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We perform unbiased tests for the clumpiness of the Universe by confronting the Zel’dovich-Kantowski-
Dyer-Roeder luminosity distance, which describes the effect of local inhomogeneities on the propagation
of light with the observational one estimated from measurements of standard candles, i.e., type Ia
supernovae (SNe Ia) and gamma-ray bursts (GRBs). Methodologically, we first determine the light-curve
fitting parameters which account for distance estimation in SNe Ia observations and the luminosity/energy
relations which are responsible for distance estimation of GRBs in the global fit to reconstruct the Hubble
diagrams in the context of a clumpy Universe. Subsequently, these Hubble diagrams allow us to achieve
unbiased constraints on the matter density parameter Ωm, as well as the clumpiness parameter η which
quantifies the fraction of homogeneously distributed matter within a given light cone. At a 1σ confidence
level, the constraints are Ωm ¼ 0.34� 0.02 and η ¼ 1.00þ0.00

−0.02 from the joint analysis. The results suggest
that the Universe full of Friedman-Lemaître-Robertson-Walker fluid is favored by observations of standard
candles with very high statistical significance. On the other hand, they may also indicate that the
Zel’dovich-Kantowski-Dyer-Roeder approximation is a sufficiently accurate form to describe the effects
of local homogeneity on the expanding Universe.

DOI: 10.1103/PhysRevD.91.083010 PACS numbers: 95.36.+x, 04.50.Kd, 98.80.-k

I. INTRODUCTION

The standard physical model of cosmology is based on the
solution of general relativity describing a spatially homo-
geneous and isotropic spacetime, known as the Friedmann-
Lemaître-Robertson-Walker (FLRW) solution. It is assumed
that the geometry of our Universe is smooth on large scales.
One of the major tasks in modern cosmology is to precisely
determine the parameters which characterize the postulated
model by fitting the observational data. The cornerstone of
observational evidence that supports the FLRW model is the
existence of highly isotropic cosmic microwave background
radiation (CMBR). It could be inferred that the spacetime
should be exactly FLRW when the background radiation
appears to be exactly isotropic to a given family of observers
[1]. Therefore, we can prove the Universe to be FLRW
just from our own observations of the CMBR by taking the
Copernican principle into consideration. Moreover, this
result could be extended to the case of an almost isotropic
background radiation, which hints at an almost FLRW
spacetime [2]. Although this simple solution of Einstein
field equation provides an excellent description for the
Universe on large scales, it also makes clear that we need
to understand the departures from a spatially homogeneous
model when interpreting observational data. Indeed, depar-
tures from perfect homogeneity change the distance-redshift
relation. However, in practice, cosmological observations

are usually fitted just using relationships derived from
homogeneous models.
The fact that matter is not continuously distributed can

imprint most cosmological observations probing quantities
related to light propagation (as discussed in detail in
Ref. [3]), in particular regarding the propagation of light
with narrow beams, such as the redshift, the angular diameter
distance, the luminosity distance, and the image distortion.
The importance of quantifying the effects of inhomogene-
ities on light propagation was first pointed out by Zel’dovich
[4] and Kantowski [5]. They designed an “empty beam”
approximation by arguing that photons should mostly
propagate in vacuum. Later, this was generalized by Dyer
and Roeder as the “partially filled beam” approach [6,7].
More generally, the early work of Ref. [4] stimulated many
studies on this issue [8–20]. In this framework, the propor-
tion of clumped matter with respect to the homogeneous
fluid is characterized by the clumpiness or smoothness
parameter. In addition, they arrived at an equation for the
angular diameter distance which, via the Etherington rela-
tion, connects to the observable luminosity distance. We
refer to it here as the Zel’dovich-Kantowski-Dyer-Roeder
(ZKDR) luminosity distance.
Since the 1960s, a rich literature has formed which

concerns the ZKDR approach and its cosmological impli-
cations. Phenomenologies and investigations involving
many different physical aspects were performed, such as
analytical or approximate expressions [21–23], critical
redshift for the angular diameter distance [24], gravitational
lensing [25,26], and accelerated expanding Universe
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models driven by particle creation [27]. Recently, some
quantitative analysis from such compact radio sources as
standard rulers [28,29], and such type Ia supernovae
(SNe Ia) or gamma-ray bursts (GRBs) as standard candles
[30–35] were also performed. To be specific, in Ref. [30],
constraints on the dark energy and smoothness parameter
from the so-called gold SN Ia sample released by the
High-z Supernova team [36] and the first year results of the
Supernova Legacy Survey (SNLS), which is a planned five-
year project [37], were examined. The results suggested
that SNe Ia data alone was incapable of constraining the
smoothness parameter although the gold SN Ia provided a
little more stringent constraint since this sample extended
to appreciably higher redshifts. Later, Busti et al. [32]
performed an updated investigation where the statistical
analysis was based on the 557 SNe Ia Union2 compilation
data [38] and 59 Hymnium GRBs [39], and almost the
same conclusion was achieved. More recently, this issue
was also studied by using Union2.1 SN Ia [40] plus nine
long GRBs in 1.55 ≤ z ≤ 3.57 [41] and the constrained
value of the smoothness parameter indicated a clumped
Universe [33]. On the other hand, as concluded in their
work, this result may be an indication that the ZKDR
approximation is not a precise form of describing the
effects of clumpiness in the expanding Universe.
However, in these previous analysis, all distances of SNe

Ia and GRBs applied to test the inhomogeneity of the
Universe were derived from a global fit in the context of
standard dark energy scenarios where the clumpiness has
vanished, i.e., the flat Λ cold dark matter (ΛCDM) or
wCDM model. That is, the light-curve fitting parameters
accounting for the distance estimation in SNe Ia observa-
tions (e.g., α and β in the most widely used SALT2 training
method [42]) are left as free parameters (on the sameweight
as cosmological parameters) and are determined by fitting
the distances of SNe Ia, which is a linear combination of
light-curve fitting parameters and observed quantities, to
the model-predicted ones in the context of the standard
ΛCDM or wCDM scenario. Therefore, HDs constructed in
this way are somewhat model dependent. Moreover,
cosmological implications on nonstandard dark energy
scenarios or a Universe with homogeneity taken into
consideration derived from these HDs are model biased
[43]. It has been shown that this kind of bias cannot be
neglected and may be significant in the era of precision
cosmology [44,45]. Certainly, this kind of bias also hides in
the GRB cosmology where luminosity relations being
responsible for distance estimation of GRB are calibrated
with the model-dependent HDs of low-redshift SNe Ia
[46,47].
In this paper, we first reconstruct Hubble diagrams for

the latest SNe Ia and for long GRB observations by
calibrating the light-curve fitting parameters and luminosity
relations, respectively, in the context of an inhomogeneous
Universe with the cosmological constant. These Hubble

diagrams can lead to unbiased tests for the matter density
parameter Ωm as well as the clumpiness parameter η. For
the joint light-curve analysis of the SDSS-II and the SNLS
(JLA SN Ia) in the range of 0.01 ≤ z ≤ 1.23 [48], the
constraints are Ωm ¼ 0.29þ0.07

−0.05 and η ¼ 0.76þ0.24
−0.65 , slightly

indicating a clumped Universe. For the long GRBs in the
range of 1.48 ≤ z ≤ 8.20 [49], the best fits are Ωm ¼
0.42� 0.06 and η ¼ 1.00þ0.00

−0.12 , strongly supporting a
homogeneous Universe. For the combination of these
two probes, the constraints are Ωm ¼ 0.34� 0.02 and
η ¼ 1.00þ0.00

−0.02 , also favoring a Universe full of FLRW fluid
with a very high confidence level. We suggest that the
matter density parameter Ωm is mainly determined by the
SNe Ia observations while the clumpiness parameter η is
primarily constrained from the observed GRB events.
Moreover, it is also shown that larger scales are explored;
the test more strongly implies a homogeneous Universe.
These reasonable results may be an indication that the
ZKDR approximation remains to be a precise description
for the luminosity distance-redshift relation in a locally
inhomogeneous Universe with the cosmological constant.

II. THE ZKDR LUMINOSITY DISTANCE

For most cosmological models, angular or apparent size
distance, which is proportional to the square root of the
cross-sectional area AðzÞ, is related to the luminosity
distance by dAðzÞ ¼ dLðzÞ=ð1þ zÞ2. In the model only
including dark matter and dark energy, the luminosity
distance dLðzÞ, which accounts for a partially depleted
mass density in the observing beam but neglects lensing by
external masses, is obtained by integrating the second-order
differential equation for AðzÞ of an observing beam from
the source at redshift z to the observer at z ¼ 0 [21,50]:

ð1þ zÞ2EðzÞ d
dz

�
ð1þ zÞ2EðzÞ d

dz

ffiffiffiffiffiffiffiffiffi
AðzÞ

p �

þ 3

2
ηΩmð1þ zÞ5

ffiffiffiffiffiffiffiffiffi
AðzÞ

p
¼ 0; ð1Þ

where EðzÞ is the reduced Hubble parameter at redshift z:

EðzÞ ¼ HðzÞ
H0

¼ ð1þ zÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ωmzþ ΩΛ½ð1þ zÞ−2 − 1�

q
;

ð2Þ

and the phenomenological parameter η ¼ 1 − ρcl=ρ is the
so-called clumpiness or smoothness parameter, which
quantifies the amount of matter in clumps relative to the
amount of matter uniformly distributed. The required
boundary conditions for Eq. (1) are

ffiffiffiffi
A

p
jz¼0 ¼ 0;

d
ffiffiffiffi
A

p

dz

����
z¼0

¼ −
ffiffiffiffiffiffi
δΩ

p c
H0

; ð3Þ
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where δΩ is the solid angle of the beam. By using an
approximate change of variables

hðA; zÞ≡ ð1þ zÞ
ffiffiffiffiffiffi
A
δΩ

r
; ð4Þ

ζðzÞ ¼ Ωm

1 −Ωm
ð1þ zÞ3 þ 1; ð5Þ

Eq. (1) can be transformed into a hypergeometric
equation,

ð1 − ζÞζ d
2h

dζ2
þ
�
1

2
−
7

6
ζ

�
dh
dζ

þ νðνþ 1Þ
36

¼ 0: ð6Þ

The resulting luminosity distance is then given by

dLðzÞ ¼ ð1þ zÞhðζð0ÞÞ: ð7Þ

Expressed in terms of hypergeometric functions, Eq. (7)
becomes

dLðz;Ωm; νÞ ¼
c
H0

2ð1þ zÞ
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The parameter ν presented in Eqs. (6) and (8) corresponds
to the clumpiness parameter η by

η ¼ 1

6
ð3þ νÞð2 − νÞ: ð9Þ

The range for ν is 0 ≤ ν ≤ 2, where ν ¼ 0ðη ¼ 1Þ is related
to a FLRW fluid, while ν ¼ 2ðη ¼ 0Þ to a totally clumped
case.
Actually, the ZKDR approach has been criticized by

several authors (e.g., a few detailed comments gathered in
Ref. [33]). However, so far, confrontations of the ZKDR
luminosity distance with observations have not led to
conclusive results in the sense of totally excluding this
model. Moreover, we should keep in mind that most
previous tests in this field were somewhat dependent on
the standard dark energy model (the flat ΛCDM or wCDM).
Therefore, it is necessary to clarify the validity and the scope
of the ZKDR luminosity distance in describing the Universe
in a model-unbiased way. Here, we follow the simplest
treatment, where η is assumed to be a constant.

III. SAMPLES AND RESULTS

We carry out analysis by using the latest observations of
standard candles, including the joint light-curve analysis of
the SDSS-II and SNLS supernova samples [48]—which is
referred to as JLA SN Ia in the literature—and the long
gamma-ray bursts reported in Ref. [49]. Descriptions for
the samples, methodology, and results are presented in this
section.

A. Type Ia supernovae

The cosmic acceleration was discovered 16 years ago by
measuring accurate distances to distant SNe Ia [51–53].
The reason for the acceleration remains uncertain and a
large experimental effort in observational cosmology has
been driven to reveal the mechanism of this ostensibly
counterintuitive phenomenon. By precisely mapping the
distance-redshift relation up to redshift z ≈ 1, SNe Ia
remain, at this stage, the most promising probe of the
late-time history of the Universe. Because of the variability
of the large spectra features, distance estimation for SNe Ia
is based on the empirical observation that these events form
a homogeneous class whose remaining variability is rea-
sonably well captured by two parameters [54]. One of them
characterizes the stretching of the light curve (X1 in what
follows), and the other describes the color at maximum
brightness (C in what follows).
With the assumption that SNe Ia at all redshifts with the

identical color, shape, and galactic environment have, on
average, the same intrinsic luminosity, the distance esti-
mator (distance modulus: μ ¼ 5 log½ðdL=MpcÞ� þ 25) used
in most cosmological analysis is quantified by a linear
model,

μBðα; β;MÞ ¼ m�
B −M þ α × X1 − β × C; ð10Þ

where m�
B is the observed peak magnitude in the rest-frame

B band, and α and β are nuisance parameters which char-
acterize the stretch-luminosity and color-luminosity relation-
ships, corresponding to the well-known broader-brighter and
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bluer-brighter relationships, respectively. The value of M is
another nuisance parameter representing the absolute mag-
nitude of a fiducial SNe Ia. In general, α and β are left as free
parameters (on the same weight as cosmological parameters)
that are determined in the global fit in the context of the
standard dark energy scenario to construct the Hubble
diagram for SNe Ia. It should be noted that cosmological
implications derived from this Hubble diagram for other
nonstandard models, which are different from the standard
ΛCDM (or wCDM) scenario used to carry out the global fit,
are model biased.
In order to achieve model-unbiased constraints on the

clumpiness of the Universe, we should fit the light-curve
fitting parameters (α and β) and the model parameters (Ωm
and ν) simultaneously to construct a Hubble diagram of
SNe Ia in an inhomogeneity-allowed scenario by con-
fronting the distances estimated from SNe Ia observations
via Eq. (10) with the ones predicted from the ZKDR
luminosity distance model,

μmodðz; θ1; μ0Þ ¼ 5log10½DLðz; θ1Þ� þ μ0: ð11Þ

Here DL is the Hubble-constant free luminosity distance,
θ1 represents the model parameter vector (Ωm; ν), and
μ0 ¼ 5log10½c=H0� þ 25. For the latest JLA SN Ia, the
standard χ2 function is given by

χ2ðμ0;M; θ1; θ2Þ ¼
X740
i¼1

½μmodðzi; θ1; μ0Þ − μB;iðθ2;MÞ�2
σ2μ;i

;

ð12Þ
where θ2 denotes the vector of light-curve fitting param-
eters (α; β) and σμ;i is the error on the distance modulus
for the ith SNe Ia. It should be noted that we take only the
statistical uncertainties into account and they are also
dependent on the light-curve fitting parameters. In order to
marginalize over the nuisance parameters, H0 and M, we
expand the χ2 function with respect to ~μ0 ¼ μ0 þM as
[55–57]

χ2ðθ1; θ2; ~μ0Þ ¼ A − 2 ~μ0Bþ ~μ0
2C; ð13Þ

where

Aðθ1; θ2Þ ¼
X740
i¼1

½μmodðzi; θ1; μ0 ¼ 0Þ − μB;iðθ2;M ¼ 0Þ�2
σ2μ;i

;

ð14Þ

Bðθ1; θ2Þ ¼
X740
i¼1

½μmodðzi; θ1; μ0 ¼ 0Þ − μB;iðθ2;M ¼ 0Þ�
σ2μ;i

;

ð15Þ

Cðθ2Þ ¼
X740
i¼1

1

σ2μ;i
: ð16Þ

Equation (13) has a minimum at ~μ0 ¼ B=C, and it is

~χ2ðθ1; θ2Þ ¼ A −
B2

C
: ð17Þ

Therefore, we can minimize ~χ2ðθ1; θ2Þ to get rid of the
dependence on nuisance parameters.
The constraint on the light-curve fitting parameters

vector is presented in Fig. 1. The best fit value is ðα; βÞ ¼
ð0.13; 3.17Þ, which is marginally compatible with the
result estimated in the flat ΛCDM at a 1σ confidence
level. By applying a minimization of ~χ2, we can get
an estimation for ~μ0 which is a combination of H0

and M. Here, we break the degeneracy by fixing H0 ¼
70 km s−1Mpc−1 and obtain M ¼ −19.08. With the con-
straint on (α; β) and estimation ofM, an indicative Hubble
diagram in the framework of the ZKDR luminosity
distance model is constructed and shown in Fig. 2.
Moreover, results for confidence regions constrained in
the (Ωm; ν) plane are presented in Fig. 3 and Table II. We
suggest that the clumpiness parameter η is poorly con-
strained, being bounded on the interval 0.16 ≤ η ≤ 1.00
within a 1σ confidence level. However, a tighter constraint is
obtained for the matter density parameter Ωm, being
restricted on the interval 0.25 ≤ Ωm ≤ 0.37ð1σÞ. These
are very similar to what was obtained in previous analyses
[29,32], but quite different from the results included in
Ref. [33]. That is, our unbiased tests slightly indicate an
inhomogeneity and the standard FLRW cosmology is con-
sistent with SNe Ia observations within a 1σ confidence level.

B. Long gamma-ray bursts

GRBs, which are the most intensive explosions observed
in the Universe and thus are visible across much larger

: 0.14, 3.14 CDM

: 0.13, 3.17 Clumpy Universe

0.10 0.11 0.12 0.13 0.14 0.15 0.16
2.8

3.0

3.2

3.4

3.6

FIG. 1. Constraints on the light-curve fitting parameters, α
and β, from the global fit in the context of a clumpy Universe.
The triangle and star represent the best fits when the ZKDR
approximation and the standardΛCDM framework are considered,
respectively.
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distances than SNe Ia, are deemed as a potential probe to
explore the Universe at higher redshift, a redshift of at least
6 and up to even z ¼ 10 [58–61]. Specifically, relations
between the luminosity/energy and the measurable

properties of the prompt gamma-ray emission imply that
GRBs may be appropriate candidates for cosmological
standard candles. In the past few years, several empirical
luminosity relations have been statistically inferred from
observations. For instance, several two-variable relations—
the relation between spectral lag and luminosity (τlag − L)
[62], the relation between variability and luminosity
(V − L) [63,64], the relation between peak spectral energy
and luminosity (Epeak − L) [65,66], the relation between
peak spectral energy and collimation-corrected energy
(Epeak − Eγ) [67], the relation between the minimum raising
time in the GRB light curve and luminosity (τRT − L) [68],
and the relation between peak spectral energy and isotropic
energy (Epeak − Eγ;iso) [69]—have been successfully
deduced from observations. Meanwhile, a few multivari-
able relations have also been obtained, such as the con-
nection between Eiso, Epeak, and the break time of the
optical afterglow light curves (tb) [70], the correlation
between the luminosity, Epeak, and the rest-frame “high-
signal” time scale (T0.45) [71]. Moreover, these luminosity
relations have been proposed to calibrate GRBs as distance
indicators (see, e.g., Refs. [68,72] for reviews).
In particular, in Refs. [32,33], distances of GRBs used to

constrain the clumpiness of the Universe are obtained by
calibrating their luminosity relations with low-redshift SNe
Ia [39,41,46]. However, it is necessary to make clear that
distances of SNe Ia quoted to calibrate luminosity relations
are estimated from a global fit in the frame of a standard
dark energy model. In other words, the distances of GRBs
given in Refs. [39,41,46] are still somewhat dependent on
the standard dark energy model and thus subsequent tests
for the inhomogeneity of the Universe derived from them
are model biased. In this work, we construct the Hubble
diagram of 116 long GRBs [49] in the framework of an
inhomogeneous Universe by calibrating their luminosity/
energy relations in the global fit where the context of the
ZKDR luminosity distance model is considered. This
Hubble diagram can then lead to an unbiased examination
of the clumpiness of the Universe. In Ref. [49], six
luminosity correlations (τlag − L, V − L, Epeak − L,
Epeak − Eγ , τRT − L, Epeak − Eγ;iso) have been derived from
the latest observations of 116 long GRBs. In their work, it
was also found that the intrinsic scatter of the V − L
correlation was too large to infer an inherent correlation
between these two quantities using the currently observed

FIG. 2 (color online). Hubble diagram of the standard candles
constructed from the global fit in the context of a clumpy
Universe. The distance modulus redshift relation of the best-fit
ZKDR approximation for a fixed H0 ¼ 70 km s−1 Mpc−1 is
shown as the solid line.

JLA SN Ia
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.3

95
.4

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
0.0

0.5

1.0

1.5

2.0

m

FIG. 3. Confidence regions in the (Ωm, ν) plane for the model
with a ZKDR luminosity distance constrained from the JLA SN Ia.

TABLE I. Summary of the constraints on luminosity relations of GRBs from the global fit in the context of a
clumpy Universe.

Luminosity relation að1σÞ bð1σÞ σint NðzGRB > 1.4Þ
τlag − L 52.60� 0.04 −0.76� 0.06 0.12 26
Epeak − L 52.10� 0.04 1.38� 0.12 0.16 62
Epeak − Eγ 50.36� 0.07 1.56� 0.20 0.01 12
τRT − L 52.95� 0.05 −1.03� 0.13 0.16 36
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GRB events. What is more, the luminosity correlations
Epeak − Eγ and Epeak − Eγ;iso mirror almost the same
physics; we should include one of them to avoid strong
correlation among the luminosity correlations. Therefore,
we choose the Epeak − Eγ correlation, which has a smaller
intrinsic scatter, and then use the rest of the four correla-
tions for the following analysis. The same as previous
works that derived cosmological implications from GRBs,
we use only the subsample at z > 1.4 for the complemen-
tary redshift range to the SN Ia.
The remaining four luminosity correlations involved in

this paper are

log
L

1 erg s−1
¼ a1 þ b1 log

�
τlagð1þ zÞ−1

0.1 s

�
; ð18Þ

log
L

1 erg s−1
¼ a2 þ b2 log

�
Epeakð1þ zÞ
300 keV

�
; ð19Þ

log
Eγ

1 erg
¼ a3 þ b3 log

�
Epeakð1þ zÞ
300 keV

�
; ð20Þ

log
L

1 erg s−1
¼ a4 þ b4 log

�
τRTð1þ zÞ−1

0.1 s

�
; ð21Þ

where a and b are the intercept and the slope of the relation,
respectively. In these correlations, the isotropic peak
luminosity L is given by

L ¼ 4πd2LPbolo; ð22Þ

where Pbolo is the bolometric flux of gamma rays in the
burst. The isotropic energy released in a burst is

Eγ;iso ¼ 4πd2LSboloð1þ zÞ−1; ð23Þ

where Sbolo is the bolometric fluence of gamma rays in the
burst at redshift z. The total collimation-corrected energy
can be calculated by

Eγ ¼ Eγ;isoð1 − cos θjetÞ; ð24Þ

where θjet is the opening angle of the jet.
In order to completely avoid any circularity and obtain

model-unbiased constraints on the clumpiness of the
Universe from GRBs [65,68], we separately calibrate each

luminosity relation, Eqs. (18)–(21), by carrying out a
similar simultaneous global fitting route presented in the
above subsection. Results are shown in Table I. Here, σint is
the systematic error and it can be estimated by finding the
value such that an χ2 fit to each relation calibration curve
produces a value of reduced χ2 of unity [68]. This quantity
accounts the extra scatter of the luminosity relations. In this
global fitting route, we marginalize the nuisance parameter
Hubble constant by fixing H0 ¼ 70 km s−1Mpc−1.
Following the method about uncertainty calculation and
distance estimation from calibrated luminosity relations
[46,68], as shown in Fig. 2, we construct a Hubble diagram
of GRBs in the context of the ZKDR luminosity distance
scenario. In addition, results concerning the constraints on
model parameters are presented in Fig. 4 and Table II. It is
suggested that a Universe composed only by homo-
geneously distributed matter is strongly favored by GRB
observations. This is greatly different from what was
obtained in previous works [32,33].
Finally, we perform a joint analysis from the combina-

tion of JLA SN Ia and long GRBs. Results are displayed in
Fig. 5 and Table II. Within a 1σ confidence level, the matter
density parameter is restricted in the interval 0.32 ≤ Ωm ≤
0.36 and the smoothness parameter is bounded in the
interval 0.98 ≤ η ≤ 1.00. It is shown that the constraint on
the matter density parameter is mainly dependent on SNe Ia

Long GRBs

68
.3

95
.4

0.3 0.4 0.5 0.6
0.0

0.2

0.4

0.6

0.8

1.0

m

FIG. 4. Confidence regions in the (Ωm, ν) plane for the model
with a ZKDR luminosity distance constrained from the long
GRBs.

TABLE II. Summary of the unbiased constraints on model parameters in the ZKDR luminosity distance from
observations of standard candles.

Sample Ωmð1σÞ νð1σÞ ηð1σÞ
JLA SN Ia 0.25 ≤ Ωm ≤ 0.37 0.00 ≤ ν ≤ 1.80 0.16 ≤ η ≤ 1.00
Long GRBs 0.38 ≤ Ωm ≤ 0.49 0.00 ≤ ν ≤ 0.48 0.88 ≤ η ≤ 1.00
Joint analysis 0.32 ≤ Ωm ≤ 0.36 0.00 ≤ ν ≤ 0.12 0.98 ≤ η ≤ 1.00
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observations while the estimation of the smoothness
parameter is basically determined by the long GRBs.
The fact that high redshift GRBs prefer a homogeneous
Universe with a great significance of probability can be
understood as follows: they explore much larger scales of
the Universe and should contribute to diminishing the
corresponding space parameter. That is, since the Universe
is more homogeneous on larger scales (a higher redshift), a
higher value of the smoothness parameter η is favored. In
addition, it should be noted that, although large redshift
GRBs are very important for the tests of the clumpiness
parameter, there are only four GRBs at redshift larger
than 5.

IV. CONCLUSIONS AND DISCUSSIONS

In the era of precision cosmology, where one aims at
determining the cosmological parameters at the percent
level, distance estimations for standard candles and rulers
with increasing accuracy are expected to provide power-
ful constraints on dark energy or other fundamental
dynamical parameters. However, it is necessary to be
aware of the physical hypothesis underlying these probes
when we proceed with such a program. As far as we
know, the Universe is effectively inhomogeneous at least
in the small-scale domain. Furthermore, notice that even
the large-scale homogeneity also has been challenged
[73]. In this topic, the method based on the ZKDR
luminosity distance is a simple alternative and is usually
applied to quantitatively assessing the influences of
the clumpiness on the light propagation. In the past
few years, there has been a rich literature concerning
the constraints on the smoothness parameter from obser-
vations of standard candles [30,32–34,50]. However, we
should keep in mind that distances of SNe Ia applied to
test the inhomogeneity were estimated from the global

fit in the context of a standard homogeneous dark energy
model, i.e., the flat ΛCDM or wCDM model. Therefore,
in these previous analyses, constraints on the smoothness
parameter from the distance modulus of SNe Ia were
somewhat model biased. Meanwhile, results obtained
from GRBs suffered the same problem since the distances
of them were determined by calibrating luminosity
relations with low-redshift SNe Ia.
In this paper, we first construct Hubble diagrams for

SNe Ia and GRBs by calibrating the light-curve fitting
parameters and the luminosity relations, respectively, in
the global fit where the context of the ZKDR luminosity
distance model is taken into account. And then, these
Hubble diagrams can lead to unbiased tests for the
inhomogeneity of the Universe. For the JLA SN Ia, as
shown in Fig. 3, constraint on the smoothness parameter
is not stringent and slightly implies a locally inhomo-
geneous background, while the matter density parameter
is well constrained, being bounded in the interval
0.25 ≤ Ωm ≤ 0.37ð1σÞ. For the long GRBs, as shown
in Fig. 4, the Universe with matter uniformly distributed
is favored with a high confidence level. This is com-
pletely different from what was obtained in Ref. [33].
Finally, we perform a joint analysis which provides
good constraints on both model parameters. At a 1σ
confidence level, the intervals are 0.32 ≤ Ωm ≤ 0.36 and
0.98 ≤ η ≤ 1.00. It is suggested that the constraint on the
matter density parameter is mainly based on the obser-
vations of low-redshift SNe Ia, while the test for the
clumpiness parameter is primarily determined from the
observations of high-redshift GRBs. Just as expected,
the investigation of the inhomogeneity was very sensitive
to the scales explored by the observations; i.e., the
Universe should be more homogeneous on larger scales.
These also may be an indication that the ZKDR approxi-
mation remains to be a precise description for the
luminosity distance-redshift relation in a locally inho-
mogeneous Universe with the cosmological constant.
Frankly, it should be pointed out that constraints on

the model parameters from low-redshift SNe Ia and
high-redshift GRBs are somewhat inconsistent. This
inconsistency may imply that the assumption with the
smoothness parameter η being a constant is not accurate
enough to fit the practical observations. That is, the
smoothness parameter η might evolve with cosmic time
(or redshift). Moreover, the intrinsic scatters in GRB
observations may also lead to this tension. Therefore, in
the near future, a more precise and larger sample of high-
redshift GRB data (even some other distance measure-
ments with new methods, e.g., extremely luminous active
galactic nuclei readily observed over a range of distances
from ∼10 Mpc to z > 7 [74–76]) and a plausible exten-
sion of the ZKDR approach are expected to perform more
accurate tests for the inhomogeneity and contribution of
matter in the Universe.

JLA SN Ia Long GRBs

68.3
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0.28 0.30 0.32 0.34 0.36 0.38 0.40
0.0

0.1

0.2

0.3

0.4

m

FIG. 5. Confidence regions in the (Ωm, ν) plane for the model
with a ZKDR luminosity distance constrained from the combi-
nation of JLA SN Ia and long GRBs.
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