimate the allowed cosmic string
contribution in the power spectrum (Gμ=c2 for the string
tension andf10 for the string fractional power) usingMarkov
chainMonte Carlo parameter estimation (COSMOMC)with
the latest CMB likelihoods.

II. REVIEW OF COSMIC STRINGS AND OTHER
TOPOLOGICAL DEFECTS

As the size of the Universe has dramatically increased
during inflation, the only defects that may be observable
today must have been formed at the end of inflation or after
its end [1]. The existence of cosmic topological defects is
related to the spontaneous symmetry breaking in the evolu-
tion of the Universe, during the cooling-down phase. They
have been studied in analogy with condensed matter physics
[14] and particularly solid state physics [15]. From all these
topological defects, strings are the most studied [1].
Cosmic strings were once considered to be the primary

source of anisotropies in the CMB [1]. However, after the
release of the Boomerang data, it has been shown that the
characteristics of the power spectrum they produce does not
match the one observed in the CMB using the COBE
mission and Boomerang [16], WMAP and Planck probes.
The cosmic string temperature power spectrum is smooth
and has a unique peak, and hence it does not match the
observed CMB power spectrum. In the meantime, a good
agreement in the power spectrum has been obtained from
the inflationary scenarios, effectively ruling out topological
defects as the primary source of anisotropies [17].
However, cosmic strings can still be present. Current
observational data allow a maximum of 3% of the observed
power to be due to cosmic strings [17]. Initially it was
expected that the amplitude of the string tension was in the
region of 1016 GeV, which is the Grand Unification Theory
scale, which corresponds to Gμ=c2 ∼ 10−6. Such high
energy is impossible to probe with terrestrial experiments,
and identifying the existence of cosmic strings at these
energies would offer a very interesting connection with
particle physics. It would be possible to test particle
collision patterns at very high energies and to identify
signatures of extra dimensions from string theory [17,18].
More recent studies in string theory have shown that their

tension could in fact be as low as the electroweak scale
[19]. In this case, the allowed limit for the string tension
would be 10−11 < Gμ=c2 < 10−6 [20]. The more recent
work is based on superstring theories and new methods of
string compactification with large extra dimensions and/or

large warp factors. These ideas are presented in detail in
Refs. [21,22]. Another option, which relies on supersym-
metry, is presented in Ref. [23].
Very recently, various cosmic string models [24–26]

have been discussed in trying to explain the BB polariza-
tion obtained by the BICEP2 experiment [27].
String networks are formed of long strings and finite

loops. When long strings intersect, there are two possibil-
ities: they either pass through one another as if there were
no collision, or they disconnect and reconnect again in a
different way. Loops can be formed in the latter case. When
a string self-intersects, the reconnection probability is one
for classical cosmic strings [28]. They then collapse inward
and decay. During the decay process, their energy is
converted into gravitational waves.
There are two approaches for studying the evolution of

cosmic strings: the Abelian–Higgs field theory model and
the Nambu–Goto effective action.

A. Abelian–Higgs model

The Abelian–Higgs (AH) model is the relativistic exten-
sion of the Ginsburg–Landau theory and has the action [1]

S ¼
Z

d4y
ffiffiffiffiffiffi
−g

p ð∂μ þ ieAμÞϕ̄ð∂μ − ieAμÞϕ

−
1

4
FμνFμν −

1

4
λðjϕj2 − η2Þ2; ð1Þ

where ϕ is a complex scalar field, λ and e are coupling
constants, and Aμ is a four-dimensional U(1) gauge field
satisfying Fμν ¼ ∂μAν − ∂νAμ. Using Dμ ¼ ∂μ − ieAμ, the
equations of motion become

DμDμϕ ¼ −
λϕ

2
ðjϕj2 − η2Þ ð2Þ

DνFνμ ¼ 2eℑðϕ⋆DμϕÞ: ð3Þ
The action described in Eq. (1) has vortex-type solutions

[29,30], which are static and cylindrically symmetric,

ϕsðrÞ ¼ einθfðrÞ ð4Þ

AsaðrÞ ¼ ϵabxb
n
er2

αðrÞ; ð5Þ

with a; b ¼ 1; 2 and ϵ being an antisymmetric tensor.
Fixing suitable boundary conditions, the large r asymptotic
solutions to these equations can be obtained in terms of
modified Bessel functions of the second kind:

αðrÞ ¼ 1 − rK1ð
ffiffiffi
2

p
erÞ ð6Þ

fðrÞ ¼ 1 − K0ð
ffiffiffi
λ

p
rÞ: ð7Þ

In the case of a curved string, one can express any point
near the string world sheet in terms of tangent vectors to the
world sheet and normal vectors,
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yμðξÞ ¼ xμðζÞ þ ρAnμAðζÞ; ð8Þ

where nμA are the normal vectors, xμ;a are the tangent vectors,
yμ is a point near the world sheet, and ξμ ¼ ðζa; ρAÞ.
The approximate solution is thus

ϕðyðξÞÞ ¼ ϕsðrÞ ð9Þ

AμðyðξÞÞ ¼ nμBðζÞAsBðrÞ: ð10Þ

When reexpressing the action in terms of these new
coordinates, one needs to calculate the Jacobian of the
transformation from the y to ξ coordinates. This is given by
the square root of the modulus of the determinant of the
world sheet metric Mαβ, which can be expressed as

Mαβ ¼ diagðγab;−δAB þOðr=RÞ;Þ ð11Þ
where

γab ¼ gμνx
μ
;axν;b: ð12Þ

The integration over the normal coordinates ρA can be
performed, yielding just the constant μ. The asymptotic
solutions (7) decaying exponentially, the correction is
reduced to Oðδ=RÞ. Hence, if one considers the string
curvature small with respect to the string length, the
Nambu–Goto action is obtained as the first-order approxi-
mation [1]. It will be discussed in the next subsection.

B. Nambu–Goto model

A one-dimensional reduction of the Abelian–Higgs
action gives rise to the Nambu–Goto action, described
below (see Refs. [1,31]). Hence, the Nambu–Goto strings
have just one dimension (0 width) and live in a two-
dimensional space-time parametrized by Xμ ¼ XμðζaÞ with
a ¼ 0; 1. The physical motivation for using this approxi-
mation is that higher-order corrections are small when
strings are considered to be long enough compared to their
width [32]. Nambu–Goto strings can be derived as sol-
utions of the Nambu–Goto action,

S ¼ −μ
Z ffiffiffiffiffiffi

−γ
p

d2ζ; ð13Þ

where γab ¼ gμν∂aXμ∂bXν is the two-dimensional world
sheet metric and γ ¼ detðγμνÞ [same as Eq. (12), with
xμ → Xμ].
(ζ0, ζ1) is an arbitrary parametrization of the string world

sheet, with one of the parameters timelike and the other
spacelike. Hence, in an expanding universe, one may
choose to take ζ0≔τ (conformal time) and ζ1≔σ (the
spacelike parameter of the string).
Simulations usually start with Vachaspati–Vilenkin ini-

tial conditions [33]. When two strings segments meet, they
split and then reconnect the other way (intercommutation).
In this process, loops are being formed, and they decay and

radiate energy. In the time evolution of the cosmic string
network, the strings are expected to reach a scaling
solution; i.e. the number of cosmic strings crossing each
horizon volume is fixed [34]. This energy loss mechanism
in fact makes cosmic strings cosmologically viable (other-
wise cosmic strings would eventually dominate the uni-
verse) [35] and also the initial conditions considered for
the simulations less important. In Fourier space, the energy-
momentum tensor arising from action (13) can be
expressed as

Θμνðk; τÞ ¼
Z

d3xeik:xΘμνðx; τÞ

¼ μ

Z
dσeik:Xðσ;τÞðϵ _Xμ _Xν − ϵ−1X0μX0νÞ; ð14Þ

where the prime denotes differentiation with respect
to σ and dot denotes differentiation with respect to τ and

ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X02=ð1 − _X2Þ

q
represents the energy density along

the string. For the Nambu–Goto strings, a good phenom-
enological model is given by the velocity-dependent one-
scale (VOS) model [36–38]. This model assumes that the
string population is formed by long strings (denoted by∞)
and small loops (denoted by l). The long strings are
characterized by the correlation length L and by the
root-mean-square velocity v:

v2 ¼
R
_X2ϵdσR
ϵdσ

: ð15Þ

The averaged energy density of the long strings is

ρ∞ ¼ μ

L2
; ð16Þ

and the parameter ~c is a constant which expresses the
loop production rate and is defined by the following
formula:

dρ∞
dt

¼ ~cv∞
ρ∞
L

: ð17Þ

The evolution equations for the correlation length
L and for the velocity of long strings v∞ can be derived
from the microscopic equations of motion and Newton’s
second law

2
dL
dt

¼ 2HLð1þ v2∞Þ þ ~cv∞ ð18Þ

dv∞
dt

¼ ð1 − v∞Þ
�
k
L
− 2Hv∞

�
; ð19Þ

where k is a parameter which characterizes the small scale
structure of the string network and which expresses the
loop production rate [36],
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k ¼ hð1 − _xÞð _x · ûÞi
vð1 − v2Þ ; ð20Þ

where û is a unit vector parallel to the curvature radius one.
For the relativistic regimes considered in the case of cosmic
strings, a suitable asymptotic ansatz is

krel ¼
2

ffiffiffi
2

p

π
·
1 − 8v6

1þ 8v6
; ð21Þ

while in the nonrelativistic limit a consistent asymptotic
limit is found [38]:

knon-rel ¼
2

ffiffiffi
2

p

π
: ð22Þ

Numerical simulations have fixed ~c ¼ 0.23 regardless of
epoch. Scale-invariant solutions, which are characterized
by v∞ ¼ constant and L ∝ t exist only when the scale
factor is evolving as a power law.

C. Phenomenological unconnected segment model

For Nambu–Goto strings, the USM model has been
devised, as described in Refs. [5,12,39,40]. In the this
model, the cosmic string network is described by a
Brownian network which is formed from a set of inde-
pendent, uncorrelated straight segments with random
velocities. All segments are produced early in the evolution
of the Universe, and then, at each epoch, part of the strings
decay such that scaling is preserved throughout the history
of the Universe. Each segment has comoving length equal
to the correlation length, and its position is randomly
chosen, in such a way such that the equations of motion
(18) and (19) are satisfied for each particular string seg-
ment. Hence, the magnitude of the velocity is determined
by these equations, but its orientation is arbitrary and is
taken from a flat distribution.
As the model is made from straight segments, the small

scale structure of the strings is not taken into account. This
has been adjusted phenomenologically, by adding a new
“wiggliness” parameter α [41], which, however, describes
only the macroscopic evolution of the strings. This modi-
fies the energy momentum tensor (14):

Θμνðk;τÞ¼μ

Z
dσeik:Xðσ;τÞ

�
ϵα _Xμ _Xν−

1

ϵα
X0μX0ν

�
: ð23Þ

The string segment decay is realized through a function
Toff that is a smooth approximation to the Heaviside
function, such that after a certain time the particular string
segment disappears and similarly for the appearance of the
segment through a similar function Ton. The total stress-
energy tensor is calculated as the sum of the individual
components for the segments:

Θμνðk; τÞ ¼
X
m

Θm
μνðk; τÞToffðτ; τonm ÞTonðτ; τoffm Þ: ð24Þ

The energy-momentum tensor of one segment is of the
form of Eq. (23),

Θμνðk; τÞ ¼ μ

Z
l=2

−l=2
dσeik·X

�
ϵα _Xμ _Xν −

1

ϵα
X0μX0ν

�
; ð25Þ

where l is the comoving correlation length l ¼ L=a. The
number of string segments at N at each particular time
satisfies

NðτÞ ∝ 1

τ3
; ð26Þ

and hence scaling is preserved [40]. However, in this case
in order to have one string segment today, one would need
at least 1012 initial string segments, which is not possible
numerically. The problem was overcome by considering
only one of the segments decaying at each particular time
and multiplying it by a suitable weighting function, chosen
such that scaling is preserved. An equation for the evolution
of the wiggliness parameter α is used [34],

αðτÞ ¼ 1þ 0.9
Hτ

; ð27Þ

such that it satisfies the expected behavior in the radiation,
matter, and cosmological constants eras.
As the equations describing the matter perturbations and

the power spectra do not depend on the direction of the
wave-vector k, this can be taken to be along the k3 ¼ kz
axis. Thus, the energy-momentum tensor components
become

Θ00 ¼
μαffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p sinðkX̂0
3l=2Þ

kX̂0
3=2

cosðk · X0 þ k _̂X3vτÞ ð28Þ

Θij ¼
�
v2 _̂Xi

_̂Xj −
ð1 − v2Þ

α2
X̂0
iX̂

0
j

�
Θ00; ð29Þ

while Θ0i can be expressed using the conservation of the
stress-energy tensor Θμν. With this choice of the wave
vector, the components required for the Boltzmann inte-
grator CMBACT [13], which in turn is based on
CMBFAST [42], are

ΘS ¼ ð2Θ33 − Θ11 − Θ22Þ=2 ð30Þ

ΘV ¼ ΘV
1 ¼ Θ13 ð31Þ

ΘT ¼ ΘT
12 ¼ Θ12 ð32Þ

Θ ¼ Θii ð33Þ
ΘD ¼ Θ03: ð34Þ
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These are the anisotropic scalar, the vector component, the
tensor component, the trace, and the velocity field.
This model has been used to mimic the behavior of

Abelian–Higgs strings, by tuning its parameters. The
results are in good agreement with the field theory
simulations [18].

D. CMB comparison for Abelian–Higgs and
Nambu–Goto simulations

As described in the previous subsections, field theory
simulations have a much lower dynamical range than
Nambu–Goto simulations. They are, however, able to
resolve scales of sizes comparable to the string width,
and the decay products appear naturally out of the simu-
lation. In the case of Nambu–Goto simulations, loops are
clearly visible, but in field theory simulations, energy
moves directly into massive modes of the fields because
of the limited dynamical range. A comparison between the
two types of simulations appears in Fig. 1 of Ref. [43].
This can be illustrated by the different shapes and

amplitudes of the temperature power spectra determined
from these two models, as it can be seen in Fig. 3 of
Ref. [17]. These plots were created with the standard
parameters from the code CMBACT [13] for the USM
(Nambu) and AH mimic and with field theory simulations
for the Abelian–Higgs cosmic strings.
The difference may be due to the fact that the USMs are

not able to model the velocity correlations between the
strings, but also to the fact that the field theory simulations
rely on extrapolation over many orders of magnitude [6].
Even though extensive simulations have been performed for
the Abelian–Higgs model, the Nambu–Goto strings have
mostly been described using the simplified USM model.
In this paper we are using theAllen and Shellard code [44]

to generate Nambu–Goto string networks with Vachaspati–
Vilenkin initial conditions and evolve them in time in
different epochs of the Universe (as described later). The
code outputs the string parameters for all the points from the
string network at each time. Another code is used to read in
all the parameters for all points at a particular time step,
evaluate the local energy-momentum tensor using the
real-space version of Eq. (14), and then interpolate it on a
three-dimensional grid of chosen size. The outcome of this is
an energy-momentum tensor for the whole network at a
specific time evaluated on a 3D grid. This is Fast-Fourier
Transformed, and it is then decomposed into scalar, vector,
and tensor parts (SVT decomposition) in order to determine
the components required [45].
The first code treats each time step separately. It reads the

coordinates of each point and the data required to calculate
the energy-momentum tensor at that particular place
according to Eq. (14). This energy-momentum tensor is
interpolated on a given grid, user-specified according to the
resolution required, using a triangular cloud-in-cell inter-
polation method. This method interpolates each of the

given points onto the 27 closest neighbours on the three-
dimensional grid (weighted appropriately according to the
distance to each point and ensuring energy conservation in
this process), and the results are added up. Thus, the full
stress-energy tensor is created on the grid at that particular
time in real space. Then the full 3D matrix is converted to
Fourier space using a Fast Fourier Transform routine. The
new grid, now in Fourier space, is smoothed out by
multiplying it with a Gaussian, and then the energy-
momentum tensor is split into scalar, vector, and tensor
parts. For the scalar parts, we have chosen to output the Θ00

(energy density) and ΘS (anisotropic scalar) components,
but other choices can be made according to what one needs;
for the vector parts, we have output two of the vector
components and similarly for tensors.

III. COSMIC STRING SIMULATIONS

To obtain an accurate prediction for the cosmic string
power spectrum, we have used three simulations, covering
in total a redshift range from 5900 to 0 as follows. The first
simulation (Simulation 1) starts deep into the radiation era,
goes through radiation-matter transition, and ends in the
matter era, corresponding to redshifts from 5900 to 700.
The second simulation lies entirely in the matter era, with
redshifts from 860 to 37. The third simulation starts in the
matter era (redshift 48) and goes into the cosmological
constant future, to z ¼ 0. All three simulations have
Vachaspati–Vilenkin initial conditions [1] and evolve in
time. All three simulations had earlier initial times, but we
have removed around 1.5% of the time steps of each of
them in order to remove the excessive correlations in the
initial conditions. The important quantity in this context is
the dynamical range of the simulations. After removing
these initial time steps, we decrease the dynamical range of
each of the simulations by roughly 15%. In Fig. 1 the time
evolution of the string network simulation covering the
matter epoch is shown by plotting the energy component
for the strings at three time steps corresponding the first,
middle, and last time used in the calculation of the UETCs.
The density of strings is decreasing with the expansion of
the Universe. The simulations are the ones described in
Ref. [46], and the same cosmological parameters are used.
The three simulations cover the entire cosmological

history of the Universe which is of interest when determin-
ing the CMB power spectrum. One can see that the network
is initially very dense (Fig. 1) in each of the simulations,
and Vachaspati–Vilenkin initial conditions are used.
Large loops are kept in the simulation and contribute to the

total energy-momentum tensor of the network. In a physical
context, small loops decay into gravitational radiation. Those
that are smaller than the resolution of the simulation are not
resolved and hence could be treated as point mass sources.
Their effect on the overall string network is negligible in
linear theory and therefore are neglected in practice because
it accelerates the network simulation to remove very small
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nonintersecting loops. These tiny loops were also found to
have a small effect in Refs. [47,48]. By ignoring these small
loops, we obtain a conservative bound on cosmic strings. An
alternative simulation technique has been developed in
Refs. [49,50] where the evolution of these small loops can
be more efficiently continued during network evolution.

IV. UNEQUAL-TIME CORRELATOR APPROACH

Cosmic strings are active sources. This means that unlike
primordial perturbations, which are seeded at the end of
inflation but primarily act after last scattering, cosmic
strings continuously seed perturbations throughout the
history of the Universe [51]. The presence of these cosmic
strings induces modifications to the usual perturbation
equations, in the sense that a term corresponding to the
energy-momentum tensor of cosmic strings must be added
and then the Einstein–Boltzmann hierarchy must be solved.
For example, in the scalar case, we present a simplified
discussion showing the modification of the equations of
interest in the synchronous gauge,

δ̈C þ _a
a
_δC ¼ 4πG

X
N

ð1þ 3c2NÞρNa2δN þ S ð35Þ

δ̈R þ _a
a
ð1 − 3c2SÞ_δR ¼ c2S∇2δR þ 4

3
δ̈C þ 4

3

_a
a
ð1 − 3c2SÞ_δC;

ð36Þ

where δC and δR are the cold dark matter (CDM) and
radiation overdensities; cS is the sound speed; N represents
the CDM, photon-baryon fluid, and the species of neu-
trinos; while S (the source term) can be expressed in terms
of the stress-energy tensor as

S ¼ 4πGðΘ00 þ ΘiiÞ: ð37Þ

Uniform energy density and space curvature must be
taken as initial conditions in the Boltzmann equations. In
this case, to first order in perturbation theory, by integrating
the full Boltzmann equations with these initial conditions,
one can obtain the string multipoles Cstring

l . In this case, as

the active sources are uncorrelated with the primordial
fluctuations, the total angular power spectrum can be
expressed as

Cl ¼ Cinflationary
l þ Cstring

l : ð38Þ

To do the integration, there are two methods: (1a) ignore
the full Boltzmann hierarchy and use Green’s functions
(e.g. Refs. [7,52]) or (1b) use a first-order equivalent to
Greens’s functions and treat the full Boltzmann hierarchy
(Ref. [45]) and (2) use UETCs. Indeed, Eqs. (35)–(36) are
linear, and their homogeneus part only depends on the
magnitude of the wave vector, which makes it possible to
use the UETC approach.
To calculate the CMB power spectrum [53] from active

sources, one has to solve an equation of the form

DX ¼ ST; ð39Þ
where D is a differential operator and ST is the active
source. The power spectrum is then a quadratic quantity
which has the general form

hXiðτ0;kÞX�
jðτ0;k0Þi: ð40Þ

This can be expressed in terms of Green’s functions as
follows:

hXiðτ0;kÞX�
jðτ0;k0Þi

Z
τ0

τin

dτGjmðτ; kÞ

×
Z

τ0

τin

dτG�
lmðτ0; k0ÞSmðτ; kÞS�nðτ0; k0Þ; ð41Þ

Hence, to calculate the influence of strings on the CMB
power spectrum, only the following quantity is needed:

hSmðτ; kÞS�nðτ0; k0Þi: ð42Þ

In particular, the string energy-momentum tensor UETC
can be written as

hΘμνðk; τÞΘρσð−k; τ0Þi ¼ Xμν;ρσðk; τ; τ0Þ: ð43Þ

FIG. 1 (color online). Evolution of the string network in the simulation covering the matter era (redshift range 945 to 37.2).
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Using scaling, one can reexpress this correlation function
as [52]

Xμν;ρσðk; τ; τ0Þ ¼
cμν;ρσðkτ; kτ0Þffiffiffiffiffiffi

ττ0
p : ð44Þ

This new UETC matrix cμν;ρσðkτ; kτ0Þ is obtained as the
expectations value of a squared quantity and hence is
positive definite [51]. It is thus diagonalizable and can be
expressed in terms of its eigenvalues and eigenvectors
[54,55],

cμν;ρσðkτ; kτ0Þ ¼
X
i

λiv
ðiÞ
μν ðkτÞvðiÞTρσ ðkτ0Þ; ð45Þ

where vi are the a set of orthonormal eigenvectors of the
matrix c.
The eigenmodes are coherent [54], and hence each of

them can be fed individually into a Boltzmann equation
solver, and then the total angular power spectrum can be
expressed as

Cstring
l ¼

X
i

λiC
ðiÞ
l : ð46Þ

As the unequal time correlators have been multiplied byffiffiffiffiffiffi
ττ0

p
, the source terms in the Boltzmann equation are

substituted as

ΘðkτÞ → vðiÞðkτÞffiffiffi
τ

p : ð47Þ

To calculate the power spectrum of the cosmic strings,
one has to modify the sources of the Einstein equations by
adding the contribution from the strings as sources [45].
The Einstein equation is

Gμν þ Λgμν ¼ 8πGTμν: ð48Þ

For an expanding universe, the metric can be expressed
as

gμν ¼ a2ðημν þ hμνÞ; ð49Þ

where hμν is a perturbation to η. In the synchronous
gauge, h00 ¼ h0i ¼ 0.
A general tensor expressed in Fourier space can split into

its scalar, vector, and tensor parts as

TijðkÞ ¼
1

3
Tδij þ

�
k̂i k̂j −

1

3
δij

�
TS

þ ðk̂jTV
i þ k̂iTV

j Þ þ TT
ij; ð50Þ

where the vector and tensor parts are transverse and the
tensor part is traceless. Both the metric perturbation hμν and

the energy-momentum tensor can be split according to
Eq. (50). To find the equations satisfied by the components
of the metric perturbations, one has to consider the first-
order perturbations to both the metric and the energy-
momentum tensor and then use Eq. (48).
The metric perturbation tensor is split according to

Eq. (50), while for the stress-energy tensor one needs to
consider the usual matter perturbations (as in Ref. [56]) and
the perturbations given by the cosmic strings:

δT0
0 ¼ −δρþ Θ0

0 ð51Þ

δT0
i ¼ ðρþ PÞvi þ Θ0

i ð52Þ

δTi
j ¼ δPδij þ pΣi

j þ Θi
j: ð53Þ

Using the Einstein equation (48) and its conservation
G;ν

μν ¼ 0, one obtains the evolution equations for the metric
perturbations,

kη̄0 ¼ 4πGa2
X
i

ðρi þ piÞvi −
4πG
k

ΘD ð54Þ

ḧS þ 2
a0

a
_hS − 2k2η ¼ 16πGða2pΣS þ ΘSÞ ð55Þ

ḧV þ 2
a0

a
_hV ¼ 16πGða2pΣV þ ΘVÞ ð56Þ

ḧT þ 2
a0

a
_hT þ k2hT ¼ 16πGða2pΣT þ ΘTÞ; ð57Þ

where η̄ ¼ h−hS
6

and ΘD satisfies the equation

_ΘD ¼ΘD

�
−2

_a
a
−
k2a
3_a

�
−
k2

3

�
2ΘS−Θ00−

a _Θ00

_a

�
: ð58Þ

Equations (54)–(57) have been implemented into a
Boltzmann solver (CMBFAST), by modifying the relevant
equations to accommodate the cosmic string sources. The
energy-momentum tensor of the cosmic strings needed to
be substituted with the relevant eigenvector, as described
in Eq. (47).
For the scalar part of the power spectrum, one requires

the components Θ00 and ΘS. In this situation, it is not
possible to diagonalize each of the UETC matrices corre-
sponding to hΘ00Θ00i and hΘSΘSi separately because the
cross-correlator hΘ00ΘSi is nonzero. One has to build the
block matrix

� hΘ00Θ00i hΘ00ΘSi
hΘSΘ00i hΘSΘSi

�
ð59Þ

and to diagonalize it. The first half of each of the
eigenvectors would correspond to Θ00, and the second
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half would correspond to ΘS. The eigenvalues are common
to both.
In the case of vectors and tensors, the situation is

different. The two vector modes ΘV1 and ΘV2 evolve
independently, but their autocorrelators are the same,

hΘVΘVi≔hΘV1ΘV1i ¼ hΘV2ΘV2i; ð60Þ

and their cross-correlators vanish hΘV1ΘV2i ¼ 0, due to
statistical isotropy. The same is true for the two tensor
modes. Furthermore, the correlators between a vector and a
tensor mode also vanish. We will discuss the results that we
obtained using this method in Sec. VII.
We have used the decomposition section of the Landriau

and Shellard code [45] to calculate the energy-momentum
components of the UETCs. The energy-momentum tensor
of the string network has been interpolated on a 3D grid in
Fourier space, and it has been decomposed into scalar,
vector, and tensor parts. The relevant UETCs described in
the previous paragraphs were then calculated.

V. EVOLUTION OF THE UETCS AND
RESOLUTION EFFECTS

The most important aspect when calculating the UETCs
is to make sure that the resolution considered is high
enough so that it can capture all the physical scales of
relevance for sourcing the main CMB signal. A first step in
order to achieve this was to analyze the energy density of
the string network in real space at a given time for a range
of grid resolutions. Boxes of 1283, 2563, 5123, 7683, 10243,
and 15363, respectively, points have been chosen. In Fig. 2
the energy density of the string network for time 384 out of
1536 for the simulation in the radiation era has been plotted
for the resolutions of 1283, 5123, and 15363.
For the lowest resolution, important information is

smoothed out, and the strings do not have a threadlike
appearance. As the resolution is increased, the strings

become thinner as one would expect with better grid
sampling. However, one cannot increase the resolution
indefinitely because, after getting in the vicinity of the
resolution of the simulation itself, the network would appear
asmade up of disconnected bulbs. The effect of resolution on
a string network is especially apparent at earlier times (as
shown in Fig. 2), when the string density is much higher.
However, when one is interested in ray tracing through the
simulation, e.g. to compute CMB maps, the difference in
resolution does not affect the results at early times because of
the very high string density but will cause the late-time
features to have increasing levels of sharpness; however, as
we shall now show, adequate resolution is critical for the
accurate computation of UETCs.
Even though in recent years the computational capacity

has radically increased, it is still challenging to go to very
high resolutions in simulations. Increasing by a factor of 2
the linear grid resolution increases each file size by a factor
of 8 and the time required by a similar amount. Due to these
time and disk space considerations, we chose to use a grid
size of 10243 for the simulations. The huge grid size limits,
however, our possibility of using a very high time reso-
lution as well, and for each of the simulations, we use
around 100 time steps. We have checked that the time
sampling does not modify the UETCs noticeably. To ensure
the symmetry of the UETCs, we are using the same
sampling for τ1 and τ2 for the computations.
An alternative approach is being developed [57],

which uses a lower spatial resolution but a greater time
resolution. To obtain the full UETCs at this resolution, a
total CPU ime of 20000 h is required using 200 Intel Xeon
processors with a clock speed of 2.6 GHz. We have
performed all the calculations on the COSMOS supercom-
puter. Typical UETCs obtained at resolution of 10243 are
plotted in Figs. 3 and 4 from the simulation covering the
matter era.
At resolutions greater than or equal to 5123, spurious

peaks appear in the UETCs if the first 1% of the time steps

FIG. 2 (color online). Energy density component of the string network in real space evaluated at time 384 out of 1536 for the
simulation in the radiation era for resolutions of 1283, 5123, and 15363.
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of the simulation is considered. This is due to the
appearance of loops over the length scale of the resolution
size, i.e. excessive correlation in the Vachaspati–Vilenkin
initial conditions. In Fig. 5, we have represented the initial
appearance of the string network, both as a 3D view and a
projection of the energy density to illustrate the correlation
between the segments forming the string network. To get
accurate predictions for the UETCs, the first time steps

should be discarded, as they represent only the effect of the
initial conditions and not of the physics involved.
Another important feature that needs to be checked is the

scale invariance of the UETCs. This can be checked by
verifying whether the shape of the UETC depends on
which part of the simulation is used (after discarding the
initial conditions). The UETCs in Figs. 3 and 4 are scale
invariant. They are almost independent of the starting time
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FIG. 3 (color online). Scalar UETCs obtained from a grid resolution of 1024: the figures of the left represent oblique 3D views
of the three scalar UETCs (hΘ00Θ00i—top, hΘSΘSi—middle, and hΘ00ΘSi—bottom), the top right plot represents a contour plot of the
00-00 UETC in linear scale, and two bottom right plots represent the three scalar UETCs in linear and logarithmic scales.
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of the simulation. We have illustrated this behavior by
plotting the hΘ00Θ00i UETC between three times (64, 140,
and 220) and all times between 32 and 223 and 64 and 223
(Fig. 6). The plots have been zoomed in around the peak in
order to show the scale invariance. In the case of the 3D
plot, the differences in terms of starting time are imper-
ceptible, and hence only the one with the starting time 32 is
represented. When correlating components of the energy-
momentum tensor from early times with all the correspond-
ing components from a certain time until the end of the
simulation, there appears to be a small difference in the
UETC corresponding to that starting point. If we choose,
however, a later time to correlate with all the others, the
difference becomes imperceptible. This is due to the fact
that for earlier times there is more information in the string
network due to the higher string density. As the Universe
expands, the strings become less dense in the Universe.
This can be seen in the fact that the correlators in Fig. 6
have slightly lower amplitudes from top to bottom as the
time used for correlations increases. Nevertheless, scale
invariance is a good approximation just throughout each of
the simulations; the string network is not scale-invariant
throughout the history of the Universe, as the UETCs are
not identical in the three simulations.

A. Resolution convergence

Wehave studied the convergence of both the shape and the
amplitude of theUETCs in terms of resolution of the grid. To
illustrate this, we have chosen the simulation in the matter
era. In Fig. 7, we have plotted the equal time correlator
(diagonal component of the UETC) of the energy density for
the various resolutions considered, from 1283 until 12803.
The peak is still increasing as the resolution is increased, but
one can observe that relative differences from consecutive
resolutions are getting smaller. However, technical con-
straints do not allow us yet to increase the resolution further
and get the results in a reasonable amount of time. Currently
the full simulation at a resolution of 1280 takes around 40000
CPU hours on Intel Xeon processors with a clock speed of
2.6 GHz on the COSMOS supercomputer.
From Fig. 7 it can be seen that the two lowest resolutions

do not give accurate results. This was expected since the
string network is not properly resolved at this resolution
(see Fig. 2). The behavior of the other correlators that were
calculated is similar and has not been plotted. We have used
the UETCs obtained at resolutions of 1283, 2563, 5123,
7683, 10243, and 12803, and we have determined the
correlations between them in terms of the shape and
amplitude correlators defined by the two formulas
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FIG. 4 (color online). Vector and tensor UETC components obtained from a grid resolution of 1024: oblique 3D views (left) and
diagonal sections in linear scale (right).
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sðcÞA;B ¼
P

i

P
j U

Aði; jÞUBði; jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i;jðUAði; jÞÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i;jðUBði; jÞÞ2

q ð61Þ

rðcÞA;B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;jðUAði; jÞÞ2
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;jðUBði; jÞÞ2
q ; ð62Þ

where ðcÞ is taken to be hΘ00Θ00i, hΘSΘSi, hΘ00ΘSi,
hΘVΘVi, and hΘTΘTi, respectively. These represent mea-
sures of the goodness of fit between the different simu-
lations considered in terms of their shapes and amplitudes,
respectively. We have taken A to be the simulation at a
resolution of 12803, and for B we took in turn each of
the simulations from resolutions of 1283, 2563, 5123, 7683,
and 10243 respectively. The results obtained are shown in
Table I, and the convergence trend is displayed in Fig. 8.

As the grid resolution is increased to 12803, Fig. 8 and
Table I show very good convergence in both the shape and
the amplitude for all the UETCs. The convergence at
approximately 5% is limited by numerical constraints.
However, from Fig. 7, one can see that, although we are
approaching convergence with the correlators, this has
not been yet achieved. Between 70 < kτ < 80, the energy
density UETC decays by 2 to 3 orders of magnitude
compared to kτ ¼ Oð1Þ and hence would make a com-
paratively small contribution to the power spectrum. For the
region kτ < 70, there is a definite sign that the graphs are
approaching convergence, though it is not completely
achieved.

VI. ANALYTIC UETC MODEL

An analytic model for the calculation of UETCs based on
the USM model for Nambu–Goto strings has been devel-
oped in Ref. [12]. The analytic model is based on the
phenomenological USM model. The correlation length
can be expressed in terms of a new parameter ξ defined
as ξ ¼ L

aτ.
Using Eqs. (28) and (29), as well as the SVT decom-

position, the relevant UETCs are obtained analytically by
integrating over the string network, separately for each
stress-energy component of interest,

hΘðk; τ1ÞΘðk; τ2Þi ¼
2fðτ1; τ2; ξ; LfÞ

16π3

Z
2π

0

dϕ
Z

π

0

sin θdθ

×
Z

2π

0

dψ
Z

2π

0

dχΘðk; τ1ÞΘðk; τ2Þ;

ð63Þ

where the function f quantifies the decrease in the number
of segments by string decay. The anisotropic scalar,
vector, and tensor components are given in this case by
Eqs. (30)–(32). The UETCs that are computed are com-
pared with simulations produced with the CMBACT code
for different values of the parameters.
The final results have only three free parameters: v, α,

and ξ. They can be obtained by integrating Eq. (63) and
depend on integral expressions Ai,

hΘðk; τ1ÞΘðk; τ2Þi ¼
fðτ1; τ2; ξ; LfÞμ2

k2ð1 − v2Þ

×
X6
i¼1

Ai½Iiðx−; ρÞ − Iiðxþ; ρÞ�; ð64Þ

where ρ ¼ kjτ1 − τ2jv, x� ¼ kξðτ1 � τ2Þ=2 and the expres-
sions Ai depend again on the three parameters and can be
found in the Appendix of Ref. [12].

FIG. 5 (color online). Network correlation in the initial con-
ditions from the simulation covering the matter era: left—oblique
3D view; right—front view.
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A. Fit to the analytic model

To be able to compare the simulated UETCs with the
analytical ones from Ref. [12], we have added the two
vector and two tensor components, and we have obtained
the five functions used in Ref. [12]. The analytical model
depends on three parameters, v, α, and ξ. The parameters
have the following ranges: v varies between 0 and 1, α is in

the interval [1, 2], and ξ is positive. We use again the shape
[see Eq. (61)] and amplitude correlators [Eq. (62)], this
time with A representing the analytical UETC and B
representing the simulated one. The s’s and r’s have been
tabled for parameters in the permitted ranges, and the
values of the shape correlators have been maximized. The
amplitude correlators have been chosen to be as close to
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one another as possible (due to different normalization
factors).
The best-fit parameters are as follows: ξ ¼ 0.2 for the

first two simulations and ξ ¼ 0.3 for the third; while v is
0.5, 0.1, and 0.6, respectively; and α is 1.5, 1.3, and 1.3.
The best results obtained for the three simulations for the
shape and amplitude correlators are presented in Table II.
We will show a comparison between these “best fit” power
spectra and the ones that we have obtained using the
eigenvectors in Sec. VII.
We have updated CMBACT with the latest published

Planck parameters [58], and we have taken Gμ ¼
2.07 × 10−6, as in Ref. [12]. We then ran the code with
500 string segments and 400 realizations with the parameters
found for the best fit. We have obtained these values of the
parameters by fixing the values of v, α, and ξ on all scales.
Otherwise, the parameters are just initial conditions for the
differential equations in the VOS model, and hence the
results vary only weakly with them. The cosmological
parameters chosen were the PlanckþWPþhighLþBAO
parameters from the 2013Planck results [4]. For comparison,
we have also run the default CMBACT [13] with default
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TABLE I. Shape and amplitude correlators for the UETCs at
different simulation resolutions.

UETC Correlator 1283 2563 5123 7683 10243

hΘ00Θ00i Shape 0.6048 0.7783 0.9735 0.9939 0.9991
Amplitude 3.0939 2.4376 1.2889 1.1123 1.0384

hΘSΘSi Shape 0.5628 0.6026 0.9192 0.9750 0.9952
Amplitude 3.7040 2.6621 1.5079 1.2220 1.0831

hΘ00ΘSi Shape 0.6072 0.6377 0.949 0.9851 0.9971
Amplitude 5.7650 4.1559 1.4993 1.1968 1.0696

hΘVΘVi Shape 0.6587 0.7381 0.9335 0.9795 0.9962
Amplitude 2.4435 1.8765 1.3244 1.1524 1.0593

hΘTΘTi Shape 0.5632 0.6011 0.9180 0.9772 0.9961
Amplitude 3.5414 2.8519 1.5209 1.2278 1.0833

TABLE II. Shape and amplitude correlators for UETCs in the
three simulations.

Simulation Correlator hΘ00Θ00i hΘSΘSi hΘ00ΘSi hΘVΘVi hΘTΘTi
Radiation
era

Shape 0.710 0.841 0.188 0.815 0.738
Amplitude 1.009 0.985 0.338 0.656 0.932

Matter
era

Shape 0.667 0.801 0.132 0.744 0.663
Amplitude 1.000 0.978 0.343 0.693 1.086

Matter
þΛ eras

Shape 0.751 0.820 0.212 0.803 0.718
Amplitude 0.998 1.094 0.365 0.746 0.928
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initial parameters (v ¼ 0.65, α ¼ 1.9, ξ ¼ 0.13) with Planck
cosmology. We have taken the Abelian–Higgs power spec-
trum data from Ref. [59], and we have plotted in Fig. 9 all
three power spectra from simulations on the same graph in
terms of the multipole l, in logarithmic scales, together with
the USM and Abelian–Higgs ones.
The power spectrum for theNambu–Goto strings, obtained

from simulations, is situated between the power spectra of the
USM and the Abelian–Higgs models. This was expected, as
theUSMmodel is unable to capture very accurately the entire
small scale behavior of the cosmic strings, while theAbelian–
Higgs model does not have enough dynamic range. It can be
seen that the position of the peak corresponds to approx-
imately the same l in all cases and that the power spectrum in
the three cases is very similar for l < 30. The matter era
spectrum has a smaller peak amplitude and is straighter for
large l. The CMB power spectra obtained from the simu-
lations are very similar because of the fact that we are only
using CMBACT with different parameters to obtain them.
In the next section, we will describe the power spectrum
obtained using UETCs directly.

VII. POWER SPECTRUM OBTAINED FROM
EIGENDECOMPOSITION OF UETCS

Using the formulas in Sec. IV, we have run our code, and
we have computed the power spectra from the three
simulations that span the whole cosmological time. The
power spectra have been calculated first by using each of
the individual simulations and extending their validity to
the whole cosmological time by assuming scaling. For
example, even though we have determined the UETCs

using just cosmic strings that have evolved in the radiation
era, we assume that the UETCs would be valid for all times.
The matrices corresponding to them have been diagonal-
ized, and their corresponding eigenvectors have been sorted
in terms of the magnitude of their eigenvalues (from largest
to lowest). We determined the power spectra from each of
the eigenvectors, and then we summed up the results.
Although in principle all the eigenvectors have to be used in
order to obtain an exact result, in practice using Eq. (46) it
can be noticed that for very small eigenvalues the con-
tribution to the overall angular power spectra becomes
insignificant. We have analyzed this problem in detail, and
it turns out that for all four power spectra considered using
roughly 200 eigenvectors gives a very good convergence
for the power spectra. We have checked this in all our
results. This is illustrated in Fig. 10 with the power spectra
that we have obtained in the radiation era. The power
spectra obtained from the scalar, vector, and tensor com-
ponents have been plotted on separate figures, and the
convergence in terms of the number of eigenvectors used
has been shown. In the case of the vectors, for the TT and
TE power spectra, we get excellent convergence using just
100 eigenvectors. For the EE and BB vector power spectra
as for all tensor components, we need 200 eigenvectors to
get a very good convergence.
Later (see Fig. 12), we will show a comparison between

the results that we have obtained by assuming scale
invariance throughout the history of the Universe vs scale
invariance in each of the cosmological eras (radiation,
matter, and Λ domination).
From the comparison of the results obtained from the

simulations with the ones found by fitting the three
parameters in CMBACT, we notice that unfortunately
the fits do not match the results from the simulations very
well. The comparison between the simulations and the fits
in the case of the temperature power spectrum is illustrated
in Fig. 11. The standard USM and Abelian–Higgs power
spectra are also plotted for comparison.
We used the three simulations separately, assuming their

validity in the redshift range in which they were run, and we
calculated the relevant Cl’s in each case, and then we added
the results up. We will show the methodology used for
combining the results from the three simulations for
calculating the total combined angular power spectrum
in the following paragraph.
Let n̂ be the direction of the photon propagation, μ ¼

cos ð~k; ~pÞ the angle between the wave vector and the
momentum of the photon, τ the conformal time, and τ0
the conformal time today. We define the brightness function
in terms of the relative variation of the temperature by

Δðk; μ; τÞ ¼ 4
ΔT
T

: ð65Þ

By using the collisional Boltzmann equation, and
using the perturbations from Eq. (49), it can be shown
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that the brightness function Δ satisfies the differential
equation:

Δ0 þ ikμΔ ¼ −2h0ijn̂in̂j þ _τðδγ þ 4n̂ · v − ΔÞ; ð66Þ

where _τ is the differential Thomson cross section and δγ is
the photon perturbation.
We assume that the cosmic string energy-momentum

tensor (in this case the corresponding eigenvector) is
nonzero only in a conformal time interval ðτðAÞ; τðBÞÞ.
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FIG. 10 (color online). Power spectra of the cosmic strings obtained from the simulations in the radiation era assuming scale
invariance. From left to right: scalar, vector, and tensor power spectra; from top to bottom: TT, EE, TE, and BB power spectra
(Gμ ¼ 1.5 × 10−7). The numbers in the legend represent the number of eigenvectors used. The colors in the tensor spectra plots
represent different numbers of eigenvectors used compared to the scalar and vector spectra.
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We will show that the time derivative of hα tends to zero
outside this interval. Equations (54)–(57) are linear, and
their initial conditions are hα ¼ _hα ¼ 0 at τ ¼ 0, with α
corresponding to the scalars, vectors, and tensors. Hence,
hαðτÞ ¼ _hαðτÞ ¼ 0 for τ < τðAÞ. For τ > τðBÞ, there is no
longer any source present, and hence hðαÞ would at most
remain constant while its time derivative would quickly
decay. Hence, Δ ¼ 0 in the absence of cosmic strings (due
to the suitable initial conditions).
Equation (66) can be decomposed into eigenmodes using

Legendre polynomials:

Δðk; μ; τ0Þ ¼
X∞
0

2lþ 1

il
Δlðk; τ0ÞPlðμÞ: ð67Þ

The integral identities involving the Legendre polyno-
mials and the spherical Bessel functions,

Z
1

−1
PmðxÞPnðxÞdx ¼ 2

2nþ 1
δmn ð68Þ

il

2

Z
1

−1
PlðμÞeikμðτ−τ0Þdμ ¼ jlððkðτ0 − τÞÞ; ð69Þ

can be used. After splitting Eq. (66) into scalar, vector,
and tensor modes, let S ¼ Sð _hαÞ be the source function due
to strings in each of the cases above,

Δlðk; τ0Þ ¼
Z

τ0

0

dτSðk; τÞjlðkðτ0 − τÞÞ: ð70Þ

The corresponding angular power spectrum is expressed as

Cl ¼
2

π

Z
∞

0

dkk2Δlðk; τ0Þ2: ð71Þ

Each of the simulations considered is valid in a different
time range. In the previous section, we have extended the

validity of the simulations by assuming scaling. However,
scaling is not perfect throughout the history of Universe, as
can be seen from the power spectra that we have obtained
by making this assumption (Fig. 12). If scaling were
perfect, the power spectra from the three simulations would
have to be identical. We consider the energy-momentum
tensor as follows:

Θðk; τÞ →

8>><
>>:

vradiationðkτÞffiffi
τ

p if τ ∈ radiation era
vmatterðkτÞffiffi

τ
p if τ ∈ matter era

vmatterþΛðkτÞffiffi
τ

p if τ ∈ Λ era:

ð72Þ

Equation (66) is a differential equation which is linear in
the cosmic string sources, and hence Eq. (70) has the same
property for all values of l. This shows that splitting the
sources into three parts, computing the Δl functions
separately, and then summing up the results would not
change the integral. We will now consider that the string
sources only act in the time interval where they are defined,
and we will split the calculation into three parts, corre-
sponding to each of the epochs. For example, for the
radiation era, we shall take the energy momentum-tensor
from Eq. (72) as

Θðk; τÞ →
� vradiationðkτÞffiffi

τ
p if τ ∈ radiation era

0 if τ ∉ radiation era:
ð73Þ

More generally, we will assume that the sources S from
Eq. (70) can be written as a sum as

Sðk; τÞ ¼
X

Siðk; τÞ; ð74Þ

where each of the S0is is defined on an interval ðτðAÞi ; τðBÞi Þ.
These intervals are disjoint. This is possible because the
differential involved for Δl and h are linear. However, in
the expression for Cl, there is a square of Δl. So we can
reexpress Eq. (71) as

Cl ¼
X
i

Ci
l þ

4

π

X
i<j

Z
∞

0

dkk2
Z

τ0

0

dτ1

Z
τ0

0

dτ2

× Siðk; τ1ÞSjðk; τ2Þjlðkðτ0 − τ1ÞÞjlðkðτ0 − τ2ÞÞ; ð75Þ

where Ci
l represents the contribution to the angular power

spectrum obtained only from source i (e.g. only radiation
era). We will now show that the last sum of integrals from
Eq. (75) is negligible compared to each of the terms in the
first sum.We note that the sources S oscillate much less in k
compared to the Bessel functions, and hence, after chang-
ing the order of integration, a typical integral term from this
sum can be reexpressed as
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FIG. 11 (color online). Comparison between the TT power
spectra obtained through the best fit method and using eigenvectors.
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FIG. 12 (color online). Power spectra of the cosmic strings obtained by using each of the three sets of UETCs and assuming scaling for
the whole history of the Universe. The red, green, and blue show the power spectra considering the extrapolation of the results obtained
in the radiation, matter, and matter þ Λ epochs. The contributions from the UETCs from just the time interval where they are valid are
plotted in the yellow, cyan, and magenta curves, and their sum is in black. The black curve represents the final overall power spectrum
obtained. From left to right: The scalar, vector, and tensor power spectra; from top to bottom: the TT, EE, TE, and BB power spectra
(Gμ ¼ 1.5 × 10−7).
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Z
τ0

0

dτ1

Z
τ0

0

dτ2Siðτ1ÞSjðτ2Þ

×
Z

∞

0

dkk2jlðkðτ0 − τ1ÞÞjlðkðτ0 − τ2ÞÞ

∼
Z

τ0

0

dτ1

Z
τ0

0

dτ2Siðτ1ÞSjðτ2Þδðτ2 − τ1Þ

¼
Z

τ0

0

dτ1Siðτ1ÞSjðτ1Þ ð76Þ

using the properties of the spherical Bessel functions. We
now assume i < j, and we take into account that the
cosmic strings only source the perturbation equations in

the intervals ðτðAÞi ; τðBÞi Þ and ðτðAÞj ; τðBÞj Þ. The contribution

from the first source will only start at τðAÞi and end at τðBÞi .

Hence, S1 will be zero before τðAÞi and start decaying

after τðBÞi . The decay of the sources after there are no
strings is exponential in time. A similar behavior
is expected from the second cosmic string region.
Hence, the integral (76) will only have a nonzero
contribution in the region where the contribution of the
first source has not completely decayed and the second
source has an increasing contribution. As this contribution
is suppressed due to the time decay of the sources Si, this
last integral will give a very small contribution, and we
will neglect it.
The results that we obtained show that, in the TT

spectrum, the cosmological constant era contributes
at l < 100 with a peak at l ¼ 30, the matter era contributes
in the range 50 < l < 400, and the radiation simulation
for l > 200, as expected. The total power spectrum con-
verges to the matter and Λ era result for low l and the
radiation era one at high l. The final results resemble
most the extrapolated matter era simulation, in agreement
with the results reported in Ref. [53]. The other three
spectra (TE, EE, and BB) exhibit a similar behavior,

but the signal is dominated by the one from the radiation
era. The individual results are shown in Fig. 12. We
have used 200 eigenvectors for each of the lines in
the plots.
In Fig. 13 we show the final TT power spectrum obtained

from the three Nambu–Goto simulations (combined),
together with the USM and Abelian–Higgs ones. In
addition, we also plot the results obtained with the fourth
version of the code CMBACT [13], in which the author has
corrected various bugs but also updated the VOS model.
This new version gives a lower amplitude for the temper-
ature power spectrum, and its overall shape resembles more
the Abelian–Higgs one. Using our simulations, we obtain
an even lower amplitude for the power spectrum. The peak
remains at roughly the same position as in the USM case.
The shape of our TT power spectrum is more similar in
terms of amplitude to the USM result, but its shape
resembles more the Abelian–Higgs spectrum.

VIII. STRING TENSION CONSTRAINTS

To constrain the power spectrum contribution from the
Nambu–Goto string simulations, we have used a Markov
chain Monte Carlo method, using a modified version of the
COSMOMC code [60,61]. This method involves evaluat-
ing the power spectrum each time the parameters are
modified, by calling an instance of the code CAMB
[62]. The total power spectrum is obtained from the sum
between the inflationary spectrum and the one obtained
from cosmic strings because the cosmic string sources,
which are active sources, are uncorrelated with the pri-
mordial perturbations [63]. This would in principle require
the calculation of the cosmic string power spectrum many
thousands of times, for each choice of cosmological
parameters, which is not feasible because calculating the
cosmic string power spectrum by itself requires several
hours of computational work. Fortunately it has been
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FIG. 13 (color online). Comparison between the TT power spectra obtained using the three simulations and the USM, Abelian–Higgs
(standard results), and CMBACT version 4. The string tension is taken Gμ ¼ 2.07 × 10−6. On the left the results are represented
showing that USM and Nambu–Goto have different amplitudes to Abelian–Higgs cosmic strings, while the right shows similar shapes
(normalized at l ¼ 10).
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suggested [5,39] that it evolves much slower as a function
of the parameters compared to its inflationary counterpart.
In Ref. [64] it has been explicitly shown that the cosmo-
logical constant varies less than 10% with Gμ=c2. The
cosmic strings are expected to contribute less than 5% in
the total power spectrum, so as the cosmological param-
eters are varied in the allowed regions, the string power
spectrum does not vary more than 20% [65,66]. This gives
overall better than 1% accuracy for the contribution of
cosmic strings, which is greater than the accuracy of
CAMB. Hence, we have calculated the cosmic string
power spectrum for a particular set of cosmological
parameters, and we only allow the overall string contribu-
tion to vary, through the parameter f10, which represents
the fractional power of the cosmic strings compared to the
inflationary power at the tenth multipole [17,67]:

f10 ¼
Cstring
10

Ctotal
10

: ð77Þ

We also use the relation f10 ∝ ðGμÞ2 to relate the new
parameter to the string tension [68]. We have used the latest
version of the COSMOMC code, together with the BICEP
data [27], in order to obtain accurate constraints on the
maximum allowed string tension. We have used the
standard cosmological parameters (the baryon density
Ωbh2, the cold dark matter density Ωhh2, the optical depth
to reionization τ, the expansion rate today H0, the acoustic
scale θ, the amplitude As, and the spectral index of density
fluctuations ns), together with the Planck nuisance param-
eters in order to obtain a full likelihood calculation. In this
paper, we present the result that we have obtained from
using cosmic strings together with the ΛCDM parameters
only in the PlanckþWP case. In the situation where we
have included BICEP2 likelihoods, we also need to include
tensor modes. A more detailed description of the proce-
dures involved, where we analyze degeneracies between
cosmic strings and different nonstandard cosmological

parameters (running of the spectral index, increasing the
number of degrees of freedom, and adding tensor modes
and neutrinos in sterile states) is the object of another paper
[26]. The two results that we have obtained at 95%
confidence level are Gμ=c2 < 1.49 × 10−7 in the Planck
only case and Gμ=c2 < 1.44 × 10−7 for the BICEP2 and r
case. Our constraint in the Planck case is slightly stronger
than the Planck Collaboration result [17]. This is due to the
slightly different shape of our power spectrum to the USM
one. We have validated our formalism by obtaining the
Planck constraint with the USM data. In Table III we
present the results that we have obtained together with the
results without cosmic strings, but otherwise using the
same parameters. We observe that the standard cosmologi-
cal parameters do not shift significantly.
While the Planck results are very robust and consistent

with results obtained by other authors with and without
cosmic strings [4,17], the BICEP2 observations still require
confirmation by independent experiments [69] until defini-
tive results can be claimed [70].

IX. SUMMARY AND OUTLOOK

In this paper we have used high precision numerical
simulations of the time evolution of Nambu–Goto strings to
determine the UETCs of the energy-momentum tensor
components. We have established the resolution required
to obtain robust and accurate results for the cosmic string
power spectrum. The resulting Nambu–Goto spectrum is
situated between that expected from the Abelian–Higgs and
USM models (Fig. 9). In the case of the Planck data, this
gives a slightly weaker constraint onGμ=c2 compared to the
one expected from the USM model but tighter compared to
that from the Abelian–Higgs model. The string tension is
constrained to be Gμ=c2 < 1.49 × 10−7 and the fractional
power to f10 < 0.019 when using the Planck data.
In a companion publication [26], we have used the

temperature power spectrum likelihoods from the Planck
mission [4] and the polarization data from WMAP and

TABLE III. Constraints on the fitted cosmological parameters, together with 1σ error bars in a full likelihood
analysis (with all relevant nuisance parameters) with and without cosmic strings in the case of Planck and WMAP
polarization (left) and Planck, WMAP polarization, BICEP2 likelihoods, and tensor modes (right).

PlanckþWP PlanckþWPþ BICEP2þ r

Parameter No strings Strings No strings Strings

Gμ=c2 < ð2σÞ 1.49 × 10−7 1.44 × 10−7

Gμ=c2 (best fit) 4.99 × 10−8 8.30 × 10−8

r 0.15� 0.04 0.15� 0.04
H0 67.20� 1.16 67.42� 1.20 67.72� 1.10 67.95� 1.20
100Ωbh2 2.202� 0.027 2.209� 0.029 2.203� 0.028 2.210� 0.029
Ωch2 0.120� 0.003 0.119� 0.003 0.119� 0.003 0.118� 0.003
τ 0.089� 0.013 0.087� 0.013 0.089� 0.013 0.088� 0.013
100θMC 1.0412� 0.0006 1.0412� 0.0006 1.0413� 0.0006 1.0414� 0.0007
lnð1010AsÞ 3.088� 0.025 3.078� 0.026 3.085� 0.025 3.075� 0.025
ns 0.959� 0.007 0.958� 0.007 0.964� 0.007 0.964� 0.0007

CMB POWER SPECTRUM OF NAMBU-GOTO COSMIC STRINGS PHYSICAL REVIEW D 91, 083519 (2015)

083519-19



BICEP2 [27] to obtain strong and robust constraints on the
string tension. In the future we will also use polarization
information to obtain stronger constraints from the next
Planck data release.
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