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Direct searches for low-mass dark matter particles via scattering off target nuclei require detection of
recoiling atoms with energies of ~1 keV or less. The amount of electronic excitation produced by such
atoms is quenched relative to a recoiling electron of the same energy. The Lindhard model of this

quenching, as originally formulated, remains widely used after more than 50 years. The present work
shows that for very small energies, a simplifying approximation of that model must be removed. This leads
to a kinematic cutoff in the production of electronic excitation. Implications for the sensitivity of direct

detection experiments are discussed.
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I. INTRODUCTION

The possibility of low-mass (usually: m < 10 GeV) cold
dark matter candidates is theoretically interesting (see
e.g. [1,2]) and experimentally challenging (see e.g. [3,4]).
The experimental signature for direct detection generally
reduces to detection of recoiling target atoms (‘“nuclear
recoils”), following a scattering event. Recently, interest in
dark matter coupling to electrons has also increased [5,6].
However, the present work focuses on the former situation.
For particles bound in a galactic dark matter halo, nuclear
recoil energies are typically O(keV) or less, due to the
galactic escape velocity v = 0.002¢. The amount of elec-
tronic excitation produced by a recoiling atom is quenched
by approximately x5 or more relative to a recoiling electron
of the same energy. Arguably the best theoretical prediction
of this quenching is given by Lindhard et al. [7]. Most
measured values show good agreement in germanium and
silicon, and decent agreement in argon and xenon.

Experiments such as CoGeNT [8] and CDMSlite [9] have
performed optimized, dedicated searches for low-mass dark
matter. The latter uses the Lindhard quenching model
parametrization to reconstruct the nuclear recoil energy of
events, while the former uses a slightly more optimistic
variation of the basic model. In both cases it has been
reasonably argued that data support the choice, and in both
cases the energy threshold for nuclear recoils is ~1 keV.

On the other hand, experiments such as XENON10 [4]
and DAMIC [10] have estimated their sensitivity to elastic
dark matter scattering using an extrapolation of the
Lindhard quenching prediction to reconstruct the nuclear
recoil energy. The necessity of this approach has arisen
from the combination of single (or nearly single) electron
detection thresholds along with a complete lack of nuclear
recoil quenching data for such small energies. The G2
experiments LZ and SuperCDMS SNOLAB face a similar
situation in projecting their sensitivity [11].
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At the same time, it is anecdotally known that the validity
of the Lindhard model in any material is questionable at
very low energies. This can probably be traced to the
cautionary statement appearing in [12] that “at extremely
low e-values,' & < 1072, the nuclear scattering and stopping
becomes somewhat uncertain, because the Thomas-Fermi
(TF) treatment is a crude approximation when the ion and
the atom do not come close to each other.”

The basic problem, then, is that the requisite data for
low-energy nuclear recoils are sparse to nonexistent. With
the exception of germanium, reconstructed energies smaller
than a few keV must rely on a model. And the most widely
used model is most uncertain in this regime.

This article will examine the sources of this uncertainty,
undo a simple approximation of the original treatment, and
obtain a new solution of the original model in the energy
range of interest for low-mass dark matter, i.e. € < 1072
(generally, E less than a few keV). It is worthwhile to begin
with a very brief summary of the “admittedly elaborate”
original treatment [7,12,13].

II. A VERY BRIEF SUMMARY
OF THE LINDHARD MODEL

The discussion in this section gives a broad-brush picture
of the steps leading to the result known to the dark matter
direct detection community as the Lindhard model. It owes
much to [14,15]; however, the notation follows that of [7].
Most formulas and their derivations are intentionally left to
the references.

For a recoiling atom of energy E, what portion # of the
total energy loss is given to electrons? The remainder of the
energy loss v is assumed to be given to atomic motion, viz.
n+v = E. Unless phonon energy is measured, 7 is an
upper limit to the available signal in a particle detector.
For simplicity, fluctuations are treated separately and the
model is written in terms of average quantities 77 and .

'e is a reduced energy defined by Eq. (2).

© 2015 American Physical Society


http://dx.doi.org/10.1103/PhysRevD.91.083509
http://dx.doi.org/10.1103/PhysRevD.91.083509
http://dx.doi.org/10.1103/PhysRevD.91.083509
http://dx.doi.org/10.1103/PhysRevD.91.083509

PETER SORENSEN

An additional simplification is obtained in the case that the
projectile and target atoms have the same atomic and mass
numbers. The present work therefore focuses on four
materials which satisfy this criteria, and are of current
interest to the direct detection of dark matter: germanium,
silicon, xenon and argon.

A recoiling atom of any appreciable energy will undergo
a cascade of collisions in its slowing down. Thus, for a
given energy E, the competition between electronic and
nuclear cross sections at all smaller energies contributes
to the partitioning between # and v at the energy E.
The average energy given to atomic motion is obtained
by integrating over all possibilities. This physical picture is
described by

ke = [0 pe)
0 2t3/2

in which

e=E 272 (2)
is a dimensionless reduced energy. The details of the other
symbols in this equation are explained presently in
Secs. Il A-II B. The three terms in curly braces refer to
the energy of the target atom after a collision, the projectile
atom before a collision and the projectile atom after a
collision.

Four key approximations underpin this equation:
(A) Tonized electrons do not produce recoil atoms of
appreciable energy.
(B) The atomic binding energy u of electrons is
negligible.
(C) Energy transfers to electrons are small relative to
energy transfers to atoms.
(D) The treatment of atomic and electronic collisions is
separable.
Of the four, approximation (B) is the most obviously
troubling in the limit of low-energy recoils.

A. Nuclear stopping cross section

The nuclear scattering is modeled as two-body scattering
in a screened Coulomb potential, V(r) = (e?Z%/r)
¢o(r/a). The function ¢y(r/a) is a single atom
Thomas-Fermi screening function with length scale
a = 0.8853a,/Z"/3. In this equation, aj is the Bohr radius.
The standard technique is to extend this screening function
to a pair of atoms via a suitable scaling of a. Lindhard used
a = 0.8853a,/(Z'/3/2), though other slightly different
scalings have been proposed.

Classical mechanics then allows a further simplification
into that of a single particle moving under a central
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potentiall.2 This can be solved for the orbit equation for
two-body central force scattering, which gives the scatter-
ing angle ® (in center-of-mass coordinates) in terms of
the initial particle energy and the impact parameter. The
nuclear stopping power S,(e) is just the average energy
transfer, integrating over all possible impact parameters.
The trick realized by Lindhard et al. was a change of
variables, defining ¢ = ¢*sin?(®/2). The nuclear stopping
is then defined by an integral over a function f(¢'/?)
(cf. Fig. 2 of [7]). To emphasize, what was previously a
function of three variables (®, impact parameter and initial
particle energy) is now a function of a single variable, z.
Considering that these simplifications lead to the first
solutions of projectile range and energy loss within a
single model, we can perhaps forgive the authors for
referring to their results as the “magic formula” [13].

B. Electronic stopping cross section

The electronic stopping power S, (&) can be written as
de/dp = ke'/?, (3)

where p is a reduced range. Velocity proportional stopping
is a very generic prediction in most models of electronic
stopping power. However, calculations of the slope k vary
by up to a factor x2 or more [16]. In this article, I follow the
calculation of [7] (unless noted otherwise), using

k=0.1332%3A71/2, (4)

where A is the mass number of the material.

Equation (3) has been clearly verified for the simplest
case of antiproton stopping [17]. When one looks at a wider
array of electronic stopping power data for very slow heavy
ions [18], it is clear that velocity proportionality is gen-
erally observed.

A sticking point for the direct detection community is
that most of these models treat atomic electrons as an
electron gas. Since our detector targets tend to be semi-
conductors or large band-gap insulators rather than metals,
one might expect a deviation from velocity proportionality.
Interestingly, velocity proportionality is still observed [19]
in materials with large band gaps. However, a nonzero
e-intercept [in the sense of Eq. (3)] seen in some data
indicates the presence of a threshold velocity, below which
the projectile suffers no electronic energy loss.

For pointlike projectiles, this threshold velocity is
calculable from simple kinematic constraints [20]. For
atomic projectiles, these arguments—which were used in
[21]—are not applicable. Yet, intuition suggests that the
size of a material’s band gap should directly affect the

1 emphasize this elementary step because of its tacit
assumption of spherical symmetry—which is of course broken
by e.g. polarization of the medium.
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low-energy electronic response to nuclear recoils. Within
the context of the Lindhard model, the connection lies in
approximation (B).

To emphasize, velocity proportional stopping is well
established, but strict velocity proportional stopping in the
sense of Eq. (3), with an e-intercept of zero, is not well
established. Nevertheless, 1 follow the assumption of the
original work [7] and assume Eq. (3) holds in the
limit € — 0.

C. The standard solution

Analytical solution of Eq. (1) is possible only for
unrealistic (unscreened) atomic potentials. Lindhard et al.
obtained a numerical solution which they parametrized as

- 15
1+ kg(e)

u(e) (5)

with k defined by Eq. (3). The function g(e) is merely
plotted in [7], and a frequently used parametrization,

g(e) = 36%15 +0.76%¢ + ¢, (6)

is given in [22]. In the context of direct detection of dark
matter, one is usually interested in the fraction of energy
given to electrons (“the quenching factor”),

e—0 _ kg(e)
e 1+kgle)

fn= (7)

in which the subscript indicates that this fraction is for

nuclear recoils. D. Trust, but verify

As a preamble to studying solutions at low energy, the
validity of Eq. (5) was first verified for the case of
germanium. Immediately, one must contend with the fact
that Lindhard ez al. did not calculate f(¢'/?) for & < 0.002.
The authors of [14] showed that errors in the nuclear
stopping potential can be reduced from >100% to <10%
using a Moliere parametrization of the screening. For
€ <0.002, 1 therefore extended the f(¢!/?) given in
Fig. 2 of [7] using this parametrization, Eq. (15) of [14].
The transition is smooth and continuous. Note that the
S, (&) given therein may be transformed to the desired
f(t'/?) by differentiation of &S, (e).

The point of this choice is to preserve the original
treatment of [7] to the greatest extent possible, while
obtaining a reasonable form of the nuclear potential for
low energies. This is not the only reasonable choice, and in
Sec. III D, I discuss the effect of the so-called universal
potential [15].

A few comments on numerical methods are in order. It
is clear from Eq. (1) that a solution at any particular ¢ is
influenced by the solution at all smaller values of e.
Therefore, solutions were obtained simultaneously at 31
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FIG. 1 (color online). (Upper panel) For germanium, percent
error in the solution of Eqgs. (1) and (1’), as defined in the text.
(Lower panel) Solutions of Eqgs. (1) [dash dot: Eq. (5); and
dashed: Eq. (8)] and (1’) (solid). Note that Eq. (1’) corresponds to
u > 0, as discussed in Sec. III B. The inset scale indicates values
of e. See also Table I. Data are from [23-26].

logarithmically spaced values of ¢ over the range from
30 eV to 500 keV. A grid of 5000 logarithmically spaced ¢
values was used for the integration.

Optimal solutions of Eq. (1) were then obtained by
minimizing the metric (lhs — rhs)/(lhs + rhs), where lhs
and rhs refer to the left- and right-hand sides of Eq. (1).
This is plotted as a percent in Fig. 1, above the standard
solution (dash-dot curves). One can now see an additional
source of uncertainty in the standard solution [Eq. (5)]
at low energies: the residual error grows from <5% at
£ = 107! to about 25% by £ = 103 (and, not shown, more
than 50% by & = 107%).

III. SOLUTIONS NEAR THRESHOLD

This section focuses on numerical solutions of Eq. (1)
near the energy threshold of ionization (or scintillation plus
ionization) detectors. In practice this means a few tens of
eV up to a few keV. The hypothesis that the atomic binding
energy results in a kinematic cutoff can be incorporated by
adding a constant g to Eq. (5):

v(e)

&

T+ kg(e) ta ®)

Then some energy is always spent on atomic motion in the
limit € — 0.

The result of solving Eq. (1) with Eq. (8) for germanium
is shown in Fig. 1 (dashed curve), with the parameter value
given in Table I. The quenching prediction is then given by

_ kg(e)
fn= 1 + kg(e)

which begins to differ from the standard solution [Eq. (5)]
below about one hundred eV. Interestingly, the residual

- Q/g’ (9)
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TABLE 1. Values of the cutoff parameter g for solutions of
Eq. (1') [as described in Sec. (III B)] with Eq. (8). Values of ¢ and
u are shown multiplied by a factor x10°. The standard Lindhard
model, characterized by ¢ = u = 0, is shown for comparison.
Values of k were calculated from Eq. (4) unless noted*. The
nuclear potential is either TF or the universal potential of Ziegler
(ZU). 0 refers to the predicted average nuclear recoil energy (in
eV) to ionize a single electron.

Atoms q u k bo 0

Si 0 0 0.146 TF 31
Si 0.46 0 0.146 TF 32
Si 27.9 9.35 0.146 TF 101
Si 40.1 9.35 0.146 ZU 140
Ar 0 0 0.144 TF 253
Ar 0.44 0 0.144 TF 254
Ar 494 26.4 0.144 TF 447
Ar 48.8 26.4 0.110%* TF 544
Ar 73.4 26.4 0.110%* ZU 676
Ge 0 0 0.157 TF 29
Ge 0.42 0 0.157 TF 38
Ge 3.39 1.06 0.157 TF 101
Ge 8.84 1.06 0.157 ZU 201
Xe 0 0 0.166 TF 224
Xe 0.53 0 0.166 TF 260
Xe 4.20 1.44 0.166 TF 492
Xe 4.02 1.44 0.120%* TF 618

Xe 721 1.44 0.120* ZU 821

error in the solution is reduced to a few percent across the
entire range of ¢ in question.

A. Past steps and next steps

The remainder of this section will explore the effects of
atomic binding and approximation (B). Prior to this it is
worth making a few comments about previous work.

The question of a kinematic cutoff in electronic excita-
tion arose in the 1980s in the context of detecting massive
monopoles, and a model for calculating band-gap effects
was proposed by Ahlen and Tarlé [20] (see also [27]).
The idea that a band gap results in a cutoff is thus shared
by Ref. [20] and the present work. However, as discussed
in Sec. II B that model should not be applicable to a
recoiling atom.

Recent calculations by Barker and Mei [28] examine the
Lindhard model, with specific attention to ionization effects
due to nuclear scattering. Essentially, this can be thought
of as questioning approximation (D). Their results show a
large decrease in f,, above a few tens of keV, and almost no
change at 1 keV. Their calculations do not extend below
1 keV.

A comparison between the Lindhard model and the
widely used SRIM code (described in [15]) can be seen in
[29]. This work highlights an important divide: The SRIM
code uses the universal potential [15] for the nuclear
scattering, which is evidently the most accurate potential
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for the widest selection of pairs of nuclei. While the SRIM
code is widely used, its predictions at low energy do not
agree particularly well with available data (as shown in
[29]). It is not known if this is due to the choice of potential
(probably not) or rather to the implementation of the energy
loss calculations. The code itself is not available to
scrutinize or modify, so it is of interest to see how the
universal potential modifies the Lindhard model. This point
has been made previously in a slightly different context
[30]. These effects are discussed in Sec. III D.

B. Atomic binding energy approximation

In the slowing down of a recoil atom, some of the energy
that is given to electrons must be spent on atomic binding.
The Lindhard model considers average quantities, so the
relevant binding energy in this context is arguably the solid
state average energy required to produce an electron-hole
pair. This quantity is well known in germanium to have a
value of 3.0 eV [9]. In the reduced units defined by Eq. (2),
the value is u = 1.06 x 107>,

It can be shown that approximation (B) is removed from
the original Lindhard model by replacing the term o(¢/¢) in
Eq. (1) with o(¢/e — u). 1 will refer to Eq. (1) with this
modification as Eq. (1’). The result of solving Eq. (1") with
Eq. (8) is shown in Fig. 1 (solid curve). The primary effect
is a fairly sharp cutoff in the fraction of energy given to
electrons, at a nuclear recoil energy E ~ 100 eV. The %
error in the solution increases rapidly at the cutoff point,
because the derivative 7/ approaches a constant value (and
cannot keep pace with the decline in 7). For the sake of
completeness, note that forcing ¢ = 0 in Eq. (1’) results in
a significantly larger error.

C. Other target media

Several other target materials are of present interest in the
search for a direct detection of dark matter. The treatment
and conclusions for these materials are not qualitatively
different from those obtained for germanium. Results are
shown in Figs. 2—4, and summarized in Table I. For silicon,
u was taken to be the average energy 3.84 eV [31] required
to create an electron-hole pair. For argon and xenon, u was
taken to be the average energy required to create a single
quanta (electron or photon). The values are 19.5 [32] and
13.8 eV [33].

The noble gases argon and xenon require additional
comment. Data for these materials are consistent with a
smaller total fraction of energy given to electrons than
would be expected on the basis of Eq. (4). In earlier
literature the Lindhard quenching prediction was observed
to overestimate the scintillation yield of liquid xenon.’
One proposed mechanism to explain this observation is

*It was later pointed out that the Lindhard model applies to the
quenching of scintillation plus ionization, not to the scintillation
alone [35].
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FIG. 2 (color online). Curves as described in Fig. 1, here for
xenon. Also shown is a solution of Eq. (1) with nonstandard
k = 0.120. Data are from [34], and with threshold correction
from [35].
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FIG. 3 (color online). Curves as described in Fig. 1, here for
silicon. Data are from [36,37].
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FIG. 4 (color online). Curves as described in Fig. 1, here for
argon. Also shown is a solution of Eq. (1’) with nonstandard
k = 0.110. Data are from [38].
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biexcitonic quenching [39], in which two excitons result in
the release of a single scintillation photon (instead of one
photon per exciton). This model was extended by Mei ef al.
to include other potential forms of biexcitonic quenching
[40]. While these models only consider scintillation
quenching, the authors of Ref. [38] showed that the models
can be fit to scintillation plus ionization quenching data
as well.

The Lindhard model does not consider the form taken by
the energy given to electrons (i.e. ionization or scintilla-
tion). To explain the observed deficit in the fraction of
energy given to electrons, one could probably combine a
biexcitonic quenching model with the Lindhard model. An
alternative explanation is simply that the calculated elec-
tronic stopping power obtained by Lindhard et al. is too
large for closed shell atoms. As discussed in Ref. [16],
more detailed calculations suggest a periodic structure in k

as a function of atomic number, with noble gases tending
to lower values. For argon the average reduction relative

to Eq. (3) is 0.65 £0.27. A simple fit to recent exper-
imental data [38] suggests that k be reduced by x0.76.
This is shown in Fig. 4. Calculations in Ref. [16] do not
extend to Z = 54, so for xenon we assume a reduction of
x0.72 based on high-energy normalization. This is shown
in Fig. 2.

Data do not yet allow us to distinguish which hypothesis—
biexcitonic quenching, or a reduction in electronic
stopping power—is more correct. However, in either
case the predicted low-energy behavior is expected to
be the same.

D. The universal potential

The low-energy behavior of the Thomas-Fermi nuclear
potential, and in particular this choice of screening func-
tion, has long been cited as a weakness of the Lindhard
model. In fact, it is simply an input to the model. Many
different approximations and parametrizations exist. As
mentioned above, the Moliere potential has been shown to
be an excellent choice for a variety of atom pairs [14].

In order to understand the effect of the choice of
potential, I solved Eq. (1) with f(¢'/?) corresponding to
the universal potential [15]. The universal potential is just
the same Coulomb potential discussed in Sec. I A, with a
slightly weaker screening function ¢ (r/a) and a different
length scale, a = 0.8853a,/(2Z)"%.

To ensure that the normalization of the solution was not
constrained, I first used a simple power law parametrization
U =e—ce"!® + g, in which c is a constant. This function
gave a good fit over the range shown in the figures, with
error similar to the cases already discussed. In the absence
of approximation (B), the cutoff due to atomic binding
tends to occur at an energy which is higher by about a
factor x2.

Based on this, it seemed preferable to use Eq. (5) to
define ¥ in this case as well. The resulting cutoff parameter
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FIG. 5 (color online).  Sensitivities of hypothetical 1000 kg-day
exposure with a background rate of 1073 counts/keV/kg/day
and a search window from the threshold for ionization of a single
electron up to 1 keV electron equivalent (unquenched) energy. As
a landmark, a possible signal at CDMS [43] is indicated by the
closed contour. For each material, the dashed curve corresponds
to the first line of Table I, and the solid curve to the last line.

does not depend on this choice to any significant degree.
The error in the solution does increase slightly, to an
average of typically 5% over the range of interest.’ This is
a reasonable penalty compared with the resulting sim-
plicity of parametrizing all the solutions in the same
manner. The increase in cutoff energy appears to result
primarily from the factor of about x2 decrease in the
length scale a.

IV. EFFECT ON DARK MATTER DIRECT
DETECTION SENSITIVITY

In order to assess the effect of these results on the
sensitivity of direct detection experiments, Fig. 5 shows
hypothetical exclusion limits for spin-independent elastic
scattering with (solid curves) and without (dash-dot curves)
the atomic binding approximation. The curves were gen-
erated using the maximum gap method [41]. Assumptions
include a 1000 kg-day exposure and a background-
free search window from the threshold for ionization
of a single electron up to 1 keV electron equivalent
(unquenched) energy. This corresponds to a background
counting rate of approximately 1073 counts/keV /kg/day.
The neutrino floor varies slightly with target [42] and is not
shown for clarity. It attains a peak value at about o, =
5x 107 cm? at 6 GeV.

It is important to note that in liquid argon and xenon,
electronic excitation in the sense of f, results in both
ionization and scintillation. At very low energies in liquid
xenon, it appears that nuclear recoil energy partitions nearly

‘At energies E 2 100 keV, the error increases more signifi-
cantly. This may indicate the need for a better high-E normali-
zation, which is outside the scope the present work.
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equally into these two channels [35]. In liquid argon, the
lowest energy data point is consistent with equal partition-
ing [44]. In calculating sensitivities, I have assumed the
fraction is exactly 0.5 in both of these materials, and that
only the ionization is measurable at very low energies. The
magnitude of the applied electric field will change these
assumptions somewhat.

The basic result of the atomic threshold cutoff in f,, is a
sharp decrease in sensitivity to low-mass dark matter. The
low-mass region of parameter space is compatible with
several putative detections reported in the past few years.
This is because in most of these cases, hints of signal have
tended to appear near the detection threshold. While sorting
out signal from noise (or background) near detector thresh-
old is a separate problem, interpretation and comparison of
results relies critically on knowing the actual energy
equivalent of a detector’s threshold.

V. SUMMARY

This article has shown that a kinematic cutoff due to
atomic binding energy is an inherent part of the widely
used Lindhard model. This is particularly important
because it is generally recognized that such a cutoff must
exist, but no direct connection to the model existed. Most
previous work has converted a measured detector response
to nuclear recoil energy using the Lindhard model. The
model validity has either been assumed to hold to the
ionization threshold (e.g. superCDMS SNOLAB in [11],
DAMIC [10]), or an ad hoc kinematic cutoff has been
inserted (e.g. XENONIO [4] and LUX [45]).

Other kinematic effects may exist. In particular, a non-
zero e-intercept to the electronic stopping, as discussed
in Sec. IIB, would compound the kinematic cutoff.
Unfortunately, one can only speculate about the likelihood
and magnitude of such an effect, due to a paucity of data.
Perhaps the most relevant data to the present context are
shown in Fig. 4 of [19]. This is because the SiO, target used
therein is also composed of covalent bonds. Velocity
proportional stopping for helium projectiles is extrapolated
to zero velocity in that case, consistent with Eq. (3). This
suggests that a similar response might be expected for the
materials considered in this article.

A full quantum model of atomic projectile range and
energy loss in a solid would be a welcome addition to the
literature. A clue to the complexity of such a task may be
found in the fact that the Lindhard model, as originally
formulated, remains widely used after more than 50 years.
In the short term, it is hoped that the present extension
of that model will provide useful guidance for expectations
of the quenching of very low-energy nuclear recoils.
Crucially, new low-energy measurements may be able to
discern between the slow decrease predicted by the original
model and the sharp cutoff predicted in the present
work.

083509-6



ATOMIC LIMITS IN THE SEARCH FOR GALACTIC DARK ...

PHYSICAL REVIEW D 91, 083509 (2015)

ACKNOWLEDGMENTS

The author gratefully acknowledges support from the U.S. Department of Energy (DOE), Office of Science, Office of
High Energy Physics under Award No. DE-AC02-05CH11231. Discussions with Jeremy Mardon were particularly helpful,
as were suggestions from Harry Nelson, Dan McKinsey and Chris Savage.

[1] T. Lin, H.B. Yu, and K. M. Zurek, On symmetric and
asymmetric light dark matter, Phys. Rev. D 85, 063503
(2012).

[2] D. Hooper, N. Weiner, and W. Xue, Dark forces and light
dark matter, Phys. Rev. D 86, 056009 (2012).

[3] M. Pyle, D. A. Bauer, B. Cabrera, J. Hall, R. W. Schnee,
R.B. Thakur, and S. Yellin, Low-mass WIMP sensitivity
and statistical discrimination of electron and nuclear recoils
by varying Luke-Neganov phonon gain in semiconductor
detectors, J. Low Temp. Phys. 167, 1081 (2012).

[4] J. Angle et al. (XENONI10 Collaboration), A Search for
Light Dark Matter in XENON10 Data, Phys. Rev. Lett. 107,
051301 (2011); 110, 249901 (2013).

[5] R. Essig, J. Mardon, and T. Volansky, Direct detection of
sub-GeV dark matter, Phys. Rev. D 85, 076007 (2012).

[6] P.W. Graham, D.E. Kaplan, S. Rajendran, and M.T.
Walters, Semiconductor probes of light dark matter, Phys.
Dark Univ. 1, 32 (2012).

[7] J. Lindhard, V. Nielsen, M. Scharff, and P. V. Thomsen, Mat.
Fys. Medd. K. Dan. Vidensk. Selsk 33, 10 (1963).

[8] C.E. Aalseth et al. (CoGeNT Collaboration), CoGeNT: A
search for low-mass dark matter using p-type point contact
germanium detectors, Phys. Rev. D 88, 012002 (2013).

[9] R. Agnese et al. (SuperCDMS Collaboration), Search for
Low-Mass Weakly Interacting Massive Particles Using
Voltage-Assisted Calorimetric Ionization Detection in the
SuperCDMS Experiment, Phys. Rev. Lett. 112, 041302
(2014).

[10] J. Barreto et al. (DAMIC Collaboration), Direct search for
low-mass dark matter particles with CCDs, Phys. Lett. B
711, 264 (2012).

[11] P. Cushman, C. Galbiati, D. N. McKinsey, H. Robertson,
T.M.P. Tait, D. Bauer, A. Borgland, B. Cabrera et al.,
Snowmass CF1 summary: WIMP dark matter direct detec-
tion, arXiv:1310.8327.

[12] J. Lindhard, M. Scharff, and H. E. Schiott, Mat. Fys. Medd.
K. Dan. Vidensk. Selsk 33, 14 (1963).

[13] J. Lindhard, V. Nielsen, and M. Scharff, Mat. Fys. Medd. K.
Dan. Vidensk. Selsk 36, 10 (1968).

[14] W.D. Wilson, L. G. Haggmark, and J. P. Biersack, Calcu-
lations of nuclear stopping, ranges, and straggling in the
low-energy region, Phys. Rev. B 15, 2458 (1977).

[15] 1. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping
and Ranges of lons in Matter (Pergamon Press, New York,
1985), Vol. 1.

[16] D.J. Land, J. G. Brennan, D. G. Simons, and M. D. Brown,
Comparison of theoretical models for the electronic stop-
ping power of low-velocity heavy ions, Phys. Rev. A 16,
492 (1977).

[17] S.P. Mgller, A. Csete, T. Ichioka, H. Knudsen, U. Uggerhgj,
and H. Andersen, Antiproton Stopping at Low Energies:
Confirmation of Velocity-Proportional Stopping Power,
Phys. Rev. Lett. 88, 193201 (2002).

[18] P. Sigmund and A. Schinner, Velocity dependence of heavy-
ion stopping below the maximum, Nucl. Instrum. Methods
Phys. Res., Sect. B 342, 292 (2015).

[19] S.N. Markin, D. Primetzhofer, and P. Bauer, Vanishing
Electronic Energy Loss of Very Slow Light Ions in Insula-
tors with Large Band Gaps, Phys. Rev. Lett. 103, 113201
(2009).

[20] S.P. Ahlen and G. Tarlé, Can grand unification monopoles
be detected with plastic scintillators?, Phys. Rev. D 27, 688
(1983).

[21] J.I. Collar and D.N. McKinsey, Comments on “first
dark matter results from the XENONI100 experiment”,
arXiv:1005.0838.

[22] J.D. Lewin and P.F. Smith, Review of mathematics,
numerical factors, and corrections for dark matter experi-
ments based on elastic nuclear recoil, Astropart. Phys. 6, 87
(1996).

[23] K. W. Jones and H. W. Kraner, Energy lost to ionization by
254-eV 3Ge atoms stopping in Ge, Phys. Rev. A 11, 1347
(1975).

[24] P.S. Barbeau, J.I. Collar, and O. Tench, Large-mass ultra-
low noise germanium detectors: performance and applica-
tions in neutrino and astroparticle physics, J. Cosmol.
Astropart. Phys. 09 (2007) 009.

[25] Y. Messous et al., Calibration of a Ge crystal with nuclear
recoils for the development of a dark matter detector,
Astropart. Phys. 3, 361 (1995).

[26] T. Shutt et al., Measurement of Ionization and Phonon
Production by Nuclear Recoils in a 60 g Crystal of
Germanium at 25 mK, Phys. Rev. Lett. 69, 3425 (1992).

[27] D.J. Ficenec, S.P. Ahlen, A.A. Martin, J. A. Musser,
and G. Tarlé, Observation of electronic excitation by
extremely slow protons with applications to the detection
of supermassive charged particles, Phys. Rev. D 36, 311
(1987).

[28] D. Barker and D. M. Mei, Germanium detector response to
nuclear recoils in searching for dark matter, Astropart. Phys.
38, 1 (2012).

[29] A. Mangiarotti, M. I. Lopes, M. L. Benabderrahmane, V.
Chepel, A. Lindote, J. Pinto da Cunha, and P. Sona, A
survey of energy loss calculations for heavy ions between
1 keV and 100 keV, Nucl. Instrum. Methods Phys. Res.,
Sect. A 580, 114 (2007).

[30] F. Bezrukov, F. Kahlhoefer, M. Lindner, F. Kahlhoefer, and
M. Lindner, Interplay between scintillation and ionization in

083509-7


http://dx.doi.org/10.1103/PhysRevD.85.063503
http://dx.doi.org/10.1103/PhysRevD.85.063503
http://dx.doi.org/10.1103/PhysRevD.86.056009
http://dx.doi.org/10.1007/s10909-012-0583-x
http://dx.doi.org/10.1103/PhysRevLett.107.051301
http://dx.doi.org/10.1103/PhysRevLett.107.051301
http://dx.doi.org/10.1103/PhysRevLett.110.249901
http://dx.doi.org/10.1103/PhysRevD.85.076007
http://dx.doi.org/10.1016/j.dark.2012.09.001
http://dx.doi.org/10.1016/j.dark.2012.09.001
http://dx.doi.org/10.1103/PhysRevD.88.012002
http://dx.doi.org/10.1103/PhysRevLett.112.041302
http://dx.doi.org/10.1103/PhysRevLett.112.041302
http://dx.doi.org/10.1016/j.physletb.2012.04.006
http://dx.doi.org/10.1016/j.physletb.2012.04.006
http://arXiv.org/abs/1310.8327
http://dx.doi.org/10.1103/PhysRevB.15.2458
http://dx.doi.org/10.1103/PhysRevA.16.492
http://dx.doi.org/10.1103/PhysRevA.16.492
http://dx.doi.org/10.1103/PhysRevLett.88.193201
http://dx.doi.org/10.1016/j.nimb.2014.10.020
http://dx.doi.org/10.1016/j.nimb.2014.10.020
http://dx.doi.org/10.1103/PhysRevLett.103.113201
http://dx.doi.org/10.1103/PhysRevLett.103.113201
http://dx.doi.org/10.1103/PhysRevD.27.688
http://dx.doi.org/10.1103/PhysRevD.27.688
http://arXiv.org/abs/1005.0838
http://dx.doi.org/10.1016/S0927-6505(96)00047-3
http://dx.doi.org/10.1016/S0927-6505(96)00047-3
http://dx.doi.org/10.1103/PhysRevA.11.1347
http://dx.doi.org/10.1103/PhysRevA.11.1347
http://dx.doi.org/10.1088/1475-7516/2007/09/009
http://dx.doi.org/10.1088/1475-7516/2007/09/009
http://dx.doi.org/10.1016/0927-6505(95)00007-4
http://dx.doi.org/10.1103/PhysRevLett.69.3425
http://dx.doi.org/10.1103/PhysRevD.36.311
http://dx.doi.org/10.1103/PhysRevD.36.311
http://dx.doi.org/10.1016/j.astropartphys.2012.08.006
http://dx.doi.org/10.1016/j.astropartphys.2012.08.006
http://dx.doi.org/10.1016/j.nima.2007.05.048
http://dx.doi.org/10.1016/j.nima.2007.05.048

PETER SORENSEN

liquid xenon dark matter searches, Astropart. Phys. 35, 119
(2011).

[31] B. Cabrera, M. Pyle, R. Moffatt, K. Sundqvist, and B.
Sadoulet, Oblique propagation of electrons in crystals of
germanium and silicon at sub-Kelvin temperature in low
electric fields, arXiv:1004.1233.

[32] T. Doke, A. Hitachi, J. Kikuchi, K. Masuda, H. Okada, and
E. Shibamura, Absolute scintillation yields in liquid argon
and xenon for various particles , Jpn. J. Appl. Phys. 41, 1538
(2002).

[33] T. Shutt, A. Bolozdynya, P. Brusov, C.E. Dahl, and J.
Kwong, Performance and fundamental processes at low
energy in a two-phase liquid xenon dark matter detector,
Nucl. Phys. B, Proc. Suppl. 173, 160 (2007).

[34] A. Manzur, A. Curioni, L. Kastens, D. N. McKinsey, K. Ni,
and T. Wongjirad, Scintillation efficiency and ionization
yield of liquid xenon for monoenergetic nuclear recoils
down to 4 keV, Phys. Rev. C 81, 025808 (2010).

[35] P. Sorensen and C. E. Dahl, Nuclear recoil energy scale in
liquid xenon with application to the direct detection of dark
matter, Phys. Rev. D 83, 063501 (2011).

[36] P. Zecher, D. Wang, J. Rapaport, C.J. Martoff, and B. A.
Young, Energy deposition of energetic silicon atoms within
a silicon lattice, Phys. Rev. A 41, 4058 (1990).

[37] B. L. Dougherty, Measurements of ionization produced in
silicon crystals by low-energy silicon atoms, Phys. Rev. A
45, 2104 (1992).

PHYSICAL REVIEW D 91, 083509 (2015)

[38] H. Cao et al. (SCENE Collaboration), Measurement of
scintillation and ionization yield and scintillation pulse
shape from nuclear recoils in liquid argon, arXiv:
1406.4825.

[39] A. Hitachi, Properties of liquid xenon scintillation for dark
matter searches, Astropart. Phys. 24, 247 (2005).

[40] D.-M. Mei, Z.-B. Yin, L. C. Stonehill, and A. Hime, A
model of nuclear recoil scintillation efficiency in noble
liquids, Astropart. Phys. 30, 12 (2008).

[41] S. Yellin, Finding an upper limit in the presence of
an unknown background, Phys. Rev. D 66, 032005
(2002).

[42] J. Billard, L. Strigari, and E. Figueroa-Feliciano, Implica-
tion of neutrino backgrounds on the reach of next generation
dark matter direct detection experiments, Phys. Rev. D 89,
023524 (2014).

[43] R. Agnese et al. (CDMS Collaboration), Silicon Detector
Dark Matter Results from the Final Exposure of CDMS 11,
Phys. Rev. Lett. 111, 251301 (2013).

[44] T.H. Joshi, S. Sangiorgio, A. Bernstein, M. Foxe, C.
Hagmann, I. Jovanovic, K. Kazkaz, V. Mozin et al., First
Measurement of the Ionization Yield of Nuclear Recoils in
Liquid Argon, Phys. Rev. Lett. 112, 171303 (2014).

[45] D. S. Akerib et al. (LUX Collaboration), First Results from
the LUX Dark Matter Experiment at the Sanford Under-
ground Research Facility, Phys. Rev. Lett. 112, 091303
(2014).

083509-8


http://dx.doi.org/10.1016/j.astropartphys.2011.06.008
http://dx.doi.org/10.1016/j.astropartphys.2011.06.008
http://arXiv.org/abs/1004.1233
http://dx.doi.org/10.1143/JJAP.41.1538
http://dx.doi.org/10.1143/JJAP.41.1538
http://dx.doi.org/10.1016/j.nuclphysbps.2007.08.140
http://dx.doi.org/10.1103/PhysRevC.81.025808
http://dx.doi.org/10.1103/PhysRevD.83.063501
http://dx.doi.org/10.1103/PhysRevA.41.4058
http://dx.doi.org/10.1103/PhysRevA.45.2104
http://dx.doi.org/10.1103/PhysRevA.45.2104
http://arXiv.org/abs/1406.4825
http://arXiv.org/abs/1406.4825
http://dx.doi.org/10.1016/j.astropartphys.2005.07.002
http://dx.doi.org/10.1016/j.astropartphys.2008.06.001
http://dx.doi.org/10.1103/PhysRevD.66.032005
http://dx.doi.org/10.1103/PhysRevD.66.032005
http://dx.doi.org/10.1103/PhysRevD.89.023524
http://dx.doi.org/10.1103/PhysRevD.89.023524
http://dx.doi.org/10.1103/PhysRevLett.111.251301
http://dx.doi.org/10.1103/PhysRevLett.112.171303
http://dx.doi.org/10.1103/PhysRevLett.112.091303
http://dx.doi.org/10.1103/PhysRevLett.112.091303

