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We consider spherically symmetric inhomogeneous pressure Stephani universes, with the center of
symmetry being our location. The main feature of these models is that comoving observers do not follow
geodesics. In particular, comoving perfect fluids necessarily have a radially dependent pressure. We
consider a subclass of these models characterized by some inhomogeneity parameter β. We show also that
the velocity of sound of comoving perfect fluids, like the (effective) equation of state parameter, acquires
away from the origin a time- and radial-dependent change proportional to β. In order to produce a realistic
universe accelerating at late times without a dark energy component, one must take β < 0. The redshift
acquires a modified dependence on the scale factor aðtÞ with a relative modification of −9%, peaking at
z ∼ 4 and vanishing at the big bang and today on our past light cone. The equation of state parameter and
the speed of sound of dustlike matter (corresponding to a vanishing pressure at the center of symmetry
r ¼ 0) behave in a similar way, and away from the center of symmetry they become negative—a property
usually encountered in the dark energy component only. In order to mimic the observed late-time
accelerated expansion, the matter component must significantly depart from standard dust, presumably
ruling this subclass of Stephani models out as a realistic cosmology. The only way to accept these models is
to keep all standard matter components of the universe, including dark energy, and take an inhomogeneity
parameter β that is sufficiently small.
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I. INTRODUCTION

One way to solve the dark energy problem [1] is to
consider nonuniform models of the Universe that could
explain the acceleration as only due to inhomogeneity
[2,3]. There is a suggestion that we live in a spherically
symmetric void of density described by the Lemaître-
Tolman-Bondi (LTB) concentric dust spheres model [4].
The simplest inhomogeneous cosmological models are
spherically symmetric; of these, category LTB models
are complementary to Stephani models [5–7]. The former
have inhomogeneous density ϱðt; rÞ (variable density dust
shells) while the latter have inhomogeneous pressure
pðt; rÞ (variable pressure shells).
In view of the increase of investigations into LTB models

as nearly the only example of an inhomogeneous cosmology,
we think that it is useful to fully consider a theoretical basis
for and the observational validity of the complementary

Stephani universes. The number of papers about these
models is small in comparison to those about LTB models.
In this paper we would like to fill in this gap slightly. One of
the benefits of Stephani cosmology is that it possesses a
totally spacetime-inhomogeneous generalization [5,6],
which is not the case for LTB models; an example is the
Barnes models [8], which belong to the same class of shear-
free, irrotational, expanding (or collapsing) perfect fluid
models as the Stephani models (the so-called Stephani-
Barnes family). This property is of course a good step
towards developing more models of such a type—i.e., the
universes that describe real inhomogeneity of space (for a
review see, e.g., Refs. [9,10]), not only those that possess a
rather unrealistic center of the Universe (something which is
against the Copernican principle). This challenge requires
the proper comparison of very general inhomogeneous
models with data; this was first done for Stephani models
in Ref. [11] and for LTB models in Ref. [12].
In general, there are a lot of inhomogeneous models that

are exact solutions of the Einstein field equations and not
just the perturbations of the isotropic and homogeneous
Friedmann cosmology. Curiously, observations are, practi-
cally, made from just one point in the Universe (apart from
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the redshift drift [13,14]) and extend only onto the unique
past light cone of the observer placed on the Earth. Even
the cosmic microwave background (CMB) radiation is
observed from one point, so that its observations prove
isotropy of the Universe, but not necessarily its homo-
geneity [15]. As suggested in Ref. [16], one should start
with model-independent observations of the past light
cone and then make conclusions related to geometry of
the Universe, though it is difficult to differentiate between
an inhomogeneous model of the Universe with the
same number of parameters as a homogeneous dark energy
model when both fit observations.
In Ref. [17] it has been shown that pressure inhomoge-

neity can mimic dark energy in the sense that they produce
the same redshift-magnitude relation. The assumption was
that inhomogeneity has dominated the Universe starting
quite recently, so it influenced only slightly the Doppler
peaks and did not influence big bang nucleosynthesis at all.
This assumption was in agreement with the “definition 1” of
the last scattering surface in Ref. [18], according to which
the homogeneous and isotropic radiation field on this
surface was assumed [in our prospective notation this will
be equivalent to the statement that the function Vðt; rÞ → 1
at t → 0]. Such a property is due to conformal flatness,
which does not have any effect on photon paths; this was
also recently discussed in Ref. [19]. In the context of
inhomogeneous pressure, some generalized Ehlers-Geren-
Sachs (EGS) theorems were discussed in Ref. [20], which
said that an exactly isotropic radiation field for every
fundamental observer was possible even when there was
an acceleration of the observers—when it vanished, though,
the models became Friedmann. In other words, and accord-
ing to this generalized theorem, the high degree of
isotropy of the Universe (isotropic radiation field) plus the
Copernican principle did not force it to be homogeneous.
In fact, in Ref. [18], a different set of Stephani models

was studied and discussed in the context of cosmic
microwave background data. This set was actually defined
by Dąbrowski in Ref. [6] by the formulas (43) and (44)
(the scale factor and the curvature function) as well as by
the formulas (57a) and (57b) (the mass density and the
pressure). A subclass of these models was then dubbed
model I in Ref. [7]; because of the choice of the quantity
Δ ¼ 0, they offered less freedom in the choice of param-
eters. A common feature of these two types of models (both
with Δ ¼ 0 and Δ ≠ 0) was that they had a fixed cosmic-
string-like equation of state (EoS) p ¼ −ð1=3Þϱ at the
center of symmetry. In fact, Ref. [17] used a version of
model II of Ref. [7]—the one that allowed the barotropic
equation of state at the center of symmetry (Stephani
models in general do not have this property), which is
more restrictive. Quite a large generality of the model I
(with Δ ≠ 0) studied in Ref. [18] facilitate the claim that
they can fit the data despite the fact that they were
significantly inhomogeneous. In Ref. [21] which we will

hereinafter call Paper 1, the effect of redshift drift for the
Stephani model II has been studied. The similarities and
differences between standard ΛCDM, LTB, and Stephani
models which can be tested by the future astronomical data
were clearly presented. In Ref. [22], model I withΔ ¼ 0, as
well as model II with a barotropic equation of state at the
center of symmetry, were tested by Union2 supernovae data
for an off-center (i.e., noncentrally placed) observer, and
the maximum location of the center with respect to the
observer was evaluated in each model.
In this paper, and especially in its observational section

where we use the Union2 data, we restrict ourselves to
the centrally placed observers and only discuss model II
with a barotropic equation of state at the center of
symmetry. In Sec. II we present the properties of inhomo-
geneous pressure Stephani models. In Sec. III we present in
detail the particular model we will study, emphasizing
analogies and important differences with standard cosmo-
logical models. In Sec. IV we derive expressions for
standard quantities used in order to constrain our model.
Section IV E is devoted to the comparison of our particular
Stephani universe with observational data. Finally, in
Sec. V, we summarize our results and give our conclusion.

II. INHOMOGENEOUS PRESSURE COSMOLOGY

In Paper 1 [21] we presented the basic properties of the
inhomogeneous pressure Stephani universes; here, we give
only their most important characteristics. Mathematically,
they are the only spherically symmetric solutions of
Einstein equations for a perfect-fluid energy-momentum
tensor Tab ¼ ðϱc2 þ pÞuaub þ pgab (ϱ is the mass density,
p is the pressure, gab is the metric tensor, ua is the four-
velocity vector, c is the velocity of light) that are con-
formally flat and can be embedded in a five-dimensional
flat pseudo-Euclidean space [5,6]. A general model has no
spacetime symmetries at all, but in this paper we consider
only spherically symmetric Stephani models for which the
metric reads as

ds2 ¼ −
a2

_a2

�ðVaÞ·
ðVaÞ

�
2

c2dt2 þ a2

V2
ðdr2 þ r2dΩ2Þ; ð2:1Þ

where

Vðt; rÞ ¼ 1þ 1

4
kðtÞr2; ð2:2Þ

and ð…Þ· ≡ ∂=∂t. Here aðtÞ is a generalized scale factor, r
is the radial coordinate, dΩ is the metric on the sphere, and
kðtÞ is a time-dependent curvature index which allows the
universe to “open up” to become negatively curved or
“close down” to become positively curved.
The mass density and the pressure for a comoving

perfect fluid are given by
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ϱðtÞ ¼ 3

8πG

�
_a2ðtÞ
a2ðtÞ þ

kðtÞc2
a2ðtÞ

�
; ð2:3Þ

pðt; rÞ ¼

2
64−1þ 1

3

_ϱðtÞ
ϱðtÞ

h
Vðt;rÞ
aðtÞ

i
h
Vðt;rÞ
aðtÞ

i
·

3
75ϱðtÞc2 ≡ weðt; rÞϱðtÞc2;

ð2:4Þ
where G is the gravitational constant and weðt; rÞ is an
effective spatially dependent barotropic index. Of course,
one can have more than one (comoving) perfect fluid, as
is the case in a realistic cosmology. We will address a
particular class of these models in great detail in Sec. III
and will show the analogy and fundamental differences
with standard Friedmann universes. In fact, Stephani
models admit standard big bang singularities (a → 0,
ϱ → ∞, p → ∞) and finite density singularities of pressure
[6,23] that resemble sudden future singularities [24,25]
of Friedmann cosmology. In LTB models there exist
“shell-crossing” singularities [26] that are of a weak type
in the sense of Tipler and Królak [27] and are similar to
Friedmannian generalized sudden future singularities [28],
which do not lead to geodesic incompleteness [29,30].
For further discussion it is useful to mention that the

components of the four-velocity and the four-acceleration
vectors are [7]

ut ¼ −
c
V
; _ur ¼ −c

V;r

V
; ð2:5Þ

and the acceleration scalar reads as

_u≡ ð _ua _uaÞ12 ¼
V;r

a
: ð2:6Þ

Tangent to a null geodesic vector components are [7]

kt ¼V2

a
; kr ¼�V2

a2

ffiffiffiffiffiffiffiffiffiffiffiffi
1−

h2

r2

r
; kθ ¼ 0; kϕ¼ h

V2

a2r2
;

ð2:7Þ
where h ¼ const; the plus sign applies to a ray moving
away from the center of symmetry, and the minus sign
applies to a ray moving towards the center. The constant h
and the angle ϕ between the direction of observation and
the direction defined by the observer and the center of
symmetry are related by

cosϕ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

h2

r2

r
: ð2:8Þ

The angle ϕ should be taken into account when one
considers off-center observers [7,22].
In Ref. [6] two classes of exact spherically symmetric

Stephani models were found:
(i) model I, which fulfills the condition ðV=aÞ·· ¼ 0,
(ii) model II, which fulfills the condition ðk=aÞ· ¼ 0.

A subclass of model I [6] (not the one used in Ref. [18] or in
Refs. [7,11]) is given by

aðtÞ ¼ 1

γtþ δ
; kðtÞ ¼ αtþ σ

γtþ δ
; ð2:9Þ

with the units of the constants given by: ½α� ¼ Mpc s−1,
½σ� ¼ Mpc, ½γ� ¼ Mpc−1 s−1, and ½δ� ¼ Mpc−1. The metric
(2.1) takes the form

ds2 ¼ a2

V2

�
−
�
a
_a

�
2
�
γ þ α

4
r2
�

2

c2dt2 þ dr2 þ r2dΩ2

�
:

ð2:10Þ
Using (2.3) and (2.4) one has for this model

ϱðtÞ ¼ 3

8πG

�
γ2

ðγtþ δÞ2 þ c2ðαtþ σÞðγtþ δÞ
�
;

pðt; rÞ ¼ 3c2

8πG

�
ϱðtÞ þ 1

3

ðγtþ δÞ þ 1
4
ðαtþ σÞr2

γ þ α
4
r2

×
�
−

2γ3

ðγtþ δÞ3 þ c2αðγtþ δÞ þ c2γðαtþ σÞ
��

:

ð2:11Þ
The simplest subcase of (2.9) is when σ ¼ δ ¼ 0, since we
obtain a Friedmann universe with

aðtÞ ¼ 1

γ
t−1; kðtÞ ¼ α

γ
¼ const ¼ αaðtÞt: ð2:12Þ

This is a phantom-dominated model with w ¼ −5=3 [31]
(which has an interesting null geodesic completeness
feature [32]). In the limit t → 0 one has a big rip singularity
with a → ∞, ϱ → ∞, and p → ∞, while in the limit t → ∞
one has a → 0, ϱ → ∞, and p → ∞ (though it also
depends on the radial coordinate r). If σ ≠ 0 and δ ≠ 0,
then we have the limits as follows: (a) t → 0, a → 1=δ,
k → σ=δ, ϱ → const, and

p→
3c2

8πG

�
γ2

δ2
þ c2σδþ 1

3

�
−
2γ3

δ3
þ c2ðαδþ γσÞ

�
δþ σ

4
r2

γþ α
4
r2

�
;

ð2:13Þ

and (b) t → ∞, a → 0, k → α=γ, ϱ → ∞, p → ∞, and
the singularities of pressure appear for ∣r∣ ¼ 2

ffiffiffiffiffiffiffiffi
γ=α

p
.

The expansion of the curvature function kðtÞ for small
t → 0 gives

kðtÞ ≈ σ

δ
−
�
α

δ
þ σγ

δ2

�
tþOðt2Þ: ð2:14Þ

On the other hand, for large t ≫ δ=γ one has the expansion

kðtÞ ≈ α

γ
þ
�
σ

γ
−
α

γ

�
1

t
þOð1=t2Þ: ð2:15Þ
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III. MODEL II

We will consider in detail a subclass of model II and
constrain its parameters with observations. For these
models, the factor in front of dt2 in the metric (2.1) reduces
to −1=V2; hence, the line element reads [6,7]

ds2 ¼ −
1

V2
dt2 þ a2

V2
ðdr2 þ r2dΩ2Þ: ð3:1Þ

We see that this model is conformally related to a flat
Friedmann-Lemaître-Robertson-Walker (FLRW) model. A
subclass of model II with

kðtÞ ¼ βaðtÞ ð3:2Þ
(β ¼ const with units ½β� ¼ Mpc−1) was found in Ref. [33].
We will consider models (3.2) here in more detail and
constrain them with observations.
Let us recast first the basic equations (2.3), (2.4) in a

more familiar form, setting here and below c ¼ 1,

H2ðtÞ ¼ 8πG
3

ϱðtÞ − kðtÞ
a2ðtÞ ¼

8πG
3

ϱðtÞ − β

aðtÞ ð3:3Þ

_ϱðtÞVðt; rÞ ¼ −3HðtÞ½ϱðtÞ þ pðt; rÞ�: ð3:4Þ

These two equations define completely the background
evolution of this cosmological universe. Of course, we can
set an arbitrary number of comoving perfect fluids, each
of them separately satisfying Eq. (3.4). In (3.3) and (3.4),
we have used (3.2), and we have adopted the standard
notation H ≡ _a=a.
It is clear from (2.3) or (3.3) that ϱ depends only on time

and has no spatial dependence. On the other hand, it is
seen that the appearance of Vðr; tÞ modifies the standard
energy conservation equation. This forces the pressure p to
depend on the coordinate r. We will return to this crucial
point below.
Another important point is that it is sufficient to find the

time evolution of ϱ at the center of symmetry r ¼ 0 where
Vðr ¼ 0; tÞ ¼ 1, as this evolution does not depend on r.
When V ¼ 1 everywhere, our model reduces to the usual
FLRW model. However, for our model (3.2) this is not
the case, but we have Vðr ¼ 0; tÞ ¼ 1. In particular, this
implies that the evolution of ϱðtÞ can be derived in
r ¼ 0 from (3.4) using the standard conservation equation.
Similar to Ref. [33], let us assume that at the center of

symmetry the standard barotropic EoS pðtÞ ¼ wϱðtÞ holds
with a time-independent w ¼ const This assumption gives

8πG
3

ϱ ¼ A2

a3ð1þwÞ ; ð3:5Þ

where

A2 ¼ 8πG
3

ϱ0a
3ð1þwÞ
0 ; ð3:6Þ

so that (3.3) becomes

H2 ¼ A2

a3ð1þwÞ −
β

a
ð3:7Þ

¼ 8πG
3

�
ϱ0

�
a0
a

�
3ð1þwÞ

þ ϱβ;0
a0
a

�
: ð3:8Þ

Here we consider a model with only one comoving perfect
fluid at low redshift. We can have more of them, even at low
redshift, as they are certainly needed at higher redshift in
a realistic universe. In Eq. (3.8) one should keep in mind
that the comoving perfect fluid should correspond in good
approximation to dustlike matter in conventional FLRW
universes.
We adopt here the conventional notation for quantities

defined today. In fact, this universe reduces completely to
the standard FLRW universe at the center of spherical
symmetry r ¼ 0 if we identify the last term of (3.3) or (3.7)
for a comoving perfect fluid with wβ ¼ −2=3 (analogous to
domain walls [34]) and a trivial redefinition of its energy
density ϱβ

8πG
3

ϱβ ¼ −
β

a
: ð3:9Þ

In particular, we have

β ¼ −
8πG
3

ϱβ;0a0: ð3:10Þ

The acceleration of the (generalized) scale factor aðtÞ
satisfies the equation

ä
a
¼ −

4πG
3

½ð1þ 3wÞϱ − ϱβ� ð3:11Þ

¼ −
4πG
3

ð1þ 3wÞϱ − β

2a
; ð3:12Þ

which is trivially generalized when more comoving perfect
fluids (e.g., radiation) are taken into account. It is obvious
that β must be negative if we want (3.9) to make sense. Of
course one can also consider universes with positive values
of β. In that case, however, this model cannot serve as an
alternative to conventional dark energy models, though
such models were studied [35]. Note that in this analogy, in
sharp contrast to genuine comoving perfect fluids, the
equation of state parameter wβ is the same everywhere, i.e.,
for all r. We stress further that the expression for the
redshift z as a function of the generalized scale factor aðtÞ
differs from the conventional one, as we will see in Sec. IV.
Hence, the constraints on equations of state coming from
luminosity distance dLðzÞ get more complicated than in
standard universes, as we will also see explicitly in the next
section.
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However, for genuine perfect fluids, the effective equa-
tion of state parameter weðr; tÞ defined everywhere reads

weðr; tÞ ¼
�
wþ β

4
ð1þ wÞaðtÞr2

�
ð3:13Þ

with

pðr; tÞ ¼ weðr; tÞϱðtÞ: ð3:14Þ
Hence, weðr; tÞ is both time and space dependent, and we
have, in particular, weðr ¼ 0Þ ¼ w.
In fact, the radial dependence of weðr; tÞ is due to the

radial dependence of the fluid pressure, while at the same
time the fluid energy density is homogeneous with no
spatial dependence at all. The physical reason behind this
dependence is the following: a comoving observer does not
follow a geodesic. Indeed, a geodesic observer will have a
four-velocity with a nonvanishing radial component; it will
move in the radial direction in addition to its movement due
to the expansion. In other words, for an observer to be
comoving, one needs some extra radial force acting on
him. Analogously, for a perfect fluid to be comoving, one
requires some extra radial force which is provided here by
the pressure gradient due to the radial dependence of the
fluid pressure. Of course, this has implications, which we
will address below.
However, let us first return to the equation of state

defined at r ¼ 0. There is no reason why the equation of
state parameter w should be constant; we will relax this
assumption and allow for an arbitrarily time-evolving
equation of state parameter wðtÞ or wðaÞ. Of course we
still have in full generality

wðaÞ ¼ weðr ¼ 0; aÞ: ð3:15Þ
Because the time evolution of ϱðtÞ can be found at r ¼ 0,
the standard result holds that

ϱðaÞ ¼ ϱ0 exp

�
−3

Z
a

a0

da0
1þ wða0Þ

a0

�
≡ ϱ0fðaÞ: ð3:16Þ

We have in particular fða0Þ ¼ 1. Similar to the Friedmann
models, one can define the critical density as ϱcr ¼
ð3H2Þ=ð8πGÞ and the density parameter Ω ¼ ϱ=ϱcr. We
then have, from (3.3),

ϱ

ϱcr
−

β

aH2
≡Ωþ Ωβ ¼ 1; ð3:17Þ

which is valid at all times; in particular today (at t ¼ t0),
Ω0 þ Ωβ;0 ¼ 1, with (explicitly setting here the speed
of light c)

Ωβ ≡ −
βc2

aH2
; ð3:18Þ

β ¼ a0H2
0c

−2ðΩ0 − 1Þ < 0: ð3:19Þ

In terms of the scale factor a we have

H2ðaÞ ¼ H2
0

�
Ω0fðaÞ þΩβ;0

a0
a

�
: ð3:20Þ

As we already emphasized several times, in a realistic
cosmology one will have to introduce at least one more
perfect fluid, namely, radiation. In that case the previous
equations above are trivially generalized as follows:

ϱ

ϱcr
þ ϱrad

ϱcr
−

βc2

aH2
≡Ωþ Ωrad þ Ωβ ¼ 1; ð3:21Þ

and in particular today, Ω0 þ Ωrad;0 þ Ωβ;0 ¼ 1,

H2ðaÞ ¼ H2
0

�
Ω0fðaÞ þ Ωrad;0

�
a0
a

�
4

þΩβ;0
a0
a

�
; ð3:22Þ

and finally

β ¼ a0H2
0c

−2ðΩ0 þΩrad;0 − 1Þ < 0: ð3:23Þ
One may wonder why we do not append any suffix to the
first term, as we do with the radiation term. This is because
the first term will not behave as dustlike matter, not even at
r ¼ 0; however, the radiation component does (by choice)
at r ¼ 0, with

we;radðr; tÞ ¼
�
wrad þ

β

4
ð1þ wradÞar2

�
ð3:24Þ

¼ 1

3
½1þ βar2�: ð3:25Þ

and

pradðr; tÞ ¼ we;radðr; tÞϱradðtÞ: ð3:26Þ
As for any comoving perfect fluid, we;radðr; tÞ is both time
and space dependent and we have, in particular,

we;radðr ¼ 0Þ ¼ wrad ¼
1

3
: ð3:27Þ

The standard behavior for radiation holds at r ¼ 0.
As we have mentioned above, comoving observers do

not follow geodesics; the four-velocity of geodesic observ-
ers will have a nonvanishing radial component. For this
reason, the three-momentum j ~pj of a free particle will not
evolve like ∝ V=a. This can have important consequences
for the thermal history of our Universe, e.g., the distribution
function of relics. Clearly, all these effects should remain
rather small for an acceptable cosmology.
There is another very interesting point. For perfect

fluids with a barotropic equation of state of the type
pðr; tÞ ¼ weðr; tÞϱðtÞ, it is straightforward to compute
the corresponding velocity of sound cS (see Fig. 1).
Specializing to our model with kðtÞ ¼ βaðtÞ, the following
result is obtained:
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c2Sðr;aÞ ¼wþ β

4
ð1þwÞar2

−
a

3ð1þwÞ
�
dw
da

þ d
da

�
β

4
ð1þwÞar2

��
; ð3:28Þ

where w is the equation of state parameter at r ¼ 0. This
expression simplifies when w has no time dependence, viz.,

c2Sðr; aÞ ¼ wþ
�
wþ 2

3

�
β

4
ar2

¼ c2Sðr ¼ 0Þ þ
�
c2Sðr ¼ 0Þ þ 2

3

�
β

4
ar2: ð3:29Þ

For a perfect fluid behaving like radiation today at r ¼ 0,
we obtain

c2S;radðr; aÞ ¼
1

3
þ β

4
ar2; ð3:30Þ

and for a perfect fluid behaving like dustlike matter today at
r ¼ 0, we get

c2S;mðr; aÞ ¼
β

6
ar2: ð3:31Þ

We see first that the velocity of sound, even for constant w,
develops both radial and time dependence. Second, for dust
[wðr ¼ 0Þ ¼ 0], if the parameter β is negative, not only the
pressure but also the velocity of sound squared will become
negative for ar2 ≠ 0. Such a situation is encountered
already in standard cosmology for a dark energy compo-
nent with constant negative w, but here we face this
conceptual problem even for dust. The departure from
the standard velocity of sound resulting from (3.31) must
be addressed when considering the formation of structure.
Of course, these problems could be addressed in the same
way as for dark energy clustering.
The departure coming from (3.30) and (3.31) could

further affect the CMB sound horizon and acoustic oscil-
lations, but we will show that this effect is extremely small.
Clearly, all these effects may be acceptable for sufficiently
small β.
Finally, it is interesting to note that, very generally,

for any perfect fluid with constant w, the same standard
velocity of sound is obtained both at r ¼ 0 and at the time
of the big bang a ¼ 0.
It is seen from (3.29) that the departure Δc2S from the

standard sound velocity for a barotropic perfect fluid with
constant w is proportional to (explicitly setting c again)

Δc2Sðr; aÞ ∝ βar2c2 ∝ −Ωβ;0
a
a0

H2
0ða0rÞ2: ð3:32Þ

As expected, the quantity H0a0r has units of velocity and
can be conveniently estimated from

H0a0r ¼ 100h
a0r
Mpc

km=s; ð3:33Þ

with h≡H0=ð100 km=s=MpcÞ. A rough estimate of (3.32)
using (3.33) indicates that (3.32) does not become too large
in observational data.
In fact, this quantity can be accurately computed on our

past light cone for given cosmological parameters. Indeed,
extending the results of [6,17,33] when we have a compo-
nent with a time-dependent equation of state parameter
wðr ¼ 0Þ ¼ wðaÞ, and taking further into account a radi-
ation component, we have for a light ray reaching us
(r ¼ 0) today

rðxÞ ¼ c
H0a0

IðxÞ; ð3:34Þ

where

x≡a=a0; IðxÞ≡
Z

1

x

dx0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω0fðx0Þx04þΩrad;0þΩβ;0x03

q :

ð3:35Þ

The quantity 1
4
βar2 computed on our past light cone is

shown as a function of x≡ a=a0 on Fig. 2; we see that it
has a minimal value of about 9% at z ∼ 4. As expected it
vanishes both at the big bang and today. It is even very
small in the primordial era of the Universe as well as at
late times.
A few words about the redshift in such universes will be

added in detail in the next section. We will show that it is a
modified function of x [see (4.1)], viz.,

1þ z ¼ x−1
�
1þ 1

4
βar2ðxÞ

�
ð3:36Þ

¼ x−1 −
Ωβ;0

4
I2ðxÞ; ð3:37Þ
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FIG. 1 (color online). The speeds of sound c2Sðr ¼ 0; aÞ
(blue dashed curve) and c2Sðr; aÞ (black curve) are shown,
corresponding to the barotropic index wðr ¼ 0Þ ¼ wðaÞ [see
Eq. (4.27)] shown in Fig. 5. While c2Sðr ¼ 0; aÞ differs from
wðaÞ in the region where wðaÞ changes rapidly, c2Sðr; aÞ also
includes the effect of the pressure gradient away from the
origin.
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hence,

1þ zðxÞ − a0
a

a0
a

¼ 1

4
βar2ðxÞ ð3:38Þ

¼ −
Ωβ;0

4
xI2ðxÞ: ð3:39Þ

So we have an elegant result that the quantity 1
4
βar2

(times c2) gives the order of magnitude of the change
on our past light cone in the velocity of sound, in the
equation of state parameter of comoving perfect fluids, in
the modification of the metric (through the function V)
compared to a flat Robertson-Walker metric, and, finally,
the relative change of the redshift zðxÞ as a function of x.
We can conclude from the discussion above that the
differences in the standard dependence of the redshift on
x remain rather small, though not negligible (see Fig. 2).
It is quite clear from the results of this section that this

inhomogeneous universe cannot serve as an alternative to
the dark energy model. Indeed, the crucial problem is that
the β-dependent term behaves like a perfect fluid with an
equation of state parameter equal to − 2

3
. This last property

is quite a general property of model II as defined in Ref. [6],
which comes from the condition ðk=aÞ· ¼ 0. It is worth
emphasizing that model I of this reference used in Ref. [18]
in general does not have such a property [see their Eq. (6),
which allows this property only if Δ ¼ 0]. Instead, they
have in general a nonbarotropic equation of state which, at
the center of symmetry, reduces to a barotropic one that
describes a network of cosmic strings with an equation of
state parameter equal to − 1

3
[6]. In order to comply with the

data, the “matter” component will be forced to behave very
differently from standard dust already at the background
level. It is nevertheless interesting to study how close this
universe can be to a viable universe. In that case we must
obviously have β < 0 and Ωβ;0 ∼ 1. The effects discussed
in this section are small enough at very high redshifts so
that CMB cosmological constraints can be “translated” in
good approximation to our model in a self-consistent
approach. Doing this analysis will give us an opportunity
to derive the expressions for the redshift, the luminosity,
and the angular diameter distance in the Stephani models
under study. We emphasize that it is the radial dependence
of g00, specific to Stephani models, which affects sound
velocities, the redshift as well as cosmic distances.

IV. OBSERVATIONAL CONSTRAINTS

We should first consider the redshift—a crucial theoreti-
cal and observational quantity. We proceed as in Friedmann
cosmology, and consider an observer located at r ¼ r0 ¼ 0
at coordinate time t ¼ t0. The observer receives a light ray
emitted by a comoving source at r ¼ re at coordinate time
t ¼ te, and the redshift reads as [7,36]

1þ z¼ ðuakaÞe
ðuakaÞo

¼
Vðte;reÞ
aðteÞ

Vðt0;r0Þ
aðt0Þ

¼ aðt0Þ
aðteÞ

Vðte;reÞ≡a0
ae

Ve; ð4:1Þ

where we have used

uaka ¼ −
1þ 1

4
kðtÞr2

aðtÞ ¼ −
V
a
; ð4:2Þ

obtained from (2.5) and (2.7). At this stagewe emphasize the
following very important point. When observational data
are given in terms of redshift, what is meant by redshift is
the ratio between the observed wavelength λ0 at time t0 (at
r ¼ 0) and the wavelength λe at emission time te for light
emitted by a comoving source, i.e., λ0=λe ¼ 1þ z.
If we want to use the observational data, we have to

make sure that the redshift defined in (4.1) retains this
physical meaning. While in standard cosmology we have
λ0=λe ¼ a0=ae, in our model we have

λ0
λe

¼ a0
ae

Ve; ð4:3Þ

which indeed corresponds to the expression for 1þ z
defined in (4.1). We stress once more that this is true for
light emitted by comoving sources. This brings us to the
following interesting question. While the comoving fluid is
comoving due to a radial-dependent pressure, if matter
clusters in the course of expansion it is not clear that
clustered objects remain comoving. As we have mentioned
in Sec. III, a test particle following a geodesic will not be
comoving. This is clearly a very hard problem to solve and
is beyond the scope of this work. We can only assume that
the departure from a comoving movement is small enough
that we can use compact objects like supernovae type Ia
(SNIa) as comoving objects and check that this is self-
consistent with the obtained best-fit models.

A. Luminosity distance

The luminosity distance versus redshift relation reads
[17,33]

dL ¼ ð1þ zÞa0r; ð4:4Þ
and the distance modulus is

μðzÞ ¼ 5log10dLðzÞ þ 25: ð4:5Þ
Interestingly, the angular diameter distance dA and the
luninosity distance dL are related to each other in our
Stephani universe (3.1) exactly as inFriedmannuniverse, viz.,

dA ¼ ae
Ve

re ¼ ð1þ zÞ−2dL: ð4:6Þ

Hence, the relation between both distances does not allow
to discriminate between our model and the standard
FLRW model.
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Using the definition of redshift (4.1), and using (3.34),
one can write the redshift along null geodesics as the
function of x [17] as

zðxÞ¼ 1

x
−1−

Ωβ;0

4

�Z
1

x

dx0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω0fðx0Þx04þΩrad;0þΩβ;0x03

q �
2

:

ð4:7Þ

Inverting this function numerically gives xðzÞ. Hence, the
luminosity distance (4.4) reads

dLðxÞ ¼ c
2ð1þ zðxÞÞ

H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=x − ½1þ zðxÞ�

Ωβ;0

s
: ð4:8Þ

Combining Eqs. (4.7) and (4.8), one can obtain numerically
the function dLðzÞ to be compared with observational data,

dLðzÞ ¼ c
2ð1þ zÞ

H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−1ðzÞ − ð1þ zÞ

Ωβ;0

s
: ð4:9Þ

B. Redshift drift

The SNIa data have a large degeneracy in the ðw;Ω0Þ
plane which can be broken using cluster data. In our case,
however, due to the nonstandard behavior of “matter,” we
prefer to use other data. In view of Fig. 2, which shows
maximal deviation around redshifts z ∼ 4, it is interesting to
use probes in this redshift range. Such probes do not exist at
the present time, though they are expected in the future
(see, e.g., [37]). Here, we choose to use the redshift drift
and the corresponding expected data. The idea of redshift
drift test is to collect data from the two light cones separated
by 10 to 20 years, in order to look for the change in redshift
of a source as a function of time; this was first noticed by
Sandage [13] and later explored by Loeb [14].
Contemporary techniques will allow us to detect this tiny

effect using planned telescopes such as the European
Extremely Large Telescope [38,39], the Thirty Meter
Telescope, the Giant Magellan Telescope, or even gravi-
tational wave interferometers DECi-hertz Interferometer
Gravitational Wave Observatory/Big Bang Observer [40].
Theoretically, the effect has already been investigated
for the matter-dominated model (CDM) [41], the ΛCDM
model, the Dvali-Gabadadze-Porrati brane model, LTB
models [42], backreaction timescape cosmology [43], the
axially symmetric Szekeres models [44], the Stephani
models in Paper 1 [21], and some specific dark energy
models (see, e.g., [45]).
For our Stephani model II, in which we are at the center

of symmetry, the redshift drift is given by [see (A10) from
the Appendix with r0 ¼ 0]

δz
δt

¼ −H0

�
H
H0

− ð1þ zÞ
�
; ð4:10Þ

where (3.22) should be used in order to express H=H0.
We emphasize again that, as was also assumed when

deriving the expression for luminosity distances, the emit-
ting sources are assumed to be comoving.

C. Baryon acoustic oscillations

Baryon acoustic oscillations (BAOs) provide us with a
standard ruler [46]. Baryon oscillations were generated at
the time when baryons were tightly coupled to photons and
are found after decoupling in the matter power spectrum.
This gives a constraint on the universe evolution. At the
present time, BAOs are measured at relatively small red-
shift. The constraint can be optimized with the quantity
known as volume distance,

DVðzÞ ¼
�
ð1þ zÞ2d2AðzÞ

cz
HðzÞ

�1
3 ð4:11Þ

¼
�
a20r

2ðzÞ cz
HðzÞ

�1
3

; ð4:12Þ

where we have used (4.6) and (4.4) in order to arrive at the
last equality. Using (4.7), this gives

DVðzÞ ¼
c
H0

�
4

Ωβ;0
z
x−1ðzÞ − ð1þ zÞ

hðxðzÞÞ
�1

3

; ð4:13Þ

where hðxÞ≡HðxÞ=H0. The quantity DV is measured for
z ¼ 0.106, 0.2, 0.35, 0.44, 0.6, and 0.73 by the experiments
SDSS DR7 [47], WiggleZ [48], and 6dF GS [49]. The
measurement given by SDSS-3BOSS [50] is DAð0.57Þ ¼
1408� 45 Mpc and Hð0.57Þ ¼ 92.9� 7.8 km=s=Mpc.

D. Shift parameter

The location of the CMB acoustic peaks depends on
the physics between us and the last scattering surface;
therefore, it provides a probe of dark energy models. One
quantity that can be used here is the so-called shift
parameter [51,52]. It is defined as

R ¼ ffiffiffiffiffiffiffiffiffi
Ωm;0

p
H0c−1ð1þ zdÞdAðzdÞ ð4:14Þ

¼ ffiffiffiffiffiffiffiffiffi
Ωm;0

p
a0H0c−1rd; ð4:15Þ

where rd ≡ rðxðzdÞÞ is the coordinate distance at decou-
pling; we have used (4.6) and (4.4) in order to arrive at the
second equality. Again, using (4.7), we obtain

R ¼ 2
Ω0

Ωβ;0
ðx−1d − ð1þ zdÞÞ12: ð4:16Þ

From seven-year WMAP observations, the shift parameter
is approximated as [53]
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R ¼ 1.725� 0.018: ð4:17Þ
Though this quantity is very accurately measured, it allows
for large degeneracies, which are broken here using SNIa
and redshift drift constraints.

E. Numerical results

We used a Bayesian framework to confront our Stephani
model with the cosmological observations discussed in the
previous sections. For each cosmological probe we took the
likelihood function to be Gaussian in the form

pðdatajΘÞ ∝ exp

�
−
1

2
χ2
�
; ð4:18Þ

where Θ denotes the parameters of the Stephani model and
“data” denotes generically the observed data for one of the
three cosmological probes. For the SNIa data, χ2 takes the
form

χ2SN¼
XN
i;j¼1

ðC−1ÞijðμobsðziÞ−μpredðziÞÞðμobsðzjÞ−μpredðzjÞÞ;

ð4:19Þ

where C is the covariance matrix, while μobsðziÞ and
μpredðziÞ are, respectively, the observed and the predicted
distance modulus of the ith Union2.1 SNIa [54]. For the
CMB shift, parameter χ2 takes the form

χ2R ¼ ðR − 1.725Þ2
0.0182

: ð4:20Þ

Using the data for BAO at z ¼ 0.2 and 0.35 taken from
[55], the χ2 is given by

χ2BAO ¼ ðvi − vBAOi ÞðC−1ÞBAOij ðvj − vBAOj Þ; ð4:21Þ

where

v ¼
�
rsðzdrag;Ωm;Ωb;ΘÞ
DVð0.2;Ωm;ΘÞ

;
rsðzdrag;Ωm;Ωb;ΘÞ
DVð0.35;Ωm;ΘÞ

�
; ð4:22Þ

vBAO ¼ ð0.1905; 0.1097Þ; ð4:23Þ

and

C−1 ¼
�

30124 −17227
−17227 86977

�
ð4:24Þ

is the inverse of the covariance matrix. In the formula
above we have also used the formula for the size of the
comoving sound horizon at the baryon dragging epoch rs
proposed in [56],

rsðzdragÞ¼ 153.5

�
Ωbh2

0.02273

�−0.134� Ωmh2

0.1326

�−0.255
; ð4:25Þ

with the parameters Ωbh2 and Ωmh2 being the physical
baryon and dark matter density of the ΛCDM model,
respectively.
For the redshift drift, we use the simulated data set

presented in [57] (see the blue error bars in Fig. 3). This
data set is assumed to be centered on the ΛCDM redshift
drift curve with normally distributed errors.
With this simulated data set, χ2 takes the form

χ2RD ¼
X5
i¼1

ðΔzobsðziÞ − ΔztheoðziÞÞ2
σ2i

; ð4:26Þ

where ΔzobsðziÞ and ΔztheoðziÞ are the “observed” and the
predicted value of the drift at redshift zi and σi is the
estimated error of the “observed” value of the redshift drift
at zi, respectively.
In Fig. 3 we present confidence intervals (three contours,

denoting roughly 68%, 95%, and 99% confidence regions)
for each observable.
It is evident from Fig. 4 that our Stephani model fits well

the data for the SNIa, redshift drift, and BAO, since the
related contours overlap with each other with their 1σ C.L.
regions. However, the departure of dust from the standard
behavior would render this model unviable. In addition,
it cannot comply at the same time with the CMB shift
constraint. An interesting way of overcoming the latter
problem is to replace the constant barotropic index (EoS
parameter) wwith a function wðaÞ. Because we do not want
to change the contours obtained for SNIa, BAO, and the
redshift drift, we take wðaÞ constant on the redshift interval
from today up to z ¼ 5. Further, at some value of the
redshift between z ¼ 5 and the decoupling zdec, we assume

0.0 0.2 0.4 0.6 0.8 1.0

0.08

0.06

0.04

0.02

0.00

2
4

x

FIG. 2. The quantity 1
4
βar2 computed on our past light cone is

shown as a function of x≡ a=a0. Up to a constant of order 1 it
gives the change in the equation of state parameter and in
the speed of sound for dust [wðr ¼ 0Þ ¼ 0] and radiation
[wðr ¼ 0Þ ¼ 1

3
]. It also gives the relative change in the redshift

as a function of x. It vanishes both at the big bBang and today and
it is seen to have an extremum of about 9% at z ∼ 4. Here it is
plotted for the particular set of cosmological parameters Ωβ;0 ¼
0.68 and w≡ wðr ¼ 0Þ ¼ −0.08. At very small values of
x≲ 10−3, we have 1

4
jβjar2 ≲ 10−3.
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that the function wðaÞ suddenly changes its value and then
remains constant up to zdec.
An example of such a function wðaÞ fulfilling the above

requirements is the following (see Fig. 5):

wðaÞ ¼ w1 þ
w2

2
½1þ tanh½λðatr − aÞ��; ð4:27Þ

where w1, w2, λ, and atr are constants.

As expected, the Stephani model with the barotropic
index (4.27) with λ ¼ 40, atr ¼ 0.08, w1 ¼ −0.08, and
w2 ¼ 0.4 agrees with SNIa and BAO data as well as the
shift parameter, while it recovers essentially the redshift
drift in a ΛCDM model (see Figs. 3 and 6). Of course, this
represents a significant departure from the standard dust
behavior (w1 ¼ 0).
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FIG. 3 (color online). The redshift drift curve for the ΛCDM
model (grey curve) and the Stephani model with Ωβ;0 ¼ 0.68 and
w≡ weðr ¼ 0Þ ¼ −0.08 found from the intersection of the
confidence intervals for SNIa, redshift drift, and BAO (red curve)
(see Fig. 4). Also shown are the simulated redshift drift data with
their error bars from [57].

FIG. 4 (color online). Confidence intervals for the SNIa,
redshift drift, BAO, and shift parameter. The contours denote
roughly 68%, 95%, and 99% confidence regions. Here a constant
equation of state parameter w≡ weðr ¼ 0Þ≡ w1 is assumed at
the center of symmetry r ¼ 0. The confidence regions from low-
redshift data do not overlap with the confidence region of the shift
parameter. An additional problem is that the departure from the
standard dust behavior w ¼ 0 is significant.
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FIG. 5. The time-dependent equation of state parameter
wðr ¼ 0Þ ¼ wðaÞ [see Eq. (4.27)] plotted for the particular set
of parameters λ ¼ 40, atr ¼ 0.08, w2 ¼ 0.4, w1 ¼ −0.08, and
Ωβ;0 ¼ 0.68. Here, the transition occurs for a ∼ 0.08, which
corresponds to the redshift z ∼ 10.49.

FIG. 6 (color online). Confidence intervals for the SNIa,
redshift drift, BAO, and shift parameter for the Stephani model
with the scale-factor-dependent barotropic index wðr ¼ 0Þ ¼
wðaÞ [see Eq. (4.27)], where the parameters λ¼40, atr ¼ 0.08,
and w2 ¼ 0.4 are fixed. Again the contours denote roughly
68%, 95%, and 99% confidence regions.
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V. RESULTS AND CONCLUSIONS

In this paper we have discussed the Stephani models of
pressure-gradient spherical shells which are complemen-
tary to the varying energy density spherical shells of the
Lemaître-Tolman-Bondi models. In our Stephani models
there is also a spherical symmetry; in the simplest version
considered here, we are assumed to be at the center of
symmetry r ¼ 0. A crucial difference between both
spherically symmetric inhomogeneous models is the
dependence on the radial coordinate r of g00 in
Stephani models. Comoving observers are no longer
following geodesics; this is basically why a comoving
perfect fluid requires a radially dependent pressure in
order to counteract the movement in the radial direction.
As we have seen, this implies that the real (“effective”)
physical pressure depends on both time t or the scale
factor a as well as on the radial coordinate r. As another
general property of these models, we have seen that even
if the EoS parameter (barotropic index) w (defined at
r ¼ 0) is constant, the (adiabatic) speed of sound will
depend on both r and a. In particular, dust (w ¼ 0) would
acquire a negative speed of sound and a negative equation
of state parameter we away from the origin in an
accelerating universe. The relative change of the redshift
as a function of the (generalized) scale factor a will have
a similar behavior. While we have shown that all these
effects remain relatively small (though non-negligible at
redshifts z ∼ 4) on our past light cone in a universe
mimicking the cosmic history of our Universe, it is
nevertheless an interesting physical property.
It is worth emphasizing the difference in the sets of

models we have studied and those studied in Ref. [18]. Our
models presented in Sec. III, which were dubbed model II
in Ref. [7] and further specified in Refs. [17,33], are two-
component models, with one fluid having an arbitrary
barotropic equation of state at the center of symmetry and
an inhomogeneity playing the role of another fluid with an
equation of state of a domain-wall type p ¼ −ð2=3Þϱ. The
point is that no explicit form of the scale factor is assumed,
but there is a condition ðk=aÞ· ¼ 0 that restricts the form of
it only slightly. On the other hand, model I of Ref. [7], used
in Ref. [18], in general does not have such a property,
because for this model ðk=aÞ· ¼ −Δð _a=a2Þ; this reduces to
model II studied in Ref. [7] if Δ ¼ 0. Besides, these models
have the scale factor assumed explicitly at the expense of
having a nonbarotropic equation of state that reduces to a
barotropic one only at the center of symmetry, but with a
specific form as for the network of cosmic strings with an
equation of state p ¼ − 1

3
ϱ. Because of a general choice of

Δ in Ref. [18], the model I studied there seems to allow
more freedom of the parameters, which presumably leads
to a larger inhomogeneity that is secured by generalized
EGS theorem [20] telling us about the admittance of
isotropic radiation field to every fundamental observer in
the universe.

We have also seen that our best-fit model requires the
barotropic index w to depend on the generalized scale
factor a and to be in the interval −0.08≲ wðaÞ≲ 0.3,
presumably ruling out our model II. Indeed, the integrated
Sachs-Wolfe effect severely constrains any deviations from
the standard dust behavior. We expect that the formation of
structure would also be strongly affected.
Another interesting issue concerns compact objects

formed through gravitational collapse. While the back-
ground perfect fluid is comoving due to its pressure
gradient, whether compact objects that form out of the
perfect fluid perturbations will remain essentially comov-
ing, and for how long, is an interesting question. A detailed
study of all these problems, including the growth of
perturbations, can probably not be addressed analytically
and is beyond the scope of this work.
Of course, our model II can always yield an observa-

tionally acceptable universe if all standard components,
including some more standard dark energy components, are
present and, additionally, if we take a sufficiently small
parameter β. In that case, β can be negative as well as
positive. This would be the most natural (though minimal)
use of such models, if observations would point to some
slight inhomogeneity of our Universe with a residual
spherical symmetry around us. However, as far as we
are aware, currently a similar status is given to LTB models,
as they also require a standard dark energy component in
the form of a Λ term and the inhomogeneity should really
be small [58].
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APPENDIX: REDSHIFT-DRIFT FORMULA
FOR A GENERAL SPHERICALLY
SYMMETRIC STEPHANI MODEL

We recall, following Ref. [21], that the light emitted by
the source at two different times te and te þ δte will be
observed at to and to þ δto related byZ

to

te

dt
aðtÞ ¼

Z
toþδto

teþδte

dt
aðtÞ : ðA1Þ

For small δte and δto we have

δte
aðteÞ

¼ δto
aðtoÞ

: ðA2Þ

Bearing (4.1) in mind, the redshift drift has a general
definition [13,14]

δz ¼ ðuakaÞðre; te þ δteÞ
ðuakaÞðr0; t0 þ δt0Þ

−
ðuakaÞðre; teÞ
ðuakaÞðr0; t0Þ

; ðA3Þ
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which can be calculated to first order (for higher-order
expansion see Ref. [59]) using the expansions

ðuakaÞo ¼ ðuakaÞðr0; t0Þ þ
∂½ðuakaÞðr0; t0Þ�

∂t δt0; ðA4Þ

ðuakaÞe ¼ ðuakaÞðre; teÞ þ
∂½ðuakaÞðre; teÞ�

∂t δte: ðA5Þ

From (4.2) we have

∂
∂t ðuak

aÞ ¼ −
�
1

a

�
·
−
1

4

�
k
a

�
·
r2: ðA6Þ

Applying (A4), (A5), and (A2) we obtain

δz
δt0

¼ ½ð1aÞ· − 1
4
ðkaÞ·r2�e

½1þ 1
4
kr2�e

aðteÞ ðA7Þ

−
½ð1aÞ· þ 1

4
ðkaÞ·r2�o

½1þ 1
4
kr2�o

aðt0Þð1þ zÞ: ðA8Þ

For model I given by (2.9) we have, from (A7),

δz
δt0

¼ aðteÞðγ þ 1
4
αr2eÞ − aðt0Þð1þ zÞðγ þ 1

4
αr20Þ

1þ 1
4
αt0þσ
γt0þδ

; ðA9Þ

while for model II given by (3.1) we obtain

δz
δt0

¼ −
H0

1þ 1
4
kðt0Þr20

�
He

H0

− ð1þ zÞ
�
; ðA10Þ

where He ≡HðteÞ ¼ _aðteÞ=aðteÞ.
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