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The photometry profile of the integrated Sachs-Wolfe (ISW) effect, recently obtained by the Planck
consortium by stacking patches of cosmic microwave background (CMB) sky maps around a large number
of cosmic voids, contains a cold ring at about half the void’s effective radius surrounded by a hot ring near
the void’s boundary. The source of the temperature structure is assumed to be the ISW effect but the exact
cause of the ringed structure is not currently well understood, particularly the outer hot ring. Numerical
simulations have suggested that hot/cold ring structures can be produced by motions associated with
nonlinear growths of cosmic structures whose gravitational potentials produce the ISW effect. We have
recently developed the embedded lens theory and the Fermat potential formalism which can be used to
model the ISW effect caused by intervening individual lens inhomogeneities evolving arbitrarily. This
theory only requires knowledge of the void’s projected mass profile as a function of the passing CMB
photons’ impact radius and the rate of change of that mass distribution at passage. We present two simple
embedded void lens models with evolving mass densities and investigate the ISW effect caused by these
lenses. Both models possess expanding mass shells which produce hot rings around central cold regions,
consistent with the recent observations. By adding a small overdensity at the void’s center we can produce
the slight positive temperature excess hinted at in Planck’s photometric results. We conclude that the
embedded lens theory and the Fermat potential formalism is well suited for modeling the ISW effect.
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I. INTRODUCTION

The secondary anisotropy of the cosmic microwave
background (CMB) caused by the gravitational potentials
of inhomogeneities along the line of sight to the CMB
photon’s last scattering at redshift z ∼ 1100 is called the
integrated Sachs-Wolfe (ISW) effect [1]. The ISW fluctua-
tions caused by nonlinear growths of the density perturba-
tions at low redshifts were investigated in [2] using Swiss
cheese models [3–5] and their presence is referred to as the
Rees-Sciama (RS) effect. Following the pioneering work of
[1,2] the ISW/RS effect has been studied extensively using
analytical and numerical techniques such as exact general
relativity (GR) modeling, approximate perturbation mod-
eling, and N-body simulations [6–23]. For example the
authors of [6] studied the RS effect for galaxy clusters using
a simple Swiss cheese model (an expanding homogeneous
dust sphere) whereas the authors of [12] related some
nonlinear growth effects to the divergence of the large scale
structure’s momentum field (see also [14,21]). This second
order nonlinear ISW contribution is similar to that caused
by the transverse motion of a gravitational lens, i.e., the
Birkinshaw-Gull effect [7,8]. The numerical modeling is
usually based on the merging halo model for large scale

structure clustering [24–26]. Understanding the ISW/RS
effect can be considered critical to modern cosmology. For
example, the ISW effect probes the evolutionary history of
cosmic structures and the dynamics of dark energy [27].
Detecting this effect will directly probe the negative
pressure nature of the dark energy and complement
geometrical probes such as SNe Ia as standard candles
[28,29] and baryonic acoustic oscillations as standard rulers
[30]. Accurately measuring the ISW/RS effect is also
important for quantifying the non-Gaussian signatures in
the primordial density fluctuations [31–33]. Because of the
equivalence principle the ISW effect is manifested as a
frequency independent temperature shift in the CMB
spectrum. It has been detected as correlations between
the CMB temperature sky maps and tracers of large scale
structures [34,35]. It has also been detected by stacking
patches of CMB sky maps around known large scale
structures (galaxy clusters and cosmic voids). The ISW
effect has been detected by several groups using this
method [32,36]; however, the signal seems to be much
larger than predicted by both linear growth theory and
numerical simulations [16–20,37,38]. One interesting
result is the strange shape of the CMB temperature profile
of stacked cosmic voids; in particular, the expected cold
central region is surrounded by an unexpected hot ring in
the outer part of the profile [18,20,31]. This structure is
hard to explain within the framework of the linear ISW in a
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cold dark matter universe with a cosmological constant
(ΛCDM) cosmology (see Fig. 9 of [31]). The stacked
photometric profiles also show a hint of a small positive
excess (at about 2σ) when small filter radii (≲20% of the
effective void radius) are used. The Planck Collaboration
et al. [31] suggested small overdensities near the centers of
the stacked cosmic voids (intrinsic to the void-finding
algorithm ZOBOV used for the void catalog [39,40]) as the
possible cause of this intriguing feature.
We have developed the embedded lens theory in recent

papers [41–48] using the Swiss cheese models. We have
introduced the concept of the Fermat potential (equivalent
to the sum of the geometrical and potential part of the
gravitational lensing time delay) for embedded lenses and
have shown that the lowest order embedded lens theory can
be obtained by applying a variational principle to the
Fermat potential [43]. By lowest order we mean small
angle lensing caused by Newtonian perturbations of the
background cosmology. The sources of these Newtonian
perturbations are density variations, possibly large in ampli-
tude, but small in physical dimension compared to the lensing
distances involved and small compared to the radius of the
Universe. They are also assumed to be slowly varying. These
constraints on the perturbations exclude the necessity of
including post-Newtonian corrections [49] in the gravity
theory and result in an instantaneous Newtonian potential
which satisfactorily describes transiting photon orbits.
These restrictions are precisely the same as those imposed
in conventional linear lensing theory. Our Fermat potential
approach to lensing uses the projected lens mass density
directly without ever computing the Newtonian potential.
By using the Fermat potential to formulate gravitational

lensing the ISW effect produced by individual inhomoge-
neities can be obtained from a derivative with respect to the
lens’ redshift zd of the potential part of the lensing time
delay Tp [46],

ΔT
T

¼ Hd
∂Tp

∂zd
¼ HdTp

1þ zd
þ 2ð1þ zdÞ

rsHd

c

Z
1

x

dx0

x0
∂fðx0; zdÞ

∂zd ; ð1Þ

where Hd ¼ HðzdÞ is the Hubble parameter at the lens
redshift zd, and the potential part of the time delay is
defined by

cTpðθI; zdÞ ¼ 2ð1þ zdÞrs
Z

1

x

fðx0; zdÞ − fRWðx0Þ
x0

dx0:

ð2Þ

In the above θI is the lensing image angle, x ¼ θI=θM is the
normalized image angle, θM the angular radius of the
comoving lens boundary, rs is the Schwarzschild radius of
the lensing inhomogeneity, and fðxÞ≡MðxÞ=M is the
(projected) fraction of the lens mass contained within the

impact disk of radius θI, and fRWðxÞ ¼ 1 − ð1 − x2Þ3=2
is the corresponding quantity for the homogeneous
Friedmann-Lemaître-Robertson-Walker (FLRW) sphere
removed to form the embedded lens [46]. Embedded
lensing differs from conventional lensing in that it accounts
for the absence of the gravitational attraction of the
removed Swiss cheese void’s mass. The fRWðxÞ term in
Eq. (2) is a consequence of embedding on time delays when
linear lensing is adequate. Embedding can produce percent
size corrections to strong lensing time delays and image
amplifications, and can produce similar size changes in
weak lensing shears. It also naturally predicts the repulsive
lensing produced by cosmic voids [47]. Because the
embedded lens mass is a contributor to the mean cosmic
density its effect on passing photons vanishes at impacts
x ≥ 1. For those photons that transit the lens the total CMB
temperature fluctuation ΔT can be split into two parts, the
time-delay contribution ΔT T and the evolutionary contri-
bution ΔT E , i.e., the two terms in Eq. (1). We have
estimated the ISW signal caused by individual cosmic
voids and clusters in [46] considering only the time-delay
contribution ΔT T . This may have over- or underestimated
the ISW signal depending on the sign of the evolutionary
contribution; see Eq. (10) of [46]. For example, in the case
of linearly growing density perturbations, the evolutionary
contribution cancels a significant part of the time-delay
contribution. Consequently, considering only the time-
delay contribution ΔT T overestimates the total effect.
On the other hand, for extremely nonlinear structures
(e.g., for a deep cosmic void where the density contrast
δ is already approaching its lower bound −1) the evolu-
tionary contribution ΔT E can have the same sign as the
time-delay contributionΔT T and consequently considering
only the ΔT T contribution might underestimate the total
signal. Recent observations show some evidence [40,50,51]
for the existence of cosmic voids much deeper than
predicted by linear theory. There are theories of structure
formation that predict such deep voids [52–54]. It is
important to study the ISW/RS effect in such strongly
nonlinear growth periods to obtain an accurate under-
standing of what nonlinear effects are possible. In this
paper, we present two new void lens models which include
nonlinear growth of the lensing structures, both of which
can produce photometric hot rings in the outer regions of
the lens.

II. TWO EVOLVING EMBEDDED
VOID LENS MODELS

Any embedded lens can be thought of as a rearrangement
of the mass M in a comoving sphere of the homogeneous
background cosmology. We have constructed probably
the simplest embedded lens models in [46] to study the
ISW effect caused by cosmic voids and galaxy clusters
(central under- and overdensities, respectively). The simple
void lens in [46] contains two components: an underdense
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homogeneous dust sphere of density ρ ¼ ð1 − ξÞρ̄ contain-
ing a total mass ð1 − ξÞM surrounded by a compensating
overdense thin shell containing the compensating mass ξM.
Here ρ̄ is the cosmic mean density at the lens redshift and
the parameter ξ ¼ −δ > 0 characterizes the void’s depth:
the closer ξ is to 1, the deeper it is. Similarly simple void
density profiles have been used previously to model void
evolution and to study weak lensing by cosmic voids
[55–57]. For example, the inverted top-hat void model
compensated by an overdense thin shell of finite thickness
has been used in [57] to model cosmic voids as gravita-
tional lenses. Very simple void profiles have also been used
by other authors to study the ISW effect [58,59]. To
accurately compute the ISW effect produced by a cosmic
void, linear lensing theory requires that we know the void’s
density profile and its first time derivative (but no higher) at
the time it lenses the CMB. When estimating the ISWeffect
caused by voids of such simple density profiles in [46], we
assumed two evolving scenarios: one where the lens
was coexpanding with the background FLRW universe
for which only the lensing time delay contributes to the
CMB temperature perturbation, and a second where the
density contrast δ was evolving according to linear struc-
ture formation theory. The simple embedded void model
developed in [46] predicts ΔT ≤ 0 across the whole void.
For that model there is no hot ring ΔT > 0 surrounding the
cold spot as observed by Planck or predicted by numerical
simulations [17]. In this section we extend the model of
[46] to include an evolutionary part, and estimate evolu-
tion’s possible effect on the ISW signal. It is important to
recall that we are measuring evolution relative to the
expanding background Universe.

A. Embedded lens model I: A snowplow

As with all embedded lenses the outer physical radius rd
of the lens is related to its comoving radius χb by rd ¼
RðtdÞχb at the time td (the time the photons encountered the
deflecting lens on their way to be observed at t0) and where
RðtdÞ is the radius of the homogeneous universe at td.
Because the mass density of the background cosmology
ρ̄ðtdÞ ∝ RðtdÞ−3, the net mass M contained within the
sphere is constant (to lowest order in the curvature) and
equals ð4=3Þπr3dρ̄ðtdÞ. For this particular embedded void
model the mass within the sphere is rearranged into two
concentric components: a homogeneous underdense
interior of density ð1 − ξÞρ̄ and radius rv < rd, and an
overdense infinitesimally thin shell at rv which completely
compensates the underdense interior. The remainder of lens
mass in the outer shell rv < r < rd remains the same as the
background cosmology in which it is embedded, i.e., is of
density ρ̄ðtdÞ. We assume the thin shell of radius rv is
propagating (like a shock front) outward. Consequently the
(normalized) radius of the shell yðtdÞ≡ rv=rd < 1
increases with time, and the thin shell gains mass as it
plows into ρ̄. We can also have the shell contract and lose

mass as it fills the lower density inner void region, even
though such motion seems rather unphysical. An overdense
expanding thin shell that surrounds an underdense interior
was proposed by several void formation scenarios, e.g., via
explosive blast waves [52–54]. The infinitesimally thin
shell approximation has also been used to model void
formation or lensing by cosmic voids [46,47,55,56]. The
thin shell approximation is made for simplicity and
replacing it with a shell of finite thickness is straightforward
[48]. In this model any light ray that passes outside the
compensating shell at yðtdÞ is unaffected by the lens. As a
consequence the actual size of the outer boundary of the
comoving sphere rd is unimportant as long as rv does not
overtake rd as the CMB photons pass through the lens. We
now investigate how the ISW signals produced by this
model, where yðtdÞ ¼ rv=rd is allowed to vary, differ from
those of the coexpanding lens model presented in [46]
where yðtdÞ was kept constant. In what follows it is
necessary to think of evolving lens parameters, such as
the expanding shell’s fractional radius y, sometimes as
functions of cosmic time td at lensing and sometimes as
functions of the lens’s redshift zd, i.e., sometimes as yðtdÞ
and sometimes as yðzdÞ. The two independent parameters
are related by 1þ zd ¼ R0=RðtdÞ and obviously a quantity
that increases with td appropriately decreases with zd and
vice versa.
It is straightforward to compute the projected mass

profile of this spherical void lens

fðx; zdÞ − fRWðxÞ ¼
�
−ξx2½y2ðzdÞ − x2�1=2; 0 ≤ x ≤ y;
0; y < x ≤ 1:

ð3Þ
This lens profile is evolving with respect to the FLRW
background because of the time (or equivalently the red-
shift) dependence of the shell’s radius y. The potential part
of the gravitational lensing time delay is obtained using
Eqs. (2) and (3)

cTp ¼ 2ð1þ zdÞrs
�
−
ξ

3
ðy2 − x2Þ3=2

�
; 0 ≤ x ≤ y; ð4Þ

and the CMB temperature perturbation across such a lens is
[see Eq. (1)]

ΔT
T

¼ −
2ξ

3

rs
c=Hd

ðy2 − x2Þ1=2
�
ðy2 − x2Þ− 3yv

rdHd

�
;

0 ≤ x ≤ y; ð5Þ

where the redshift derivative needed in Eq. (1) was related
to the time derivative by

d
dzd

¼ −
1

ð1þ zdÞHd

d
dtd

; ð6Þ
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and where we have defined v≡ rd _yðtdÞ to be the physical
velocity of the shell with respect to the FLRW background,
i.e., the radial peculiar velocity. Both Tp and ΔT vanish
outside the overdense thin shell at yðtdÞ. In Eq. (5) the two
terms within the square brackets correspond to the time-
delay and evolutionary contributions, respectively. They
can be of the same or opposite sign depending on whether
the shell is contracting or expanding. As expected this
result is independent of the choice of rd since rs ∝ r3d and
both x and y are ∝ r−1d . Without any loss of generality, we
take y ¼ 1 (after zd differentiation) from now on which
simplifies Eq. (5) to

ΔT
T

¼ −
2ξ

3

rs
c=Hd

ð1 − x2Þ1=2
�
ð1 − x2Þ − 3v

rdHd

�
; ð7Þ

and which reduces to Eq. (13) of [46] when v ¼ 0. With
this choice, rs is the Schwarzschild radius of the total
mass contained within the sphere of radius rvðtdÞ, including
the compensating shell at the time the photons transit the
lens. Equation (7) for ΔT now contains a term explicitly
dependent on the velocity of the propagating shock front
[7,12,14,21]. In Sec. III we will use this equation to model
the ISW cold spot across evolving cosmic voids possessing
radially diverging (or possibly converging) flows.

B. Embedded lens model II: Void with a running wall

For model II we assume the lens has a physical radius
rd ¼ RðtdÞχb and contains three mass components. The
first is a small point mass ηM ≪ M at the center of the void
(a large η value would produce an embedded cluster model,
see [46]). This small (with respect to the total massM of the
lens) point mass was introduced to represent substructures
near the center of a cosmic void (e.g., a galaxy group or a
compact object such as a black hole), and to possibly
explain the strange small positive excesses in temperature
appearing at the centers of stacked photometric profiles
[20,31,36] when filter sizes below ∼0.2 times the voids’
effective radii are used. Including a small central mass was
also motivated by the fact that void-finding algorithms such
as ZOBOV use galaxies as centers of the tessellation, and
consequently the stacked void centers can be slightly
overdense [39,40]. The second component of this void
model is a moving thin shell at fractional radius yðtdÞ < 1
which contains a constant total mass ξM ≤ ð1 − ηÞM. The
third component is a uniform density ð1 − η − ξÞρ̄ ≥ 0 for
all x < 1, i.e., of constant density contrast δ ¼ −ðηþ ξÞ.
The thin shell can be moving out or in at the time the CMB
photons pass, i.e., can be expanding or contracting with
respect to the background. The mass of the shell is assumed
not to change whether expanding or contracting, in contrast
to model I. Without the central point mass the lens should
behave somewhat like a cluster lens (overdensity) outside
of the shell and possibly produce a hot ring there and

behave like a void lens (underdensity) near the center of the
lens and possibly produce a central cold spot there.
The projected mass profile of this lens is

fðx; zdÞ − fRWðxÞ ¼ ðηþ ξÞð1 − x2Þ3=2 − ξΘðy − xÞ

×

�
1 −

x2

y2ðzdÞ
�

1=2

ð8Þ

where Θðy − xÞ is the Heaviside step function (equals 1
when y − x > 0 and 0 otherwise). The potential part of the
time delay is

cTp ¼ 2ð1þ zdÞrs
�
ðηþ ξÞ

�
ln
1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1− x2

p

x

−
4− x2

3

ffiffiffiffiffiffiffiffiffiffiffiffi
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p �
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1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− x2=y2

p
x=y

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− x2=y2

q ��
; ð9Þ

which gives an ISW effect across the lens
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2=y2

p
y

v
rdHd

��
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where _yðtdÞ≡ v=rd and the very last term (∝ v) is the
evolutionary contribution ΔT E . When η ¼ 0, y ¼ 1 and
v ¼ 0, Eq. (10) reduces to Eq. (13) of [46].

III. EXAMPLES AND DISCUSSIONS

We now illustrate the size and shape of the ISW signals
produced by the two lens models given in the previous
section [i.e., Eqs. (7) and (10)]. We choose a standard
ΛCDM cosmology with Ωm ¼ 0.3, ΩΛ ¼ 0.7 and Hubble
constant H0 ¼ 70 km s−1 Mpc−1, and we choose a lens
redshift zd ¼ 0.5. We assume the lens to be either coex-
panding with the FLRW background, i.e., v ¼ 0, or
evolving because the thin shell is expanding or contracting,
v ≠ 0. The moving shell gains/loses mass in model I or has
a constant mass in model II. Model I has three parameters:
the physical radius rv ¼ rd of the void, the void deepness
parameter ξ, and the velocity v of the moving shell. Model
II has two additional parameters, yðtdÞ [with 0 ≤ yðtdÞ ≤ 1]
which is the radius of the moving shell relative to the radius
of the lens, and η, which is the fraction of the lens mass
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contained in the central compact object. For a model I lens
we choose rd ¼ 50 Mpc with v ¼ 0, �500 km=s, or
�1000 km=s, and ξ ¼ −δ ¼ 0.5. For a model II lens we
choose rd ¼ 50 Mpc, yðtdÞ ¼ 0.5 or 0.8 with v ¼ 0,
�250 km=s, or �500 km=s, ξ ¼ 0.9, and η ¼ 0 (i.e., no
central compact object) or η ¼ 0.01 (a compact central
object containing a small fraction of the lens mass).
Given the above assumed numbers we can check the

appropriateness of having dropped all post-Newtonian
corrections in the gravity perturbations. The projected
perturbed void density profiles we use are smooth and
their gravitational effects remain strictly Newtonian even
when δ ≈ −1. For example a large void of physical radius
∼50 Mpc at redshift z ¼ 0 constructed from a ∼2 ×
1016M⊙ Swiss cheese void produces a Newtonian pertur-
bation of only Φ=c2 ≈ 5 × 10−5. If the shell is moving with
a velocity of ∼1000 km=s, a post-Newtonian metric cor-
rection of a magnitude ∼3 × 10−9 is generated. This is the
same size as ðΦ=c2Þ2, the next higher order curvature
correction from GR. Such small terms are never needed. A
post-Newtonian gravitational correction to the metric can
also be generated by a pressure; however, with pressure
estimated from the mass motions in our models we find a
pressure to energy density ratio P=ðρ̄c2Þ ≈ 5 × 10−5.
Therefore, just as in conventional lensing calculations,
pressure effects are negligible.
The results are shown in Figs. 1–3 respectively for model

I, model II without a central object, and model II with a
central compact object. Besides the temperature profile

ΔT ðxÞ, we also plot the averaged signal as a function of the
filter size R using a compensated top-hat filter,1 i.e.,

hΔT iðRÞ ¼ 2

R2

�Z
R

0

TðrÞrdr −
Z ffiffi

2
p

R

R
TðrÞrdr

�
: ð11Þ

The filtered signals are shown in the right panels of Fig. 1
for model I, and respectively in Figs. 2 and 3 for model II
without and with a central compact object.
For both lens models, the total ISW signal is proportional

to the lens mass (∝ r3d), and the amplitudes of the signals
are of the same order, rsHd=c, which is about 2 × 10−6 for
rd ¼ 50 Mpc (a lens mass about 7.2 × 1016M⊙ and
rs ≈ 0.0007 Mpc). The relative contribution of the evolu-
tionary part with respect to the time-delay part is charac-
terized by v=ðrdHdÞ, i.e., the ratio of the shell’s radial
velocity relative to the local Hubble expansion of the void’s
boundary, and is of order ∼0.1 for rd ¼ 50 Mpc at redshift
zd ¼ 0.5 with v ∼ 500 km=s assuming the conventional
ΛCDM cosmology. For both lens models, the absolute
contribution of the evolutionary part is proportional to both
the mass and velocity of the moving shell, i.e.,
ΔT E ∝ ξvrs=ðcrdÞ, about 2 × 10−7 for rd ≈ 50 Mpc,
ξ ≈ 0.9, and v ∼ 500 km=s. Inside the moving shell,
ΔT E is positive for an expanding shell (diverging flow),

FIG. 1 (color online). ISW temperature profiles across embedded void lens models of type I are shown in the left panel. The right panel
shows the signals averaged by applying a compensated top-hat filter; see Eq. (11). The void is at redshift zd ¼ 0.5 with physical radius
rd ¼ 50 Mpc and density contrast −0.5. The respective solid, long-dashed, and dashed curves show results for shells which are
coexpanding with (blue), expanding relative to (magenta), and contracting relative to (red) the FRLW background. The relative
velocities shown are �1000 km s−1 and �500 km s−1. The cyan dotted-dashed curve is for the case when the shell is comoving but the
density contrast δ is evolving according to linear growth theory. A central cold spot is produced for all cases (left panel) but linear growth
produces the smallest ISWeffect. Near the void boundary the time-delay contribution diminishes and the ISW signal is dominated by the
movement of the compensating shell, which results in a hot ring for expansion. On the right the ISW filtered cold spot is seen to be most
significant at radius R ≈ 0.6.

1This compensated filter is often used by observers to reduce
the large-scale power contamination from the primordial CMB.
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and negative for a contracting shell (converging flow). This
result appears consistent with the Birkinshaw-Gull effect
for CMB temperature fluctuations where a transversely
moving concentrated lens mass redshifts CMB photons on
the side approached by the moving lens and blueshifts them
on the other side [7,8,12,14,21]. An expanding spherical
shell reddens CMB photons passing just exterior to its
boundary and blueshifts photons passing just interior. The
converse is true if the shell is contracting.
For the first model, the signal is dominated by the

evolutionary part near the lens boundary where x
approaches 1; see Eq. (7). Consequently, this model always
produces a hot ring near the lens boundary when v > 0.
Furthermore, for expanding shells (the magenta curves, i.e.,
the top two dashed curves, in the right panel of Fig. 1) the
compensated top-hat filtered ISW cold spot is most

significant at a filter radius R ≈ 0.6 (i.e., r ≈ 0.6rd),
consistent with recent observations and simulations
[18,20,31,36]. Predictions of the second model depend
significantly on both the position and velocity of the shell.
We first discuss the case without a compact object at the
void center, i.e., η ¼ 0. If the shell is located close to the
center of the lens [e.g., yðtdÞ≲ 0.5], then the lens behaves
like a cluster lens; see the first row of plots in Fig. 2. If the
shell is located near the boundary of the lens, then the lens
behaves like a void lens with a cold spot toward the center;
see the second row of plots in Fig. 2. However, if the
expansion velocity of the shell is high enough (e.g.,
v¼ 500 km=s), the lens produces a hot spot, and ΔT > 0
across the entire lens; see the dashed magenta curve, i.e.,
the top curve in the bottom left panel of Fig. 2. For model II
the motion of the shell only impacts regions inside the shell,

FIG. 2 (color online). ISW temperature profiles for embedded model II voids without a central compact object are shown in the left
column and the corresponding filtered signals are shown on the right. The void is at redshift zd ¼ 0.5 with physical radius rd ¼ 50 Mpc
and density contrast δ ¼ −0.9. A compensating shell is located at yðtdÞ ¼ 0.5 or at 0.8 (top or bottom row respectively). For the upper
row the lens behaves like a cluster lens producing a hot spot toward the center. For the lower row most of the lens mass is located near the
void boundary and a central cold spot is produced except for the case of an expanding shell with v ¼ þ500 km s−1 where ΔT > 0
across the entire lens. A diverging/converging flow increases/decreases the CMB temperature but only within the shell [i.e., the solid,
dashed, and long-dashed curves merge beyond x ¼ yðtdÞ]. A hot ring near the void boundary can be produced by this lens model. The
filtered ISW cold spot is again most significant at a filter radius R ≈ 0.6; see the bottom right panel.
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i.e., the curves corresponding to an expanding, static, and
contracting shell fork within the shell but merge at yðtdÞ
and beyond. If ξ is small, then motion of the shell is less
important because the shell contains only a small fraction
of the lens mass and consequently the lens mass structure,
i.e., fðxÞ, will not change significantly even if the shell is
moving rapidly. For comparison, in Fig. 2 we also present
the results for the linear growth case (the cyan dotted-
dashed curves) where we have assumed the density
perturbation δ to be evolving according to linear structure
theory. For this case the signal is suppressed by a factor of
about 4 comparing with the static case (refer to Fig. 3
of [46]).
Figure 3 shows the results for void model II with a

central compact object containing 1% of the lens mass
(about 7.2 × 1014M⊙). In the left panel of Fig. 3 the spikes
at the void’s center are caused by the fact that we have
assumed a simple point mass for the compact object (refer
to [46] for a more complicated model). ISW signals
averaged by applying a compensated top-hat filter show
a small central positive excess (hΔT i > 0 for filter size
R≲ 0.2); see the right panel of Fig. 3. This is encouraging
given that the ISW temperature profile obtained by apply-
ing the aperture photometry techniques to the recent Planck
observations and large void catalogs [40] did contain a
strange (even if with a low significance) positive excess
near the center of the stacked images; see Fig. 9 of [31].
This result is consistent with the suggestion made by the
Planck Collaboration et al. [31] that the positive excess
may be partially caused by the fact that voids used for the
photometry profiles contain small central overdensities. We
find that a void with a moving shell and a central compact

object can produce both the hot ring near the boundary of
the void and a positive excess near the void’s center.

IV. CONCLUSIONS

We have recently developed the embedded lens theory
and the Fermat potential formalism for studying the ISW
effect caused by individual compensated inhomogeneities
[41–48]. Just as with the conventional lensing potential
approach, the Fermat potential approach is based on
Newtonian perturbations of the background cosmology
and when applied to similar lenses both approaches give
similar results. The Fermat potential approach, however, is
much simpler because it uses the projected lensing mass
directly and bypasses the step of computing the Newtonian
lensing potential. Our method can be used to model the
ISW signals extracted by stacking patches of CMB sky
maps around known cosmic voids or galaxy clusters
[31,36], or to model the CMB cold spot on the south
hemisphere as ISW/RS signals produced by large nearby
cosmic voids [22,23,58–60]. The current modeling diffi-
culty is the uncertainty in the mass density profile of voids
and its dynamics. The stacked radial void profiles obtained
from large void catalogs [40,61] built from galaxy redshift
surveys such as the Sloan Digital Sky Survey [62] show
deep interiors toward the voids’ centers (δ≲ −0.9) for
voids of radii from a few up to about 100 Mpc. These
profiles also show compensating overdense bounding
ridges (see, e.g., Fig. 9 of [40]). The thickness and profile
of the overdense bounding regions, as well as the extent to
which they compensate the underdense regions, are not
currently very well constrained by observations. An

FIG. 3 (color online). ISW temperature and photometry profiles (left and right panels respectively) for embedded model II voids
possessing a central compact object. The void is at redshift zd ¼ 0.5with physical radius rd ¼ 50 Mpc. The overdense shell is located at
yðtdÞ ¼ 0.8 and contains 90% of the lens mass (ξ ¼ −0.9). The central compact object contains 1% of the lens mass (about
7.2 × 1014M⊙). Hot rings again appear near the boundary of these large void models and the central cold spot is again most significant at
filter radius R ∼ 0.6. However, now a small central positive excess is present for filter radii R≲ 0.2 due to the point mass at the void’s
center.
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additional problem with modeling mass densities occurs
because luminous matter as a tracer of dark matter is
biased; i.e., the underlying void dark matter profile may be
much shallower than estimates based on galaxy counts.
Another modeling complication arises if suggestions that
large voids tend to be undercompensated whereas small
voids might be overcompensated [51,63] are true. The
universal void dark matter density profile of [51] based on
ΛCDM N-body simulation suggests a deep void interior,
δ ≈ −0.95 for small voids of radius ∼10 h−1 Mpc, and δ ≈
−0.5 for large voids of radii ∼70 h−1 Mpc. These dark
matter profiles are much deeper than those predicted by
linear growth theory so that estimating densities based on
the linear theory will be in error. Rather than attempting to
model voids with complicated uncertain analytic expres-
sions or with numerically motivated density profiles we
have applied our Fermat based calculation of the ISW
effect, Eq. (1), to two simple embedded lens models for the
purpose of illustrating the effect evolving densities can
have on a void’s temperature profile. These models possess
deep voided regions and nonlinearly developing mass
shells that produce hot rings around central cold spots
and can thus explain recent observations found using the
aperture photometry technique [31,36]. The simplicity of
the profiles (e.g., a uniform underdense interior with an
infinitesimally thin overdense shell moving outward or
inward) combined with Eq. (1) allows us to give results
in analytical form, and shed light on how converging/
diverging flows influence the CMB observations. We have
assumed these void lenses to be strictly compensated with

net mass zero with respect to the FLRW background. When
presenting examples of the two simple void lens models,
we have chosen voids of radii 50 Mpc, a size not unusual
according to recent void catalogs [40,61,64]. The 50 large
voids used in [36] have a mean redshift of about 0.5 and
an average radius of about 100 Mpc. The assumed void
density contrast, δ ¼ −0.5 or −0.9 (model I and II,
respectively) was largely based on the stacked void density
profiles of [40]. While void redshifts and radii are provided
by void catalogs, good estimates for compensating shell
thicknesses and their expansion velocities are lacking. For
simplicity, we have assumed expanding thin shells with
velocities of the order of a few hundred kilometers per
second, i.e., a magnitude similar to that of the peculiar
velocities of galaxies.
Expanding the analytical work given here to more

realistic profiles and/or more complicated flows
[17,18,40,50,51] is straightforward but awaits observatio-
nal constraints, and may have to be done numerically. We
conclude that the embedded lens theory and the formalism
of Fermat potential is well suited for modeling the ISW
effect and that mass motions within voids can easily
produce hot and cold rings. Mass profiles with a central
compact object can even produce a central positive temper-
ature excess as observed in [31].
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