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Strong lensing time delay cosmography has excellent complementarity with other dark energy probes
and will soon have abundant systems detected. We investigate two issues in the imaging and spectroscopic
follow-up required to obtain the time delay distance. The first is optimization of spectroscopic resources.
We develop a code to optimize the cosmological leverage under the constraint of constant spectroscopic
time and find that sculpting the lens system redshift distribution can deliver a 40% improvement in dark
energy figure of merit. The second is the role of systematics, correlated between different quantities of a
given system or model errors common to all systems. We show how the levels of different systematics
affect the cosmological parameter estimation and derive guidance for the fraction of double image vs quad
image systems to follow as a function of differing systematics between them.

DOI: 10.1103/PhysRevD.91.083511 PACS numbers: 98.80.-k, 95.36.+x

I. INTRODUCTION

Cosmographic, or geometric, methods such as distance-
redshift relations provide key insights into the nature of our
Universe. The type Ia supernova luminosity distance-
redshift relation revealed that the cosmic expansion is
accelerating [1,2], with the physical cause denoted as dark
energy. The cosmic microwave background radiation anisot-
ropies and baryon acoustic oscillations in galaxy clustering
are other probes that have at least a substantial geometric
component (modulo dark energy perturbations or coupling
to matter). Cosmic redshift drift has been recognized since
the 1960s as a potential cosmographic probe, though not yet
measured [3–6]. The strong gravitational lensing time delay
distance-redshift relation was also proposed in the 1960s [7]
and in the last few years has matured to the stage of being
used as a cosmological probe [8,9].
The development of strong lensing distances is a

particularly interesting advance since unlike the standard
distance-redshift relations, the measured time delay is a
dimensionful quantity, and the time delay distance is
comprised of the ratio of three distances. This makes it
sensitive to the Hubble constant H0. Also, because of this
ratio, the time delay distance has an unusual dependence on
dark energy properties and has high complementarity with
the usual distance probes [10,11]. Ongoing and future
surveys such as those from the Dark Energy Survey, Large
Synoptic Survey Telescope, and Euclid and WFIRST
satellites have incorporated strong lensing time delays into
their suite of cosmological probes.
Here we examine two aspects of implementation of time

delay distances into such surveys, focused on trades and
optimization of the follow-up resources required to obtain a
robust distance-redshift relation. In particular, the wide
field imaging surveys must be supplemented with spec-
troscopy to obtain accurate redshifts of lens and source and

to constrain the lens mass model. Since spectroscopy is
time intensive, and not part of some of the planned surveys,
we consider how to efficiently allocate the additional
resources among the large numbers (1000–10,000) of
strong lens systems that will be found.
In Sec. II we review the basics of strong lensing time

delays and the types of observations necessary to measure
the time delay distance-redshift relation. We develop in
Sec. III an optimization procedure for the cosmological
leverage of the data under the constraint of fixed resources
such as total spectroscopic time. This addresses questions
of follow-up of low- vs high-redshift systems. The influ-
ence of systematic uncertainties is investigated in Sec. IV,
along with questions such as how to trade between different
populations of lens systems, such as ones with double
images vs quad images. We summarize and conclude
in Sec. V.

II. MEASURING TIME DELAY DISTANCES

The time delay distance can be thought of as the focal
length of the lensing and depends on the distances between
observer and lens Dl, observer and source Ds, and lens and
sourceDls. The time delay between two images of the source
comes from the geometric path difference of the light
propagation and from the differing gravitational potentials
experienced. In summary, the time delay distance is

DΔt ≡ ð1þ zlÞ
DlDs

Dls
¼ Δt

Δϕ
; ð1Þ

where zl is the lens redshift, Δt is the observed time delay,
and Δϕ is the Fermat potential difference modeled from the
observations such as image positions, fluxes, surface bright-
ness, etc.
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For strong lensing time delay cosmography, the source
should be a bright, time-varying object such as an active
galactic nucleus, and the lens is generally a foreground
galaxy (as cluster lenses are harder to model). See [12–22]
for further details on strong lensing time delays as a
cosmological probe.
Wide field surveys such as those from the Dark Energy

Survey, Large Synoptic Survey Telescope, and Euclid and
WFIRST satellites will be superb tools for finding large
samples of strong lens systems. Due to their repeat
observations, they can also monitor the image fluxes over
several years to measure the time delay Δt. This may be
supplemented with further cadenced observations from
external programs, along the lines of the highly successful
COSMOGRAIL program [23].
The Fermat potential Δϕ is constrained by the rich data

of the images, but this works best with additional high-
resolution imaging, currently supplied by the Hubble Space
Telescope, and for future surveys possibly by the James
Webb Space Telescope (JWST) and ground-based adaptive
optics. For the lens part of the Fermat potential, the lens
mass modeling requires constraint by measurement of the
galaxy velocity dispersion through spectroscopy. This also
plays a key role in breaking the mass sheet degeneracy
[9,24,25]. Similarly, spectroscopy obtains the redshifts of
lens and source. (The velocity dispersion is also crucial for
the possibility of using time delay lensing to obtain the
usual angular diameter distance [21,26].)
Thus, these essential follow-up resources must be sought

in order to derive the strong lensing cosmological con-
straints from the wide field imaging survey. Since these are
generally external to the wide field survey, and require
application for highly subscribed telescope time, they can
become a limiting factor in the science return. We consider
here the optimization of cosmological leverage given a
finite follow-up resource. In the next section, we present
calculations specifically dealing with spectroscopy, but the
optimization procedure is quite general.
Since any one cosmological probe has particular degen-

eracies between parameters, we combine the strong lensing
distances with cosmic microwave background and super-
nova distances. Strong lensing was shown to have great
complementarity with these probes [11], and these data will
exist at the time of the wide field surveys (indeed super-
novae as distance probes are another component of the
surveys). We adopt a Planck quality constraint on the
distance to last scattering (0.2%) and physical matter
density Ωmh2 (0.9%). For supernovae we use a sample
of the quality expected from ground-based surveys: 150
supernovae at z < 0.1, 900 from z ¼ 0.1–1, and 42 from
z ¼ 1–1.7, with a statistical uncertainty of 0.15 mag and a
systematic of 0.02ð1þ zÞ mag added in quadrature to each
0.1 width bin in redshift.
We perform a Fisher information analysis to estimate the

cosmological parameters of the matter density Ωm, dark

energy equation of state present value w0 and a measure of
its time variation wa, reduced Hubble constant h, and a
nuisance parameter M for the supernova absolute magni-
tude. The fiducial cosmology is flat ΛCDMwithΩm ¼ 0.3,
h ¼ 0.7 (and we fix to spatial flatness).

III. OPTIMIZING SPECTROSCOPIC FOLLOW-UP

Since spectroscopic time is restricted, and generally
requires arrangements outside the main survey, it is
advantageous to treat it as a limited resource and optimize
its use. We consider it as a fixed quantity and seek to
maximize the cosmological leverage of the measured time
delay distance given this constraint. To do so, we examine
the impact of sculpting the redshift distribution of the lenses
to be followed up. The spectroscopic time is dominated by
measurement of the lens galaxy velocity dispersion.
However, our methodology is general and similar results
should occur for any measurement to some given signal to
noise. For example, one might instead optimize a resource
capable of high-resolution imaging, to map the distorted
source images, such as JWST or ground-based adaptive
optics time. The principles are the same.
For specificity, we concentrate on fixed spectroscopic

time for the sample of lenses. To measure a redshift, or the
galaxy velocity dispersion, requires good signal to noise
data of line fluxes. Consider the following illustrative
calculation. The signal scales with the number of photons
from the spectral feature to be measured, hence the fluence
times the exposure time. We will take the contribution of
other sources of photons to be dominated by a redshift
independent contribution, times the exposure time, so the
noise, i.e., the fluctuations, goes as the square root of
exposure time. This gives

S
N

¼ F texp
Nsky

ffiffiffiffiffiffiffi
texp

p : ð2Þ

We emphasize that we are presenting an illustrative
methodology: true survey optimization will depend on
many sources of noise and the survey specifications such as
instrumental properties, scanning strategy, etc. This
requires a full exposure time calculator and is beyond
the scope of this article, but we will see below that our
simple, heuristic approach matches some known results.
Since the fluence is just the flux divided by the photon

energy, we lose one less factor of 1þ z than the usual flux-
redshift relation, i.e., F ∝ ð1þ zÞ=d2L, where dL is the
luminosity distance. So to achieve a desired constant signal
to noise threshold requires the exposure time to vary as

texp ∝
1

F 2
∝

d4L
ð1þ zÞ2 ∝ d4Að1þ zÞ6; ð3Þ

where dA ¼ ð1þ zÞ−2dL is the angular diameter distance.
At redshifts z ≈ 1–2, the angular diameter distance in our
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Universe stays close to constant, and we recover the result
[27] that spectroscopic exposure time becomes increasingly
expensive with redshift as roughly ð1þ zÞ6.
At lower redshift, the slope is steeper. We will be

interested in a range around z ≈ 0.5. However, as exposure
time gets smaller, other noise contributions enter as well as
overheads such as telescope slewing and detector readout
time. Therefore, we adopt a reasonable approximation that
the spectroscopy cost goes as t ∝ ð1þ zÞr with r ¼ 8. We
have checked that using instead Eq. (3) plus a constant
overhead makes no significant difference in our results. We
emphasize again that the key point is that for any texpðzÞ
from an instrument’s exposure time calculator, the opti-
mization code described will produce results under a fixed
resource constraint.
The next step, given the resource constraint, is to choose

the quantity to optimize. We take this to be the dark energy
figure of merit (FOM), the area of a confidence contour in
the dark energy equation of state plane, marginalized over
all other parameters. The dark energy equation of state
wðaÞ ¼ w0 þ wað1 − aÞ fits a broad range of models, and
is accurate in recreating distances to the 0.1% level [28,29].
The parameter w0 measures the present equation of state
and wa the time variation, with a ¼ 1=ð1þ zÞ the scale
factor, and FOM ¼ ðdet COV½w0; wa�Þ−1=2. In the next
section, we also consider the effect of optimization on
the determination of the Hubble constant.
At different lens redshifts, the time delay distance has

different sensitivities to the cosmological parameters. (This
is true for the source redshift as well, but we fix zs ¼ 3zl for
simplicity; reasonable variations of this ratio have little
effect on the cosmological sensitivity [11,15]. We also
verified that the following optimization results are insensi-
tive to variation of this ratio.) So the question is whether the
extra expense of spectroscopy of higher-redshift lenses
overcomes their possibly greater leverage.
To optimize the redshift distribution we begin with a

uniform distribution in lens redshift (recall we are most
interested in spectroscopy of the lens galaxy to obtain its
velocity dispersion, used to constrain the lens mass model).
We take 25 time delay systems of 5% precision in each bin
of redshift width dz ¼ 0.1 over the range z ¼ 0.1–0.7, for a
total of 150 systems. This carries with it a certain total
spectroscopic time, and that is the fixed resource constraint
under which the optimization proceeds.
This initial uniform distribution is perturbed by one

system in each bin, one at a time, and the resulting FOM is
calculated. Each redshift also has a different time burden,
and we compute the quantity

_FOMi ¼
FOMðperturbedÞ − FOM

Δti
; ð4Þ

for each redshift bin i, where Δti is the spectroscopic time
required for a system at that redshift. The bin with the

lowest _FOMi, i.e., the least change in cosmological
leverage, has one system subtracted from it. The time
saved is then reallocated to the other redshift bins,
increasing the number of systems in every other bin j,
weighted by _FOMj. That is,

Δnj ¼ Δnsub
�
1þ zsub
1þ zj

�
8 _FOMjP

k≠sub
_FOMk

; ð5Þ

where sub is the bin from which Δnsub ¼ 1 systems are
removed. This formula conserves the resource, i.e., spectro-
scopic time.
The FOM for the new distribution is computed, and the

process iterates. The new distribution is perturbed, and
again one system from the lowest leverage bin is removed
(if this would cause the number in that bin to go negative,
we use the next lowest leverage bin) and its time burden is
reallocated. The iteration continues until convergence. As a
final step we round the numbers in each bin to the nearest
integer, but this has less than 0.3% impact on the cosmol-
ogy parameter estimation. This optimization method is
computationally fast and efficient, and widely applicable to
many astrophysical studies with constrained resources.
Figure 1 illustrates the results. The optimization

increases the FOM by almost 40%, while keeping the
spectroscopic time fixed. The optimized redshift distribu-
tion has a number of interesting properties: it is heavily
weighted toward low redshift, with a single peak at higher,
but not maximal redshift. Low redshift gives a decreased
time burden, and still good cosmological leverage,

FIG. 1 (color online). Histograms of the lens redshift distribu-
tion are shown for three cases: uniform, magnitude limited, and
optimized cosmological leverage distributions. All three have the
same fixed resource constraint on the total spectroscopic follow-
up time; each is labeled with the resulting dark energy figure
of merit.
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especially on the Hubble constant h, but also the dark
energy parameters since the source redshift extends the
cosmological lever arm [11]. To break covariances between
parameters, the higher- redshift bin is needed, but note it
does not seek to maximize the range by taking the highest
bin since this has the greatest time burden. (Note that the
pioneering cosmological optimization of [30] fixed the
number of supernovae, not the observing time, to find a
peak at the redshift maximum. In [31] both constant
number resource and constant spectroscopic time resource
with n ¼ 6 were studied for the supernova distance probe.)
The intermediate redshift bins, and the two highest-redshift
bins, at z ¼ 0.5–0.6 and 0.6–0.7, are zeroed out by the
optimization. Also note that in any case observations of
higher-redshift lenses (and sources) will begin to suffer
from lower fluxes and hence reduced signal to noise.
The FOM becomes a quite respectable 192, with

determination of Ωm to 0.0035, w0 to 0.061, wa to 0.22,
and h to 0.0030. Each parameter estimation, as well as the
FOM, is better than for either the uniform redshift dis-
tribution or a magnitude limited distribution derived from
[14] using cuts on image and lens flux and image separation
[32]. We have tested reducing the redshift range to 0.1–0.4
or 0.1–0.5, and obtain the same optimized distribution; i.e.,
the optimum really has only the low and mid redshift bin.
We also shifted the range to z ¼ 0.2–0.7 and found the
optimized FOM dropped significantly, to 135, demonstrat-
ing the lowest bin is critical for dark energy as well as the
Hubble constant.

IV. INFLUENCE OF SYSTEMATICS

Any cosmological probe must deal with systematic
uncertainties, especially for next generation surveys where
abundant numbers of objects drive down the statistical
uncertainty. We investigate two of the manifold aspects of
the impact of systematics. Again, a detailed treatment
would need to delve deep into survey and instrumentation
properties, and is beyond the present scope.

A. Redshift distribution revisited

Let us explore the effect of systematic uncertainties on
the optimization carried out in Sec. III. The number of lens
systems in the lowest redshift bin approached 300, which
for individual system precision of 5% implies a required
control of systematic bias at the 0.3% level. We do not yet
know enough from current strong lensing observations
and studies to know what is a realistic level, but strong
efforts and advances in understanding are underway. For
example, the blind data Time Delay Challenge (http://
timedelaychallenge.org) has already achieved 0.1%–0.2%
control of time delay estimation [33–36].
Therefore, we study the impact of various levels of

systematic on the optimized redshift distribution and the
resulting cosmological parameter estimation. We implement

the systematic as a floor, added in quadrature to the statistical
uncertainty,

σ2

ni
¼ σ2stat

ni
þ σ2sys; ð6Þ

where ni is the number in redshift bin i and each bin is
treated independently. This model is commonly used in
supernova distance-redshift relation studies [37]. (But see the
next subsection for an alternative approach to systematics.)
Figure 2 shows the optimized distributions, subject to the

resource constraint, for different levels of systematic. As
the systematic level increases, it is less advantageous to put
a large number of systems in a given redshift bin and
additional systems diffuse into neighboring bins. This fills
in the intermediate redshift gap and also pushes some lens
systems to high redshift, making the distribution closer to
uniform.
Both the presence of the systematic and the redistribution

of the data away from the zero-systematic optimum lowers
the FOM. Figure 3 plots the FOM vs the systematic level.
At 0.2% systematic, the FOM has decreased by only 8%
relative to zero systematic case, but larger systematics
impact the cosmology more severely. For high-enough
levels, there is little difference in leverage between
the optimized and uniform (or magnitude limited)
distributions.
To make sure that optimizing for dark energy FOM also

helps improve other cosmological parameters, we show in
Fig. 4 the constraint on the Hubble constant h. For zero
systematic the optimization actually improves the estima-
tion by a factor 2 (not just 40% as for the FOM). This is
because the increased low redshift sample is particularly

FIG. 2 (color online). The resource-constrained optimization of
the lens redshift distribution is shown as a function of coherent
distance systematic floor. This floor prevents large numbers of
systems in a redshift bin from improving the accuracy.
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useful for the Hubble constant. Even for higher levels of
systematics the optimization continues to give added
leverage on h.

B. Model systematics

Statistical uncertainties in the time delay distance arise
frommeasurement imprecision, but the measurement errors
can have systematic components as well. These take two

main forms: correlated errors between elements in a given
lensed system, and model errors that are common between
different lens systems. These will give diagonal and off-
diagonal contributions to the distance error matrix. Below
we give an illustrative exhibition of the effect of such
systematics; again, actual survey analysis requires a more
detailed and sophisticated treatment but this demonstrates
the main points.
Let us write the time delay distance as

DΔt ¼ DΔtðΔt;Δϕðm; ~θ;Δt; v; zÞ; κextÞ; ð7Þ

where the Fermat potential depends on image magnitudes

m, positions ~θ, time delays Δt, lens and image redshifts z,
and lens velocity dispersion v. Additional mass along the
line of sight affects the modeling through the external
convergence κext.
Ref. [9] demonstrates that over the angular range

important for the images, i.e., near the Einstein radius of
the lens, the Fermat potential scales with the projected lens
mass profile slope γ0. Even when the galaxy lens profile has
a multicomponent composition [38] of a Hernquist stellar
core plus a Navarro-Frenk-White dark matter profile, over
the angular range of interest the slope γ0 captures the profile
dependence. Uncertainties or misestimation in γ0 then lead
to dispersion or systematics in the Fermat potential and
hence the distances. There is also a mass sheet degeneracy
due to mass along the line of sight. Both these effects can be
incorporated through [9]

ϕ ≈ ϕ̄ð1 − κextÞðγ0 − 1Þ; ð8Þ

in the vicinity of the standard profile slope γ0 ¼ 2. Note that
systems measured to date have rms dispersion of≲5% in γ0
so this form is accurate.
We can now write the time delay distance as

DΔt ¼
Δt

ϕ̄ðm; ~θ;Δt; v; zÞð1 − κextÞðγ0 − 1Þ
: ð9Þ

The error propagation to the time delay distance, for
accurate image flux and position measurements, is then

δD ¼ DtδtþDvδvþDzδzþDκδκ þDγδγ; ð10Þ

where we use the simplifying notation D ¼ DΔt,
Dx ¼ ∂D=∂x, and γ ¼ γ0, κ ¼ κext, t ¼ Δt.
A reasonable first approach, based on current data, is that

the error budget will be dominated by the time delay
estimation, external convergence, and lens mass profile and
velocity dispersion. In this case the diagonal entries in the
error matrix (i.e., for a single lens system) would be

FIG. 3 (color online). Dark energy figure of merit is plotted for
the optimized cosmological leverage and uniform lens redshift
distributions as a function of systematic floor. For high system-
atics, the optimized distribution has little extra leverage, but at
low systematics the improvement can approach 40%.

FIG. 4 (color online). As Fig. 3 but for the Hubble constant
constraint (note that here low values are better). At high
systematics, the optimization still improves the results by almost
10%, while at low systematics the gain is a factor 2.
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CDD ≈D2
t σ

2
t þD2

vσ
2
v þD2

κσ
2
κ þD2

γσ
2
γ

þDvDγhδvδγi þDκDγhδκδγi: ð11Þ

This reflects the individual errors, plus the correlated errors
between v and γ in the lens density profile (e.g., whether v
is measured at the appropriate place in the profile), and
between γ and κ in the profile-mass sheet degeneracy. We
emphasize this is illustrative.
The model errors enter in the off diagonal elements.

Recall these correlate two different lens systems at dis-
tancesD andD0. Here the error matrix gets the contribution

CDD0 ¼ DtD0
thδtδt0i þDvD0

vhδvδv0i þDκD0
κhδκδκ0i

þDγD0
γhδγδγ0i þDvD0

γhδvδγ0i þD0
vDγhδv0δγi

þDκD0
γhδκδγ0i þD0

κDγhδκ0δγi: ð12Þ

Several of the derivatives can be written in a straightfor-
ward manner using Eq. (9):

Dt ¼
D
Δt

; Dγ ¼ −
D

γ − 1

Dκ ¼
D

1 − κext
; Dv ¼ Dϕ

∂ϕ
∂v ≈ −2

D
v
: ð13Þ

The approximation sign in Dv represents the result for a
singular isothermal sphere.
Once we are in the regime of thousands of strong lenses

[14,15], the
ffiffiffiffi
N

p
statistical reduction will be dominated by

the residual systematics. It is crucial to identify the effects
of these systematics on cosmological results, and where the
greatest leverage lies in controlling them. This has signifi-
cant interplay with our previous analysis of constrained
follow-up resources. That is, we want to identify where best
to concentrate the limited resources, e.g., on long time
delay, quad image systems. One example is that double
images often occur at different radii where the lens slope
profile may vary, while quads suffer less from such a
systematic. Quad systems may have better precision from
the extra measurement constraints, but possibly also an
increased opportunity for differential microlensing or
varying external convergence.
For a tractable first approach, we note that Eqs. (11),

(12), and (13) have the property that the uncertainties often
enter into the error covariance matrix as logarithmic frac-
tional quantities, i.e., δγ0=ðγ0 − 1Þ or δκ=ð1 − κÞ, times the
time delay distance. We adopt the Ansatz that these
fractional systematic uncertainties have a scaling with
redshift s ¼ s⋆½ð1þ zÞ=ð1þ z⋆Þ�n, where z⋆ ¼ 0.4 is the
midpoint of the redshift range, and a possible population
dependence, where the errors in double systems may differ
from those in quad systems. Since the fraction of doubles vs
quads detected in a survey changes with redshift, this
causes a population drift in a manner similar to supernova
subtype evolution.

The overall covariance matrix will then have two entries
in each redshift bin, for doubles and quads, with distinct
statistical and systematic errors. We sum up all the
statistical errors from the time delay estimation, mass
profile slope, etc. to give diagonal entries of σ2fd;qgðziÞD2

i
in the ith lens redshift bin. Here Di is the time delay
distance of Eq. (1). The systematic errors sfd;qgðziÞDi also
contribute to the diagonal elements and moreover their
correlations produce offdiagonal entries. While in actual
data analysis one might not bin the data, and the error
model will become more sophisticated over time, this
approach using five parameters (σd, σq, sd, sq, and n if
desired) is tractable and gives important first indications of
the effect of systematics.
We first discuss direct redshift evolution of the system-

atics, and then the influence of population drift.
Figure 5 shows the influence of the redshift dependence

of the systematic. In order to focus on the redshift evolution
of the systematic, we here take the uniform redshift
distribution of Sec. III (despite its lower FOM), and treat
all populations (doubles or quads) as having 5% statistical
precision in distance and a fractional distance systematic s
per redshift bin. The evolution in s with redshift could arise
from, e.g., decreased signal to noise, and hence more
uncertain modeling, of higher-redshift lens systems (and a
longer path length so greater uncertainty in the projected
mass along the line of sight).
We see that the specific systematic redshift evolution

model, as opposed to the mere presence of the systematic,
has a modest effect, with the variation among n ¼ 0–2

FIG. 5 (color online). The dark energy figure of merit (solid
curves) and Hubble constant uncertainty (dashed curves) are
shown as a function of systematic error amplitude s⋆ at z⋆ ¼ 0.4,
for three different redshift evolutions. The systematic scales as
ð1þ zÞn for n ¼ 0, 1, 2. Note that high figure of merit is good,
and low σðhÞ is good.
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affecting the dark energy figure of merit by ∼20% and
determination of the Hubble constant by ∼50% at the
highest systematic levels. Note that the evolution does
change the covariance between parameters; this is respon-
sible for the n ¼ 1 and n ¼ 2 curves crossing at high
systematic. Although w0 and wa are both better determined
in the n ¼ 1 case, the FOM is not, due to their altered
covariance. As expected, a constant fractional systematic
has more of an effect on h, and so less on the FOM.
As a next step, we include separate systematics for the

populations of double and quad image systems. Again the
motivation is that these have different levels of constraints
on the lens model from the observations, e.g., image
positions, flux ratios, number of time delays. To focus
on this population aspect, we keep the explicit systematic
amplitude independent of redshift (n ¼ 0; recall we just
saw that the cosmology constraints were fairly insensitive
to n anyway) but incorporate population drift with redshift.
The distribution of doubles and quads we use is the

magnitude limited sample of Sec. III, based on [14] (again
for illustration, despite its lower FOM). This arises from the
constraints that 1) image separation is larger than 100, 2) the
quasar images are brighter than i-magnitude 20.8, and 3)
the lens magnitude is brighter than 22. These help ensure
that images and arcs can be well resolved, time delays can
be accurately measured, and the lens velocity dispersion
can be measured with reasonable use of resources. The ratio
of doubles to quads varies from roughly 9 to 4 from the low
to high end of the redshift range, with statistical scatter in
numbers included. The drift in the proportion leads to an
effective redshift evolution in the systematic uncertainty,
analogously to how population drift of supernovae sub-
types with slightly different absolute magnitudes engenders
supernova magnitude evolution (see [39,40] for detailed
treatment of the propagation of this effect into cosmology
constraints).
Figure 6 quantifies how population drift between the

double image and quad image systems propagates into
cosmological constraints as the amplitude and ratio of the
double and quad systematic errors varies. The top panel
fixes sq ¼ 1% and varies sd, while the bottom panel fixes
sd ¼ 4% and varies sq. As the systematic level increases,
the dark energy figure of merit decreases and the uncer-
tainty in the determination of the Hubble constant
increases, as expected. However, when the systematic error
of the doubles exceeds their statistical uncertainty, then the
information from the doubles saturates, the quads dominate
the leverage, and the FOM and σðhÞ level off (see top
panel). This implies that systematics in doubles have a
natural “knee”—defining when the limited observational
resources have greater leverage when used to accurately
characterize the rarer quad systems. The bottom panel
shows that as long as the quad systematic is lower than its
statistical uncertainty, then more accurate measurement of
quads leads to more stringent cosmological constraints.

Such an analysis can inform the optimal use of resources
for strong lensing time delay distances as a cosmologi-
cal probe.
Figure 7 depicts the results for simultaneous variation of

the double and quad systematics, showing contours of
constant FOM. At high systematics level, having the two
contributions be comparable gives the best FOM. However,
at low systematics level we are below the quad statistical
uncertainty. This gives two approaches for improvement:
either improving the doubles systematic or allocating more
resources to follow-up more quad systems and bring down
their statistical error. From the distance between the
contours, we see that if low quad systematics can be

FIG. 6 (color online). Top panel: The dark energy figure of
merit (solid curve) and Hubble constant uncertainty (dashed
curve) are shown as a function of fractional systematic error sd in
double image systems, for a fixed quad image systematic
sq ¼ 0.01. Bottom panel: As the top panel, but as a function
of sq for fixed sd ¼ 0.04.
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achieved, then considerable improvement in doubles sys-
tematics is required for significant improvement; thus,
following up more quad systems seems a better option
in this case.

V. CONCLUSIONS

The strong gravitational lensing time delay distance-
redshift relation is a geometric probe of cosmology. It has
two particularly valuable characteristics: being dimension-
ful and, hence, sensitive to the Hubble constant H0 and
being a triple distance ratio and, hence, with different
parameter degeneracies that make it highly complementary
to other distance probes such as the cosmic microwave
background or supernovae. Moreover, the observations and
modeling are rapidly advancing, enabling it to place
cosmological constraints of significant leverage, compa-
rable to other methods.
We considered the question of the follow-up resources

needed to complement the forthcoming strong lensing
imaging surveys that detect and monitor the lens systems.
Since high-resolution imaging or spectroscopic follow-up
is limited and expensive, we optimized the lens system
redshift distribution to give maximal cosmology leverage.

The optimization code under fixed resources such as
spectroscopic time (e.g., to measure the lens galaxy
velocity dispersion to constrain the lens mass model) is
computationally fast and efficient, with its algorithm
generally applicable to many astrophysical studies and
figures of merit.
The sculpted distribution delivers a nearly 40% improve-

ment in dark energy figure of merit, and a factor two tighter
constraint on the Hubble constant, than a uniform redshift
distribution. Low redshift systems are found to be particu-
larly preferred, and there is no need to spend follow-up time
on lenses with z > 0.5.
Systematics enter as correlated quantities within a given

lensing system, and as model systematics common to many
systems. We examined both in an illustrative model that
captures key aspects. A systematic uncertainty floor some-
what spreads out the optimal redshift distribution, but
preserves the advantage of low redshift. We then demon-
strated the effects of both a systematic explicitly evolving in
redshift and one caused by population drift between
different lens system types, such as double image vs quad
image systems. If the systematic level for one population is
larger than for the other, we can quantify by how much the
follow-up resources are better spent on the more accurate
population.
As wide field surveys deliver 1000–10,000 strong

lensing systems, the issue of follow-up will become a
key limitation, and these optimization tools can signifi-
cantly improve the cosmological leverage. Similarly, as our
measurement of strong lensing systems improves, the
illustrative systematic correlation model here will become
more realistic and enable more sophisticated trade studies
regarding low vs high redshift or double vs quad image
systems. This will further optimize future surveys to use
strong lensing time delay distances as a unique cosmo-
logical probe.
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