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By considering linear-order departures from general relativity, we compute a novel expression for the
weak lensing convergence power spectrum under alternative theories of gravity. This comprises an integral
over a “kernel” of general relativistic quantities multiplied by a theory-dependent “source” term. The clear
separation between theory-independent and -dependent terms allows for an explicit understanding of each
physical effect introduced by altering the theory of gravity. We take advantage of this to explore the
degeneracies between gravitational parameters in weak lensing observations.
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I. INTRODUCTION

In recent years, weak gravitational lensing has been put
forth as a promising method of testing gravitation on
cosmological scales [1–8], with some exciting first con-
straints having been found already [9,10]. Moreover,
advances in relevant data analysis (for example, [11])
and the coming next generation of lensing-optimized
surveys mean that we will soon be in a position to take
full advantage of the potential of weak lensing.
Stronger constraints on gravity are obtained by combin-

ing weak gravitational lensing with other probes. One
observable which is commonly touted as providing par-
ticularly complimentary constraints to weak lensing is
fσ8ðaÞ. Here, fðaÞ is the linear growth rate of structure,
defined as

fðaÞ ¼ d lnΔMðaÞ
d ln a

ð1Þ

where ΔMðaÞ is the amplitude of the growing mode of the
matter density perturbation, and σ8ðaÞ is the amplitude of
the matter power spectrum within spheres of radius
8 Mpc=h. The combination fσ8ðaÞ can be constrained
through measurements of redshift-space distortions in
galaxy surveys.
In [12], an expression for fσ8ðaÞ was derived in the case

of linear deviations from the model of general relativity (GR)
with ΛCDM. Here we build on this work by constructing a
similar expression for PκðlÞ, the angular power spectrum of
the weak lensing observable convergence (κ). The main
advantage of our expression is that it clearly distinguishes the
physical source of all modified gravity effects to PκðlÞ,
which allows for a more thorough interpretation and under-
standing of these effects than previously possible. While we
focus on PκðlÞ in this work, recall that the two main weak

lensing observables, convergence and shear, can be trivially
interconverted [13]. Therefore, we treat convergence as a
proxy for weak lensing more generally, and all expressions
which we derive could be equivalently and easily formulated
in terms of shear.
This paper is structured as follows: In Sec. II, we detail

the derivation of the expression for PκðlÞ. Section III
discusses how weak lensing degeneracy directions between
gravitational parameters can be understood with the help
of our expression. Finally, Sec. IV provides forecast
constraints on deviations from GRþ ΛCDM from future
surveys, and interprets these constraints using our expres-
sion for PκðlÞ. We conclude in Sec. V.

II. CONVERGENCE IN MODIFIED GRAVITY:
THE LINEAR RESPONSE APPROACH

In what follows, we use the scalar perturbed Friedmann-
Robertson-Walker metric in the conformal Newtonian
gauge, with the following form:

ds2 ¼ aðτÞ2½−ð1þ 2ΨÞdτ2 þ ð1 − 2ΦÞdxidxi�: ð2Þ
Our parameterization of alternative theories of gravity
makes use of the quasistatic approximation (see, for
example, [14]). The quasistatic approximation states that
within the range of scales relevant for current galaxy
surveys, the most significant effects of a sizable class of
modified theories can be captured by introducing two
functions of time and scale into the linearized field
equations of GR. These functions play the role of a
modified gravitational constant, and a nonunity (late-time)
ratio of the two scalar gravitational potentials,

2∇2Φða; kÞ ¼ 8πGa2μða; kÞρ̄MΔMða; kÞ
Φða; kÞ
Ψða; kÞ ¼ γða; kÞ: ð3Þ

In GR, both γða; kÞ and μða; kÞ are equal to 1.
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Clearly Eq. (3) can only be an effective description of
more complicated, exact sets of field equations [15–24].
However, several works have numerically verified the
validity of the quasistatic approximation in many gravity
theories (notably those with one new degree of freedom) on
the distance scales considered here [25–29].
We first compute the power spectrum of the convergence

in general relativity, and then generalize to alternative
theories of gravity. We make the simplifying assumption
that radiation can be neglected for all redshifts of interest in
this paper. That is, we take ΩGR

M ðzÞ þΩGR
Λ ðzÞ ¼ 1.

A. Calculating convergence: General relativity

The convergence, κ, describes the magnification of an
image due to lensing. This effect is captured by the
geodesic equation for the displacement of a photon trans-
verse to the line of sight. In the cosmological weak lensing
context of general relativity, this is given by

d2

dχ2
ðχθbÞ ¼ −2Φ;b ð4Þ

where; b indicates a partial derivativewith respect to θb, χ is

the radial comoving distance, and χ~θ ¼ ðχθ1; χθ2Þ is a two-
component vector representing on-sky position. This equa-
tion can be integrated to obtain the “true” on-sky position of
the light source as a function of the observed on-sky
position. The convergence is then given by taking the two-
dimensional on-sky Laplacian (∇2) of this expression,

κGRð~θÞ ¼
1

2

Z
χ∞

0

dχ∇2Φð~θ; χÞgðχÞ ð5Þ

where gðχÞ is the lensing kernel,

gðχÞ ¼ 2χ

Z
χ∞

χ
dχ0
�
1 −

χ

χ0

�
Wðχ0Þ; ð6Þ

WðχÞ is the normalized redshift distribution of the source
galaxies, and χ∞ is the comoving distance at a → 0.
We compute the power spectrum of the convergence

following closely the method laid out in [30]. In the small
angle approximation, it is straightforward to find

Pi;j
κ ðlÞ ¼ 1

4

Z
d2θe−i~l·~θ

Z
χ∞

0

dχgiðχÞ
Z

χ∞

0

dχ0gjðχ0Þ

×
Z

d3k
ð2πÞ3 PΦðkÞk4ei~k·½~x−~x0� ð7Þ

where ~x labels three-dimensional position such that ~x ¼
ðχθ1; χθ2; χÞ and ~x0 ¼ ð0; 0; χ0Þ. i and j label the source
redshift bins to be considered.
Performing the integrals over θ1 and θ2 and then over k1

and k2, we have

Pi;j
κ ðlÞ ¼ 1

4

Z
χ∞

0

dχ
giðχÞ
χ2

Z
χ∞

0

dχ0gjðχ0Þ

×
Z

dk3
2π

PΦ

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k23 þ

l2

χ2

s !
k4eik3·½χ−χ0�: ð8Þ

Finally, the Limber approximation [31,32], valid here on
l⪆ 10 [1], is employed, such that k3 ≪ l

χ, and therefore

k ≈ l
χ. The small angle limit also means that Pi;j

κ ðlÞ≃
Pi;j
κ ðlÞ, where l labels an angular multipole [33]. We find

Pi;j
κ ðlÞ ¼ l4

4

Z
χ∞

0

dχ
giðχÞgjðχÞ

χ6
PΦ

�
l
χ
; χ

�
: ð9Þ

We have computed here the power spectrum of the
convergence; that of the shear could be straightforwardly
calculated by replacing Eq. (5) with the appropriate, similar
definition.

B. Calculating convergence: Modified gravity

As indicated in Eq. (3), generally in non-GR theories
Φ ≠ Ψ. So, in modified gravity Eq. (4) becomes

d2

dχ2
ðχθbÞ ¼ −ðΦ;b þΨ;bÞ: ð10Þ

The convergence then becomes

κMG ¼ 1

4

Z
χ∞

0

dχ∇2½Φð~θ; χÞ þΨð~θ; χÞ�gðχÞ

¼ 1

4

Z
0

−∞
dx

c
HðxÞ∇

2½Φð~θ; xÞ þΨð~θ; xÞ�gðχðxÞÞ ð11Þ

where hereafter we will use x ¼ lnðaÞ instead of χ or a, and
we have converted the integration measure to x using
dχ ¼ −c=Hdx, where H ¼ aH is the conformal Hubble
factor. Note that x here is distinct from the three-dimen-
sional position variable ~x.
To calculate the power spectrum of the convergence

under modifications to GR, we follow [12] and perturb our
field equations about those of the GRþ ΛCDMmodel. Our
reasoning here is that current observations only permit
theories which can match GRþ ΛCDM predictions to
leading order; we are interested in determining next-to-
leading order corrections that are still permitted. Note that
we are building a theory of linear perturbations in model
space, which is distinct from spacetime perturbation theory.
We define the perturbations of the quasistatic functions μ
and γ about their GR values using

μðx; kÞ ¼ 1þ δμðx; kÞ
γðx; kÞ ¼ 1þ δγðx; kÞ: ð12Þ
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In addition, we introduce a perturbation about the standard
value of the effective equation of state of the nonmatter
sector, wðxÞ,

wðxÞ ¼ −1þ βðxÞ; ð13Þ
and we define the useful related quantity

uðxÞ ¼
Z

x

0

βðx0Þdx0: ð14Þ

We now consider how these linear perturbation variables
propagate through to κ and hence Pi;j

κ ðlÞ. First, from
Eq. (3), we can write

Φðx; kÞ þΨðx; kÞ ¼
�
1þ 1

γðx; kÞ
�
Φðx; kÞ

≈ ð2 − δγðx; kÞÞΦðx; kÞ: ð15Þ

In order to express our results as corrections to
GRþ ΛCDM, we need to relate Φðx; kÞ to ΦGRðx; kÞ.
There are two effects to be accounted for. First, the
relationship between Φðx; kÞ and matter density perturba-
tions can be altered. Second, if the field equations are
modified, ΔMðx; kÞ will evolve at a different rate, and
hence will be displaced from its GR value. To account for
this we introduce the deviation δΔðx; kÞ ¼ ΔMðx; kÞ=
ΔGR

M ðx; kÞ − 1. In [12] it was shown that δΔðx; kÞ is given
by the following integral expression:

δΔðx; kÞ ¼
3

2

Z
x

−∞
ΩGR

M ð~xÞIðx; ~xÞδSfð~x; kÞd~x: ð16Þ

The integrand above separates into two parts: δSfð~x; kÞ,
which encapsulates all deviations from GRþ ΛCDM, and
ΩGR

M ð~xÞIðx; ~xÞ, which is a weighting function containing
GRþ ΛCDM quantities only. It will be useful for us to
present the explicit form of δSfðx; kÞ here, derived in [12],

δSfðx; kÞ ¼ δμðx; kÞ − δγðx; kÞ

þ ð1 −ΩGR
M Þ

ΩGR
M

½3ΩGR
M ð1þ fGRðxÞÞuðxÞ

þ fGRðxÞβðxÞ�: ð17Þ

The explicit form of Iðx; ~xÞ can be found in [12].
With these modifications in hand, the parameterized

Poisson equation becomes

−2k2Φðx; kÞ ¼ 8πGe2xρGRM ðxÞΔMðx; kÞð1þ δμðx; kÞÞ
¼ 3H2

GRðxÞΩGR
M ðxÞΔGR

M ðx; kÞ
× ð1þ δΔðx; kÞÞð1þ δμðx; kÞÞ ð18Þ

where in going from the first to the second line, we have
used the fact that the combination H2

GRðxÞΩGR
M ðxÞ is

unchanged by our modifications to the background expan-
sion rate, as shown in Appendix A. Hence, Φðx; kÞ is given
in terms of ΦGRðx; kÞ by

Φðx; kÞ≃ ΦGRðx; kÞð1þ δΔðx; kÞ þ δμðx; kÞÞ: ð19Þ

Combining Eqs. (15) and (19), we now have an
expression for ΦþΨ in modified gravity in terms of the
GR potential plus perturbative correction factors,

Φðx; kÞ þΨðx; kÞ≃ ΦGRðx; kÞð2 − δγðx; kÞ
þ 2δΔðx; kÞ þ 2δμðx; kÞÞ: ð20Þ

So, referring to Eq. (11), κ becomes

κMGð~θÞ ¼
1

4

Z
0

−∞
dx

cgðχðxÞÞ
HðxÞ ∇2½ΦGRðx; kÞ

× ð2þ 2δμðx; kÞ − δγðx; kÞ þ 2δΔðx; kÞÞ�: ð21Þ

At this stage, it becomes more convenient to work directly
with the power spectrum Pi;j

κ ðlÞ. This can be computed to
linear order in deviations from GRþ ΛCDM, in direct
analogy to the method outlined for the GR case in Sec. II A.
We find

Pi;j
κ ðlÞ ¼ l4

4

Z
0

−∞
dx

c
HðxÞGiðχðxÞÞGjðχðxÞÞPGR

Φ

�
l

χðxÞ ; χðxÞ
�

× ð1þ 2δμðx; kÞ − δγðx; kÞ þ 2δΔðx; kÞÞ ð22Þ

where we have defined GiðχðxÞÞ ¼ giðχðxÞÞ
χðxÞ3 .

There are still two non-GR effects to account for, both
originating from the modified expansion history. If
βðxÞ ≠ 0 in Eq. (13), HðxÞ and χðxÞ will scale differently
with the time variable x. Using the expression for δHðxÞ ¼
HðxÞ −HGRðxÞ derived in Eq. (A4) in the Appendix, we
find that

1

HðxÞ ¼
1

HGRðxÞ
�
1 −

δH
HGRðxÞ

�

¼ 1

HGRðxÞ
�
1 −

3

2
uðxÞð1 − ΩGR

M ðxÞÞ
�
; ð23Þ

and hence

χðxÞ ≈
Z

0

x

c
HGRðx0Þ

�
1 −

δHðx0Þ
HGRðx0Þ

�
dx0

⇒ δχðxÞ ≈ 3

2

Z
0

x

c
HGRðx0Þ

uðx0Þð1 − ΩGR
M ðx0ÞÞdx0 ð24Þ

where δχ ¼ χ − χGR.
The deviation of χðxÞ from its GR value will also affect

quantities which depend on χðxÞ, such as GðχðxÞÞ and
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PGR
Φ ðl=χðxÞÞ [34]. We allow for this by expanding these in

a Taylor series around χGR, to first order,

PGR
Φ

�
l

χMG

�
≈ PGR

Φ

�
l
χGR

��
1þ ∂ lnPΦ

∂ ln χ
����
χGR

δχ

χGR

�
ð25Þ

GiðχÞGjðχÞ ≈ GiðχGRÞGjðχGRÞ

×

�
1þ

�∂ lnGiðχÞ
∂ ln χ þ ∂ lnGjðχÞ

∂ ln χ
�����

χGR

δχ

χGR

�

ð26Þ

where δχ is given by Eq. (24) above. We have now
accounted for all modified gravity effects, and these are
summarized in Table I.
Finally, it will be more convenient for us to work in terms

of Pδ, the matter power spectrum, instead of PΦ. We do so
via the following expression, where for clarity we tempo-
rarily omit the label “GR” on all quantities:

PΦðx; kÞ ¼
1

k4
9

4

�
HðxÞ
c

�
4

Ω2
MðxÞDðxÞ2Pδðx ¼ 0; kÞ:

ð27Þ

Here DðxÞ is the usual growth factor of matter perturba-
tions. Inserting Eq. (27) into Eq. (25), we find

PGR
Φ

�
l
χ

�
≈ PGR

Φ

�
l
χGR

�

×

�
1 −

∂ lnðk−4PGR
δ ðx ¼ 0; kÞÞ
∂ ln k

����
k¼l=χGR

δχ

χGR

�
:

ð28Þ

Drawing together, then, Eqs. (22), (23), (26) and (28), and
using Eq. (27), we obtain our final expression for the
convergence power spectrum under modifications to gen-
eral relativity,

Pi;j
κ ðlÞ ¼ 9

16

Z
0

−∞
dx

giðχGRðxÞÞgjðχGRðxÞÞ
χGRðxÞ2

PGR
δ

�
l

χGRðxÞ
�
D2

GRðxÞ
H3

GRðxÞ
c3

ΩGR
M ðxÞ2

×

�
1þ 3

2
uðxÞð1 −ΩGR

M ðxÞÞ þ 2δμðx; kÞ − δγðx; kÞ þ 2δΔðx; kÞ

þ
�∂ lnGiðχÞ

∂ ln χ þ ∂ lnGjðχÞ
∂ ln χ −

∂ lnðPGR
δ ðx ¼ 0; kÞ=k4Þ

∂ ln k
�����

χGR

δχðxÞ
χGRðxÞ

�
: ð29Þ

The major advantage of Eq. (29) is that it neatly separates
the convergence power spectrum into the familiar GR
expression (the nonbracketed quantity) and a correction
factor (the bracketed terms). It is then easy to pick out
contributions from:

(i) the modified clustering properties (described by δμ
and δγ),

(ii) the modified expansion history (described by β, u
and δχ), and

(iii) the modified growth rate of matter density pertur-
bations [encapsulated in δΔ, see Eq. (16)].

It will be useful for us to write Eq. (29) in a form which
explicitly highlights the GR expression and the correction
factor,

Pi;j
κ ðlÞ ¼

Z
0

−∞
dxKðx;lÞð1þ δSWLðx;lÞÞ: ð30Þ

Here we have defined the “kernel” term,

TABLE I. Here we summarize the various corrections to the GR expression for Pi;j
κ ðlÞ, including a brief description and the number of

the equation in which they are introduced.

Correction Description Equation

Φðx; kÞ þΨðx; kÞ≃ ð1þ 1
γðx;kÞÞΦðx; kÞ Nonunity ratio of scalar potentials (15)

Φðx; kÞ≃ ΦGRðx; kÞð1þ δΔðx; kÞ þ δμðx; kÞÞ Altered Poisson equation (19)
1

HðxÞ ≃ 1
HGRðxÞ ½1 − 3

2
uðxÞð1 − ΩGR

M ðxÞÞ� Altered HðxÞ (23)

χðxÞ≃ χGRðxÞ þ 3
2

R
c

HGRðxÞ uðxÞð1 − ΩGR
M ðxÞÞdx Altered χ (24)

GiðχÞGjðχÞ≃ GiðχGRÞGjðχGRÞ
h
1þ

�∂ lnGiðχÞ∂ ln χ þ ∂ lnGjðχÞ
∂ ln χ

	
jχGR δχ

χGR

i
Altered GðχÞ (26)

PGR
Φ ðlχÞ≃ PGR

Φ

�
l
χGR

	
×
h
1 − ∂ lnðk−4PGR

δ ðx¼0;kÞÞ
∂ ln k jk¼l=χGR

δχ
χGR

i
Altered PGR

Φ (28)
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Kðx;lÞ ¼ 9

16

giðχGRðxÞÞgjðχGRðxÞ
χGRðxÞ2

PGR
δ

�
l

χGRðxÞ
�

×D2
GRðxÞ

H3
GRðxÞ
c3

ΩGR
M ðxÞ2; ð31Þ

and the “source” term,

δSWLðx;lÞ ¼
3

2
uðxÞð1 − ΩGR

M ðxÞÞ þ 2δμðx; kÞ − δγðx; kÞ

þ 2δΔðx; kÞ þ
�∂ lnGiðχÞ

∂ ln χ þ ∂ lnGjðχÞ
∂ ln χ

−
∂ ln½PGR

δ ðx ¼ 0; kÞ=k4�
∂ ln k

�����
χGR

δχðxÞ
χGRðxÞ

:

ð32Þ

III. UNDERSTANDING DEGENERACIES WITH
THE LINEAR RESPONSE APPROACH

We have at hand an expression [Eq. (29)] for Pi;j
κ ðlÞ

under modifications to general relativity. Let us now
investigate what this can teach us about the degeneracies
between gravitational parameters in weak lensing obser-
vations. Note that we restrict ourselves to discussing
degeneracies between parameters describing modifications
to gravity. We do not examine degeneracies between
gravitational and cosmological parameters, nor do we
investigate degeneracies with the galaxy bias. We leave
these questions for future work.
In this section, we consider the case in which δμ and δγ are

independent of scale, due to the fact that the scale depend-
ence of these functions is expected to be subdominant to their
time dependence [14,24,35]. We will briefly investigate scale
dependence later, in Sec. IV C. Additionally, as we are
working in the quasistatic approximation, our analysis is
restricted to the regime of validity of linear cosmological
perturbation theory. Various values of lmax which ensure this
to be true are suggested in the literature (see for example
[1,2]). Adopting a conservative approach, we select lmax ¼
100 here and for the remainder of this work.
We first remind the reader of how degeneracy directions

may be calculated. Then, using Eqs. (17) and (29), we
explore how the degeneracy directions of weak lensing and
redshift-space distortions in the space of the parameters of
δμðxÞ and δγðxÞ are affected by the chosen Ansätze for
these functions. Note that here and for the remainder of this
work, we compute the GRþ ΛCDM matter power spec-
trum using the publicly available code CAMB [36] and using
the best-fit ΛCDM parameters of the 2013 Planck release
(including Planck lensing data) [37].

A. Calculating degeneracy directions

Degeneracies exist when an observation can probe only
some combination of the parameters we wish to constrain.

The degeneracy direction is the relationship between
parameters in the fiducial scenario (here, in GRþ
ΛCDM). For example, if this relationship is a ¼ b, then
the relevant observation can probe only a − b, not a or b
individually.
In the case of weak lensing, degeneracy directions can be

understood in the following schematic way. First, define the
fractional difference between Pi;j

κ ðlÞ in an alternative
gravity theory and in GRþ ΛCDM,

δPi;j
κ ðlÞ ¼ Pi;j

κ ðlÞ − Pi;j
κ;GRðlÞ

Pi;j
κ;GRðlÞ

: ð33Þ

To find the degeneracy direction, we find the relationship
which exists between parameters when δPi;j

κ ðlÞ ¼ 0. If we
consider a two-parameter case (call them a and b),
straightforward algebra allows us to find an expression
of the form

a ¼ DðlÞb ð34Þ

where DðlÞ may be a complicated expression, but depends
only on GRþ ΛCDM quantities. The degeneracy direc-
tion, we see, depends on l in the weak lensing case.
In order to calculate δPi;j

κ ðlÞ, we need to specifyWi, the
normalized redshift distribution of the source galaxies in
the redshift bin i. We select a source number density with
the following form:

nðzÞ ∝ zαe−ð
z
z0
Þβ ; ð35Þ

and we select α ¼ 2, β ¼ 1.5, and z0 ¼ zm=1.412 where
zm ¼ 0.9 is the median redshift of the survey, mimicking
the number density of a Dark Energy Task Force 4
(DETF4)–type survey [2,3]. In this section, we will simply
consider all galaxies between z ¼ 0.5 and z ¼ 2.0 to be in a
single redshift bin, with WðχÞ given by normaliz-
ing Eq. (35).
To break parameter degeneracy in a two parameter case,

a second observable with a different (ideally orthogonal)
degeneracy direction is introduced. Here, we choose this
second observable to be redshift-space distortions, as it is
known to provide nearly orthogonal constraints to weak
lensing. We will therefore often employ results from [12].
Particularly, we reproduce here their equation for the
deviation of fσ8ðxÞ from its GR value, analogous to our
Eq. (33),

δfσ8ðxÞ ¼
fσ8ðxÞ − fσGR8 ðxÞ

fσGR8 ðxÞ ¼
Z

x

−∞
Gfðx; ~xÞδSfð~xÞd~x

ð36Þ

where δSfðxÞ is given as in our Eq. (17), and Gfðx; ~xÞ is a
general relativistic kernel given in Eq. (34) of [12]. Note
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that fσ8ðxÞ above is independent of k, because we are
considering a case where μ and γ are functions of time only.
The degeneracy direction of a measurement of fσ8ðxÞ

can then be computed in a directly analogous way to that
described above for weak lensing. The sole difference is
that instead of depending on multipole l, the degeneracy
direction is dependent on the time of observation, x.
With this information in hand, we now explore degen-

eracy directions of weak lensing and redshift-space dis-
tortions in the space of the parameters of δμðxÞ and δγðxÞ.

B. Degeneracy directions in the μ̄0-Σ0 plane

As mentioned above, redshift-space distortions are the
preferred choice of an additional observation to break weak
lensing degeneracy in this scenario. Upon closer examina-
tion, this statement hinges upon the chosen time-dependent
Ansatz for the functions which parameterize deviations from
GR. As there is no clear front-runner among alternative
theories of gravity, typically a phenomenological Ansatz is
chosen, in which deviations from GR become manifest at
late times in order to mimic accelerated expansion. It is for
this type of phenomenological Ansatz that redshift-space
distortion and weak lensing observations are known to
provide complementary constraints [9].
However, it may also be desirable to constrain the

parameters of a specific theory of gravity. The functions
which parameterize the deviation of an alternative gravity
theory from GR can, in principle, take on a wide range of
time dependencies. Is the combination of weak lensing and
redshift-space distortions still an effective way to break
degeneracies and constrain the parameters of the theory we
consider? A priori, this is unknown.
To explore this issue, we consider now the degeneracy

directions of weak lensing and redshift-space distortions
under two different Ansätze for the functions which
parameterize deviations from GR. For this section only,
we make the simplifying assumption that βðxÞ ¼ 0 (i.e. the
expansion history is ΛCDM-like). We expect that the effect
of this assumption on our qualitative findings will be small.
First, we perform a simple operation on δμðxÞ and δγðxÞ

to obtain a more observationally motivated set of functions.
Let us call these μ̄ðxÞ and ΣðxÞ, in keeping insofar as
possible with the notation used in [9]. The choice of this set
of functions allows nearly orthogonal constraints in the
μ̄0-Σ0 plane for the phenomenological choice of time
dependence. The mapping between the two sets of func-
tions, as shown in Appendix B, is given by,

ΣðxÞ ¼ δμðxÞ − 1

2
δγðxÞ

μ̄ðxÞ ¼ δμðxÞ − δγðxÞ: ð37Þ

We can rewrite the linear response source terms for both
weak lensing [Eq. (32)] and redshift-space distortions
[Eq. (36)] in terms of μ̄ðxÞ and ΣðxÞ (in the βðxÞ ¼ 0 case),

δSWLðxÞ ¼ 2ΣðxÞ þ 3

Z
x

−∞
ΩGR

M ð~xÞIðx; ~xÞμ̄ð~xÞd~x

δSfðxÞ ¼ μ̄ðxÞ: ð38Þ

We see that δSfðxÞ depends solely on μ̄ðxÞ.
The expression for δSWLðxÞ requires slightly more pause.

It depends on ΣðxÞ, but it also contains another term, which
comprises an integral over μ̄ðxÞ and some general relativistic
quantities. By comparing with Eq. (16), we can easily
recognize this term as 2δΔðxÞ. This term quantifies a
correction to the degeneracy direction of weak lensing away
from Σ0 ¼ 0. It is clearly dependent upon the Ansatz of
time dependence chosen for μ̄ðxÞ. Particularly, we note that
due to the integral nature of the correction term, choices of
μ̄ðxÞ which persist significantly over longer times will result
in greater deviations to the degeneracy direction.
We now consider two Ansätze for μ̄ðxÞ and ΣðxÞ. First,

consider a phenomenological Ansatz, for which we know
weak lensing and redshift-space distortions to be an
effective combination in constraining gravity theories.
This choice is a specific case of the form proposed in
[38] and has been used in, for example, [9]. It is given by

μ̄ðxÞ ¼ μ̄0
ΩGR

Λ ðxÞ
ΩGR

Λ ðx ¼ 0Þ

ΣðxÞ ¼ Σ0

ΩGR
Λ ðxÞ

ΩGR
Λ ðx ¼ 0Þ ð39Þ

whereΩGR
Λ ðxÞ is the time-dependent energy density of dark

energy in the fiducial ΛCDM cosmology.
We insert δSWLðxÞ [Eq. (38)] into Eqs. (33) and (36) with

our chosen μ̄ðxÞ and ΣðxÞ. We then follow the procedure
sketched in Sec. III A to find the degeneracy directions of
weak lensing and redshift-space distortion in the μ̄0-Σ0

plane. In this particular case the degeneracy direction of
redshift-space distortions does not depend on time. This is
because δSfðxÞ is dependent on only one parameter, μ̄0, and
therefore the only degeneracy direction is μ̄0 ¼ 0.
The degeneracy directions for this Ansatz can be seen in

Fig. 1 (left). In the case of weak lensing, we have plotted
the degeneracy direction for l ¼ 50; directions for other
multipoles l ¼ 10–100 differ only within 5%. We see that,
indeed, the degeneracy directions are nearly orthogonal,
with only a slight correction of the weak lensing degen-
eracy direction away from Σ0 ¼ 0.
Now, consider selecting an Ansatz with a very different

time dependence. To guide our selection, recall that we
expect choices of μ̄ðxÞ which persist over longer times to
result in a greater value of the integral term in Eq. (38), and
hence a greater deviation of the weak lensing degeneracy
direction from Σ0 ¼ 0. Therefore, with no attempt to
correspond to any particular gravity theory, we select the
simplest possible choice which persists over long times:
constant μ̄ðxÞ and ΣðxÞ,
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ΣðxÞ ¼ Σ0

μ̄ðxÞ ¼ μ̄0: ð40Þ
In reality, we use step functions beginning at z ¼ 15 rather
than true constants to allow for the numerical computation
of the degeneracy directions. The degeneracy directions are
calculated as before, and are plotted in Fig. 1 (right).
Clearly, they are less orthogonal than in the previous case,
as expected from the comments above.
What does this example tell us about the effectiveness of

combining weak lensing and redshift-space distortions?
The Ansatz for μ̄ðxÞ and ΣðxÞ given by Eq. (40) deviates
from GRþ ΛCDM at all times after z ¼ 15. As mentioned
above, most cosmologically motivated alternative theories
of gravity present deviations from GRþ ΛCDM at late
times only, mimicking accelerated expansion. Therefore,
we treat the case of Eq. (40) as a heuristic “upper bound” on
the cumulative effect produced by the integral term of
Eq. (38). The effect of this term can be quantified by
considering the angle of the weak lensing degeneracy
direction with respect to the vertical. We find that for
the range of l which we consider and for the Ansatz given
by Eq. (40), the maximum possible value of this angle is
θ ≈ 50°. Although the degeneracy directions in this case are
certainly no longer orthogonal (θ ¼ 0°), they are suffi-
ciently distinct that we expect the resulting constraints to be
reasonable (if not ideal). We have therefore shown that the
effectiveness of combining weak lensing with redshift-
space distortions in the βðxÞ ¼ 0 case is relatively robust to
the chosen form of μ̄ðxÞ and ΣðxÞ.

IV. FORECAST CONSTRAINTS FROM
FUTURE SURVEYS

In addition to providing an understanding of degener-
acies, our expression for Pi;j

κ ðlÞ enables the forecasting of

constraints. The straightforward form of Eq. (30) renders
the calculation of Fisher matrices very simple, and clarifies
the interpretation of the resulting forecasts. We take
advantage of these features to forecast constraints on
gravitational parameters for a DETF4-type survey, as
defined in the classification of [39]. We focus on combined
constraints from weak lensing and redshift-space distor-
tions, with some consideration given as well to baryon
acoustic oscillations.
As mentioned above, the forecasts presented here

employ the technique of Fisher forecasting (see, for
example, [40]). The key quantity of this method is the
Fisher information matrix

F ab ¼ −

 ∂2 lnL
∂pa∂pb

�
ð41Þ

where pi are the relevant parameters and L is the like-
lihood. For redshift-space distortions, we straightforwardly
build on the results of [12] to construct the appropriate
Fisher matrix. However, for weak lensing we require a
slightly different expression. Although our Eq. (29) allows
for the cross-correlation of source galaxy redshift bins, we
have until now considered only a single wide redshift bin.
In practice, weak lensing data are normally considered in a
number of tomographic redshift bins. In [41], the Fisher
matrix for such a situation is shown to be given by

F ab ¼
Xlmax

l¼lmin

�
lþ 1

2

�
fskyTr½C−1

GRC;aC−1
GRC;b� ð42Þ

where ; a is a derivative with respect to pa, fsky is related to
the fraction of the sky observed (fsky ¼ 0.375 for a
DETF4-type survey), and C is an Nb × Nb matrix where
Nb is the number of tomographic redshift bins.C represents

FIG. 1 (color online). Degeneracy directions of weak lensing (l ¼ 50, dashed red) and redshift-space distortions (solid green) in the
μ̄0-Σ0 plane, where μ̄ðxÞ and ΣðxÞ scale as ΩGR

Λ ðxÞ (left) and as constants (right).
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the observed power spectrum of the convergence, and is
given by the following expression [41]:

Ci;jðlÞ ¼ Pi;j
κ ðlÞ þ hγ2intiδij

n̄i
ð43Þ

where n̄i is the number density of galaxies per steradian in
bin i and hγ2inti is the rms intrinsic shear, equal to 0.22 for a
DETF4-type survey.
Computing the appropriate value of n̄i requires the

selection of source redshift bins. In practice, once in
possession of data, the selected bins are those which are
maximal in number while maintaining shot noise suffi-
ciently below the signal. For our forecasting purposes, we
instead follow, for example, [2] and [3]. We select redshift
bins by subdividing nðzÞ of Eq. (35) into 5 sectors, such
that the number of galaxies in each bin is equal. The value
of n̄ for the total redshift range for a DETF4-type survey is
given by n̄ ¼ 3.55 × 108, so the value in each tomographic
bin is simply n̄i ¼ n̄=5.
In the following subsections, we use the Fisher formal-

ism to compute forecast constraints in a number of
scenarios. We first consider constraints on the parameters
of δμðxÞ and δγðxÞ in the case where we fix the expansion
history to mimic ΛCDM. We then incorporate expected
measurements of w0 and wa from baryon acoustic oscil-
lations (BAO) to forecast constraints on the parameters of
δμðxÞ and δγðxÞ in the case where we marginalize over the
parameters of βðxÞ. We finish by discussing the directions
of best constraint in the parameter space of the scale
dependent Ansatz for μðx; kÞ and γðx; kÞ put forth in [14].

A. ΛCDM-like expansion history: βðxÞ ¼ 0

We first consider constraints on the parameters of δμðxÞ
and δγðxÞ in the case where the expansion history is fixed to
be ΛCDM-like. As in Eq. (37), we transform δμðxÞ and
δγðxÞ to μ̄ðxÞ and ΣðxÞ, and we choose the time dependence
given by Eq. (39).
To compute these constraints, we calculate the 2 × 2

Fisher matrix for lensing, for redshift-space distortions, and
for both observations combined. For this, we requires
expressions for the derivatives ∂fσ8ðxÞ∂μ̄0 , ∂fσ8ðxÞ

∂Σ̄0
and

∂
∂μ̄0

�
Pi;j
κ ðlÞ þ hγ2intiδij

n̄i

�
¼ ∂Pi;j

κ ðlÞ
∂μ̄0 ð44Þ

∂
∂Σ0

�
Pi;j
κ ðlÞ þ hγ2intiδij

n̄i

�
¼ ∂Pi;j

κ ðlÞ
∂Σ0

: ð45Þ

These are found in a straightforward manner from Eqs. (29)
and (36); we present them in Appendix C.
The resulting forecast constraints are illustrated in Fig. 2.

As discussed in Sec. III, the degeneracy directions of the
two observables are nearly orthogonal in this case.

Combining them results in promising forecast constraints
on μ̄0 and Σ0. We see that we can expect a DETF4-type
survey to provide constraints at a level of approximately
4% in this plane, in the case where βðxÞ is assumed to be
fixed at 0.

B. The effect of marginalizing over fw0; wag
In reality, βðxÞ is not fixed to zero, but rather the

associated parameters will also be constrained with some
nonzero error. While weak lensing and redshift-space
distortions will provide some constraints on these, it is
BAO measurements which are expected to provide the best
constraints on the expansion history of the Universe.
In this section, we use a CPL-type Ansatz for βðxÞ as

proposed in [42,43]: βðxÞ ¼ w0 þ 1þ wað1 − exÞ. We
incorporate forecast BAO constraints on w0 and wa and
use these to obtain expected constraints in the μ̄0-Σ0 plane.
We first marginalize over only w0, while holding wa to its
fiducial value of 0; then we examine the effect of allowing
wa to vary as well.

1. Marginalizing over w0; wa ¼ 0

We first demonstrate how constraints in the μ̄0-Σ0 plane
are affected by marginalizing over w0 when wa is held fixed
to its fiducial value of 0.
Because we are now incorporating information about

three parameters (μ̄0, Σ0 and w0), our Fisher matrices are
3 × 3 in dimension. In order to compute these, we now
require additional derivatives of Pi;j

κ ðlÞ and fσ8ðxÞ with

FIG. 2 (color online). Forecast constraints for weak lensing
(orange), redshift-space distortions (green) and both observables
combined (blue) for a DETF4-type survey, in the μ̄0-Σ0 plane
with βðxÞ fixed to 0. Contours represent the 68.3% and 95.4%
confidence regions.
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respect to w0; all are listed in Appendix C. Because
transverse measurements of BAO are independent of non-
background gravitational effects [44], the Fisher matrix of
BAO is nonzero only in the ðw0; w0Þ component. The value
of this matrix component is equal to 1

σ2w0 ;BAO
, where σw0;BAO is

the 1-σ error on w0 from BAO measurements.
To explore the effect of marginalizing over w0, we

consider three levels of constraint from BAO:
(1) For comparison: the case where w0 is fixed to its

fiducial value. This is identical to the case consid-
ered in Sec. IVA.

(2) The case where σw0;BAO ¼ 1%. This scenario mimics
best-case constraints from a DETF4-type survey.

(3) The case where σw0;BAO ¼ 5%. This lies between
current best constraints and scenario 2 above.

The resulting constraints from the combination of weak
lensing, BAO and redshift-space distortions are shown in
Figs. 3 and 4. Figure 3 shows in the left-hand panel the
forecast constraints on μ̄0 for cases 1–3 above when
marginalizing over w0 and Σ0; the right-hand panel displays
the same for Σ0 when marginalizing over w0 and μ̄0.
Figure 4 shows the 68.3% forecast joint constraints on
μ̄0-Σ0 in scenarios 1–3 while marginalizing over w0 only.
We note from Fig. 4 that the degeneracy direction of the

combined constraint in the μ̄0-Σ0 plane changes consid-
erably between the three scenarios. μ̄0 and Σ0 are mildly
negatively correlated in scenario 1, whereas in scenario 2
they are positively correlated, and in scenario 3 even more
so. This can be understood by considering the joint forecast
constraints in the μ̄0-w0 and Σ0-w0 planes, marginalized in
each case over the other non-wa parameter. These are
displayed at a 68.3% level in Fig. 5 for scenario 3. Both μ̄0
and Σ0 are shown therein to exhibit a positive correlation
with w0. This implies that μ̄0 and Σ0 are also positively

correlated with each other, except in the case where w0 is
fixed or constrained so tightly that this effect is negated. As
the constraint on w0 is loosened, moving from scenario 1
through scenario 2 to scenario 3, this positive correlation
becomes more pronounced.
We notice also from Fig. 4 that the constraint on Σ0 is

relatively insensitive to the level of BAO constraint on w0,
whereas the constraint on μ̄0 changes considerably between
scenarios 1–3. This is consistent with Fig. 5, in which we
see that the degeneracy direction in the μ̄0-w0 plane has a
far greater positive slope than that in the Σ0-w0 plane. These
degeneracy directions, and hence the relative sensitivity of
μ̄0 and Σ0 constraints to w0 constraints, can be understood

FIG. 3 (color online). Forecast constraints from weak lensing, redshift-space distortions and BAO in the case where w0 has been
marginalized over and wa has been fixed to 0. The left-hand panel shows the confidence region for μ̄0 when Σ0 is marginalized over,
while the right-hand panel shows the confidence region for Σ0 with μ̄0 marginalized over. Black, solid: w0 fixed; red, dashed: BAO error
on w0 ¼ 1% (DETF4); green, dotted: BAO error on w0 ¼ 5%.

FIG. 4 (color online). Forecast 68.3% confidence regions in the
μ̄0-Σ0 plane, marginalizing over w0, for the case where wa ¼ 0.
Black, solid: w0 fixed; red, dashed: BAO error on w0 ¼ 1%
(DETF4); green, dotted: BAO error on w0 ¼ 5%.
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by considering the expressions for Pi;j
κ ðlÞ [Eq. (29)] and

δfσ8ðxÞ [Eqs. (17) and (36)]. Both Pi;j
κ ðlÞ and δfσ8ðxÞ are

given by integrals in time over a kernel and a source term.
In the case of δfσ8ðxÞ, the general relativistic kernel
Gfðx; ~xÞ is significant back to z≃ 15, whereas in the weak
lensing case, the kernel is nonzero only as far back in
redshift as the furthest source galaxies (z ¼ 2 in this case).
In the current model of βðxÞ, deviations from a ΛCDM
expansion history are more significant at early times,
whereas μ̄ðxÞ and ΣðxÞ are both chosen to be significant
only at late times (below z≃ 5). Therefore, the δfσ8ðxÞ
integration from z≃ 15 favors sensitivity to the back-
ground expansion variable w0 over μ̄0, whereas the weak
lensing integral, significant only from z≃ 2, results in
relatively greater sensitivity to Σ0. This results in the
relative sensitivity of the μ̄0 constraint to the w0 constraint
level, as seen in Fig. 4. Note that we have not accounted
here for any uncertainty in galaxy bias models at high
redshifts, which may have significant effects on the
sensitivity of fσ8ðxÞ to the background expansion at early
times.

Finally, we note that there is clearly a direction in the
μ̄0-Σ0 plane which is entirely insensitive to the change in
w0. This is in fact expected due to the nature of the contours
displayed. Given the hypothetical 3D confidence region in
the space of μ̄0, Σ0 and w0, the marginalized constraint of
scenario 3 is equivalent to projecting this ellipsoid into the
μ̄0-Σ0 plane. When we reduce the error in only the w0

direction as in scenario 2—that is, reducing the error in the
direction orthogonal to the plane of projection—the result-
ing projection will, by simple geometrical considerations,
coincide with the first projection in two locations. The same
argument can then be extended to the case of fixed w0,
which involves simply taking a slice of the 3D ellipsoid at
the location of the μ̄0-Σ0 plane.

2. Marginalizing over fw0;wag
We now consider the case where we do not fix wa to zero.

In this scenario, there is information present about 4
parameters (μ0;Σ0; w0; wa), so all Fisher matrices are
4 × 4. In addition to the previous derivative expressions,
we now need derivatives with respect to wa of Pi;j

κ ðlÞ and
fσ8ðxÞ. Once again, these are computed from Eqs. (29) and
(36), and listed in Appendix C. In this scenario, the BAO
Fisher matrix is slightly more complicated, as the entire
2 × 2 block related to w0 and wa is nonzero.
In analogy to the above, we consider three scenarios:
(1) The scenario where w0 and wa are fixed to their

fiducial values. Again, this for comparison, and is
identical to the case considered in Sec. IVA.

(2) The scenario where the BAO Fisher matrix repre-
sents the best-case expected constraints from a
DETF4-type survey. In this scenario, the compo-
nents of the BAO-only covariance matrix (the
inverse of the Fisher matrix) are given by:
Cw0;w0 ¼ 0.0010, Cwa;w0 ¼ −0.0038 and Cwa;wa ¼
0.016 [45].

(3) The scenario where the BAO-only covariance matrix
is obtained by multiplying the covariance matrix
listed above in scenario 2 by an overall factor of
ð8.2Þ2. This corresponds to the case where the
projected 68.3% error on w0 from BAO is 5%
and all other elements of the covariance matrix
are scaled up accordingly.

The left-hand panel of Fig. 6 presents the combined
weak lensing, redshift-space distortion and BAO forecast
constraints on μ̄0 while marginalizing over w0, wa and Σ0;
the right-hand panel does the same for constraints on Σ0

while marginalizing over w0, wa and μ̄0. Figure 7, mean-
while, presents the 68.3% confidence regions in the μ̄0-Σ0

plane while marginalizing over w0 and wa.
We see that the forecast constraint on Σ0 is now slightly

more sensitive to the level of BAO constraint on w0 and wa
than in the above case where wa is fixed. This is particularly
noticeable in scenario 3, in which the expansion history is
the least well constrained. Turning to μ̄0, we see from Fig. 6

FIG. 5. Forecast constraints at a 68.3% level from weak lensing,
redshift-space distortions and BAO measurements, in the case
where σw0;BAO ¼ 5%. The top panel displays these joint con-
straints in the μ̄0-w0 plane, marginalizing over Σ0, while the
bottom panel does the same in the Σ0-w0 plane, marginalizing
over μ̄0. In both cases, wa is fixed to 0.
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that the forecast constraint remains sensitive to our knowl-
edge of the expansion history in much the same way as in
the wa fixed case. That is, the constraint in scenario 3 is
broadened considerably relative to that in scenario 2, and
both are slightly broader than in the above case where wa
fixed. Finally, examining the combined plot in Fig. 7, we
see that the confidence regions therein are slightly larger
than those in the corresponding Fig. 4, where wa is fixed
(other than for scenario 1, which is the same in both figures
by design).
We surmise that allowing for a time dependence in the

equation of state of the effective dark energy component
[via βðxÞ] loosens the expected constraints on μ̄0 and Σ0,

but not catastrophically so. In fact, the level of constraint
provided by BAO measurements on the expansion history
of the Universe appears to have a greater effect on forecast
constraints in the μ̄0-Σ0 plane than does our assumption
regarding the time dependence of that expansion history.

C. Scale-dependent μðx; kÞ and γðx; kÞ
Until this point, we have neglected any scale dependence

of μðx; kÞ and γðx; kÞ, focusing only on time dependence.
We now consider a scale-dependent Ansatz.
It has been shown that in the quasistatic regime and for

local theories of gravity, μðx; kÞ and γðx; kÞ can be
expressed as a ratio of polynomials in k with a specific
form [14]

γðx; kÞ≃ p1ðxÞ þ p2ðxÞk2
1þ p3ðxÞk2

μðx; kÞ≃ 1þ p3ðxÞk2
p4ðxÞ þ p5ðxÞk2

: ð46Þ

This form has recently been considered in [24], in which a
principle component analysis was undertaken for a com-
bined future data set including weak lensing and galaxy
count measurements from the Large Synoptic Survey
Telescope, as well as Planck measurements and upcoming
supernova data. Therein, the primary goal was to provide
insight into future constraints on μðx; kÞ and γðx; kÞ as well
as on the overall scale dependence. Here, we use the Fisher
matrix formalism to find the level of forecast constraint on
various parameter space directions from a DETF4-type
survey. Our expression for Pi;j

κ will then allow us to
understand the related degeneracy structure of the param-
eter space.

FIG. 6 (color online). Forecast constraints from weak lensing, redshift-space distortions and BAO in the case where w0 and wa have
been marginalized over. The left-hand panel shows the confidence region for μ̄0 when Σ0 is marginalized over, while the right-hand
panel shows the confidence region for Σ0 with μ̄0 marginalized over. Black, solid: w0 and wa fixed; red, dashed: scenario 2 described in
Sec. IV B 2; green, dotted: scenario 3 described in Sec. IV B 2.

FIG. 7 (color online). Forecast 68.3% confidence regions in the
μ̄0-Σ0 plane, marginalizing over w0 and wa. Black, solid: w0 and
wa fixed; red, dashed: scenario 2 described in Sec. IV B 2; green,
dotted: scenario 3 described in Sec. IV B 2.
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Because we are interested only in broadly understanding
the best-constrained directions of the parameter space, we
fix βðxÞ ¼ 0 for simplicity. In GRþ ΛCDM, p1ðxÞ ¼
p4ðxÞ ¼ 1 and p2ðxÞ ¼ p3ðxÞ ¼ p5ðxÞ ¼ 0. Therefore,
in keeping with our linear response approach, we define

p1ðxÞ ¼ 1þ δp1ðxÞ
p2ðxÞ ¼ δp2ðxÞ
p3ðxÞ ¼ δp3ðxÞ
p4ðxÞ ¼ 1þ δp4ðxÞ
p5ðxÞ ¼ δp5ðxÞ: ð47Þ

Then, by dropping higher-order terms in δpiðxÞ, we find
expressions for μðx; kÞ and γðx; kÞ,

μðx; kÞ≃ 1þ δp3ðxÞk2 − δp4ðxÞ − δp5ðxÞk2
γðx; kÞ≃ 1þ δp1ðxÞ þ δp2ðxÞk2 − δp3ðxÞk2: ð48Þ

Our previous choices for δμðx; kÞ and δγðx; kÞ have been
consistent with Eq. (48); we have simply assumed that
δp2ðxÞ, δp3ðxÞ and δp5ðxÞ have been subdominant, and let
−δp4ðxÞ ¼ δμðxÞ and δp1ðxÞ ¼ δγðxÞ.
It will be useful to have the equivalent expressions for

μ̄ðx; kÞ and Σðx; kÞ. We find them using Eq. (37),

μ̄ðx; kÞ≃ −δp1ðxÞ − δp4ðxÞ
þ k2ð−δp2ðxÞ þ 2δp3ðxÞ − δp5ðxÞÞ

Σðx; kÞ≃ −
1

2
δp1ðxÞ − δp4ðxÞ

þ k2
�
−
1

2
δp2ðxÞ þ

3

2
p3ðxÞ − δp5ðxÞ

�
: ð49Þ

As usual, in order to forecast constraints using Fisher
matrices, we must select an Ansatz for the functions δpiðxÞ.
From Eq. (46), we see that in fact, while δp1ðxÞ and δp4ðxÞ
are dimensionless, δp2ðxÞ, δp3ðxÞ and δp5ðxÞ must have
dimensions of length squared. We choose a form similar to
that of Eq. (39) for both sets of functions, introducing a
mass scale where necessary to account for their different
dimensionalities,

δpð1;4ÞðxÞ ¼ pð1;4Þ
0

ΩGR
Λ ðxÞ

ΩGR
Λ ðx ¼ 0Þ

δpð2;3;5ÞðxÞ ¼
pð2;3;5Þ
0 c2

ð20H0Þ2
ΩGR

Λ ðxÞ
ΩGR

Λ ðx ¼ 0Þ : ð50Þ

Thus, the parameter space is five-dimensional, with param-
eters fp1

0; p
2
0; p

3
0; p

4
0; p

5
0g. The scale c=20H0 has been

chosen as it provides sensible numerical eigenvalues. We
will see below that the numerical value of this scale is
irrelevant to our results.

To compute the Fisher matrices we require derivatives of
Pi;j
κ and fσ8 with respect to the parameters pi

0. These are
computed in a straightforward manner from Eqs. (29) and
(36), and are presented in Appendix C. As can be seen
there, or as is obvious from Eq. (46), some of these
derivative expressions are dependent upon k. In the weak
lensing case, this is trivially dealt with, as the Limber
approximation allows us to set k ¼ l

χ. However, the

derivatives of fσ8 with respect to p2
0, p

3
0 and p5

0 are truly
k dependent.
In order to treat this case, we abandon the usual (general

relativistic) notion that all scale dependence of fσ8 is
factored out, and instead divide our forecast observations
into five bins in k. As in [12], we let these bins have edges
k ¼ ½0.005; 0.02; 0.05; 0.08; 0.12; 0.15�, stopping short of
entering the regime where nonlinearities dominate. We
select the error on the measurement in each k-bin based on
the assumption that a DETF4-type survey, which covers a
large fraction of the sky, will result in tighter measurements
of large-scale modes than of small-scale modes. To model
this, we divide the total error budget of each redshift bin,
given by [46], into the five k-bins listed above. The first
redshift bin (between k ¼ 0.005 and k ¼ 0.02) receives 4%
of the error budget, the next two bins (k ¼ 0.02–0.05 and
k ¼ 0.05–0.08) receive 12% of the error budget each, and
the final two bins (k ¼ 0.08–0.12 and k ¼ 0.12–0.15)
receive 36% of the error budget each.
We can now construct the Fisher matrices for weak

lensing and redshift-space distortions, recalling in the
redshift-space distortions case to sum over bins of scale
as well as of redshift. We invert the total combined Fisher
matrix to obtain the covariance matrix, and diagonalize to
obtain five eigenvectors with corresponding eigenvalues.
Before examining and interpreting these eigenvalues and

eigenvectors, we pause to consider more fully the impli-
cations of the difference in dimensionality of δp1ðxÞ and
δp4ðxÞ vs δp2ðxÞ, δp3ðxÞ and δp5ðxÞ. In Eq. (50), p0

2, p
0
3

and p0
5 have essentially been scaled by c2

ð20H0Þ2. This scaling
factor is arbitrary, and using a different scaling factor would
alter the numerical value of the eigenvalues of the covari-
ance matrix. Therefore, although all eigenvalues of the
covariance matrix are dimensionless, any forecast con-
straint on p0

2, p
0
3 or p

0
5, or on any combination thereof, must

be multiplied by c2

ð20H0Þ2 (or the appropriate scaling factor).

This provides a physically meaningful value with dimen-
sions length squared, which represents a constraint on the
combination p0

ð2;3;5Þ ×
c2

ð20H0Þ2. Without introducing a prior,

it is impossible to meaningfully compare numerical con-
straints on parameter combinations within two different
parameter subspaces: that of p0

1 and p0
4 and that of p0

2, p
0
3

and p0
5.

First, consider those eigenvectors in the subspace of p0
1

and p0
4. We list them here, along with the square root of the
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associated eigenvalue
ffiffiffiffiffi
σ2

p
. This acts as a measure of how

well the parameter space is constrained in the direction of
the eigenvector. We have

~α1 ¼ 0.8p̂1 − 0.004p̂2 þ 0.001p̂3 þ 0.6p̂4 þ 0.002p̂5

≃ 0.8p̂1 þ 0.6p̂4 ð51Þ

with
ffiffiffiffiffi
σ2

p ≃ 0.01, and

~α2 ¼ −0.6p̂1 þ 0.0003p̂2 þ 0.0002p̂3 þ 0.8p̂4 − 0.0006p̂5

≃−0.8p̂1 þ 0.6p̂4 ð52Þ

with
ffiffiffiffiffi
σ2

p ≃ 0.02. Clearly, due to the numerical nature of
the Fisher matrix calculation, some subdominant contri-
butions in the directions of p̂2, p̂3 and p̂5 persist; we ignore
these. We see here that ~α1, the better constrained of the two
parameter space directions, is essentially a weighted sum of
the directions p̂1 and p̂4. ~α2 is the vector orthogonal to ~α1,
and consists of a weighted difference.
In order to interpret the level of constraint placed on the

eigenvector directions, we consider Eq. (49). Recall that
because we have chosen an Ansatz for δpiðxÞ which is non-
negligible at late times only [Eq. (50)], Σðx; kÞ is the
dominant non-GRþ ΛCDM contribution to Pi;j

κ ðlÞ, while
only μ̄ðx; kÞ contributes to fσ8. In examining Eq. (49), it is
clear why a sum of directions p̂1 and p̂4 is forecast to be
better constrained than a difference: both Σðx; kÞ and
μ̄ðx; kÞ are directly sensitive to weighted sums of δp1ðxÞ
and δp4ðxÞ.
We now consider eigenvectors in the subspace of p0

2, p
0
3

and p0
5. These are given by

~α3 ¼ 0.0005p̂1 þ 0.3p̂2 − 0.8p̂3 þ 0.0009p̂4 þ 0.5p̂5

≃ 0.3p̂2 − 0.8p̂3 þ 0.5p̂5 ð53Þ

with
ffiffiffiffiffi
σ2

p ≃ 10−5,

~α4 ¼ −0.004p̂1 − 0.8p̂2 þ 0.1p̂3 − 0.002p̂4 þ 0.6p̂5

≃ −0.8p̂2 þ 0.1p̂3 þ 0.6p̂5 ð54Þ

with
ffiffiffiffiffi
σ2

p ≃ 4 × 10−4, and

~α5 ¼ −1× 10−6p̂1 þ 0.6p̂2 þ 0.6p̂3 þ 5× 10−5p̂4 þ 0.6p̂5

≃ 0.6p̂2 þ 0.6p̂3 þ 0.6p̂5 ð55Þ

with
ffiffiffiffiffi
σ2

p ≃ 2. Recall that it is not meaningful to directly
compare these

ffiffiffiffiffi
σ2

p
values with those for eigenvectors ~α1

and ~α2.
In order to understand the relative constraints on the

eigenvectors in this subspace, we first find the relationships
between parameter values along the eigenvector directions.

We then use these relationships in Eq. (49) to find simpler
expressions for Σðx; kÞ and μ̄ðx; kÞ:

(i) In the direction ~α3, p0
2 ≃ − 1

3
p0
3 and p0

5 ≃ − 2
3
p0
3.

Therefore, Σðx; kÞ≃ 7
3

p3
0
c2

ð20H0Þ2
ΩGR

Λ ðxÞ
ΩGR

Λ ðx¼0Þ k
2, and

μ̄ðx; kÞ≃ 3
p3
0
c2

ð20H0Þ2
ΩGR

Λ ðxÞ
ΩGR

Λ ðx¼0Þ k
2.

(ii) In the direction ~α4, p0
2 ≃ −8p0

3 and p0
5 ≃ 6p0

3.

Σðx; kÞ≃ − 1
2

p3
0
c2

ð20H0Þ2
ΩGR

Λ ðxÞ
ΩGR

Λ ðx¼0Þ k
2,

and μ̄ðx; kÞ≃ 4
p3
0
c2

H2
0

ΩGR
Λ ðxÞ

ΩGR
Λ ðx¼0Þ k

2.

(iii) In the direction ~α5, p0
2 ≃ p0

3 and p0
5 ≃ p0

3.
Σðx; kÞ≃ 0, and μ̄ðx; kÞ≃ 0.

With this manipulation, it can be seen why the direction ~α3
is better constrained than ~α4. The expressions for Σðx; kÞ
demonstrate that a small change in parameter values along
direction ~α3 has a numerically larger effect on the value of
Σðx; kÞ than does a small change along direction ~α4, by a
factor of 14

3
. Although μ̄ðx; kÞ is affected slightly more by a

change along the ~α4 direction than along the ~α3 direction
(by a factor of 4

3
), this effect is clearly subdominant. It is

also plain to see why the direction ~α5 is by far the worst
constrained of this set. As long as p0

2 ¼ p0
3 ¼ p0

5, both
Σðx; kÞ and μ̄ðx; kÞ are entirely insensitive to the value
taken by these parameters.
It is tempting to attempt a comparison of the above

results directly with those of [24]. However, this would be
misleading, as the principle component analysis employed
in that work allows the functions piðxÞ to take any time
dependence, whereas we restrict the time dependence to
that given in Eq. (50). Additionally, the authors of [24]
choose to impose a prior upon the variance of each function
piðxÞ, enabling them to meaningfully discuss constraints
on directions which combine the two parameter subspaces
which we have considered. Nevertheless, there is some
small comparison we can draw: in [24] it was found that the
functions piðxÞ cannot be individually constrained, and we
similarly find no evidence of any well-constrained direction
corresponding to a single pi

0.

V. CONCLUSIONS

The goal of this work has been to understand how weak
lensing measurements are affected by the individual physi-
cal effects of alternative theories of gravity. In this spirit, we
have chosen to prioritize clarity. We have therefore
restricted ourselves to considering gravitational parameters,
and have not included uncertainty in galaxy bias or in the
standard cosmological parameter values at this time.
We have constructed an expression for the power

spectrum of the weak lensing observable convergence, as
given in Eq. (29). By considering only small deviations
from GRþ ΛCDM, we have derived an expression which
separates into an integral over two terms: a general
relativistic kernel, and a source term which encompasses
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all deviations from general relativity. This source term is
composed of additive terms which are themselves each
representative of a different effect due to modifying general
relativity. This neat separation, first of the full expression
into kernel and source and then of the source expression
into physical effects, allows degeneracies between gravi-
tational parameters to be physically interpreted. We note
also that our expression is reliable in the ΛCDM-like case
of βðxÞ ¼ 0, whereas complimentary works employing a
fluid model have found this limit difficult to constrain [47].
With Eq. (29) in hand, we first investigated degeneracies

in the simplified case of a ΛCDM-like expansion history,
showing how the degeneracy direction of weak lensing in
the μ̄0-Σ0 plane relies on the time-dependent Ansatz for
μ̄ðxÞ. However, we also demonstrated that even for an
extreme Ansatz, weak lensing and redshift-space distortion
measurements remain nondegenerate in this plane, and
hence are a viable combination of observables to offer joint
constrains on μ̄0 and Σ0.
We then moved on to exploit the potential of our

expression as a valuable tool in conducting and interpreting
Fisher forecasts of weak lensing observations. We found
that the linearity of our expression in the gravitational
parameters meant that it was technically simple to compute
the required Fisher matrices. Perhaps more importantly, the
simple form of our expression was also found to provide
physical interpretation of the degeneracies which presented
themselves in the forecast of multidimensional constraints.
We first demonstrated this use of our expression by

allowing the effective equation of state of the dark energy
component to take a CPL form, given in Sec. IV B. We
found that in the case where wa ¼ 0 and a phenomeno-
logical Ansatz for μ̄ðxÞ and ΣðxÞ is assumed, forecast
constraints on μ̄0 from weak lensing and redshift-space
distortions are highly sensitive to the level of constraint on
w0 from BAO. Forecast constraints on Σ0, on the other
hand, were found to be nearly unaffected. The separation of
our expression into source and kernel made evident the
stark difference between the redshift dependences of the
kernels of Pi;j

κ and fσ8. This provided a clear explanation
for the higher sensitivity of redshift-space distortions to
early time effects, and hence to changes in w0. Relaxing the
requirement that wa ¼ 0, we then saw that constraints in the
μ̄0-Σ0 plane were only moderately affected by marginal-
izing over wa. This offers the exciting prospect that the
analysis of data from a DETF4-type survey may be able to
allow for a time-dependent background expansion without
sacrificing much constraining power in the μ̄0-Σ0 plane.
Finally, we used our expression for Pi;j

κ , in combination
with that for fσ8, to understand the best-constrained
directions in the space of parameters of the scale-dependent
Ansatz given in [14]. By varying the parameter values along
the eigenvectors of the Fisher matrix within the source
terms of Pi;j

κ and of fσ8, we could understand analytically
why different directions in the parameter space were

forecast to be well or poorly constrained. Using again a
linear response approach, we were able to explain why a
weighted sum of the parameters not associated with scale
dependence is forecast to be well constrained, and why a
direct sum of the parameters associated with scale depend-
ence is totally unconstrained. This work expands upon the
work of [24], both by forecasting for a different survey, but
also by providing clear reasons for the forecast constraints
found, something that is nontrivial to do using a principle
component analysis method.
The methods we have developed to better understand the

effect of altering the theory of gravity could in principle be
extended to understanding degeneracies in other scenarios
of observational cosmology. We hope that we have pro-
vided here the groundwork for such developments. As
previously noted, in the interest of clarity we have not
included uncertainty on the galaxy bias or on standard
cosmological parameters in our forecasting. Ideally, these
would be included to provide more accurate forecasting and
more general conclusions. However, in seeking to include
these additional parameters, the clarity of Eq. (29) is
compromised, and as such we anticipate that future work
in this direction will necessarily involve the sacrifice of
the descriptive power shown here. In such future work,
forecasting methods involving sampling the posterior of
the joint probability distribution of the relevant parameters
are likely to be more appropriate.
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APPENDIX A: DERIVATION OF
H2ΩMjMG ¼ H2ΩMjGR

Here we derive (a) the formula for δHðxÞ used in
Eq. (23), and (b) the relation H2ΩMjMG ¼ H2ΩMjGR used
in Sec. II B.
First we write the Friedmann equation as

H2ðxÞ ¼ 8πG
3

a2½ρMðaÞ þ ρDðaÞ�

¼ 8πG
3

h
ρM0e−x þ ρD0e

−
R

dx0ð1þ3wDðx0ÞÞ
i

¼ H2
0ΩM0e−x

h
1þ Re3xe−3

R
x

0
dx0βðx0Þ

i
ðA1Þ

where in the second line we have changed the independent
variable to x ¼ ln a, and used the energy density evolution
for a fluid with a general equation of state ωD. In the third
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line we have defined R ¼ ΩΛ0=ΩM0, identifying the present
fractional energy density in the dark fluid (ΩD0) with that of
the apparent cosmological constant today (ΩΛ0). We have
also made use of wDðxÞ ¼ −1þ βðxÞ, as introduced
in Eq. (13).
We define uðxÞ ¼ R x0 βðx0Þdx0 as in Eq. (14), and assume

as in Sec. II B that for a viable cosmology jβðxÞj ≪ 1 and
juðxÞj ≪ 1. Then, expanding the exponential and taking a
square root leads to

HðxÞ ¼ H0

ffiffiffiffiffiffiffiffiffi
ΩM0

p
e−

x
2½1þ Re3xð1 − 3uðxÞÞ�12

≈ H0

ffiffiffiffiffiffiffiffiffi
ΩM0

p
e−

x
2½1þ Re3x�12

�
1 −

3

2

�
uðxÞRe3x
1þ Re3x

��

¼ HGRðxÞ
�
1 −

3

2

�
uðxÞRe3x
1þ Re3x

��
ðA2Þ

where in the second line we have used a Taylor expansion
to linear order. Finally, we use the (easily derived) result
that in ΛCDM, and assuming negligible radiation,

ð1 −ΩGR
M Þ ¼ Re3x

1þ Re3x
ðA3Þ

to obtain

δHðxÞ ¼ HðxÞ −HGRðxÞ ¼ −
3

2
HGRðxÞuðxÞð1 −ΩGR

M Þ:
ðA4Þ

With this result in hand, it is simple to show that the
combination H2ΩM does not change under the perturba-
tions about the GRþ ΛCDM model. Expanding to first
order about the fiducial model,

H2ΩM ¼ ðHGR þ δHÞ2ðΩGR
M þ δΩMÞ ðA5Þ

≈H2
GRΩGR

M

�
1þ 2

δH
HGR

þ δΩM

ΩGR
M

�
þOðδH2Þ:

ðA6Þ

We call upon the following result derived in Appendix A of
[12] (for brevity’s sake we will not repeat the derivation
here):

δΩM ¼ 3uðxÞΩGR
M ½1 − ΩGR

M �: ðA7Þ

Substituting Eqs. (A4) and (A7) into Eq. (A6) one finds
H2ΩM ¼ H2

GRΩGR
M , as stated in the text.

APPENDIX B: CONVERTING BETWEEN
fδμðx;kÞ;δγðx;kÞg AND fμ̄ðx;kÞ;Σðx;kÞg

We derive here the relationship, given in Eq. (37),
between two sets of functions which parameterize

deviations from GRþ ΛCDM in the quasistatic limit:
fδμðx; kÞ; δγðx; kÞg and fμ̄ðx; kÞ;Σðx; kÞg. In doing so,
we will refer heavily to Eqs. (4) and (5) of [9]. For
reference, we reproduce them here, changing to our time
variable x ¼ lnðaÞ and making some minor notational
alterations in order to maintain our conventions,

Ψðx; kÞ ¼ ½1þ μ̄ðx; kÞ�ΨS
GRðx; kÞ

Ψðx; kÞ þΦðx; kÞ ¼ ½1þΣðx; kÞ�ðΨS
GRðx; kÞ þΦS

GRðx; kÞÞ:
ðB1Þ

We have labeled the general relativistic potentials with an S
due to the fact that they are slightly different from what we
call ΨGRðx; kÞ and ΦGRðx; kÞ. ΨS

GRðx; kÞ and ΦS
GRðx; kÞ

follow a general relativistic Poisson equation and slip
relation, but they may generally still have a different value
than ΨGRðx; kÞ and ΦGRðx; kÞ, due to any difference in the
history of the growth of overdensities.
Now, from Eq. (18) above, we see that

Φðx; kÞ ¼ ð1þ δμðx; kÞÞð1þ δΔðx; kÞÞΦGRðx; kÞ: ðB2Þ
In fact, ΦS

GRðx; kÞ ¼ ð1þ δΔðx; kÞÞΦGRðx; kÞ, so that we
have

Φðx; kÞ ¼ ð1þ δμðx; kÞÞΦS
GRðx; kÞ: ðB3Þ

We also know from Eq. (3) that in the quasistatic regime,
Φðx; kÞ ¼ ð1þ δγðx; kÞÞΨðx; kÞ. Therefore,

Ψðx; kÞ ¼ 1þ δμðx; kÞ
1þ δγðx; kÞΦ

S
GRðx; kÞ

¼ 1þ δμðx; kÞ
1þ δγðx; kÞΨ

S
GRðx; kÞ

≃ ð1þ δμðx; kÞ − δγðx; kÞÞΨS
GRðx; kÞ ðB4Þ

where the second line comes from the fact that
ΦS

GRðx; kÞ ¼ ΨS
GRðx; kÞ. Referring to Eq. (B1), we see that

μ̄ðx; kÞ ¼ δμðx; kÞ − δγðx; kÞ; ðB5Þ
as in Eq. (37).
From here, we can use Eqs. (B3) and (B4) to write

(suppressing time and scale dependence for brevity)

Ψþ Φ ¼ 1þ δμ

1þ δγ
ΨS

GR þ ð1þ δμÞΦS
GR

¼ 1þ δμ

1þ δγ
ΦS

GR þ ð1þ δμÞΦS
GR

¼ 1

2

�
1þ δμ

1þ δγ
þ ð1þ δμÞ

�
ðΦS

GR þΨS
GRÞ

≃
�
1þ δμ −

1

2
δγ

�
ðΦS

GR þΨS
GRÞ ðB6Þ
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and by comparison with Eq. (B1), we have that

Σðx; kÞ ¼ δμðx; kÞ − 1

2
δγðx; kÞ ðB7Þ

as in Eq. (37).

APPENDIX C: DERIVATIVES OF Pi;j
κ AND fσ8

We present here the derivatives of Pi;j
κ and fσ8 which

are required for forecasting in Sec. IV. These

are determined in a straightforward manner by differ-
entiating Eqs. (29) and (36). For brevity, we will use
Kðx;lÞ as defined in Eq. (31) to denote the general
relativistic kernel in the definition of Pi;j

κ ðlÞ, and
Gfðx; ~xÞ as defined in Eq. (34) of [12] to denote the
general relativistic kernel in the case of redshift-space
distortions.
First, the derivatives with respect to μ̄0 and Σ0 are

given as

∂Pi;j
κ ðlÞ
∂μ̄0 ¼

Z
0

−∞
dxKðx;lÞ

�
3

Z
x

−∞
dx̄ΩGR

M ðx̄ÞIðx; x̄Þ ΩGR
Λ ðx̄Þ

ΩGR
Λ ðx̄ ¼ 0Þ

�

∂Pi;j
κ ðlÞ
∂Σ0

¼ 2

Z
0

−∞
dxKðx;lÞ ΩGR

Λ ðxÞ
ΩGR

Λ ðx ¼ 0Þ
∂fσ8ðxÞ
∂μ̄0 ¼

Z
x

−∞
Gfðx; ~xÞ

ΩGR
Λ ð~xÞ

ΩGR
Λ ð~x ¼ 0Þ d~x

∂fσ8ðxÞ
∂Σ0

¼ 0: ðC1Þ

Next, derivatives with respect to w0 and wa,

∂Pi;j
κ ðlÞ
∂w0

¼
Z

0

−∞
dxKðx;lÞ

�
3

2

Z
x

−∞
dx̄Iðx; x̄Þð1 −ΩGR

M ðx̄ÞÞ½3ΩGR
M ðx̄Þð1þ fGRðx̄ÞÞx̄þ fGRðx̄Þ� þ

3x
2
ð1 −ΩGR

M ðxÞÞ

þ
�∂ lnGjðxÞ

∂ ln χ þ ∂ lnGiðxÞ
∂ ln χ −

∂ lnðPGR
δ ðx ¼ 0; kÞ=k4Þ

∂ ln k
�����

χGR

3

2χGRðxÞ
Z

x

∞
dx̄

x̄
HGRðx̄Þ

ð1 − ΩGR
M ðx̄ÞÞ



∂Pi;j
κ ðlÞ
∂wa

¼
Z

0

−∞
dxKðx;lÞ

�
3

2
½x − ðex − 1Þ�ð1 −ΩGR

M ðxÞÞ

þ 3

2

Z
x

−∞
dx̄Iðx; x̄Þð1 −ΩGR

M ðx̄ÞÞf3ΩGR
M ðx̄Þð1þ fGRðx̄ÞÞ½x̄ − ðex̄ − 1Þ� þ fGRðx̄Þð1 − ex̄Þg

þ
�∂ lnGjðxÞ

∂ ln χ þ ∂ lnGiðxÞ
∂ ln χ −

∂ lnðPGR
δ ðx ¼ 0; kÞ=k4Þ

∂ ln k
�����

χGR

3

2

Z
x

∞
dx̄

x̄ − ðex̄ − 1Þ
HGRðx̄Þ

ð1 −ΩGR
M ðx̄ÞÞ

�
ðC2Þ

∂fσ8ðxÞ
∂w0

¼
Z

x

−∞
Gfðx; x0Þ

�ð1 −ΩGR
M ðx0ÞÞ

ΩGR
M ðx0Þ 3ΩGR

M ðx0Þð1þ fGRðx0ÞÞx0 þ fGRðx0Þ
�
dx0

∂fσ8ðxÞ
∂wa

¼
Z

x

−∞
Gfðx; x0Þ

�ð1 −ΩGR
M ðx0ÞÞ

ΩGR
M ðx0Þ 3ΩGR

M ðx0Þð1þ fGRðx0ÞÞ½x0 − ðex0 − 1Þ� þ fGRðx0Þð1 − ex
0 Þ

dx0: ðC3Þ

Finally, derivatives with respect to fpi
0g,

LEONARD, BAKER, AND FERREIRA PHYSICAL REVIEW D 91, 083504 (2015)

083504-16



∂Pi;j
κ ðlÞ
∂p1

0

¼ −
Z

0

−∞
dxKðx;lÞ

�
ΩGR

Λ ðxÞ
ΩGR

Λ ðx ¼ 0Þ þ 3

Z
x

−∞
dx0Iðx; x0ÞΩGR

M ðx0Þ ΩGR
Λ ðx0Þ

ΩGR
Λ ðx ¼ 0Þ

�

∂Pi;j
κ ðlÞ
∂p2
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