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In this paper we continue to develop the m-mode formalism, a technique for efficient and optimal
analysis of wide-field transit radio telescopes, targeted at 21 cm cosmology. We extend this formalism to
give an accurate treatment of the polarized sky, fully accounting for the effects of polarization leakage and
cross polarization. We use the geometry of the measured set of visibilities to project down to pure
temperature modes on the sky, serving as a significant compression, and an effective first filter of polarized
contaminants. As in our previous work, we use them-mode formalism with the Karhunen-Loève transform
to give a highly efficient method for foreground cleaning, and demonstrate its success in cleaning realistic
polarized skies observed with an instrument suffering from substantial off axis polarization leakage. We
develop an optimal quadratic estimator in the m-mode formalism which can be efficiently calculated using
a Monte Carlo technique. This is used to assess the implications of foreground removal for power spectrum
constraints where we find that our method can clean foregrounds well below the foreground wedge,
rendering only scales k∥ < 0.02 hMpc−1 inaccessible. As this approach assumes perfect knowledge of the
telescope, we perform a conservative test of how essential this is by simulating and analyzing data sets with
deviations about our assumed telescope. Assuming no other techniques to mitigate bias are applied, we find
we recover unbiased power spectra when the per-feed beamwidth to be measured to 0.1%, and amplifier
gains to be known to 1% within each minute. Finally, as an example application, we extend our forecasts to
a wideband 400–800 MHz cosmological observation and consider the implications for probing dark
energy, finding a pathfinder-scale medium-sized cylinder telescope improves the Dark Energy Task Force
figure of merit by around 70% over Planck and Stage II experiments alone.
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I. INTRODUCTION

Recent years have seen a surge in excitement at the
promise of radio cosmology. By using low frequency
observations of the 21 cm line we can survey the distri-
bution of neutral hydrogen throughout large volumes of the
Universe. Radio interferometers provide an efficient and
cost effective method for doing this.
This transformation of radio interferometers into survey

instruments has been driven by recent technological
advances, particularly in the cheap low-noise amplifiers
required for mobile phones, and the constant progress of
Moores law making large, high bandwidth correlators
economical. By correlating a large number of low cost
feeds in a compact area we can produce a telescope ideally
suited for wide-field surveys.
There are three main epochs we can observe: low redshift

(z≲ 4), where we observe the large scale emission from
unresolved galaxies, a technique termed intensity mapping
[1,2]; the Epoch of Reionization (z ∼ 6–10) where the

neutral intergalactic medium is eaten away by the first
ionizing sources [3]; and perhaps even the primordial
structure in the dark ages (z≳ 30), though observations
at these very low frequencies (ν < 50 MHz) will be
extremely challenging [4]. These eras are of huge cosmo-
logical importance, a fact reflected in the large number
of current and planned experiments targeting 21 cm obser-
vations, with GMRT [5], HERA [6], LOFAR [7], MWA
[8], MITEoR [9] and PAPER [10] targeting the Epoch of
Reionization and BAOBAB [11], BAORadio [12], BINGO
[13], CHIME [14], EMBRACE/EMMA [15], Ooty [16],
Parkes [17] and Tianlai [18] aiming at the low redshift
intensity mapping era.
In this paper we will focus on the low redshift intensity

mapping epoch, though most of the results and techniques
we describe apply equally well at higher redshifts.
Observations at these low redshifts probe the expansion
history of the Universe throughmeasurements of the baryon
acoustic oscillation (BAO) [19–21]. Our radio observations
are complimentary to BAO measurements from Galaxy
surveys [22,23], and can probe a larger volume at high
redshift with a completely different set of systematics.*jrs65@cita.utoronto.ca
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To make effective use of this new generation of radio
interferometers, we must develop new methods of inter-
preting and analyzing their data. Progress has accelerated in
recent years with many developments [24–31].
In a previous paper [32] we developed a new technique

for the analysis of data from these experiments called the
m-mode formalism. This method departs from the usual
interferometric analysis—making no flat-sky or small field
approximations—at the expense of being limited to transit
telescopes for which it is an exact treatment. It also brings
computational advantages by allowing us to break the data
into uncorrelated m modes, making it feasible to treat the
full statistics of the data. This opens up the possibility of
performing optimal mapmaking, foreground subtraction
and power spectrum estimation, which would be extremely
difficult otherwise.
Perhaps the foremost challenge facing 21 cm cosmology

is the presence of bright astrophysical radio sources at
frequencies below 1.4 GHz which are around 6 orders of
magnitude brighter than the 21 cm signal. This emission
comes mainly from synchrotron radiation, which is spec-
trally smooth, and in principle this allows it to be separated
from the 21 cm as it is described by a small number
of modes [33] and these can simply be removed. The
remaining modes, which have significant spectral structure,
are assumed to be free of contamination. Unfortunately, this
picture is complicated by the realities of radio observation:

a. Frequency dependent beams lead to mixing of
angular structure into spectral structure which con-
taminates the foreground clean modes [34]. This
problem, known asmode mixing, means that looking
at only the frequency direction of our data is
insufficient to separate these two signals.

b. Synchrotron emission from our Galaxy is highly
polarized, and though the total intensity is spectrally
smooth, Faraday rotation by the magnetic interstellar
medium means that the polarized emission is not.
Unfortunately, the complicated polarization re-
sponse of real telescopes irreversibly mixes some
fraction of the polarized sky, introducing significant
frequency fluctuations [35]. As the emission comes
from a range of Faraday depths, we cannot simply
derotate the emission.

Fundamentally there are still the same number of large
foreground modes, mode mixing only makes them harder
to identify. In [32] we developed a foreground removal
technique based on the Karhunen-Loève (KL) transform.
This uses the full covariance statistics of the contaminating
foregrounds to find an optimal separation from the 21 cm
signal, fully accounting for this mode mixing effect.
However, the technique presented there was limited in
two important ways: no attempt was made to address the
problem of polarized foregrounds, and it assumed that we
have full knowledge of the properties of our instrument,
including the full polarized response of the primary beam,

and any per-feed amplitude gains and phase shifts intro-
duced in the receiver system. In this paper we continue to
develop both the m-mode formalism and the KL transform
for foreground cleaning, with particular emphasis on
investigating these two limitations.
We start by extending the m-mode formalism to give a

full treatment of polarization (Sec. II), and discuss how the
unpolarized approach of [32] is a limiting case (Sec. III).
The example telescope we use throughout is described in
Sec. IV, and its harmonic space sensitivity is examined in
Sec. V. Next we take a careful look at the geometry of the
measured m modes (Sec. VI), leading us to a technique
which both efficiently compresses the data and effectively
removes polarized contamination. We give an overview of
the Karhunen-Loève scheme for foreground removal in
Sec. VII, and demonstrate its effectiveness on simulated
polarized skies. In Sec. VIII we construct an optimal power
spectrum estimator in them-mode formalism, which we use
to study the performance of our foreground filter (Sec. IX).
In Sec. X we use this estimator to show how instrumental
uncertainties give rise to power spectrum biases. Finally we
forecast the performance of our example telescope at
measuring the expansion history of the Universe and
constraining the nature of dark energy (Sec. XI).

II. POLARIZED TRANSIT TELESCOPE ANALYSIS

In this section we develop a fully polarized version of the
m-mode formalism, a new method for analyzing transit
interferometers that was first introduced in a previous paper
[32]. That treatment encapsulates all the essential ideas but
avoids the added complexity of tracking the polarization,
and is a useful introduction to the full treatment given here.
Polarized descriptions of full-sky interferometry have been
given elsewhere (notably [36,37]), but here we develop the
transit telescope limit.
Any transit telescope can be viewed as a collection of

feeds, fixed relative to the ground frame. Each feed, Fi,
measures a combination of the electric field Eaðn̂Þ coming
from various directions in the sky. In order to accurately
treat the polarization when the response varies over the sky,
we need to be able to keep track of the contribution from
each direction to the electric field at a point. In order to do
this we define ε as the electric field density in a frequency
interval dν and solid angle d2n̂ by

dE ¼ ðμ0cÞ1=2εðn̂; νÞd2n̂dν: ð1Þ
With this definition the Poynting flux is conveniently
written as

Sp ¼ 1

μ0c
E ×H

¼
Z

d2n̂ d2n̂0 dν dν0 n̂hεðn̂Þ · εðn̂0Þi: ð2Þ
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Radio emission from the sky is generally incoherent and so
we can write the correlations of ε explicitly in terms of the
Stokes parameters

hεaðn̂;νÞε�bðn̂0;νÞi

¼ 2kB
λ2

δðn̂− n̂0Þδðν−ν0Þ
× ½PT

abTðn̂ÞþPQ
abQðn̂ÞþPU

abUðn̂ÞþPV
abVðn̂Þ�; ð3Þ

where the indices are over basis vectors transverse to the
line of sight. As in the unpolarized case we are more
interested in the brightness temperature on the sky than the
intensity, and so we have written Eq. (3) to make that
explicit (thus Q, U and V are polarization brightness
temperatures). The polarization tensors PX

ab are related to
the Pauli matrices (on an orthonormal basis), specifically

PT
ab ¼

1

2

�
1 0

0 1

�
; PQ

ab ¼
1

2

�
1 0

0 −1

�
;

PU
ab ¼

1

2

�
0 1

1 0

�
; PV

ab ¼
1

2

�
0 −i
i 0

�
: ð4Þ

The standard basis vectors to use in spherical geometry are
the polar and azimuthal directions, θ̂ and ϕ̂, as these allow
spin spherical harmonics to be used straightforwardly to
decompose the polarization field.
Any feed on the telescope measures a weighted combi-

nation of the electric field coming from each direction on
the sky. In particular we need to keep track of the antennas
sensitivity to the orientation of the incoming electric field.
We will write the measured signal at the ith feed as Fi,
which is given by

FiðϕÞ ¼
Z

d2n̂Aa
i ðn̂;ϕÞεaðn̂Þe2πin̂·uiðϕÞ; ð5Þ

and is directly proportional to the voltage induced in the
circuit. Here, and onwards, we will implicitly sum over the
polarization index a. The antenna reception pattern Aa

i is a
vector quantity describing the electric field response in a
given direction. The response A ∝ leff , the effective antenna
length (choosing them as equal would make Fi be the
antenna voltage). We normalize A such that the normalized
antenna power pattern Pnðn̂Þ ¼ jAðn̂Þj2, ensuring that the
solid angle of the beam is

Ωi ¼
Z

d2n̂jAðn̂Þj2: ð6Þ

In Eq. (5) we have also included an exponential factor
which gives the phase relative to an arbitrary reference
point, in this ui, as the distance from the feed to the
reference point in wavelengths. As both this and the
antenna orientation change with the Earths rotation relative

to the sky, we write them as functions of ϕ, the rota-
tion angle.
The fundamental quantity in radio interferometry is

the cross-correlation between two feeds, the visibility
Vij ¼ hFiF�

ji. Using Eqs. (3) and (5) we can write down
exactly what a visibility measures, explicitly keeping track
of the different sky polarizations to give

VijðϕÞ ¼
Z

½BT
ijðn̂;ϕÞTðn̂Þ þ BQ

ijðn̂;ϕÞQðn̂Þ

þ BU
ijðn̂;ϕÞUðn̂Þ þ BV

ijðn̂;ϕÞVðn̂Þ�d2n̂þ nijðϕÞ:
ð7Þ

Note that from here onwards the symbol V denotes two
different quantities, the visibility VijðϕÞ and the Stokes V
sky field Vðn̂Þ. The distinction will be clear from the
context. In the above equation the beam transfer functions
BX
ij encode all the information about the optics and

geometry of the instrument. They are given by

BX
ijðn̂;ϕÞ ¼

2

Ωij
Aa
i ðn̂;ϕÞAb�

j ðn̂;ϕÞPX
ab e

2πin̂·uijðϕÞ; ð8Þ

where Ωij ¼
ffiffiffiffiffiffiffiffiffiffiffi
ΩiΩj

p
. The measured visibilities contain

noise, which we include as an additional term nij. In this
work we will assume that the noise from different antennas
and frequencies is uncorrelated (we discuss the statistics in
more detail in Appendix A).
We normalize our visibilities so that they are the

correlated antenna temperature in the noiseless limit (in
particular the autocorrelation is the antenna temperature).
The factor of 2 in the definition of the transfer function
ensures that for an unpolarized sky with uniform brightness
Tb, the measured autocorrelation Vii ¼ Tb.
The above equations (7) and (8) are completely exact.

The general approach to interferometric analysis is to
approximate the above to a 2D Fourier transform, which
is valid for small fields of view. For wide-field observations
we can attempt to relax this with techniques such as
mosaicing [38] and w projection [39] though this quickly
becomes complicated. In our case we are interested in a
specific class of transit interferometers intended for sur-
veys. However, as these instruments are extremely wide
field, this approach is limiting. Instead we will try a
different route, restricting our domain to transit telescopes,
but otherwise attempting to keep the analysis exact.
To continue, we decompose into spherical harmonics, as

they are a natural way of representing fluctuations on the
sky. As polarization is not a scalar field we must expand Q

and U in spin-2 harmonics Yð�2Þ
lm ðn̂Þ (the Stokes V field

transforms as a scalar). This yields
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Tðn̂Þ ¼
X
lm

aTlmYlmðn̂Þ; ð9Þ

Qðn̂Þ þ iUðn̂Þ ¼
X
lm

aðþ2Þ
lm Yðþ2Þ

lm ðn̂Þ; ð10Þ

Qðn̂Þ − iUðn̂Þ ¼
X
lm

að−2Þlm Yð−2Þ
lm ðn̂Þ; ð11Þ

Vðn̂Þ ¼
X
lm

aVlmYlmðn̂Þ: ð12Þ

The polarized beam transfer matrices also transform as spin
fields, and so we decompose them in the same way, with

BT
ijðn̂;ϕÞ ¼

X
lm

BT
ij;lmðϕÞY�

lmðn̂Þ; ð13Þ

BQ
ijðn̂;ϕÞ − iBU

ijðn̂;ϕÞ ¼
X
lm

Bðþ2Þ
ij;lmðϕÞYðþ2Þ�

lm ðn̂Þ; ð14Þ

BQ
ijðn̂;ϕÞ þ iBU

ijðn̂;ϕÞ ¼
X
lm

Bð−2Þ
ij;lmðϕÞYð−2Þ�

lm ðn̂Þ; ð15Þ

BV
ijðn̂;ϕÞ ¼

X
lm

BV
ij;lmðϕÞY�

lmðn̂Þ: ð16Þ

Note that we have decomposed with the complex con-
jugates of the spin harmonics. This allows us to use the
orthogonality of the (spin) spherical harmonics to rewrite
the visibility equation (7) as

VijðϕÞ ¼
X
lm

�
BT
ij;lmðϕÞaTlm þ 1

2
Bðþ2Þ
ij;lmðϕÞaðþ2Þ

lm

þ 1

2
Bð−2Þ
ij;lmðϕÞað−2Þlm þ BV

ij;lmðϕÞaVlm
�
þ nijðϕÞ:

ð17Þ

Though this has completely transformed the problem into
harmonic space, it will be more convenient if we change
into the conventional E and B mode decomposition as they
are real scalar fields [40]. This can be done by making the
standard substitutions

aðþ2Þ
lm ¼ −ðaElm þ iaBlmÞ; ð18Þ

að−2Þlm ¼ −ðaElm − iaBlmÞ ð19Þ

as well as the corresponding changes for the beam matrices

Bðþ2Þ
ij;lm ¼ −ðBE

ij;lm − iBB
ij;lmÞ; ð20Þ

Bð−2Þ
ij;lm ¼ −ðBE

ij;lm þ iBB
ij;lmÞ; ð21Þ

leaving the visibility as

VijðϕÞ ¼
X
lm

�
BT
ij;lmðϕÞaTlm þ BE

ij;lmðϕÞaElm

þ BB
ij;lmðϕÞaBlm þ BV

ij;lmðϕÞaVlm
�
þ nijðϕÞ: ð22Þ

In the above the harmonic coefficients are now all the
transforms of real scalar fields (the BX

ij;lm are the complex
conjugates of the spherical harmonic coefficients).
As we are considering only transit telescopes, the vis-

ibilities are periodic in sidereal time, ϕ, and so Fourier
transforming Eq. (22) is an obvious next step:

Vij;m ¼
Z

dϕ
2π

VijðϕÞe−imϕ ð23Þ

yields Fourier coefficients, Vij;m, which we refer to as m
modes. They will become the key quantity in our analysis.
As the visibility is a complex time stream, the positive and
negative ms are independent measurements.
As the ϕ dependence simply rotates the functions

about the polar axis the transfer function is trivially
BX
ij;lmðϕÞ ¼ BX

ij;lmðϕ ¼ 0Þeimϕ. The integral over the expo-
nential factors generates the Kroenecker delta δmm0 and
removes the summation over m entirely, and we can write
the m modes as

Vij;m ¼
X
l

½BT
ij;lma

T
lm þ BE

ij;lma
E
lm

þ BB
ij;lma

B
lm þ BV

ij;lma
V
lm� þ nij;m: ð24Þ

Though slightly hidden, this a property of the convolution
theorem. For a transit telescope the visibility time stream is
an azimuthal convolution of the beam and sky. This means
its Fourier conjugate, the m modes, are products of the
individual Fourier modes (with a remaining summation
over the l index). This equation fully describes how the
measured visibilities are related to the polarized sky that we
are observing in Fourier space.
One way to gain more insight into the m modes is to

realize that the visibility we see is a complex time series,
which when we take its Fourier transform splits the time
series into right and left moving waves (positive and
negative m respectively). In our case the time variable is
ϕ, the Earths rotation. As the beam on the sky is a Fourier
mode, a correlated beam pointing south of the Celestial
North Pole only produces modes moving in one direction
as the Earth rotates. However pointing the same beam
beyond the north pole (that is north of it as defined in the
ground frame), produces the modes moving in the other
direction as the Fourier mode on the sky now moves in the
opposite direction with respect to the Earths rotation. One
important consequence of this is that if we use the freedom
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to choose the order of the feed pairs such that the baseline
vectors point towards the east, positive m modes are
produced from the part of the beam below the pole, and
negative mmodes come from the part above. If the primary
beam does not extend over the pole only positive ms are
produced, though a small amount of negative ms are seen
because of the effect of the primary beam.
In fact, while the positive and negative m modes may be

independent measurements they are still observations of
the same sky—for a real field alm ¼ a�l;−m—and thus both

Vij
m and Vij�

−m measure the same harmonics on the sky.
It will be useful to change our notation to make this fact
transparent.
Let us separate out the positive and negative m parts by

defining

BX;þ
ij;lm ¼ BX

ij;lm nþij;m ¼ nij;m ð25Þ

BX;−
ij;lm ¼ ð−1ÞmBX�

ij;l;−m n−ij;m ¼ n�ij;−m ð26Þ

which is valid for m ≥ 0. Additionally to prevent double
counting the m ¼ 0 measurement we need to set BX−

ij;l0 ¼
n−ij;0 ¼ 0. For brevity of notation, we will introduce a label
α which indexes both the positive and negative m parts of
all included feed pairs ij, such that any particular α
specifies exactly the values of ij;� (exactly how α is
packed is unimportant). This gives the final form of the
m-mode visibility equation that we use as the basis of
this work,

Vα;m ¼
X
l

½BT
α;lma

T
lm þ BE

α;lma
E
lm

þ BB
α;lma

B
lm þ BV

α;lma
V
lm� þ nα;m: ð27Þ

As in [32] we can write this equation in an explicit matrix
form which will allow us to simplify the notation. The
beam transfer matrices above can be written in an explicit
matrix notation

ðBX
mÞðανÞðlν0Þ ¼ BX;ν

α;mδνν0 ð28Þ

where the row index labels all baseline (α) and frequency
combinations (ν), whereas the column index is over all
multipole (l) and frequencies (ν0). Similarly we can define
vectors for the visibilities and harmonic coefficients

ðvmÞðανÞ ¼ Vν
α;m ðaXmÞðlνÞ ¼ aXνlm: ð29Þ

To keep track of the different polarization states we
define the block matrix and vector

B ¼
�
BT BE BB BV

�
; a ¼

0
@ aT

aE
aB
aV

1
A ð30Þ

such that

v ¼ Baþ n: ð31Þ

This is the essence of the m-mode formalism: a simple,
linear matrix relation that exactly describes the whole
measurement process for a transit interferometer. As we
will discuss in Sec. V both the number of m modes and the
dimensionality of the B matrices is bounded by the
physical size of the instrument. This means that we can
easily apply all the standard tools of statistical signal
processing without even remembering that we are dealing
with an interferometer. In the following sections we do this
with gusto.
Despite this being an interferometry paper, the uv plane

has not been mentioned at all so far. Though it is prevalent
in many interferometric applications, as both an extremely
useful aid for physical understanding and for computational
efficiency (by virtue of the FFT), the m-mode formalism
does not make use of it. Eschewing the uv plane is part of its
power, helping it to work trivially for wide-field analysis,
and focusing us on only the measured degrees of freedom.
However, it comes at the cost of making it difficult to have
concrete physical interpretations of the process.

III. UNPOLARIZED LIMIT

In [32] we developed an unpolarized formalism because
it gives a simpler problem to analyze, both conceptually
and computationally. However, under certain assumptions
it is directly equivalent to the full polarized case.
For a telescope with dual polarized antennas, let us

suppose that we can engineer our telescope optics such that
the field patterns of the two feeds (labeled X and Y) obey
two constraints. First, that their normalized power patterns
are equal everywhere:

jAXj2 ¼ jAY j2 ¼ A2; ð32Þ

and second that their polarization orientations are orthogo-
nal all over the sky:

AX · AY ¼ 0: ð33Þ

Under these constraints there is only one relevant linear
combination of the four XX, YY, XY and YX visibilities
that is sensitive to the total intensity, the average of the XX
and YY visibilities,

Vu ¼
1

2
ðVXX þ VYYÞ

¼ 1

Ω

Z
d2n̂A2ðn̂Þe2πin̂·uTðn̂Þ þ 1

2
ðnXX þ nYYÞ: ð34Þ

Because of the properties of the polarization matrices, this
is not sensitive to the different polarization modesQ,U and
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V, while all the orthogonal combinations are insensitive to
the total intensity T.
In this limit, the combination Vu is equivalent to the

unpolarized formalism given in [32], if we relabel the noise
terms such that n ¼ ðnXX þ nYYÞ=2. Provided the noise
terms are uncorrelated this reduces the power spectrum
down by a factor of 2—that is the unpolarized system
temperature is Tsys;u ¼ Tsys;p=

ffiffiffi
2

p
.

IV. CYLINDER TELESCOPES

Cylinder telescopes are interferometric arrays consisting
of one or more parabolic cylindrical reflectors. They have
a long history in radio astronomy, with well-known
facilities like the Molongo Synthesis Telescope [41],
and the Ooty Radio Telescope [42]. Though advances
in amplifier technology meant they steadily lost favor to
dish-based interferometers, interest in them has recently
been revived. Reasons are twofold: the development of
cheap, room temperature, low-noise amplifiers has dra-
matically improved sensitivity, and 21 cm intensity
mapping has provided an application for which they are
ideally suited.
Intensity mapping requires a large collecting area in a

compact region to achieve high brightness sensitivity,
which cylinders can provide cheaply. Additionally cylinder
telescopes are a cost effective way of surveying large
amounts of sky at high speed [43]. And while arrays of
dipoles provided a bigger instantaneous field of view, the
large number of elements required at a fixed angular
resolution makes the receiver and correlation hardware
increasingly expensive.

Each cylinder has a parabolic cross section such that
they focus only in one direction. In the layout we assume
(see Fig. 1), this gives a long and thin beam on the sky,
extending nearly from horizon to horizon in the north-south
direction but which is only around 2 degrees wide east
west. Feeds are spaced along the axis of each cylinder—
when correlated these provide resolution in the N-S
direction. As the telescope operates as a transit telescope
this means that the entire visible sky is observed once per
sidereal day.
In this paper we illustrate the m-mode formalism using a

medium-sized cylinder telescope, similar to the CHIME
Pathfinder. Table I lists the parameters of this example
instrument.

A. Beam model

In the m-mode formalism knowledge of the primary
beams of our instrument is crucial. In our model we assume
an arrangement such that at each location there are two
perpendicular dipoles: the X feed where the dipole is
aligned across the cylinder (pointing east), and Y feed
where the dipole is aligned along the axis (pointing north).
In both cases the feeds hang below a conducting ground
plane which stops the beam spilling above the cylinder
(which is assumed to have a focal ratio [f-ratio] of 1=4).
Solving for the beam on the sky for a feed placed in a

parabolic cylinder is a complex problem (for one approach
see [44,45]). Crudely the cylinder acts in two ways: in the
parabolic direction it focuses the antenna beam to a
diffraction limited beam on the sky; in the orthogonal
direction it acts like a mirror, inverting the antenna beam.
Rather than trying to accurately solve for the beam, we try
to capture these two effects. We will break the model down
into the product of two 1D functions: a function for the
E-W direction, calculated by illuminating the cylinder with
the dipole beam, and solving for the diffraction in the
Fraunhofer limit, and a N-S function which is just the
reflected feed amplitude in the N-S direction. We will also
model the polarization direction as being the same as that of
an unfocused dipole (in spherical coordinates, for a dipole
along the polar axis, the polarization direction is θ̂).

FIG. 1. A schematic of a cylinder telescope, consisting of two
cylinders aligned north south on the ground. Each cylinder is of
width W, and has Nfeeds regularly spaced a distance D apart. In
this paper we will only consider cylinders which are touching,
making the total width of the array 2W. The cylinders are
assumed to be long enough that there are no optical differences
between feeds at the edge and in the center of the array.

TABLE I. Parameters of the example cylinder telescope.

Parameters Value

Number of cylinders 2
Cylinder width [m] 20
Feeds per cylinder 64 (dual-pol)
Feed spacing [m] 0.3
Tsys [K] 50
Bandwidth [MHz] 400–800
Channel width [MHz] 2.5
Number of Channels 160 (in groups of 40)
Telescope Latitude 45°
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First we model the beam amplitude for the unfocused
dipole in the E-plane and H-plane as taking the form

ADðθ; θWÞ ¼ exp

�
−
ln 2
2

tan2θ
tan2θW

�
; ð35Þ

where θW is the full width at half power of the beam. For a
horizontal dipole mounted a distance λ=4 over a conducting
ground plane (see [46] Sec. 4.7), we can exactly calculate
the widths in the H-plane (θH ¼ 2π=3) and E-plane
(θE ≈ 0.675θH). We use these values for our fiducial beam
model, though we will vary them later in this paper.
In the E-W direction we are solving the Frauhofer

diffraction problem of a cylinder feed illuminating an
aperture of a finite width. This has the solution

AFðθ; θW;WÞ ∝
Z W

2

−W
2

AD

�
2tan−1

�
2x
W

�
; θW

�
e−ikx sin θdx

∝
Z

1

−1
e
− ln 2
tan2θW

u2

1−u2
−iπWλ u sin θdu ð36Þ

where we have used the fact that for a cylinder with a
f-ratio of 1=4 a ray striking a distance x from the cylinder
center reflects by an angle θ ¼ 2tan−1ð2x=WÞ ¼ 2tan−1u
where W is the cylinder width.
Putting these components together, our overall beam

model can be written as the product of three functions. For
the X feed

AX
a ðn̂Þ ¼ AFðsin−1ðn̂ · x̂Þ; θE;WÞ

× ADðsin−1ðn̂ · ŷÞ; θHÞpaðn̂; x̂Þ ð37Þ

and for the Y feed

AY
aðn̂Þ ¼ AFðsin−1ðn̂ · x̂Þ; θH;WÞ

× ADðsin−1ðn̂ · ŷÞ; θEÞpaðn̂; ŷÞ ð38Þ

where the vectors x̂ is a unit vector transverse to the
cylinder, pointing east, and ŷ is along the cylinder, pointing
north. The function pa gives the unit vector polarization
direction on the sky for a dipole in direction d̂

p̂aðn̂; d̂Þ ¼
1

ð1 − ðn̂ · d̂Þ2Þ1=2 ½d̂ − ðn̂ · d̂Þn̂�a: ð39Þ

In Fig. 2 we illustrate the on-sky beam for our example
telescope. We plot the response of an “instrumental Stokes
I,” constructed from the combination of XX þ YY polari-
zation, to Stokes I and polarizated emission on the sky. The
response to Stokes I on the sky is given by

RI→I ¼ ðAa
XA

b
X þ Aa

YA
b
YÞPI

ab: ð40Þ

As a measure of the response to polarized radiation
we use

R2
P→I ¼

X
P∈fQ;U;Vg

½ðAa
XA

b
X þ Aa

YA
b
YÞPP

ab�2: ð41Þ

For a beam with no polarization leakage, this response is
zero. Though our example has no leakage on axis, Fig. 2
clearly shows that there is significant pickup of polari-
zation away from the beam center.

V. SENSITIVITY IN HARMONIC SPACE

The geometry of an interferometer on the ground
determines its angular sensitivity on the sky, with the total
size of the optical system determining the smallest scales
that can be measured. This limits the number of harmonic
modes on the sky that we are able to measure, reducing
Eq. (27) to finite sums.
The set of spherical harmonics that a given baseline

is sensitive to can be found by expanding a plane wave on
the sky:

e2πin̂·u ¼
X
lm

½4πiljlð2πjujÞY�
lmðûÞ�Ylmðn̂Þ ð42Þ

where the part in square brackets is the coefficient in a
spherical harmonic expansion of the plane wave. The
amplitude of a spherical harmonic function can be con-
veniently written in terms of integrals of Bessel functions
[[47], Sec. 5.4]. For large l ≫ 1 we find

FIG. 2 (color online). The primary beam of the cylinder
telescope forms a long strip on the sky from north to south.
This figure illustrates the transfer into an instrumental Stokes I
(XX þ YY polarizations), from the total intensity on the sky (left
panel), and from the polarized sky only (right panel). The red
contour in the top panel marks the half power point of the beam.

COAXING COSMIC 21 CM FLUCTUATIONS FROM THE … PHYSICAL REVIEW D 91, 083514 (2015)

083514-7



jYlmðθ;ϕÞj2 ¼
2lþ 1

4π

Z
∞

0

�
Jm

�
t sin θ
2

��
2

J2lþ1ðtÞdt

≈
l
2π

Jmðl sin θÞ2 ð43Þ

where we have used the approximation that limn→∞JnðxÞ ¼
δðx − nÞ. Combining this with Eq. (42) shows that the
magnitude of the spherical harmonic coefficients of a plane
wave are

jalmj2 ¼ 8πljlð2πjujÞ2Jmðl sin θuÞ2: ð44Þ

In particular this shows that the coefficients are effectively
bounded in a triangle by l < 2πjuj and jmj < l sin θu
because of the exponential decay of the Bessel functions
for large order.
The highest frequency Fourier mode measured on a

sky by an individual baseline comes from the maximum
distance between illuminated areas on the correlated
antennas (this is the largest distance from the origin in
the uv plane). Following through from Eq. (44), we expect
the range of measurable modes to be l < 2πdmax=λ and
m < 2πdE-W=λ, where dmax is the largest distance associ-
ated with the baselines and dE-W the largest in the E-W
direction.
Let us consider our cylinder (see Fig. 1). A feed on the

cylinder effectively illuminates the whole width of the
cylinder, but a very short distance along its axis. This makes
the largest E-W distance of all feed pairs NcylW, and the
largest N-S distance NfeedsD. In terms of spherical har-
monic coefficients on the sky, we are limited to

l <
2π

λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNcylWÞ2 þ ðNfeedsDÞ2

q
; ð45Þ

m <
2π

λ
NcylW: ð46Þ

Though this result is correct for a cylinder telescope, for
an interferometer with a compact field of view, pointing
away from the celestial equator, it needs modifying. As
before the resolution in the E-W direction is determined by
the maximum distance dE-W, however, if the primary beam
does not cross the equator this resolution corresponds to a
larger fraction of the circle of constant declination at that
point. As the m mode corresponds to the Fourier mode in
the azimuthal direction, this means that the limit on m is in
fact m < 2π cos δ dE-W=λ, where δ is the declination of the
point in the primary beam closest to the celestial equator.
To look at the sensitivity of the telescope in more detail

we can calculate the Fisher matrix of the alm coefficients
(we discuss the interpretation of Fisher matrices in detail in
Sec. VIII). For Gaussian noise the likelihood function for
the alms is

Lða; vÞ ∝ exp

�
−
1

2
ðv − BaÞ†N−1ðv − BaÞ

�
: ð47Þ

From this we can calculate the Fisher matrix for a
particular m:

F ll0 ¼ −
	 ∂2

∂aTl ∂aTl0
lnL




¼ ½B†
TN

−1BT �ll0 : ð48Þ

We expect that in general this matrix will be singular
and hence we cannot find the covariance matrix of the
alm coefficients by finding F−1. One obvious source of
this is that the interferometer does not see the whole
sky—any declination less than δ ¼ −45° is below the
horizon—and this manifests itself as correlated combi-
nations of alms that we cannot separate. Additionally the
angular resolution falls off towards the horizon meaning
that we do not have uniform sensitivity across the sky.
The consequence of this is obvious from simply counting

the degrees of freedom involved. For the example tele-
scope, there are 762 unique baselines each of which gives a
noisy complex measurement of the sky. However, we are
sensitive up to lmax ∼ 400 for each polarization, giving
4ðlmax −mÞ complex degrees of freedom on the sky, so
there must be some combinations about which we have no
information.

FIG. 3 (color online). Sensitivity of the array to temperature,
derived from the square-root-inverse function of the diagonal
elements of the Fisher matrix ðF ðlmÞðlmÞÞ−1=2. The plot above
shows the log10 of the sensitivity in units of μK. The sensitivity to
the three remaining Stokes parameters is largely identical. The
dashed black lines mark the m corresponding to the separation
between the cylinders, and the total width of the cylinders. As we
would expect the sensitivity peaks inm at the zero separation, and
the single cylinder separation. It then falls off rapidly at the edge
of the telescope.
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As in general we cannot determine the covariance matrix
of the alm, we will use the Fisher matrix itself to describe
the sensitivity. In Fig. 3 we show the square-root-inverse
function of the diagonal elements of the Fisher matrix at
each m for the example telescope, this gives an illustration
of the amount of information we have about any spherical
harmonic mode.

VI. SVD PROJECTION

For 21 cm cosmology we are only interested in deriving
real properties of the unpolarized sky. As we shall see this
is usually of much lower dimension than the space of
measurements made by an interferometer, leaving a large
number of redundant degrees of freedom which are just
filled by the instrumental noise. Eliminating these would
allow us to significantly compress the data space, without
losing useful information. In Fig. 4 we illustrate the
geometry of the measured visibilities. The matrix B wholly
describes the mapping between the sky and the measured
visibilities, and understanding its structure is the key to
isolating the important degrees of freedom.
To start with let us concentrate on how to reduce to only

the degrees of freedom on the sky (ignoring their polar-
izations for now). The matrix B tells us how a subspace of
the spherical harmonics a map into a subspace in visibility
space v. This visibility subspace (shown by the plane in the
Fig. 4), is termed the image of B. The subspace of

visibilities orthogonal to the image, is called the cokernel.
The cokernel has no mapping to the sky, and so measuring
this subspace yields no useful information. By projecting
our data onto the image, we remove the cokernel and
compress our data by retaining only the relevant degrees of
freedom. In Fig. 4 this corresponds to projecting onto the
plane, eliminating the perpendicular dimensions.
The number of retained degrees of freedom is given

by the dimensionality of the image—that is, the rank of
B—and cannot exceed the number of measured modes
on the sky. For a single frequency and m, the rank is
guaranteed to be less than the total number of spherical
harmonics required to describe the polarized sky, that is
4ðlmax −mÞ. However, in the case of incomplete sky
coverage, we cannot measure all spherical harmonic modes
independently, and this coupling means that the rank is
likely to be reduced to around 4fskyðlmax −mÞ, where fsky
is the fraction of sky observed.
These bounds on the rank of B depend only on the

physical size of the telescope, and not details of the feed
distribution. For compact interferometers with little redun-
dancy, the number of feed pairs rapidly exceeds the rank of
the matrix. As they cannot be making independent mea-
surements of the sky, there are many linear combinations
which contain only noise. Projecting onto the image
removes these and gives a large computational saving by
dramatically decreasing the degrees of freedom we must
consider.
To find the image of B we can use the singular value

decomposition (SVD). However, first we will prewhiten
the visibilities with respect to the instrumental noise. This
transforms it to be uncorrelated with unit variance and can
be done by multiplying them with N−1

2, a matrix such that
N−1

2ðN−1
2Þ† ¼ N−1. As N is positive definite this factoriza-

tion always exists and can be found by Cholesky factori-
zation or eigendecomposition. This leaves Eq. (31) as

N−1
2v ¼ N−1

2BaþN−1
2n: ð49Þ

We then take the SVD of the whitened beam transfer matrix

N−1
2B ¼ UΣV†: ð50Þ

The matrix U defines the image and cokernel, given by
columns of U corresponding to nonzero and zero singular
values respectively. In practice many singular values are
numerically small but not precisely zero, giving modes
which are either nonzero because of numerical precision or
simply carry a very small but nonzero amount of informa-
tion about the sky. In this case we separate the image
and cokernel using a numerical threshold. We partition the
columns of the matrix U into two matrices UI and UN
which give the image and cokernel respectively. To com-
press our data we simply filter with the matrix UI to
give v0 ¼ U†

IN
−1
2v.

FIG. 4 (color online). The information about the sky does not
spread throughout the space of visibilities but is contained in a
subspace, a linear combination of the measured signals which
does not span the whole visibility space. Directions orthogonal to
this subspace are excited only by the instrumental noise, and
contain no information about the sky. The left panel illustrates the
geometry of the full visibility space, showing the sky subspace as
a plane. In the right panel we show only the sky plane. Within this
sky subspace, there are yet lower dimensional subspaces that the
total intensity (labeled T) and polarized (P) signals get mapped
to. However, they need not be orthogonal, an effect we must take
into account. One way of treating this is to project onto the space
orthogonal to polarization (labeled T 0), this eliminates polarized
contamination at the expense of some sensitivity to total intensity.
This is discussed in detail in the text.
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While this filtering can yield a large compression, we
should note that it preserves all the information about the
sky. However, the cosmological signal we are interested in
is purely unpolarized and requires only ∼fskyðlmax −mÞ
modes per frequency and m to describe it. This suggests
that we should be able to improve our compression by
around another factor of 4.
As a first attempt we might consider projecting onto the

image of BT , the total intensity transfer matrix, rather than
the full B. In Fig. 4 this would correspond to projecting
straight onto the T vector, rather than just the plane.
Unfortunately as illustrated in Fig. 4, the image of the

total intensity need not be orthogonal to the subspace
containing the polarized image. This is a manifestation of
polarization leakage. In this case by doing this we lose the
ability to differentiate between polarized and unpolarized
signals from the sky, resulting in catastrophic leakage of
polarized foregrounds.
A resolution to this problem is to project not onto the

image of BT but to perform another projection, this time
onto the polarization cokernel. In Fig. 4 this is equivalent to
projecting onto the vector T 0. By doing this we ensure that
there is no leakage of the polarized sky into our compressed
data, at the expense of throwing away information about
the total intensity signal that lies in the overlap between the
two spaces.
To project out the polarized signal, we first construct the

polarization transfer matrix

Bpol ¼
�
BE BB BV

�
; ð51Þ

then we use this to isolate the polarization cokernel in the
sky compressed basis by performing another SVD

U†
IN

−1
2Bpol ¼ UpolΣpolV

†
pol: ð52Þ

As before we separate into the image and cokernel of this
matrix, by dividing up Upol into Upol;I and Upol;N respec-
tively. As before the separation onto the two spaces is not
exact, but done through a numerical threshold. By projec-
ting our data space onto the cokernel we achieve this final
compression.
Overall we have applied three transformations to

our data:
a. Whiten the instrumental noise by applying N−1

2.
b. Project onto the sky subspace by using U†

I .
c. Project out the polarized sky using U†

pol;N .
Combined these define a new basis in which to consider our
data. One which strives to preserve as much of the relevant
information as possible, while vastly reducing the number
of degrees of freedom we must consider. We define our
filtered visibility data as

v̄ ¼ U†
pol;NU

†
IN

−1
2v: ð53Þ

We can write a modified version of the measurement
equation (31) which relates this to the sky signal

v̄ ¼ B̄aþ n̄ ð54Þ

where we have defined

B̄ ¼ U†
pol;NU

†
IN

−1
2B; ð55Þ

n̄ ¼ U†
pol;NU

†
IN

−1
2n: ð56Þ

As the columns of UI and Upol;N are orthonormal, the
instrumental noise still has the identity covariance hn̄n̄†i ¼
N̄ ¼ I. In Fig. 5 we show the singular values of the new
mapping matrix B̄, clearly illustrating that we are only
sensitive to a small number of modes on the sky.
In order to visualize our data we will want to make maps

from our filtered data set. For Gaussian distributed instru-
mental noise it is straightforward to make maximum-
likelihood maps of the sky as discussed in [32]. As we
have whitened the instrumental noise, our data has a
likelihood function

Lða; ~vÞ ∝ exp

�
−
1

2
jv̄ − B̄aj2

�
ð57Þ

and thus we can solve for the maximum-likelihood solution
using the Moore-Penrose pseudoinverse, giving our best
estimate of the spherical harmonics simply as

FIG. 5 (color online). The singular values of B̄ for the 400 MHz
channel after removal of the polarized modes. Large singular
values represent modes on the sky that are well measured. We see
that at each m there are less than 100 measured degrees of
freedom from the sky, with the spectrum dropping off very
steeply beyond this. This is a significant saving, before com-
pression there are twice as many modes as there are unique
baselines, including positive and negative ms. In our example
there are 762 unique baselines (without autocorrelations), so there
would be ∼1500 modes.
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â ¼ B̄þv̄: ð58Þ

As in [32], to make a full map of the sky, we simply use this
estimator on a per-m and per frequency basis and collate the
estimates. We can then perform an inverse spherical
harmonic transform to produce sky maps at each frequency.
As we have projected onto the polarization cokernel, the
data do not contain any information about the polarized
sky. Combined with the minimum power property of the
Moore-Penrose pseudoinverse this means that the polarized
spherical harmonics will be zero.

VII. FOREGROUND REMOVAL WITH THE
KARHUNEN-LOÈVE TRANSFORM

The foremost challenge for any 21 cm intensity mapping
experiment is separating the cosmological signal from
astrophysical contaminants which are around 104–106

times larger. The primary sources are the diffuse synchro-
tron emission from our own Galaxy and emission from
extragalactic point sources [48]. All significant foregrounds
are expected to be spectrally smooth [33], however, the
21 cm signal decorrelates quickly as each frequency
corresponds to a different spatial slice. This gives an
opportunity to separate the two.
Conceptually foreground removal is simple—we just

remove the smooth frequency component from our obser-
vations. Unfortunately the reality is far from straightfor-
ward. The large dynamic range between the amplitude of
the foregrounds and the 21 cm signal makes several effects
extremely problematic.
(i) Mode mixing
In a real experiment the shape of the beam on the sky will

vary with the observed frequency, driven by the optical
effects of using a fixed physical aperture or feed spacing.
Even if the angular fluctuations on the sky were frequency
independent as we scan through in frequency the beam
structure changes, and this introduces variations of our
measurements with frequency.
(ii) Model uncertainties
Astrophysical foregrounds are poorly constrained at the

small angular and frequency scales that will be probed by
upcoming 21 cm intensity mapping experiments. While
there exist theoretical and phenomenological models of this
regime, a successful foreground removal method should be
robust to uncertainties in the foreground statistics. Though
most effort has focused on the uncertainties in the two-
point correlations, we must also ensure that higher order
moments do not impair our analysis.
Given these complications, we would prefer a fore-

ground removal method to be conservative, throwing away
potentially useful information in order to be robust to them.
It is better to be cautiously correct than precisely wrong.
Accepting that we may prefer to lose information about

the 21 cm signal in order to be unbiased by residual

foregrounds, we would still like to perform the best job we
can, requiring that we are statistically optimal.
(iii) Statistically optimal
Whatever space the foregrounds are removed in we must

be able to keep track of the statistics of both the instru-
mental noise, and the foreground residuals in order to be
able to optimally perform subsequent stages, notably power
spectrum estimation.

This latter point is especially pertinent for any technique
that operates directly in map space. It is not only difficult to
express the pixel-pixel correlations caused by the meas-
urement process (especially with noise), but similarly
difficult to project these back after any foreground cleaning
has been performed.
In a previous paper [32] we developed a foreground

removal technique that addresses these three issues. It does
this by explicitly taking into account the statistics of both
the signal and foregrounds in the basis that they are
measured. In this section we give an overview of this
method in the context of the polarized analysis pre-
sented here.

A. Stationary statistics

Understanding the statistics of our measured data is an
essential ingredient in all but the most basic analysis if
we make best use of the data. For intensity mapping
experiments, our data have three components: the 21 cm
signal which we are trying to extract, the foregrounds
and instrumental noise. The statistics of instrumental
noise live in the visibility space, the basis of our measure-
ments. However the other components are naturally rep-
resented on the sky, and must be projected into this space
using Eq. (58).
In this work we treat the sky as a statistically isotropic

field with a two-point function

halmν0a�l0m0ν0 i ¼ Clðν; ν0Þδll0δmm0 ; ð59Þ

which we write in matrix form as Csky defined as

½Csky�ðlνÞðl0ν0Þ ¼ Clðν; ν0Þδll0 : ð60Þ

This quantity can be projected into the SVD basis for a
given m using the transfer matrix B̄, which means the final
two-point function can be written as

C̄ ¼ B̄CskyB̄† þ N̄: ð61Þ

As the measurement process itself does not mix m
modes, provided the statistics of the sky do not couple
them (which is the case for a statistically isotropic sky),
then the covariance of the data is block diagonal in m. This
brings huge computational savings, and makes a full
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analysis tractable [32]. Clearly the observed sky is not
statistically isotropic, with our own Galaxy varying wildly
across the sky. However, as discussed in [32], this does not
seem to diminish the effectiveness of the analysis.
These savings come because we can then operate on each

block independently. For instance to diagonalize a covari-
ance [an OðN3Þ operation] we can save around a factor of
m2

max in computation by diagonalizing each block sepa-
rately, and as we only need store the diagonal blocks
storage is reduced by a factor of mmax.

B. Foreground removal

Any foreground removal method aims to find a subset
of the data within which there is significantly more 21 cm
signal than astrophysical foregrounds. Most techniques
are linear, and they can be thought of as constructing a
new linear basis for the data which localizes the two
components into distinct regions. Unfortunately, in the
presence of mode mixing, it is not obvious how to select
a basis which separates the two components—what we
introduce here is a method which can automatically
generate it.
The signal covariances of the signal and foregrounds

describe how their respective power is distributed and
correlated within the measured data. It is these correlations
that make the foreground fluctuations superficially seem
much larger than those of the signal. In fact we expect
them to be driven by a very small number of very highly
correlated modes, and we would like to change to a basis
where this is apparent. This can be achieved by use of the
Karhunen-Loève transform (often called the signal-noise
eigendecomposition), which has a long history in cosmol-
ogy [49–51]. This transform simultaneously diagonalizes
both the signal and foreground covariance matrices, gen-
erating an uncorrelated set of modes. This makes compar-
ing the amount of signal and foreground power in each
mode trivial.
Performing this transform requires covariance matrices

for the signal and foregrounds. The signal matrix, S,
contains only the 21 cm signal that we want to extract:

S̄ ¼ B̄C21B̄† ð62Þ

whereas the noise covariance contains the astrophysical
foregrounds:

F̄ ¼ B̄CfB̄†: ð63Þ

This requires models for the statistics of both the signal
and the foregrounds. The signal is modeled as a simple
Gaussian random field for the 21 cm emission from
unresolved galaxies, whereas the foreground model
includes both the synchrotron emission from our Galaxy

and the contribution from a background of extragalactic
point sources. The details of both are discussed in
Appendix C.
Using these two matrices we can construct the

Karhunen-Loève eigenbasis (see Appendix B for details
on the process). This gives us a set of statistically
uncorrelated eigenmodes, and corresponding eigenvalues.
Writing the eigenvectors in a matrix row-wise gives the
transformation matrix to diagonalize the covariances. By
convention the signal covariance transforms to

S̄ → S̄0 ¼ PS̄P† ¼ Λ; ð64Þ
where Λ is the diagonal matrix of the eigenvalues, and the
foreground covariance becomes

F̄ → F̄0 ¼ PFP† ¼ I: ð65Þ
Hence, in the new basis the eigenvalues λ give the ratio of
signal to foreground power. In practice the S/F spectrum is
steep, with a quick transition from foreground dominated to
signal dominated modes [32].
Transforming a visibility vector into the new basis is

done by simply applying

v̄0 ¼ Pv̄: ð66Þ
To isolate the 21 cm signal we want to select modes which
contain little foreground contamination, which can be done
by picking modes with eigenvalue (S/F power) greater than
some threshold. This forms a reduced basis within which
the remaining modes have negligible contamination by
foregrounds. To project into this basis we define the matrix
Ps which contains only the rows from P corresponding to
eigenvalues greater than the threshold s. In Fig. 6 we
illustrate how the signal and foreground modes appear
when projected back onto the sky.
For the purpose of power spectrum estimation (see next

section) we will only require forward estimators (where we
project quantities into the KL basis) and knowing Ps will
suffice. However, for visualizing our results, we want to be
able to transform back to the sky (by way of the measured
visibilities). This requires us to use an inverse to map from
the truncated KL basis back to the visibilities. Unfortunately
because the KL modes are nonorthogonal it is ambiguous
how to project back into the higher dimensional space.
One obvious choice would be to make further use of the
Moore-Penrose pseudoinverse. This returns a vector in the
visibility space which is a linear combination of the retained
signal modes while preserving their projected amplitudes.
However, because the full set of modes is not orthogonal the
resulting vector has a nonzero foreground amplitude (see
Fig. 7 for a visual illustration).
A far better choice is to generate the full inverse P−1 and

remove columns corresponding to the rejected modes (we
denote this matrix P−s). This is equivalent to projecting into
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the full KL basis, zeroing the foreground contaminated
modes, and the using the full inverse to return the visibility
space. The distinction with the pseudoinverse is shown
in Fig. 7.
To demonstrate the foreground removal process we

project separate realizations of the total intensity fore-
grounds, polarized foregrounds (showing Stokes Q only),
and the 21 cm signal, through the filtering process (see
Fig. 8). We show the original simulations, and the total

intensity maps made from the foreground filtered visibil-
ities of each component. This illustrates how the fore-
ground amplitude is dramatically reduced by the process,
while the signal retains its overall character.

C. Double-KL transform

So far we have neglected the effects of instrumental
noise. To add the instrumental noise back in we simply
transform all noise contributions into the new basis.
Writing the total noise contribution as Nall ¼ F̄þ N̄, the
matrix in the truncated basis is

Nall → Nall
s ¼ PsðF̄þ N̄ÞP†

s ð67Þ

¼ Iþ PsNP
†
s : ð68Þ

Though this transform ensures that our foreground con-
tamination remains minimal, as the transformed instrumen-
tal noise matrix will not remain diagonal this gives a
correlated component between all our modes. However, for
further analysis it will be particularly useful if the set of
modes we use in our calculation is uncorrelated. By making
a further KL transformation on the foreground removed
signal Ss ¼ Λs, and total noiseNall

t covariance matrices, we
find a new transformation matrixQwhich maps into a basis
where this is true. We will apply a further cutoff to this,
including only modes with a signal to total noise ratio
greater than s to give a transform Qt.
For notational convenience we will write the total

transformation in terms of a single matrix R ¼ QtPs,
having chosen suitable values for the two cutoffs s and
t. Quantities in this final basis we denote with tildes, for
example a visibility mapped into this basis is ~v ¼ Rv̄, and a
covariance is ~C ¼ RC̄R†. We will denote the signal
covariance ~S ¼ ~Λ, and the total noise covariance (including
foregrounds) as ~N ¼ I.

VIII. POWER SPECTRUM ESTIMATION

In cosmology we are primarily interested not in the
individual structures we see, but in their global properties.
It is these statistical observations which tell us about the
fundamental nature of the Universe. The quantity we are
most interested in is the power spectrum which encodes
most of the cosmological information in its shape and
evolution. In particular for 21 cm intensity mapping it
allows us to measure the position of the BAOs, which in
turn can shed light on the time evolution of dark
energy [19].
In order to determine the power spectrum shape we

first need to parametrize it. We choose to model the
two-dimensional, real-space comoving power spectrum,
describing it as a linear summation of different basis
functions

FIG. 7 (color online). To remove foregrounds from our data
(point O), we separate our space into two subspaces of fore-
ground contaminated modes, and signal modes (denoted by F and
S). These spaces are not guaranteed to be orthogonal. Inverting
with the pseudoinverse gives the linear combination of signal
vectors with the same amplitude, however, the resulting vector P
is clearly contaminated by foregrounds (as the projection onto F
is nonzero). The full inverse gives point I, which has the same
projection onto S, but contains no foregrounds, however, it is
necessarily a combination of both S and F.

FIG. 6 (color online). Here we plot two KL modes (with
m ¼ 20) as they would look on the sky: one of the most
foregroundlike modes (S=F ¼ 4 × 10−13), and one of the most
signal-like (S=F ¼ 170). The lower, square panels show the
frequency direction of a cut through the sky indicated on the
upper panel with a black line. Though they are derived in
visibility space, when projected back to the sky, they appear
as we would expect with the foreground mode having a smooth
frequency spectrum, and the signal mode oscillating. Modes at
either end of the spectrum, like the ones plotted, are easy to
interpret, this is not generally true of the intermediate modes.
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PðkÞ ¼
X
a

paPaðkÞ: ð69Þ

In this paper we decompose k space into bands in k∥ and
k⊥, such that each band represents a ring around the line of
sight axis in the full three-dimensional k space.
We can calculate the accuracy we could achieve meas-

uring the power spectrum using the Fisher information

matrix, which provides a method for predicting our ability
to constrain arbitrary sets of parameters, and has become
the essential tool in cosmology for forecasting. The Fisher
matrix is defined as

Fab ¼ −
	 ∂2

∂pa∂pb
logLðp; ~vÞ



~v

ð70Þ

FIG. 8 (color online). This figure illustrates the process of foreground removal on simulations of the radio sky. The top row of panels
shows sky maps of the individual components: unpolarized foregrounds, polarized foregrounds (showing StokesQ only) and the 21 cm
signal. On the bottom row we show the total intensity maps we would make after foreground cleaning visibilities from our example
telescope. Particularly, the lower middle panel is showing the leakage of polarized foregrounds into the total intensity. Again, the square
panels show the frequency direction for the slice of the sky indicated with a black line. Both the polarized and unpolarized foregrounds
become substantially suppressed, whereas the 21 cm signal is largely unaffected. In this example we have discarded modes with
S=F < 10. This leaves a clear correspondence between the original signal simulation and the foreground subtracted signal, while leaving
the foreground residuals over ten times smaller in amplitude.
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where L is the likelihood function and the pa are the
parameters we are trying to forecast. In the limit that we are
measuring the Fisher information for the true parameters
p ¼ p0 that generate the data ~v, and the priors are uniform
in this region, the inverse F−1 gives a lower bound on the
errors of any unbiased estimator (the Cramér-Rao bound),
and can be viewed as a forecast for the covariance of the pa.
Let us specialize this to the case of estimating the power

spectrum. After projection into the foreground cleaned
basis we assume that the remaining modes follow a
complex Gaussian distribution with zero mean. This
assumption should be reasonable provided we have suc-
cessfully removed the modes containing any significant
foreground contribution—it is these modes which contain
the most non-Gaussian contributions. In this case the Fisher
information matrix of a single m mode for a set of
parameters pa is

FðmÞ
ab ¼ Tr½ ~Ca

~C−1 ~Cb
~C−1�; ð71Þ

where ~Ca is the linear response of the data covariance to a
change in pa, that is

~Ca ¼
∂ ~C
∂pa

¼ ∂
∂pa

h~v~v†i: ð72Þ

For power spectrum forecasting, the pa are the amplitudes
of our power spectrum bands [see Eq. (69)]. To calculate
the response ~Ca we need to project the band functions
PaðkÞ into the cleaned basis. First, the spatial representa-
tion PaðkÞ must be turned into a multifrequency angular
power spectrum Clðν; ν0Þ ¼ halmðνÞa�lmðν0Þi. We do this by
using a simple linear flat-sky prescription which includes
the effects of both redshift distortion and structure growth
(see Appendix C). We denote the matrix representation of
the angular power spectrum basis function asCa. This must
be projected into the KL basis

~Ca ¼ RBCaB†R†: ð73Þ

In practice explicitly calculating the ~Ca this way is computa-
tionally very expensive. We will discuss a fast Monte Carlo
alternative for calculating the Fisher matrix later in this
section. In the constructed eigenbasis ~C ¼ ~Λþ I is exactly
diagonal, however, ~Ca can have off-diagonal elements.
As there is no coupling between them, the total Fisher

information for the whole data set is simply the sum over
the individual m modes

Fab ¼
X
m

FðmÞ
ab : ð74Þ

The Fisher matrix gives us the ability to forecast how
well we can possibly measure the power spectrum, but it
does not tell us how to go about estimating that power

spectrum. We will use the quadratic power spectrum
estimator of [52,53]. This is an optimal estimator in that
it achieves the Cramér-Rao bound giving it the lowest
possible variance. We will give an overview of this
estimator below, though we encourage the reader to look
at the original papers for more detail.
As our data set is made up of a large number of

independent m modes, for simplicity we will start with
the power spectrum estimator for the whole data set, and
then break it down into individual modes which can be
calculated simply.
For notational simplicity, it is most convenient to start

with a related estimator

q̂a ¼ ~v†Ea ~v; ð75Þ

where the quantities on the right-hand side include all ms.
This forms a weighted combination of all the quadratic
pairs ~v~v†. Our actual power spectrum estimator is built out
of linear combinations of the q estimator:

p̂a ¼
X
b

Mabðq̂b − bbÞ: ð76Þ

In this bb subtracts the additive bias from the instrumental
and foreground noise, and the mixing matrix Mab takes
linear combinations such that p̂a is related to the actual
power spectrum. Our estimator will have minimum vari-
ance with the choice

Ea ¼ ~C−1 ~Ca
~C−1; ð77Þ

where again these matrices include all ms. For a detailed
derivation of this weighting, see [52]. Requiring p̂a to be an
unbiased estimator of the power spectrum we can deter-
mine the noise bias term

ba ¼ TrEa
~N: ð78Þ

Our remaining choice is that of the mixing matrix Mab
which gives the exact link between our estimator and the
“true” power spectrum. In particular, we care about the
expectation of the estimator

hp̂ai ¼
X
b

Wabpb; ð79Þ

which we have written in terms of a window function Wab
which mixes the power spectrum bands. Using Eqs. (75)
and (77) we find that

hq̂a − bai ¼ Tr½Eað ~C − ~NÞ� ð80Þ

¼
X
b

Fabpb ð81Þ
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and combining this with Eq. (79) gives the window
function as

Wab ¼
X
c

MacFcb: ð82Þ

We fix the normalization by requiring that
P

bWab ¼ 1.
Our choice of the mixing matrix Mab also affects the
covariance of the estimator, giving

Covðp̂a; p̂bÞ ¼
X
cd

MacMbdFab; ð83Þ

where we have used the fact that Covðq̂a; q̂bÞ ¼ Fab.
There are three common choices for the mixing matrix

Mab [54]:
a. Unwindowed: Choosing the window function to be the

identity means that hp̂ai ¼ pa. This corresponds to
Mab ¼ F−1

ab . This is the most natural choice, however it
gives highly correlated errors bars.

b. Uncorrelated: To decorrelate the estimator covariance,
we choose Mab ¼ ½PbF

1=2
ab �−1F−1=2

ab . This leads to
uncorrelated estimates, but leads to mildly spread
window functions [31].

c. Minimum variance: The minimum variance estimator
requires that the mixing matrix is diagonal Mab ¼
½PcFac�−1, and gives window functions with moder-
ate spread.

We are generally interested in the Unwindowed estimator
and we will use this in our forecasts, however, for
convergence reasons that we discuss later, we will also
use the minimum variance estimator when estimating
power spectrum biases.
Naive calculation of this estimator is problematic

because of the large dimensionality of the data.
However, we can trivially exploit the independence of
the individual m modes to simplify this calculation. Noting
that the covariance matrices in Eq. (77) are block diagonal
in m because they are statistically independent, the weight
matrix Ea is also block diagonal. This means we can
rewrite the q estimator as a sum of separate estimators for
each m:

q̂a ¼
X
m

q̂ðmÞ
a ; ð84Þ

with

q̂ðmÞ
a ¼ ~v†mE

ðmÞ
a ~vm; ð85Þ

where the EðmÞ
a are the diagonal blocks of Ea, and ~vm is

the data for each m mode. Similarly we will also break
up the bias terms into contributions from each m. The
total bias

ba ¼
X
a

bðmÞ
a ð86Þ

where the individual

bðmÞ
a ¼ TrEðmÞ

a ~NðmÞ: ð87Þ

Unfortunately exact calculations of the Fisher matrix

FðmÞ
ab and the bias bðmÞ

a are computationally difficult. While
many aspects of the calculation can be simplified by the
fact that ~C is diagonal, the need to explicitly construct
covariances of ~Ca and ~N in the KL basis is still prohibitive.
To avoid this, we follow [31,54] and construct a
Monte Carlo scheme to evaluate the Fisher matrix.
The key to this scheme is that evaluating the q estimator

is quick as we do not need to explicitly construct any large
matrices. This is achieved by constructing the intermediate
vector

w ¼ B̄†R† ~C−1 ~v; ð88Þ

which can be efficiently evaluated from right to left. The q
estimator is then

q̂ðmÞ
a ¼ w†Caw: ð89Þ

As Ca is block diagonal in l this can be quickly evaluated.
To estimate the Fisher matrix we draw many random
realizations of our data set to which we apply the q
estimator. Then, noting that the covariance of q̂a is

Covðq̂ðmÞ
a ; q̂ðmÞ

b Þ ¼ FðmÞ
ab ð90Þ

we can evaluate the sample covariance of our q samples to
form an estimate of the Fisher matrix. To estimate the bias
term we use the fact that

bðmÞ
a ¼ h ~n†Ea ~ni ¼ hqðmÞ

a i ~N; ð91Þ

and take the average of the q estimator under random
realizations of the noise.
This Monte Carlo scheme converges rapidly enough that

it is effective for forecasting. Unavoidably there will be
small of-diagonal terms in the estimated Fisher matrix
which do not converge exactly, and these errors can become
amplified when taking powers to construct the mixing
matrixMab. These errors remain small enough that they are
not apparent when performing power spectrum estimation
on data close to the fiducial model, and in most cases this
Monte Carlo technique is still sufficient. However, for data
significantly biased from the fiducial model this could be
significant, particularly when using the unwindowed esti-
mator which requires the inverse of the Fisher matrix.
Specifically for the unwindowed estimator we can see

that the problem is that the effective window function of
the power spectrum, WðeffÞ

ab , for a particular Monte Carlo

estimate of the Fisher matrix FðmcÞ
ab is
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WðeffÞ
ab ¼

X
c

ðFðmcÞÞ−1acFcb ≠ δab: ð92Þ

The size of the off-diagonal elements in this effective
window function determines how much the power is
spuriously spread around. Though we do not have access
to the true Fisher matrix in order to calculateWðeffÞ, we can
estimate the size of the off-diagonal terms by using multiple
Monte Carlo estimate, in particular using one estimated
with a much larger number of samples in place of the true
Fisher matrix Fab. For our default choice of 2000 samples,
this leads to off-diagonal terms of order 10−2 to 10−3,
suggesting that biases of 102 to 103σ will produce signifi-
cant spurious power.
However, using the minimum variance estimator, which

does not require us to calculate any powers of the Fisher
matrix, alleviates this problem as it only requires the
diagonals of the Fisher matrix. This is the route we take
when dealing with the biased data we will find in Sec. X.

IX. DISCUSSION

A. Polarized foreground removal

Foreground cleaning inevitably throws away measured
information about the sky, and is guaranteed to reduce our
sensitivity to the 21 cm signal we are seeking. As our
primary interest is to measure the 21 cm power spectrum it
is vital that we understand how foreground cleaning
methods affect our power spectrum errors. Over the
previous sections we have developed the tools to tackles
this: in Sec. II we saw how the m-mode formalism gives us
a simple and efficient description of the measurement
process; Sec. VII developed an effective foreground clean-
ing method based on the KL transform that allows us to
easily track the statistics of our data through the cleaning;
and in the previous section (Sec. VIII) we constructed an
optimal estimator for the power spectrum, and forecast its
errors using the Fisher matrix. Here, we combine these to
forecast the performance of our example telescope in the
presence of foregrounds.
In Fig. 9 we show the power spectrum errors for

observations of the 400–500 MHz band with our example
telescope. We forecast three distinct sets of foregrounds:
no foregrounds; foregrounds with no polarized emission;
and partially polarized foregrounds. We use values of the
foreground amplitudes and spectral correlation that are
representative of those in our Galaxy, these models are
described in detail in Appendix C. In particular the
latter includes the effects of Faraday rotation, especially
emission from a range of Faraday depths within our Galaxy,
that produce significant spectral structure in the polarized
emission.
Clearly the dominant effect of foreground removal in

both cases is that we become insensitive to power at low k∥,
with a slight increase in the errors across k space. This is in

line with our expectations that the foregrounds contaminate
the large scale frequency modes corresponding to small k∥,
though we discuss how this relates to the foreground wedge
of [29,55] later.
Polarized foregrounds are removed primarily by the

action of the SVD filter described in Sec. VI. This leads
to only a slight worsening of the errors compared to the
case of unpolarized foregrounds only. One concern could
be that the SVD filter does not discriminate between
polarized modes on the basis of the magnitude of their
contamination (as would be done by a KL-based filter), it
removes them all. This approach is not perfectly optimal,
and could be improved by allowing all polarization modes
to propagate through and let the KL filter determine which
to remove. In tests on smaller examples, this approach
yields no significant improvement, but due to computa-
tional limitations cannot be demonstrated in the example in
this work.
In all the cases illustrated in Fig. 9 there are clear peaks in

the sensitivity in the k⊥ direction that correspond to those
seen in Fig. 3, and a rapid dropoff as we approach the
resolution limit of the telescope. Additionally at low k⊥ we
can see there is a reduction in sensitivity causedby the sample
variance of the small number of large scale angular modes.

B. Foreground wedge

Previous studies of the performance of 21 cm experi-
ments in the face of large astrophysical foregrounds have
found the bulk of the contamination to lie in a wedge
shaped region of k∥ < βk⊥ (for an experiment dependent

FIG. 9 (color online). Forecast errors on the power spectrum as
a fraction of its fiducial value for the 400–500 MHz band. The
three panels show the predicted errors without foregrounds (left),
with unpolarized foregrounds (center) and with polarized fore-
grounds (right). The dashed line indicated the predicted bound of
the “foreground wedge,” showing that with perfect knowledge of
our instrument foregrounds can be successfully cleaned well into
this region.
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constant β), termed the foreground wedge [29,55,56]. In
these studies, the complement of this region remains largely
free of contamination, and is thought to provide the best
chance for observing cosmological 21 cm radiation (in the
context of Epoch of Reionization observation this region is
called the EoR window).
Important progress has been made in recent years

understanding the source of this contamination [29,55]:
spectrally smooth radio emission is observed at a delay
which depends on the baseline length, and distance of the
emission from the phase center, the phase rotation with
frequency from this delay appears like fluctuations
along the line of sight. This argument leads us to predict
that spectrally smooth sources contribute power within a
region

k∥ < Δθ
�
χðzÞ HðzÞ

cð1þ zÞ
�
k⊥; ð93Þ

where χðzÞ is the comoving distance to redshift z, andΔθ is
the maximum observable distance from the beam center.
In Fig. 9 we mark the boundary of the foreground wedge

for our example telescope. While foreground removal
makes us insensitive to small k∥ there is no discernible
variation of this with k⊥, and we can observe well into the
foreground wedge. Clearly there is no fundamental loss of
information about the entire wedge. Though the distinction
between the information lost here, and the whole wedge is
small for our example, for a larger telescope with higher
angular resolution the difference will be significant.
As pointed out in [33] we expect the foregrounds along

each line of sight to be described by only a small number of
eigenmodes (with those beyond five contributing less than
10−10 in power). Though mode mixing may make these
modes appear to contribute power throughout the fore-
ground wedge, fundamentally there are only a small
number of them. The KL transform projects these eigenm-
odes forward into the data basis while keeping track of how
their angular structure correlates different baselines. If our
knowledge of the telescope is perfect, we can use these
modes to exactly project out the large foreground contri-
butions to the data.
If our knowledge of the telescope is not perfect as in our

forecasts (e.g. Fig. 9), we cannot perfectly remove the
foregrounds. We investigate this in the following section.

X. AN UNCERTAIN WORLD

So far we have demonstrated that the 21 cm signal can be
separated from the astrophysical foregrounds in a way
which does not distort our measurement of the underlying
power spectrum. This assumed an ideal instrument about
which our knowledge was perfect in every sense, con-
ditions that a real telescope will not meet. There are
many sources of nonideality—primary beam response,
amplifier gains, cable delays and noise temperatures are

just a few—each of which could distort our measurements.
We can divide these nonidealities into two classes:
a. Known deviations from the design can be incorporated

into our analysis to keep it unbiased and optimal,
though our ultimate sensitivity may change relative to
the design.

b. Unknown deviations from our best model of the
instrument cannot be corrected and will lead to bias
from both foreground leakage and using a biased
power spectrum estimator.

The second class of deviations is the most serious, and so
for these effects we would like to know how large our
uncertainty can be before it matters, or more precisely
before it is significant compared to the statistical errors.
As our ability to separate signal and foregrounds requires

detailed knowledge of our instrument, we can form a naive
expectation of the allowed uncertainty from the dynamic
range between signal and foregrounds. In the smooth
frequency modes where foregrounds dominate, they are
around 105 times brighter than the 21 cm (10 K versus
0.1 mK), and so we expect that knowing our instrumental
gains and beam shapes to 10−5 accuracy should be
sufficient.
In this section we aim to test two particular forms of

uncertainty that we can parametrize simply in our model
telescope to see if the requirements are as stringent as 10−5.
Our approach is to assume that our example telescope
represents our best knowledge about the state of the system,
which we use to generate our foreground cleaning filter and
our power spectrum estimator. We then generate a cor-
rupted time stream corresponding to the observations the
true telescope would make. By analyzing this time stream
with the filters generated for the example telescope we can
see at what point imperfect knowledge leads to significant
power spectrum biasing.

A. Gain fluctuations

A receiver system turns the input antenna voltage into a
signal which can be measured and correlated. In the process
of doing this a complex gain may be applied, and while this
can be corrected for, this generally leaves unknown
residuals in the data. This gain residual is unique to each
feed and may be time and frequency dependent.
We model gain fluctuations on a feed by feed basis, as a

complex perturbation around a nominal gain of unity. The
perturbed feed input is

Fi
0 ¼ ð1þ ΔgiÞFi ð94Þ

where the perturbation Δg is a complex Gaussian random
variable with variance hΔgiΔg�i i ¼ σ2g. These combine to
give corrupted visibilities
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Vij
0 ¼ ð1þ ΔgiÞð1þ Δg�jÞVij: ð95Þ

In our model we do not allow the gain to fluctuate in
frequency, enforcing each antennas gain to be frequency
independent. However, we do allow the gains to fluctuate in
time, assuming that each 60 s sample has a separate
uncorrelated gain residual. Over the two years of integra-
tion, the errors on each coadded sample are reduced by a
factor of

ffiffiffiffiffiffiffiffiffiffiffi
Ndays

p
.

We start with the base time stream to which we have
added random gain fluctuations with σg ¼ 10%, 1% and
0.1% in each 60 s period. These time streams are then
analyzed with the fiducial analysis products that assume no
gain fluctuations. In Fig. 10 we show the power spectrum
biases corresponding to each level of gain fluctuation. We
have used the minimum variance estimator discussed in
Sec. VIII, the results appear similar if we use the unwin-
dowed estimator (albeit noisier). The bias, which is caused
by foreground leakage from the imperfect calibration, is
mostly located within the foreground wedge. This is in line
with our expectation from [29,55] which indicate that
leakage from imperfect foreground cleaning will be con-
centrated in this region. However, there are significant
discrepancies from this picture that seem to be related to the
array geometry (such as the line k⊥ ¼ 0.03 h Mpc−1) that
may require more detailed study to understand intui-
tively [57].
We can see that the bias becomes negligible for error

residuals of around 1%. Over the course of the two years
observation this corresponds to a tolerance on gain fluc-
tuations of ∼2 × 10−4 for each synthetic beam (∼1°).

This required tolerance is significantly less than the 10−5

naively expected. This difference is due to the fact that we
repeatedly measure the same sky because our array is
highly redundant (with typical redundancies of ∼30)
allowing us to average down the effect of gain fluctuations,
reducing the precision required on an individual baseline.
This level of precision should be achievable with

techniques such as redundant baseline calibration [58].
Our analysis assumes that the residuals are Gaussian and
independent in time, such that they quickly average down
with repeated measurements. In practice there may be a
component of the residuals from 1=f noise with large
correlation timeswhichmake this assessmentmore difficult.
We leave investigation of such effects for future studies.

B. Unknown primary beam

One of the key inputs to our analysis is an accurate
model of each feeds primary beam. In particular we need
the electric field response at each position on the sky, given
by the quantity Aaðn̂Þ. Generally this quantity can only be
determined by calibrating from observations of the sky (for
instance by holography). As this process is challenging and
time consuming, we would like to know how precise the
calibration must be.
Here, we use the parametrization of the primary beam

given in Sec. IVA. We use the fiducial model of the dipoles
beam, θH ¼ 2π=3, θE ¼ 0.7θH (this is the same as the
example used throughout). However, we will perturb the E-
plane widths of each antenna around the fiducial model by
an amount ΔθiE. Increasing θE has the effect of making the
primary beam of the X feed slightly narrower, and the Y
feed longer (decreasing it does the opposite). It also reduces
the difference in response between the X and Y feeds,
reducing the expected amount of polarization leakage. This
is demonstrated in Fig. 11 where we show the effect on the
Stokes I and polarized response to changes in θE to the X
and Y feeds. In particular we show the derivatives of RI→I

[Eq. (40)] and RP→I [Eq. (41)] with respect to θXE and θYE.
To calculate the changes to the data we need to propagate

these primary beam changes through to the beam transfer
matrices. At linear order in the ΔθiE the perturbed beam
transfer functions are

BX
ij ¼ BX

ij þ
dBX

ij

dθiE
ΔθiE þ dBX

ij

dθjE
ΔθjE ð96Þ

where the derivatives are related to the primary beam
derivatives by

dBX
ij

dθkE
¼ −

d lnΩij

dθkE
BX
ij

þ 2

Ωij

�
dAa

i

dθkE
Ab�
j þ Aa

i

dAb�
j

dθkE

�
PX

ab e
2πin̂·uij : ð97Þ

FIG. 10 (color online). Biasing of the power spectrum from
complex gain perturbations with amplitude σg ¼ 10%, 1% and
0.1%, again for observations of 400–500 MHz. The bias is given
as a fraction of the statistical error. Regions where this ratio is less
than one (shown in blue) indicate where the systematic errors are
subdominant compared to the statistical errors. Again we indicate
the foreground wedge with a dashed line, however in this case we
note that most of the bias lies within this region.
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The derivative of the composite beam solid angle is

d lnΩij

dθiE
¼ d lnΩ�

ji

dθiE
¼ 1

2Ωi

Z
d2n̂

dAa
i

dθkE
Ab�
j PI

ab: ð98Þ

By treating the primary beam derivatives dAa
i =dθ

k
E as a

modified beam, we can use Eq. (97) to calculate time
streams for the beam perturbed beam transfers. We then use
Eq. (96) to apply the effects of arbitrary combinations of
perturbations to θE for each antenna.
We draw a set of Gaussian distributed values for the

width of each feed, θiE. We vary standard deviation
(10%, 1% and 0.1% of the fiducial model) and use it to
generate synthetic data with perturbed beam widths. We
propagate the analysis of these corrupted time streams all
the way through to the power spectrum, assuming the
fiducial configuration. In Fig. 12 we show the results for the
minimum variance estimator. Again we see that the bias is
mostly concentrated in the foreground wedge region. The
bias can be significant (compared to statistical errors) if
our beam knowledge is imperfect, though it has mostly
disappeared in the case where we know the beamwidth
to 0.1%.
This analysis suggests that if the beamwidth were the

only varying parameter, in the absence of other bias
mitigating techniques, we would need to measure it to
∼10−3 accuracy. However, as the beam derivative is

typically of order 0.1 (see Fig. 11), this can be seen as a
precision of around 10−4 on the beam itself, similar to the
gain fluctuations, and still a lower precision than our
expectation of around 10−5. We can attribute this to the
fact that our power spectrum estimation is dependent on a
complicated combination of all the primary beams, and this
averages down the fluctuations in the same manner as we
expect for the gain fluctuations.
Clearly a realistic description of the beam must contain

much more than a simple beamwidth, but this indicates the
accuracy to which we must strive to map the primary beam
of each feed. This level of precision will be challenging,
though not unprecedented, with similar accuracies achieved
by holographic means [59].

XI. FULL BANDWIDTH FORECASTS

Experiments such as CHIME are targeted at measuring
the evolution of dark energy over a large range of redshift.
As an example application of this method we show in this
section forecasts for the example cylinder telescope (similar
in size to the CHIME Pathfinder but smaller than the
full CHIME) across a full octave in bandwidth of 400–
800 MHz, corresponding to a redshift range of z ≈ 0.8–2.6.
This is broken up into four 100 MHz subbands to illustrate
the changes with frequency.
In Fig. 13 we show the power spectrum forecasts for

each of the four 100 MHz subbands. This clearly illustrates
the increase in sensitivity as we move to higher frequency,
particularly at large k⊥ where the increased angular resolu-
tion combines with the decreased observation distance to

FIG. 11 (color online). The response of the primary beam to
fractional changes in the X and Y dipole E-plane widths. Similar
to Fig. 2 we illustrate the transfer from the total intensity and
polarized sky, into an instrumental Stokes I combination, how-
ever, here we show the derivative with respect to changes in the
E-plane width of the X and Y feeds. The first two plots show the
change of the total intensity response with changes in the E-plane
of the X and Y dipoles; the second two plots show the changes in
the polarization response, again corresponding to changes in the
X and Y feeds. For instance a 1% change in each dipoles width
changes each response by 1% of the corresponding plot
(to first order).

FIG. 12 (color online). Power spectrum biasing for 10%, 1%
and 0.1% shifts from the fiducial E-plane width. These biases are
given in units of σ for each band, values greater than one indicate
where this systematic error dominates the statistical error. These
are the biases of the minimum variance estimator (so as to avoid
issues with the power spectrum deconvolution). Here we can see
that unknown fluctuations in the beamwidth of more than 0.1%
give rise to significant power spectrum biases.
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dramatically increase the spatial resolution. There is an
additional boost at large k∥ where the constant frequency
corresponds to a decreasing line of sight distance. We can
also see how the double peaked structure in sensitivity
(discussed in Sec. IX) changes with frequency, with the
peaks moving outwards and broadening as expected
from the increasing resolution. However, the dropoff at
small k⊥ barely increases in size as it comes from the
contribution of sample variance which does not change
with the increased angular resolution (it does shift slightly
because a fixed angular scale maps a smaller spatial scale at
higher frequency).
The effect of foreground cleaning is similar across all

bands, with it removing sensitivity for k∥ < 0.02 hMpc−1.
We do not expect the number of modes used to describe the
foregrounds along a particular line of sight to vary
significantly with the small shifts in frequencies between
the bands, and this should translate into a similar loss of
power spectrum sensitivity for each band.
To constrain the dark energy equation of state, we will

use the measured power spectrum in each band to deter-
mine the apparent scale of the baryon acoustic oscillation as
a function of redshift. The angular and line of sight scales
respectively constrain the transverse comoving distance
DMðzÞ and the Hubble parameter HðzÞ. These give two
distinct probes of the expansion history as a function of
redshift. In Fig. 14 we illustrate how measurements from
our example telescope could be used to improve current
constraints from Planck.
In Fig. 15 we show the predicted constraints on the dark

energy equation of state in the w0-wa parametrization. We
describe how these are derived from the power spectrum
forecasts in Appendix E. This gives a figure of merit (FOM)
[62] of 7 for the telescope and Planck, and 88 if we add in
Stage II experiments. This is an improvement by around
70% from Planck and Stage II only (FOM of 53). If there
were no loss in sensitivity due to foreground cleaning, the
FOM increases to 21 and 135 respectively.

XII. CONCLUSION

In this paper we have improved and extended the m-
mode formalism for analyzing observations from transit
radio interferometers. In particular, we have extended the
formalism to include a complete description of polarization
(see Sec. II). This allows us to characterize observations of

FIG. 13 (color online). This figure shows the fractional error on
each power spectrum bin, for different frequency bands between
400 and 800 MHz. This clearly illustrates the increasing angular
resolution as we move to higher frequencies. Again, the red
dashed lines indicate the location of the foreground wedge.

FIG. 14 (color online). Constraints on the expansion history as
a function of redshift, shown relative to a fiducial ΛCDM
cosmology. The red line shows the mean expansion history
predicted from the Planck constraints on w0; wa [60] (combined
with Union 2 supernovae data [61]). The grey lines show a
selection of expansion histories randomly drawn from the
Planckþ Union2 posterior distribution to illustrating the trajec-
tories which are consistent with those data sets. The black
errorbars show what could be achieved with a medium sized
cylinder experiment which allows us to place constraints directly
on DMðzÞ and H0ðzÞ. As we can see, the best discrimination
comes at low redshift from the 600–800 MHz bands (assuming a
w0; wa cosmology).

FIG. 15 (color online). Constraints on the dark energy equation
of state. We show the constraints for the example cylinder with
Planck only (large, red), and with Planck and Stage II experi-
ments (smaller, blue). The lighter and darker contours for each
illustrate the 2σ and 1σ bounds respectively.
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the real polarized sky including the effects of instrumental
polarization. Including these effects is crucial when making
wide-field multifrequency observations with a polarization-
dependent sky response. Furthermore, by considering the
geometry of the measured data in the vector space of the
observations, we have developed a simple SVD projection
that not only yields a significant data compression, but also
acts as an effective filter to suppress polarized foreground
contamination (Sec. VI).
In the limit of statistically isotropic foregrounds, each m

mode is independent of the others with no statistical coupling
between them.Thus them-mode formalism, because it allows
each mode to be treated independently, allows for a compact
and computationally efficient representation for statistics of
our data. We have exploited this to develop the KL transform
as a technique for the removal of astrophysical foregrounds,
which otherwise appears to be extremely challenging using
othermethods (Sec. VII).We believe this is the first technique
shown to be effective at the removal of polarized foregrounds
to below the signal level while using a telescope model with
realistic amounts of polarization leakage (see Fig. 8).
Within the m-mode formalism we have constructed an

optimal quadratic estimator for the 21 cm power spectrum
that is computationally efficient and takes into account the
full statistics of the data, including the effects of the fore-
ground cleaning (Sec. VIII). This has allowed us to forecast
the performance of a medium sized cylinder transit telescope
(Sec. IX)—similar in size to the CHIMEPathfinder telescope
currently under construction. We show that the KL transform
is able to clean foregrounds well into the foreground wedge,
demonstrating that there is no fundamental information loss
within the region, with foreground cleaning limiting our
measurements only in a smaller band k∥ ≲ 0.02 hMpc−1. In
fact, we find that even the removal of the polarized fore-
grounds gives a minimal reduction in the expected ability to
constrain the power spectrum.
While our results are encouraging, the m-mode formal-

ism does make simplifying assumptions and the impact of
these assumptions needs to be tested when analyzing real
experiments. For instance, for the analysis to be tractable,
we assume the statistics of the data are stationary under
rotation of the Earth. This is expected of the 21 cm signal
itself, but is not expected to be true of both for the
foregrounds where the Galaxy is heavily anisotropic
(though in our simulations this does not seem prevent us
from suppressing foregrounds consistent with the actual
structure of the Galaxy), and for the instrumental effects
where 1=f noise, radio frequency interference, and thermal
fluctuations make the behavior of the instrument time
dependent. The m-mode formalism also assumes perfect
knowledge of the telescope, including amplifier gains, and
fully characterized beams. In Sec. X we have investigated
how these uncertainties, if ignored, would lead to signifi-
cant biases in the measured power spectrum, and placed
limits on how well we must know these to faithfully recover

the power spectrum. We find that random complex gain
variations can have an amplitude of up to 1% (on one
minute time scales), before they cause any significant
power spectrum shifts. Similarly, using the beamwidth as
a simple parametrization of our uncertainty we find that we
must know the width of the primary beam of each feed to
around 0.1% to avoid bias. These precisions are less
stringent than naive expectations from the dynamic range
between the signal and foregrounds (around 10−5). Though
challenging, requiring effort and innovation, they should be
achievable.
One avenue to further loosen these calibration require-

ments is to follow the same philosophy we take with
foreground removal and conservatively identify, and
remove, the modes which are particularly susceptible to
this miscalibration. Even in the case where we perturb the
nominal beamwidth by an unknown number of order 10%
there is a significant fraction of the KL modes that do not
get biased appreciably. It is conceivable that through
Monte Carlo modeling of beam uncertainties the highly
corruptible KL modes could be found and excised prior to
estimating the power spectrum (at the cost of increased
error bars). Alternatively we could pursue a more targeted
approach by incorporating these instrumental uncertainties
into the noise model, and using the KL filter to remove
them. We leave investigations of these and other bias
mitigating techniques for future work.
When our feed spacing is larger than the Nyquist criterion

at a particular wavelength (for a beam stretching to the
horizon this is > λ=2), we cannot uniquely localize a source
on the sky. This aliasing effect causes us to form multiple
images when mapmaking and, while not leading to biases,
gives a degradation in power spectrum errors. For the
example cylinder telescope used here, this occurs at
ν > 500 MHz.While an investigation of this effect is beyond
the scope of this paper we do not expect it is a fundamental
limitation and believe that this degradation may be alleviated
by moving away from a fully uniform feed spacing.
The pipeline we have developed for performing the m-

mode analysis described in this paper is publicly available
[63]. The tools created for modeling and simulating the
radio sky are available at the same location.
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APPENDIX A: NOISE POWER SPECTRUM

The sensitivity of a radio receiver is a well studied
problem [46,65,66]. For a single feed the power received in
a frequency interval Δν is simply related to the antenna
temperature P ¼ g2kBTaΔν (in the absence of noise). In
our notation the antenna temperature for a single feed is
simply equal to its autocorrelation Ta ¼ Vii. However, we
need to extend this to the case of the correlation of two
separate antennas. Provided that the power P ∝ hFiF�

ji for
both the autocorrelation i ¼ j and cross-correlation i ≠ j
cases, the signal observed is

P ¼ gig�jkBVijΔν; ðA1Þ
where the real and imaginary parts of P contain the cosine
and sinelike correlations. The same conclusion can be
reached by following through the correlation of the induced
voltage from each antenna using the effective length. With
our normalization lieff ¼ limaxAi, with lmax the maximum
length anywhere on the sky.
Beyond the astrophysical signal there are other contri-

butions to the observed power. This noise may come from
many sources such as the ground or the atmosphere, or the
receiver system itself. For the autocorrelation of a single
feed the instantaneous noise power defines the system
temperature

P ¼ g2kBTsysΔν: ðA2Þ
When consider the cross-correlation between different

feeds, provided the noise at both is uncorrelated, there is no
additional power observed in the mean of the signal.
However, the noise does contribute to the fluctuations
about the mean. If we average a frequency channel of width
Δν over a rectangular window of time length τ, we find the
mean power observed is

P̄ ¼ gig�jkBΔνðVij þ δijTsys;iÞ: ðA3Þ

The fluctuations in the amplitude have standard deviation

σP ¼ gig�jkBΔν
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tsys;iTsys;j

τΔν

r
: ðA4Þ

See [65,66] for a detailed calculation. The fluctuations
in the real and imaginary part have an equal amplitude of
σP=

ffiffiffi
2

p
. We have assumed we are in the limit where the

system temperature dominates the antenna tempera-
ture, Tsys ≫ Ta.
If the noise at each feed is independent, that means that

the noise between different baseline pairs is uncorrelated.
The variance that we would ascribe to the measurement of a
particular visibility ij at a particular time (after the
averaging) is

σ2ij ¼
Tsys;iðνÞTsys;jðνÞ

τΔν
: ðA5Þ

To calculate them-mode power spectrum of fluctuationsNm
we first calculate the noise correlation function. Assuming
that it is white noise, and again using a rectangular window
function the correlation function is

ζijðtÞ ¼ hnijðt0Þn�ijðt0 − tÞi ¼ σ2ijtriðt=τÞ; ðA6Þ

where the triangle function triðxÞ ¼ 1 − jxj for jxj < 1. To
calculate the noise power spectrum we simply Fourier
transform this quantity. As we need to consider the problem
in terms of the Earths rotation, we identify distinct sidereal
days as independent measurements of the sky and treat the
averaged noise as periodic. Similarly we can identify
redundant baselines as independent measurements of the
same quantity. Only the diagonal elements of the noise
matrix corresponding to the same frequency and baseline are
nonzero. The discrete power spectrum of the noise, defined
by hnmijnm0�

ij i ¼ Nm
ijδmm0, is

Nm
ij ¼

Tsys;iðνÞTsys;jðνÞ
NdayNredtsidΔν

sinc2
�
π
mτ

tsid

�
; ðA7Þ

where Nday is the number of sidereal days that have been
observed. Usually we would want the integration length to
be smaller than any angular scale we are interested in, in this
limit mτ ≪ tsid, and the sinc factor is ∼1.

APPENDIX B: KARHUNEN-LOÈVE TRANSFORM

Let us write our measurement as a vector x, where each
dimension corresponds to a measured degree of freedom.
We can write x as

x ¼ sþ n ðB1Þ
where s and n are respectively the signal we are interested
in and some generalized form of noise (in the case of 21 cm
this may include the foregrounds). These components have
covariance matrices

hss†i ¼ S; hnn†i ¼ N: ðB2Þ

We are free to transform the measurement vector as we
wish, x0 ¼ Rx, provided we are careful to update all the
statistics we make use of. In our case we are interested
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in the two-point statistics and so it is sufficient to transform
the covariance matrix X0 ¼ hðRxÞðRxÞ†i ¼ RXR†. The
KL transform takes advantage of this to produce simulta-
neous eigenmodes of the signal and noise covariances.
We start by making the eigendecomposition of the noise

matrix

N ¼ R†
1N

0R1 ðB3Þ

whereR1 is the unitary matrix of eigenvectors (stacked row
by row), and N0 is the diagonal matrix of eigenvalues.
Using this we can transform the data vector x0 ¼ R1x,
which produces a new signal covariance

S0 ¼ hs0s0†i ¼ hðR1sÞðR1sÞ†i ¼ R1SR
†
1 ðB4Þ

and reduces the noise matrix to N0. As the new noise matrix
consists solely of positive diagonal elements ðN0Þii ¼ λNi , a
further transformation x00 ¼ R2x0, where R2 ¼ N0−1

2,
reduces the noise matrix to the identity N00 ¼ I. The signal
matrix is transformed to

S00 ¼ R2R1SR
†
1R

†
2: ðB5Þ

Applying any unitary transformation to the data will
leave the noise covariance as the identity. We use this
freedom to diagonalize the signal covariance by eigende-
composition S00 ¼ R†

3ΛR3, leaving the total transformation
on the data as

x → ~x ¼ R3R2R1x: ðB6Þ

Overall this has changed the covariance matrices to

S → Λ; ðB7Þ

N → I: ðB8Þ

By making this transformation we have simultaneously
diagonalized the correlations of both the signal and the
noise, mapping the latter to the identity matrix. In
particular, the elements of Λ give the signal to noise
ratio of each mode. With no hidden correlations this
basis allows us to cleanly filter data by simply throwing
away modes with signal to noise ratio below some
threshold. This is equivalent to zeroing the corresponding
elements of ~x.
Rather than explicitly constructing the three transforma-

tions, it is mathematically equivalent to finding the sol-
utions to the generalized eigenvalue problem

Sx ¼ λNx; ðB9Þ

with the eigenvectors forming the transformation matrix,
and the eigenvalues giving the elements of the signal

covariance Λ. This approach is simpler and computation-
ally more efficient.

APPENDIX C: STATISTICAL MODELS

As discussed in Sec. VII to use the Karhunen-Loève
transform to perform foreground cleaning we require
models of the two-point statistics of both the 21 cm signal
and the foreground contaminants. For computational effi-
ciency these models must be isotropic and so we only need
to specify the angular power spectrum

CXY
l ðν; ν0Þ ¼ haXlmðνÞaY�lmðν0Þi; ðC1Þ

for all the pairs of the four polarization compo-
nents X; Y ∈ fT; E; B; Vg.

1. Astrophysical foregrounds

Our foreground models are based on [48]. However we
only include the dominant two components, the Galactic
synchrotron emission and extragalactic point sources. In
both cases the angular power spectrum is of the form

Clðν; ν0Þ ¼ A

�
l

100

�
−α
�
νν0

ν20

�
−β
e
− 1

2ξ2
l

ln2ðν=ν0Þ
: ðC2Þ

The original models were calibrated for forecasting
observations of the Epoch of Reionization. In [32] we
recalibrated them for the high frequency, all of the sky
observations we are concerned with in this paper. However
for this work we also need to specify the correlations of
the polarized parts of the foregrounds. We assume that the
dominant source of polarized emission is our own Galaxy
(ignoring the polarization of point sources) and model the
polarized emission as being a statistical fraction fpol of the
unpolarized emission

CEE
l ðν; ν0Þ ¼ CBB

l ðν; ν0Þ ¼ f2polC
TT
l ðν; ν0Þ: ðC3Þ

In addition we assume that the polarized emission is
uncorrelated such that CTE

l ¼ CTB
l ¼ CEB

l ¼ 0, and that
there is no circular polarization from the Galaxy CVV

l ¼ 0.
Our fiducial polarization fraction is fpol ¼ 0.5. We list the
parameters for these models in Table II.

2. 21 cm signal

On large scales the 21 cm brightness temperature is a
biased tracer of the matter density field [67] with a power
spectrum PTb

given by

PTb
ðk; z; z0Þ ¼ T̄bðzÞT̄bðz0Þðbþ fμ2Þ2Pmðk; z; z0Þ ðC4Þ

where b is the bias and Pmðk; z; z0Þ ¼ PðkÞDþðzÞDþðz0Þ is
the real-space matter power spectrum. The evolution of the
perturbations is given by the growth factor DþðzÞ

SHAW et al. PHYSICAL REVIEW D 91, 083514 (2015)

083514-24



normalized such that Dþð0Þ ¼ 1, with the growth rate
f ¼ d lnDþ=d ln a (that is the logarithmic derivative of the
growth factor Dþ). The mean brightness temperature is
assumed to take the form

T̄bðzÞ ¼ 0.1

�
ΩHI

0.33 × 10−4

��
Ωm þ ð1þ zÞ−3ΩΛ

0.29

�
−1=2

×

�
1þ z
2.5

�
1=2

mK ðC5Þ

given in [1]. In [68] they determine the degenerate
product ΩHIb ¼ 0.62 × 10−3, which we use in this work.
As the redshift distortions break the ΩHIb degeneracy we
fix b ¼ 1.
For use in our foreground filter, we require the angular

power spectrum of the 21 cm brightness temperature
[69,70]. This can be calculated from the real-space power
spectrum equation (C4), but is computationally difficult,
generally requiring double integration over highly oscil-
latory functions for each ν, ν0 pair. To speed this up we use
the flat-sky approximation from [70]:

Clðz; z0Þ ¼
1

πχχ0

Z
∞

0

dk∥ cos ðk∥ΔχÞPTb
ðk; z; z0Þ ðC6Þ

where χ and χ0 are the comoving distances to redshift z and
z0 and their difference is denoted by Δχ ¼ χ − χ0. The wave
vector k has components k∥ and l=χ̄ in the directions
parallel and perpendicular to the line of sight (χ̄ is the mean
of χ and χ0). This approximation is accurate to the 1% level
for l > 10 [70].
We use this method not only for calculating the signal

covariance function, but also the band functions required
for the power spectrum. To determine each Ca we simply
apply Eqs. (C4) and (C6), with PmðkÞ ¼ PaðkÞ.

APPENDIX D: SIMULATING ALL-SKY
RADIO EMISSION

Testing of the m-mode formalism and the foreground
cleaning with the Karhunen-Loève transform requires the
use of synthetic sky maps. For it to be realistic these
simulated maps must capture the essential properties of the
21 cm signal and foreground components. In this section
we briefly describe how these simulations are generated.

1. 21 cm signal

Assuming the cosmological 21 cm emission is Gaussian
on the scales of interest, the angular power spectrum
given in the previous section [Eq. (C6)] completely
specifies its fluctuations. Maps of the sky can be generated
by drawing Gaussian realizations of the power spectrum,
using Cholesky decomposition to produce the correct
frequency correlation structure, and then adding in the
mean temperature given by Eq. (C5).

2. Extragalactic point sources

We construct our point source simulations from three
components: a population of real bright point sources
(S > 10 Jy at 151 MHz); a synthetic population of dimmer
sources down to 0.1 Jy at 151 MHz; and an unresolved
background of dimmer sources (S < 0.1 Jy) modeled as a
Gaussian random field. This last component dramatically
reduces the number of sources we must directly generate.
The unresolved background is generated by drawing a

Gaussian realization from the point source model detailed
in Table II. The random source catalog is constructed by
drawing from the point source distribution of [71] and
scattering the sources randomly over the sky. The intrinsic
polarization of each point source is determined by

QðνÞ þ iUðνÞ ¼ pIðνÞ ðD1Þ

where the polarization fraction p is a complex Gaussian
random variable with standard deviation σp. This standard
deviation is equal to the average polarization fraction of
sources in the catalog, we set σp ¼ 5%.
The population of real bright point sources is generated

by matching the Very Large Array Low-frequency Sky
Survey (VLSS) at 74 MHz [72] against the National Radio
Astronomy Observatory VLA Sky Survey (NVSS) at
1.4 GHz [73]. We only include sources interpolated to
be brighter than 10 Jy at 151 MHz. Each source is assigned
the polarization as measured by NVSS, and is extrapolated
to other frequencies. In this work we have also assumed
that the six sources above 100 Jy (at 600 MHz) have been
removed from the time stream to high accuracy.
The polarization of an extragalactic source is Faraday

rotated as it passes through the magnetized interstellar
medium in our Galaxy, generating oscillatory frequency
structure in the polarization. To apply this, we use the
Faraday depth map of [74] to rotate the polarization angle
of our background sources.

3. Galactic synchrotron intensity

In this work we continue to use the prescription
developed in a previous paper [32] to generate constrained
simulations of the total intensity of synchrotron emission
from our Galaxy. These maps are formed from two distinct
components:

TABLE II. Parameters for our foreground power spectrum
model given in Eq. (C2). These are based on the models of
[48], adapted to the intensity mapping regime in [32].

Component Polarization A (K2) α β ζ

Galaxy TT 6.6 × 10−3 2.80 2.8 4.0
EE, BB 1.65 × 10−3 2.80 2.8 4.0

Point sources TT 3.55 × 10−4 2.10 1.1 1.0
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a. A large scale base map produced by extrapolating the
Haslam map2 with a spectral index map from [75].

b. A randomly generated map that adds in fluctuations in
frequency and on small angular scales. This is con-
strained to be zero on the scales constrained by the
Haslam map, and is designed to smoothly extrapolate
the angular fluctuations of the Haslam map to smaller
scales, and reproduce the anisotropic fluctuations on
small scale power across the sky [76].

The procedure for generating these two components is
described in detail in [32], with the only change being the
spectral index map used.

4. Galactic synchrotron polarization

To test our foreground removal and analysis we need to
be able to create simulated multifrequency maps of our
Galaxy, and in particular its polarization structure. As the
observed radiation has been omitted across a range of
Faraday depths, unlike extragalactic sources, this is chal-
lenging. One approach is to make use of the increasingly
sophisticated models of the Galactic magnetic field struc-
ture [77], and electron distribution [78], to create realistic
large scale simulations of the polarization structure [79].
However, we instead appeal to the ideas of Faraday rotation
measure synthesis [80] to rapidly create simulations that
capture the important effects.
Rotation measure synthesis attempts to link the wave-

length dependent polarization rotation to the structure
along the line of sight. Polarized radiation emitted at a
distance r from us is Faraday rotated by an amount ϕλ2

before it reaches us, with the Faraday depth

ϕðrÞ ¼
Z

r

0

neðr0ÞBðr0Þ · dr0: ðD2Þ

The key idea in Faraday rotation measure synthesis is to not
directly probe the physical structure of emission, but to
probe the structure as a function of Faraday depth. In this
case we can just think of the observed polarized emission in
a given direction Pðn̂; λ2Þ as being the summation of the
emission at all Faraday depths Fðn̂;ϕ; λ2Þ, rotated by the
correct wavelength dependent amount

Pðn̂; λ2Þ ¼
Z

Fðn̂;ϕ; λ2Þe2iϕλ2dϕ: ðD3Þ

In [80] the idea was to use multiwavelength observations to
invert this Fourier relation, and constrain the structure of
Fðn̂;ϕ; λ2Þ. However, wewill attempt to use well motivated
assumptions about the emission in Faraday space to
construct simulations of polarized skies. As in [80] we

presume that the Faraday space emission Fðn̂;ϕ; λ2Þ is
separable in its spectral dependence, such thatFðn̂;ϕ; λ2Þ ¼
fðn̂;ϕÞsðn̂; λ2Þ. This flattens the spectrum of f so that we
can still use the Faraday synthesis formalism for it. We take
the spectral function sðn̂; λ2Þ from the unpolarized emission.
We start with a simple model of the emission from the

Galaxy, assuming that along any line of sight the emission
comes from many independent synchrotron regions, each
of fixed brightness ΔT. In a direction with total brightness
temperature T, there are N ¼ T=ΔT such regions. We
assume that the emitting regions are scattered across a
range in Faraday depth. With no reason to favor positive or
negative Faraday depths, we assume this distribution is zero
mean. From observations of extragalactic point sources we
know the Faraday depth to the edge of our Galaxy [74] and
this gives us a measure of the range of Faraday depths
within the Galaxy. Combining these properties the distri-
bution is modeled as a zero-mean Gaussian with a width
σϕðn̂Þ which is determined from the Faraday rotation data.
We determine σϕðn̂Þ by taking the Faraday depth map of
[74], taking its absolute value, and smoothing with a
FWHM of 10°. Each of these regions has a small width
in ϕ over which its polarization is coherent. We call this
coherence length ξϕ, and note that it determines the size of
structures in Faraday space.
To determine the polarization structure we start by

calculating the number of emitting regions within a range
ϕ to ϕþ Δϕ. This is given by

ΔN ¼ N

ð2πσ2ϕÞ1=2
e
−1
2
ð ϕ
σϕ
Þ2Δϕ: ðD4Þ

As each region is independent we assume they all have a
randomly distributed complex polarization, drawn from a
Gaussian distribution with variance ðαpΔTÞ2, where αp is
the polarization fraction. Within this range in Faraday depth
the polarizations add up like a random walk, giving the
expected total root-mean-square polarization as

αpΔTΔN1=2¼ð8πÞ1=4αpΔT

�
1

ð4πσ2ϕÞ1=2
e
−1
4
ð ϕ
σϕ
Þ2
��
Nσϕ
Δϕ

�1
2

Δϕ:

ðD5Þ

This gives the expected magnitude of the emission at each
position in Faraday space, showing that even in Faraday
space we see depolarization because of the incoherent
combination of multiple Faraday sources at a single depth.
This suggests we model the emission as two factors:

fðn̂;ϕÞ ¼ wðn̂;ϕÞcðn̂;ϕÞ: ðD6Þ

The first wðn̂;ϕÞ is a positive envelope function which
defines the region, and amplitude of emission in Faraday
depth.

2We use the map from the Legacy Archive for Microwave
Background Data Analysis, which has been processed to remove
bright point sources and striping. See http://lambda.gsfc.nasa
.gov/product/foreground/haslam_408.cfm.
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wðn̂;ϕÞ ∝ Affiffiffiffiffiffiffiffiffiffi
4πσ2ϕ

q e
−1
4
ð ϕ
σϕ
Þ2ðTσϕÞ1=2 ðD7Þ

The second cðn̂;ϕÞ is a random field that gives fluctuations
in the complex polarization as a function of Faraday
depth, this should be highly correlated on scales Δϕ ≪ ξϕ,
and uncorrelated on scales Δϕ ≫ ξϕ. We model this as a
Gaussian random field drawn with an angular power
spectrum

Clðϕ;ϕ0Þ ∝
�

l
100

�
−α

exp

�
−
ðϕ − ϕ0Þ2

2ζ2

�
: ðD8Þ

The angular dependence is chose to match that of the total
intensity model equation (C2).
The normalization of these functions is degenerate with

thevalue ofΔT.We fix the combination by consideringwhat
happens at high frequency observations where Faraday
rotation is much less important. In this limit the polarization
fraction is determined by the incoherent addition of the
polarization of the emitting regions and is ∼αpðΔT=TÞ1=2.
We choose αp ¼ 2=3 which is the intrinsic polarization of
synchrotron with a spectral index of the electron energy
distribution γ ¼ 5=3. Polarized maps from the WMAP
satellite at 23 GHz [81] indicate that the Galaxy is 20%
polarized at high latitudes, we use this fact to determine the
overall normalization.
The only remaining degree of freedom is the correlation

length of the emitting regions in Faraday space, ξϕ. The size
of an emitting region in Faraday space will grow towards
the Galactic center because of the increased magnetic field
strengths. We construct a crude model

ξϕ ¼ minðσϕ=20; 3 radm−2Þ; ðD9Þ

chosen to visually reproduce the amount of depolarization
seen in 1.4 GHz polarization maps [82–84].
This gives all the necessary ingredients to draw a

realization of fðn̂;ϕÞ which we can Fourier transform
and scale by the spectral function sðn̂; λ2Þ to produce the
polarized emission using Eq. (D3). All these operations are
performed on a regular grid in λ2, which is extended beyond
the desired frequency range to negate edge effects. The
resulting series of maps are then interpolated onto the
required frequency slices.
In Fig. 16 we show the polarization fraction and the

frequency correlation length derived from a simulation
between 400–600 MHz. Though the model we have con-
structed here is crude, and based on unrealistic assumptions
about the Galactic emission it exhibits the properties we
would expect from the real Galactic emission:
a. Emission is from a range of Faraday depths, rather

than a single screen.

b. In the Galactic plane there is substantial depolariza-
tion, but at high latitudes the polarization fraction is
around that of 23 GHz.

c. Frequency decorrelation on lengths that we would
predict from the Faraday rotation over the Galaxy,
going to near zero in the Galactic center where the
emission goes up to large Faraday depths.

APPENDIX E: DISTANCE MEASUREMENTS

By extracting the BAO signal from the 21 cm power
spectrum, measurements of the Hubble rate HðzÞ and
transverse comoving distance DMðzÞ can be made. The
BAO manifests itself as a preferred separation in the two-
point correlation function at distances s⊥ perpendicular
to the line of sight and s∥ parallel to the line of sight.
The fractional errors on s⊥ and s∥ are equivalent to the
fractional errors on the combinations s=DM and sH,
respectively, where s is the comoving sound horizon at
the drag epoch. Thus, if s is well known (for example from
observations of the cosmic microwave background) then

FIG. 16 (color online). The top panel shows the polarization
direction and fraction of the 600 MHz slice of a polarized
simulation of the Galaxy. This clearly demonstrates the effect of
Faraday depolarization towards the Galactic center. The lower
panel shows the effective correlation length as measured across
the sky, smoothed on 10° scales.
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measurements of s⊥ and s∥ put observational constraints on
DM and H.
To project uncertainties in the power spectrum onto DM

and H, we first transform the Fisher matrix for the power
spectrum F into the Fisher matrix Fs for the parameters
θs ¼ ðln s−1⊥ ; ln s∥Þ via the Jacobian ðJsÞij¼∂PðkiÞ=∂ðθsÞj,
where the Fisher matrices are related by Fs ¼ JTsFJs. Js is
evaluated using a fiducial cosmological model.
To calculate Js, we follow [85], where the effect of the

baryons on the power spectrum is modeled by an additive
term Pb to the otherwise “wiggles free” power spectrum
that is approximated as

PbðkÞ ¼
ffiffiffiffiffiffiffi
8π2

p
A0P0.2sincðxÞ

× exp ½−ðk=ksÞ1.4 − ðkΣnlÞ2=2� ðE1Þ

where x¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk⊥s⊥Þ2þðk∥s∥Þ2

q
, ks is the Silk scale and P0.2

is the linear power spectrum evaluated at k ¼ 0.2 hMpc−1.
In this expression, A0 is a normalization constant, taken
to be A0 ¼ 0.5817. Σnl is the nonlinear dampening scale
given by

Σ2
nl ¼ ð1 − μ2ÞΣ2⊥ þ μ2Σ2

∥ ðE2Þ

where Σ∥ ¼ Σ⊥ð1þ fÞ, Σ⊥ ¼ Σ0ðGðzÞ=Gð0ÞÞ, G is the
growth function and f is the growth rate. We follow [86]
and assume that we may partially reconstruct parts of the

BAO signal degraded by nonlinear effects for modes with
high signal to noise and set the effective nonlinear
dampening scale to be Σ0 ¼ 4.70ðσ8=0.9Þ h−1 Mpc. By
differentiating Eq. (E1) with respect to the variables θs,
one can form Js and subsequently evaluate Fs. Note that
Fs is equivalent to the Fisher matrix for the varia-
bles θd ¼ ðlnðDMðzÞ=sÞ; lnðsHðzÞÞÞ.
The Fisher matrix Fs can be transformed again into

the Fisher matrix FDE for the cosmological parameters
θDE ¼ ðw0; wa;ΩΛ;Ωk;ωm;ωbÞ by use of the Jacobian
ðJDEÞij ¼ ∂ðθdÞi=∂ðθDEÞj, which as before is evaluated
using a fiducial cosmological model. In θDE, the equation
of state w has been parametrized as

wðzÞ ¼ w0 þ wa
z

1þ z
: ðE3Þ

Note that the ωb dependence in FDE comes from the
comoving sound horizon s, present in both terms of θd,
which is dependent on the baryon to photon ratio
Rb ¼ 3ρb=4ργ . The Fisher matrix for the dark energy
parameters is then formed as FDE ¼ JTDEFsJDE.
Constraint contours in the w0-wa plane can be found by
marginalizing over the other variables in θDE, which in this
case amounts to inverting FDE to get the covariance matrix,
removing the rows and columns corresponding to the
marginalized variables, and inverting once more to recover
the marginalized Fisher matrix for ðw0; waÞ.

[1] T.-C. Chang, U.-L. Pen, J. B. Peterson, and P. McDonald,
Phys. Rev. Lett. 100, 091303 (2008).

[2] A. Loeb and J. S. B. Wyithe, Phys. Rev. Lett. 100, 161301
(2008).

[3] S. R. Furlanetto, S. P. Oh, and F. H. Briggs, Phys. Rep. 433,
181 (2006).

[4] A. Loeb and M. Zaldarriaga, Phys. Rev. Lett. 92, 211301
(2004).

[5] G. Swarup, S. Ananthakrishnan, V. K. Kapahi, A. P. Rao,
C. R. Subrahmanya, and V. K. Kulkarni, Curr. Sci. 60, 95
(1991).

[6] J. C. Pober, A. Liu, J. S. Dillon, J. E. Aguirre, J. D. Bowman,
R. F. Bradley, C. L. Carilli, D. R. DeBoer, J. N. Hewitt,
D. C. Jacobs, M. McQuinn, M. F. Morales, A. R. Parsons,
M. Tegmark, and D. J. Werthimer, Astrophys J 782, 66
(2014).

[7] M. P. van Haarlem, M.W.Wise, A. W. Gunst, G. Heald, J. P.
McKean, J. W. T. Hessels, A. G. de Bruyn, R. Nijboer,
J. Swinbank, R. Fallows et al., Astron. Astrophys. 556,
A2 (2013).

[8] C. J. Lonsdale et al., Proc. IEEE 97, 1497 (2009).
[9] H. Zheng et al., arXiv:1309.2639.

[10] A. R. Parsons, D. C. Backer, G. S. Foster, M. C. H. Wright,
R. F. Bradley, N. E. Gugliucci, C. R. Parashare, E. E. Benoit,
J. E. Aguirre, D. C. Jacobs, C. L. Carilli, D. Herne, M. J.
Lynch, J. R. Manley, and D. J. Werthimer, Astron. J. 139,
1468 (2010).

[11] J. C. Pober, A. R. Parsons, D. R. DeBoer, P. McDonald, M.
McQuinn, J. E. Aguirre, Z. Ali, R. F. Bradley, T.-C. Chang,
and M. F. Morales, Astron. J. 145, 65 (2013).

[12] R. Ansari, J.-E. Campagne, P. Colom, C. Magneville, J.-M.
Martin, M. Moniez, J. Rich, and C. Yèche, C. R. Phys. 13,
46 (2012).

[13] R. A. Battye, I. W. A. Browne, C. Dickinson, G. Heron,
B. Maffei, and A. Pourtsidou, Mon. Not. R. Astron. Soc.
434, 1239 (2013).

[14] Canadian Hydrogen Intensity Mapping Experiment
(CHIME), 2013.

[15] G.W. Kant, P. D. Patel, S. J. Wijnholds, M. Ruiter, and E. van
der Wal, IEEE Trans. Antennas Propag. 59, 1990 (2011).

[16] S. Saiyad Ali and S. Bharadwaj, J. Astrophys. Astron. 35,
157 (2014).

[17] Parkes, CSIRO Parkes Observatory, http://www.parkes.atnf
.csiro.au/.

SHAW et al. PHYSICAL REVIEW D 91, 083514 (2015)

083514-28

http://dx.doi.org/10.1103/PhysRevLett.100.091303
http://dx.doi.org/10.1103/PhysRevLett.100.161301
http://dx.doi.org/10.1103/PhysRevLett.100.161301
http://dx.doi.org/10.1016/j.physrep.2006.08.002
http://dx.doi.org/10.1016/j.physrep.2006.08.002
http://dx.doi.org/10.1103/PhysRevLett.92.211301
http://dx.doi.org/10.1103/PhysRevLett.92.211301
http://dx.doi.org/10.1088/0004-637X/782/2/66
http://dx.doi.org/10.1088/0004-637X/782/2/66
http://dx.doi.org/10.1051/0004-6361/201220873
http://dx.doi.org/10.1051/0004-6361/201220873
http://dx.doi.org/10.1109/JPROC.2009.2017564
http://arXiv.org/abs/1309.2639
http://dx.doi.org/10.1088/0004-6256/139/4/1468
http://dx.doi.org/10.1088/0004-6256/139/4/1468
http://dx.doi.org/10.1088/0004-6256/145/3/65
http://dx.doi.org/10.1016/j.crhy.2011.11.003
http://dx.doi.org/10.1016/j.crhy.2011.11.003
http://dx.doi.org/10.1093/mnras/stt1082
http://dx.doi.org/10.1093/mnras/stt1082
http://dx.doi.org/10.1109/TAP.2011.2122233
http://dx.doi.org/10.1007/s12036-014-9301-1
http://dx.doi.org/10.1007/s12036-014-9301-1
http://www.parkes.atnf.csiro.au/
http://www.parkes.atnf.csiro.au/
http://www.parkes.atnf.csiro.au/
http://www.parkes.atnf.csiro.au/
http://www.parkes.atnf.csiro.au/


[18] X. Chen, Int. J. Mod. Phys. Conf. Ser. 12, 256 (2012).
[19] C. Blake and K. Glazebrook, Astrophys. J. 594, 665 (2003).
[20] W. Hu and Z. Haiman, Phys. Rev. D 68, 063004 (2003).
[21] H.-J. Seo and D. J. Eisenstein, Astrophys. J. 598, 720

(2003).
[22] C. Blake et al., Mon. Not. R. Astron. Soc. 418, 1707 (2011).
[23] L. Anderson et al., Mon. Not. R. Astron. Soc. 427, 3435

(2012).
[24] S. T. Myers, C. R. Contaldi, J. R. Bond, U.-L. Pen, D.

Pogosyan, S. Prunet, J. L. Sievers, B. S. Mason, T. J.
Pearson, A. C. S. Readhead, and M. C. Shepherd, Astro-
phys. J. 591, 575 (2003).

[25] M. Tegmark and M. Zaldarriaga, Phys. Rev. D 79, 083530
(2009).

[26] A. R. Parsons and D. C. Backer, Astron. J. 138, 219
(2009).

[27] A. Liu, M. Tegmark, S. Morrison, A. Lutomirski, and
M. Zaldarriaga, Mon. Not. R. Astron. Soc. 408, 1029
(2010).

[28] A. Liu and M. Tegmark, Phys. Rev. D 83, 103006 (2011).
[29] A. R. Parsons, J. C. Pober, J. E. Aguirre, C. L. Carilli, D. C.

Jacobs, and D. F. Moore, Astrophys. J. 756, 165 (2012).
[30] R. Ansari, J. E. Campagne, P. Colom, J. M. Le Goff, C.

Magneville, J. M. Martin, M. Moniez, J. Rich, and C.
Yèche, Astron. Astrophys. 540, A129 (2012).

[31] J. S. Dillon, A. Liu, and M. Tegmark, Phys. Rev. D 87,
043005 (2013).

[32] J. R. Shaw, K. Sigurdson, U.-L. Pen, A. Stebbins, and M.
Sitwell, Astrophys. J. 781, 57 (2014).

[33] A. Liu and M. Tegmark, Mon. Not. R. Astron. Soc. 419,
3491 (2012).

[34] A. Liu, M. Tegmark, and M. Zaldarriaga, Mon. Not. R.
Astron. Soc. 394, 1575 (2009).

[35] D. F. Moore, J. E. Aguirre, A. R. Parsons, D. C. Jacobs, and
J. C. Pober, Astrophys. J. 769, 154 (2013).

[36] J. Kim, Mon. Not. R. Astron. Soc. 375, 625 (2007).
[37] J. D. McEwen and A. M. M. Scaife, Mon. Not. R. Astron.

Soc. 389, 1163 (2008).
[38] M. A. Holdaway, in Synthesis Imaging in Radio Astronomy

II, Astronomical Society of the Pacific Conference Series
Vol. 180, edited by G. B. Taylor, C. L. Carilli, and R. A.
Perley (Astronomical Society of the Pacific, San Francisco,
1999), p. 401.

[39] S. Bhatnagar, T. J. Cornwell, K. Golap, and J. M. Uson,
Astron. Astrophys. 487, 419 (2008).

[40] M. Zaldarriaga and U. Seljak, Phys. Rev. D 55, 1830 (1997).
[41] B. Y. Mills, Proceedings of the Astronomical Society of

Australia 4, 156 (1981).
[42] G. Swarup, N. V. G. Sarma, M. N. Joshi, V. K. Kapahi, D. S.

Bagri, S. H.Damle, S.Ananthakrishnan,V. Balasubramanian,
S. S. Bhave, and R. P. Sinha, Nature (London) 230, 185
(1971).

[43] J. B. Peterson, K. Bandura, and U. L. Pen, arXiv:astro-ph/
0606104.

[44] C. Craeye, in Proceedings of the IEEE Antennas and
Propagation Society International Symposium, Washing-
ton, DC, 2005, Vol. 2B (IEEE, New York, 2005), p. 449.

[45] C. Craeye, in Proceedings of the IEEE Antennas and
Propagation Society International Symposium, San Diego,
2008 (IEEE, New York, 2008), p. 1.

[46] C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed.
(Wiley, Hoboken, NJ, 2005).

[47] D. Varshalovich, A. Moskalev, and V. Khersonskiı̆, Quan-
tum Theory of Angular Momentum: Irreducible Tensors,
Spherical Harmonics, Vector Coupling Coefficients, 3nj
Symbols (World Scientific, Singapore, 1988).

[48] M. G. Santos, A. Cooray, and L. Knox, Astrophys. J. 625,
575 (2005).

[49] J. R. Bond, Phys. Rev. Lett. 74, 4369 (1995).
[50] M. Tegmark, A. N. Taylor, and A. F. Heavens, Astrophys. J.

480, 22 (1997).
[51] E. F. Bunn, M. Zaldarriaga, M. Tegmark, and A. de Oliveira-

Costa, Phys. Rev. D 67, 023501 (2003).
[52] M. Tegmark, Phys. Rev. D 55, 5895 (1997).
[53] J. R. Bond, A. H. Jaffe, and L. Knox, Phys. Rev. D 57, 2117

(1998).
[54] N. Padmanabhan, U. Seljak, and U. L. Pen, New Astron. 8,

581 (2003).
[55] M. F. Morales, B. Hazelton, I. Sullivan, and A. Beardsley,

Astrophys. J. 752, 137 (2012).
[56] A. Datta, J. D. Bowman, and C. L. Carilli, Astrophys. J. 724,

526 (2010).
[57] B. J. Hazelton, M. F. Morales, and I. S. Sullivan, Astrophys.

J. 770, 156 (2013).
[58] A. Liu, M. Tegmark, S. Morrison, A. Lutomirski, and

M. Zaldarriaga, Mon. Not. R. Astron. Soc. 408, 1029
(2010).

[59] G. R. Harp et al., IEEE Trans. Antennas Propag. 59, 2004
(2011).

[60] P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, M. Arnaud,
M.Ashdown, F.Atrio-Barandela, J.Aumont,C. Baccigalupi,
A. J. Banday et al. (Planck Collaboration), Astron.
Astrophys. 571, A16 (2014).

[61] N. Suzuki et al., Astrophys. J. 746, 85 (2012).
[62] A. Albrecht, G. Bernstein, R. Cahn, W. L. Freedman, J.

Hewitt, W. Hu, J. Huth, M. Kamionkowski, E. W. Kolb, L.
Knox, J. C. Mather, S. Staggs, and N. B. Suntzeff, arXiv:
astro-ph/0609591.

[63] See http://github.com/radiocosmology.
[64] K. M. Górski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K.

Hansen, M. Reinecke, and M. Bartelmann, Astrophys. J.
622, 759 (2005).

[65] P. C. Crane and P. J. Napier, in Synthesis Imaging in Radio
Astronomy, Astronomical Society of the Pacific Conference
Series Vol. 6, edited by R. A. Perley, F. R. Schwab, and
A. H. Bridle (Astronomical Society of the Pacific, San
Francisco, 1989), p. 139.

[66] J. M. Wrobel and R. C. Walker, in Synthesis Imaging in
Radio Astronomy II, Astronomical Society of the Pacific
Conference Series Vol. 180, edited by G. B. Taylor, C. L.
Carilli, and R. A. Perley (Astronomical Society of the
Pacific, San Francisco, 1999), p. 171.

[67] K.W. Masui, E. R. Switzer, N. Banavar, K. Bandura, C.
Blake, L.-M. Calin, T.-C. Chang, X. Chen, Y.-C. Li, Y.-W.
Liao, A. Natarajan, U.-L. Pen, J. B. Peterson, J. R. Shaw,
and T. C. Voytek, Astrophys. J. 763, L20 (2013).

[68] E. R. Switzer, K. W. Masui, K. Bandura, L.-M. Calin, T.-C.
Chang, X.-L. Chen, Y.-C. Li, Y.-W. Liao, A. Natarajan,
U.-L. Pen, J. B. Peterson, J. R. Shaw, and T. C. Voytek,
Mon. Not. R. Astron. Soc. 434, L46 (2013).

COAXING COSMIC 21 CM FLUCTUATIONS FROM THE … PHYSICAL REVIEW D 91, 083514 (2015)

083514-29

http://dx.doi.org/10.1142/S2010194512006459
http://dx.doi.org/10.1086/376983
http://dx.doi.org/10.1103/PhysRevD.68.063004
http://dx.doi.org/10.1086/379122
http://dx.doi.org/10.1086/379122
http://dx.doi.org/10.1111/j.1365-2966.2011.19592.x
http://dx.doi.org/10.1111/j.1365-2966.2012.22066.x
http://dx.doi.org/10.1111/j.1365-2966.2012.22066.x
http://dx.doi.org/10.1086/375509
http://dx.doi.org/10.1086/375509
http://dx.doi.org/10.1103/PhysRevD.79.083530
http://dx.doi.org/10.1103/PhysRevD.79.083530
http://dx.doi.org/10.1088/0004-6256/138/1/219
http://dx.doi.org/10.1088/0004-6256/138/1/219
http://dx.doi.org/10.1111/j.1365-2966.2010.17174.x
http://dx.doi.org/10.1111/j.1365-2966.2010.17174.x
http://dx.doi.org/10.1103/PhysRevD.83.103006
http://dx.doi.org/10.1088/0004-637X/756/2/165
http://dx.doi.org/10.1051/0004-6361/201117837
http://dx.doi.org/10.1103/PhysRevD.87.043005
http://dx.doi.org/10.1103/PhysRevD.87.043005
http://dx.doi.org/10.1088/0004-637X/781/2/57
http://dx.doi.org/10.1111/j.1365-2966.2011.19989.x
http://dx.doi.org/10.1111/j.1365-2966.2011.19989.x
http://dx.doi.org/10.1111/j.1365-2966.2009.14426.x
http://dx.doi.org/10.1111/j.1365-2966.2009.14426.x
http://dx.doi.org/10.1088/0004-637X/769/2/154
http://dx.doi.org/10.1111/j.1365-2966.2006.11285.x
http://dx.doi.org/10.1111/j.1365-2966.2008.13690.x
http://dx.doi.org/10.1111/j.1365-2966.2008.13690.x
http://dx.doi.org/10.1051/0004-6361:20079284
http://dx.doi.org/10.1103/PhysRevD.55.1830
http://dx.doi.org/10.1038/230185a0
http://dx.doi.org/10.1038/230185a0
http://arXiv.org/abs/astro-ph/0606104
http://arXiv.org/abs/astro-ph/0606104
http://dx.doi.org/10.1086/429857
http://dx.doi.org/10.1086/429857
http://dx.doi.org/10.1103/PhysRevLett.74.4369
http://dx.doi.org/10.1086/303939
http://dx.doi.org/10.1086/303939
http://dx.doi.org/10.1103/PhysRevD.67.023501
http://dx.doi.org/10.1103/PhysRevD.55.5895
http://dx.doi.org/10.1103/PhysRevD.57.2117
http://dx.doi.org/10.1103/PhysRevD.57.2117
http://dx.doi.org/10.1016/S1384-1076(03)00055-1
http://dx.doi.org/10.1016/S1384-1076(03)00055-1
http://dx.doi.org/10.1088/0004-637X/752/2/137
http://dx.doi.org/10.1088/0004-637X/724/1/526
http://dx.doi.org/10.1088/0004-637X/724/1/526
http://dx.doi.org/10.1088/0004-637X/770/2/156
http://dx.doi.org/10.1088/0004-637X/770/2/156
http://dx.doi.org/10.1111/j.1365-2966.2010.17174.x
http://dx.doi.org/10.1111/j.1365-2966.2010.17174.x
http://dx.doi.org/10.1109/TAP.2011.2122214
http://dx.doi.org/10.1109/TAP.2011.2122214
http://dx.doi.org/10.1051/0004-6361/201321591
http://dx.doi.org/10.1051/0004-6361/201321591
http://dx.doi.org/10.1088/0004-637X/746/1/85
http://arXiv.org/abs/astro-ph/0609591
http://arXiv.org/abs/astro-ph/0609591
http://github.com/radiocosmology
http://github.com/radiocosmology
http://dx.doi.org/10.1086/427976
http://dx.doi.org/10.1086/427976
http://dx.doi.org/10.1088/2041-8205/763/1/L20
http://dx.doi.org/10.1093/mnrasl/slt074


[69] A. Lewis and A. Challinor, Phys. Rev. D 76, 083005
(2007).

[70] K. K. Datta, T. R. Choudhury, and S. Bharadwaj, Mon. Not.
R. Astron. Soc. 378, 119 (2007).

[71] T. Di Matteo, R. Perna, T. Abel, and M. J. Rees, Astrophys.
J. 564, 576 (2002).

[72] A. S. Cohen, W.M. Lane, W. D. Cotton, N. E. Kassim,
T. J. W. Lazio, R. A. Perley, J. J. Condon, and W. C.
Erickson, Astron. J. 134, 1245 (2007).

[73] J. J. Condon, W. D. Cotton, E. W. Greisen, Q. F. Yin, R. A.
Perley, G. B. Taylor, and J. J. Broderick, Astron. J. 115,
1693 (1998).

[74] N. Oppermann et al., Astron. Astrophys. 542, A93
(2012).

[75] M.-A. Miville-Deschênes, N. Ysard, A. Lavabre, N.
Ponthieu, J. F. Macías-Pérez, J. Aumont, and J. P. Bernard,
Astron. Astrophys. 490, 1093 (2008).

[76] L. La Porta, C. Burigana, W. Reich, and P. Reich, Astron.
Astrophys. 479, 641 (2008).

[77] R. Jansson and G. R. Farrar, Astrophys. J. Lett. 761, L11
(2012).

[78] J. M. Cordes and T. J. W. Lazio, arXiv:astro-ph/0207156.

[79] A. Waelkens, T. Jaffe, M. Reinecke, F. S. Kitaura, and T. A.
Enßlin, Astron. Astrophys. 495, 697 (2009).

[80] M. A. Brentjens and A. G. de Bruyn, Astron. Astrophys.
441, 1217 (2005).

[81] A. Kogut, J. Dunkley, C. L. Bennett, O. Doré, B. Gold, M.
Halpern, G. Hinshaw, N. Jarosik, E. Komatsu, M. R. Nolta,
N. Odegard, L. Page, D. N. Spergel, G. S. Tucker, J. L.
Weiland, E. Wollack, and E. L. Wright, Astrophys. J. 665,
355 (2007).

[82] M.Wolleben, T. L. Landecker,W.Reich, andR.Wielebinski,
Astron. Astrophys. 448, 411 (2006).

[83] J. C. Testori, P. Reich, and W. Reich, Astron. Astrophys.
484, 733 (2008).

[84] W. Reich and P. Reich, in Proceedings of the International
Astronomical Union Symposium, Puerto Santiago, Tenerife,
Spain, 2008, Vol. 259, edited by K. G. Strassmeier, A. G.
Kosovichev, and J. E. Beckman (International Astronomical
Union, Paris, 2009), p. 603.

[85] H.-J. Seo and D. J. Eisenstein, Astrophys. J. 665, 14 (2007).
[86] H.-J. Seo, S. Dodelson, J. Marriner, D. Mcginnis, A.

Stebbins, C. Stoughton, and A. Vallinotto, Astrophys. J.
721, 164 (2010).

SHAW et al. PHYSICAL REVIEW D 91, 083514 (2015)

083514-30

http://dx.doi.org/10.1103/PhysRevD.76.083005
http://dx.doi.org/10.1103/PhysRevD.76.083005
http://dx.doi.org/10.1111/j.1365-2966.2007.11747.x
http://dx.doi.org/10.1111/j.1365-2966.2007.11747.x
http://dx.doi.org/10.1086/324293
http://dx.doi.org/10.1086/324293
http://dx.doi.org/10.1086/520719
http://dx.doi.org/10.1086/300337
http://dx.doi.org/10.1086/300337
http://dx.doi.org/10.1051/0004-6361/201118526
http://dx.doi.org/10.1051/0004-6361/201118526
http://dx.doi.org/10.1051/0004-6361:200809484
http://dx.doi.org/10.1051/0004-6361:20078435
http://dx.doi.org/10.1051/0004-6361:20078435
http://dx.doi.org/10.1088/2041-8205/761/1/L11
http://dx.doi.org/10.1088/2041-8205/761/1/L11
http://arXiv.org/abs/astro-ph/0207156
http://dx.doi.org/10.1051/0004-6361:200810564
http://dx.doi.org/10.1051/0004-6361:20052990
http://dx.doi.org/10.1051/0004-6361:20052990
http://dx.doi.org/10.1086/519754
http://dx.doi.org/10.1086/519754
http://dx.doi.org/10.1051/0004-6361:20053851
http://dx.doi.org/10.1051/0004-6361:20078842
http://dx.doi.org/10.1051/0004-6361:20078842
http://dx.doi.org/10.1086/519549
http://dx.doi.org/10.1088/0004-637X/721/1/164
http://dx.doi.org/10.1088/0004-637X/721/1/164

