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We constrain plausible dark energy models using the recently published cosmic microwave background
(CMB) temperature anisotropy data from Planck together with WMAP9 low-l polarization data and the
data from low redshift surveys. To circumvent the limitations of any particular equation of state toward
describing all existing dark energy models, we work with three different equations of state covering a wider
class of dark energy models and hence provide more robust and generic constraints on the dark energy
behavior. We show that a possible tension exists between constraints from CMB and non-CMB
observations when one allows for both phantom and nonphantom behavior for the dark energy. Further,
we reconstruct the equation of state of dark energy as a function of redshift using the combined CMB and
non-CMB data and show that cosmological constant behavior is disallowed at the 68.3% confidence level.
A fully nonphantom history is also disallowed at the 68.3% confidence level, and a considerable fine-
tuning is also needed to keep it inside the 95.5% confidence limit. This result might motivate one to
construct phantom models for dark energy, which may be achievable in the presence of higher derivative
operators as in string theory. However, for a theoretical model that allows only nonphantom behavior, both
CMB and non-CMB data sets agree on the dark energy constraint with the mean equation of state being
very close to the cosmological constant.
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I. INTRODUCTION

It is now established by a range of cosmological obser-
vations, that our Universe is going through a late time
accelerated expansion phase. To explain such an accelerating
universe, either one needs to add an additional component,
called dark energy, in the energy budget of the Universe that
necessarily has a negative pressure causing an overall
repulsive behavior of gravity at large cosmological scales
(see [1] for some excellent reviews) or one has to modify
Einstein’s general relativity. Unfortunately, while candidates
for dark energy have been proposed, its exact nature remains
unknown. Alternatively, satisfactory modifications of general

relativity consistent with gravitational physics at astrophysi-
cal scales are also lacking.
Observational data are not yet sufficient to tightly

constrain the nature of dark energy, specifically its equation
of state. One would also like to know whether this equation
of state satisfies the weak energy condition (WEC) such
that it dilutes with the cosmological expansion, or whether
it violates the WEC and behaves like some mysterious form
of phantom energy with its energy density increasing with
time and possibly leading to a future singularity.
The majority of the current and future cosmological

observational programs are dedicated to finding answers to
these pertinent questions. These include, among others,
(i) the reconstruction of the Hubble diagram using
Supernova Type-Ia as a standard candle [2], (ii) measuring
fluctuations in the temperature of the cosmic microwave
background (CMB) radiation [3,4], or (iii) measuring the
acoustic oscillations in the matter power spectrum through
large scale structure surveys [5].
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The simplest example for dark energy is the cosmological
constant (Λ), which provides a fixed constant equation of
state of dark energy [Pressure ðpÞ ≡−energy density ðρÞ].
The concordance ΛCDM model is consistent with most of
the cosmological observations. However, underlying theo-
retical issues, such as fine-tuning as well as cosmic coinci-
dence problems, have motivated people to explore beyond
the cosmological constant, the natural alternatives being
scalar field models. A variety of such scalar field models,
including string theory embeddings for a positive cosmo-
logical constant [6], quintessence [7],k essence [8], phantom
fields [9], and tachyons [10], have been proposed.Other than
scalar field models, a barotropic fluid with an equation of
statepðρÞ, such as the generalizedChaplygin gas (GCG) and
its various generalizations [11,12], have also been consid-
ered for dark energy model building.
Present cosmological observations provide us with a

precise description of the Universe and impose tight con-
straints on the standard cosmological model. However,
given the proliferation of dark energy models in the
literature, it is impractical to confront each model with
the observational data. Rather one needs to look for generic
features of dark energy that are present in a large class of
models and then to confront these features with the obser-
vational results. The most popular way of doing this is to
assume a parametrization for the dark energy equation of
statew as a function of redshift, z, or the scale factor, a. One
suchwidely used parametrization is the Chevallier-Polarski-
Linder (CPL) parametrization first discussed in [13] and
later in [14]. This particular parametrization uses a linear
dependence of the equation of state on the scale factor and
has been used by almost all recent cosmological observa-
tions to put constraints on w. However, it may not correctly
represent models with more complicated a dependence at
slightly higher redshifts where a dark energy contribution
might still be non-negligible. Hence, constraining dark
energy behavior using only the CPL parametrization might
give biased or even incorrect conclusions.
Given the fact that Planck [4], in combination with non-

CMB observations like SN-Ia, baryon acoustic oscillations
(BAO), and hubble space telescope (HST), has measured
the cosmological content of the Universe with unprec-
edented accuracy, it is now interesting to investigate how
different parametrizations of the dark energy equation of
state can result in different constraints on dark energy
behavior when confronted with the observational data.
We can, now, address the following: Are conclusions
regarding the nature of dark energy borne out of observa-
tional data biased by our choice of parametrization? Or does
a general pattern exist in the dark energy behavior that is
always true even if we consider different parametrizations
for the dark energy equation of state?
In this paper, we investigate these issues by considering

two other parametrizations for the dark energy equation of
state together with the CPL parametrization. The first was

proposed by Scherrer and Sen (SS) [15], and it represents
the slow-roll thawing class of canonical scalar field models
having an equation of state that varies very close to the
w ¼ −1 irrespective of the form of the potential. The second
parametrization that we consider was proposed by Bento,
Bertolami, and Sen [11], subsequently was discussed
[16–19] for more general parameter ranges in [12], and is
known as the GCG parametrization. In Section 2, we
describe the details of these two parametrizations.
For each of these cases, we investigate the departure

of the cosmological parameters from the ΛCDM best-fit
values. Note that the CPL parametrization has already
been discussed in the Planck analysis [20]. However, our
analysis, apart from showing a consistency checkwith Planck
results, provides some new facts and highlights a moderate
tension betweenCMBandnon-CMBobservations.Using the
CMB,non-CMB, and combined data of both,wedemonstrate
this tension between high-redshift and low-redshift measure-
ments for models allowing phantom behavior. Moreover
from the combined analysis, using the correlation between
the equation of state parameters we reconstruct the allowed
range of dark energy evolution with redshift and address the
stand of phantom and nonphantom models in the allowed
band. In particular, we show that, once we disallow phantom
behavior, w is extremely close to the cosmological constant.
At this point it should be noted that, as an alternative

approach, model independent reconstructions of the expan-
sion history [i.e., the Hubble parameter hðzÞ] have been
carried out before [21,22], from which the equation of
state can also be reconstructed. Also note that certain
parametrization of the dark energy equation of state may
“artificially” limit the properties of dark energy from
explaining a few effects, such as the recent slowdown of
cosmic acceleration [23]. To overcome such biases, in this
current work, we use three different kinds of dark energy
parametrizations in order to cover a broad spectrum of dark
energy behavior. We constrain the nature of dark energy
using CMB and non-CMB surveys, taken individually as
well as jointly (see [24] for some recent works on dark
energy constraint after Planck).
The paper is organized as follows. In Section II, we

briefly discuss the three dark energy parametrizations that
we use in this paper; in Section III, we describe the different
observational data sets that we use to constrain the dark
energy evolution. We present the results in Section IV, and
in Section V, we summarize.

II. DARK ENERGY PARAMETRIZATIONS

A. CPL parametrization

This parametrization dictates that the equation of state of
dark energy has the following form:

wðaÞ ¼ w0 þ wað1 − aÞ ¼ w0 þ wa
z

1þ z
; ð1Þ
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where w0 and wa are the two parameters in the model. They
represent the equation of state at present (a ¼ 1) and its
variation with respect to scale factor (or redshift). From the
infinite past till the present time, the equation of state is
bounded between w0 þ wa and w0. The dark energy
density, in this case, evolves as

ρDE ∝ a−3ð1þw0þwaÞe−3wað1−aÞ: ð2Þ

This equation of state remarkably fits a wide range of
scalar field dark energy models including the supergravity-
inspired supergravity dark energy models. The CPL para-
metrization is most commonly used in the literature to
study the nature of dark energy. An outcome of the specific
form of this parametrization is that, for w0 ≥ −1 and
wa > 0, the dark energy remains nonphantom in nature
throughout the cosmological evolution; otherwise it shows
phantom behavior at some point in time.

B. SS parametrization

This parametrization proposed in [15] is for the slow-roll
“thawing” class of scalar field models having a canonical
kinetic energy term. The main motivation for this para-
metrization was to look for a unique dark energy evolution
for scalar field models that are constrained to evolve very
close to the cosmological constant (w ¼ −1). Since similar
situations also arise in inflationary scenarios in the early
universe, one assumes the same slow-roll conditions on the
scalar field potentials as used in inflation. However, unlike
the inflationary epoch, the evolution of the Universe
significantly differs due to the presence of the large matter
content in the late universe; still it can be shown that
(i) under the assumption of the two slow-roll conditions and
that (ii) the scalar field is initially frozen at w ¼ −1 due to
large Hubble damping (termed “thawing class”), one gets a
unique form for the dark energy equation of state irre-
spective of its potential. The form of this equation of state,
for a universe with flat spatial hypersurface, is given by

wðaÞ ¼ ð1þ w0Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðΩ−1
DE − 1Þa−3

q
− ðΩ−1

DE − 1Þa−3tanh−1 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðΩ−1

DE − 1Þa−3
p

�
2

×

�
1ffiffiffiffiffiffiffiffiffi
ΩDE

p −
�

1

ΩDE
− 1

�
tanh−1

ffiffiffiffiffiffiffiffiffi
ΩDE

p �
−2

− 1: ð3Þ

Note that SS has one model parameter, w0, which repre-
sents its value at the present epoch together with the general
cosmological parameter ΩDE representing the present day
dark energy density. The energy density of this model
of dark energy can be calculated analytically using the
Friedmann equations that have been used in our analysis.
Subsequently, the idea was also extended to phantom-type
scalar field models with a negative kinetic energy term [25],
for the tachyon-type scalar field models [26] having DBI-
type kinetic energy term [27] and also for the axionic
quintessence model in string theory [28].

C. GCG parametrization

The Chaplygin gas (CG) equation of state was first
discussed in the cosmological context in [29] and is
described by

p ¼ −
c
ρ
; ð4Þ

where c is an arbitrary constant and p and ρ represent the
pressure and energy density of the CG fluid. Subsequently,
this equation of state was generalized in [11] and in [30] as

p ¼ −
c
ρα

; ð5Þ

where α is a constant within the range 0 ≤ α ≤ 1. This form
is known as the GCG equation of state. In a later work [12]
the parameter range α < 0 was considered to describe
diverse cosmological behaviors. Assuming a spatially flat
universe the equation of state can be represented as

wðaÞ ¼ −
A

Aþ ð1 − AÞa−3ð1þαÞ ; ð6Þ

where A ¼ c=ρ1þα
GCG. The GCG parametrization contains

two model parameters, e.g., A and α.
It is easy to check that the present equation of state

wð0Þ ¼ −A. For ð1þ αÞ > 0, wðaÞ behaves like a dust in
the past, evolves toward negative values, and becomes w ¼
−1 in the asymptotic future. This is similar to “tracker/
freezer” behavior for a scalar field where it tracks the
background matter in the past, and in the late time behaves
like a dark energy with a negative equation of state. For
ð1þ αÞ < 0, the opposite happens. In this case the wðaÞ is
frozen to w ¼ −1 in the past, and it slowly evolves toward
higher values and eventually behaves like a dust in the
future. This behavior is similar to the thawing class of
scalar field models. Moreover, in this case, the late time
acceleration is a transient phenomenon as the acceleration
slows down eventually and the Universe enters again a dust
regime. For both thawing or freezing kinds of behaviors,
the transition to/from w ¼ −1 depends on the value of α.
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We shall consider both 1þ α > 0 and 1þ α < 0 to
consider freezing- as well as thawing-type behaviors.
However, we restrict 0 < A < 1 only since for A > 1
singularity appears at finite past. As a consequence, this
model is restricted to probe dark energy behavior for
nonphantom cases only, a feature that is also true for scalar
field models with positive kinetic energy. We have also
chosen −3 ≤ α ≤ 3. From Eq. (6) a large negative value of
α suggests that the equation of state will converge to the
cosmological constant faster in the past, and hence α will
have no lower bounds even if we allow for lower values
of α.1 The upper limit of α is chosen such that the tail of
the marginalized probability distribution function con-
verges before the upper limit. Recently, this parametrization
has been used [31] to study the Bayesian evidence for
the thawing/freezing class of the dark energy models
using different observational results including WMAP-7
results.
The three parametrizations for the dark energy equation

of state that we considered complement each other to
describe a broad spectrum for dark energy behavior. CPL
with a linear dependence in scale factor takes care of the
dark energy evolution around present day, GCG takes care
of the thawing and tracking nature of the dark energy, and
SS describes models that are very close to ΛCDM but not
exactly ΛCDM. GCG in particular is a nonphantom model
by definition and can be used to see whether a nonphantom
theoretical model is consistent with different observations.
So together with these parametrizations, using present
observational data, we cover a broad class of dark energy
models2 throughout the evolution of the Universe. Finally,
let us emphasize that while the CPL parametrization was
proposed as a phenomenological form for the equation of
state of dark energy, both the SS and GCG parametrizations
were obtained from a specific field theory Lagrangian
under certain conditions [11,25].

III. METHODOLOGY

In this paper we put constraints on the late time evolution
history of dark energy by contrasting multiple dark energy
models with CMB and low redshift observations. For CMB
we have used the recent Planck CTT

l data. As Planck has not
yet released the observed polarization data, we have used
WMAP-9 [33] low-l (2–23) polarization data (WP) for
completeness, as has also been used in Planck analysis. In
different frequency channels Planck has detected the CMB
sky in much smaller scales (l ¼ 2500) compared to
WMAP. Planck has published two likelihood estimators

[20], namely, the low-l (2–49) likelihood that is estimated
by COMMANDER and the high-l (50–2500) that is estimated
by CAMSPEC, for four different frequency channels. At
small scales, the foreground effects are dominant, and there
are 14 nuisance parameters [20,34] corresponding to the
foreground effects in different frequency channels along
with the calibrations. For our analysis with CMB data, we
have always marginalized over these nuisance parameters.
The Planck baseline cosmological model is described by
the six cosmological parameters: Ωbh2, ΩCDMh2, θ, τ, AS,
and nS. The first four parameters describe the background
where Ωb and ΩCDM represent the baryon and the cold dark
matter density and h represents the Hubble parameter. θ is
the ratio of the sound horizon to the angular diameter
distance at decoupling, and τ is the reionization optical
depth. AS and nS describe the amplitude and the spectral
index of the primordial perturbation that we assume to be of
the power-law form. Finally, for the CPL and GCG model
we have two additional parameters, and for the SS model
we have one additional parameter.
For non-CMB data, we have used Supernovae data,

BAO data, and data from the HST. For Supernovae data we
have used the recent Union 2.1 compilation [35] with 580
supernovae within redshifts ∼0.015 − 1.4. We have used
the covariance matrix of the Union 2.1 compilation which
includes systematic errors. For the BAO we have used four
data sets, namely the six-degree field galaxy survey [36],
SDSS DR7 [37] and BOSS DR9 measurements [38], and
the data from the WiggleZ survey [39]. We confront the
theoretical model with the distance ratio [dz ¼ rsðzdragÞ=
DVðzÞ] measured by the particular surveys (and with the
functions of dz), where zdrag is the particular redshift where
the baryon-drag optical depth becomes unity and rsðzdragÞ
is the comoving sound horizon at that redshift. DVðzÞ is
related to the angular diameter distance and the Hubble
parameter at redshift z. For BAO we get constraints from
six data points, of which three come from the WiggleZ
survey at three different redshifts (z ¼ 0.44; 0.6; 0.73) and
the other three come from the two SDSS measurements
such as SDSS DR7: z ¼ 0.35; SDSS DR9: z ¼ 0.57; and a
6DF: z ¼ 0.106. We have also used the HST data [40],
which uses the nearby Type-Ia Supernova data with
Cepheid calibrations to constrain the value of H0.
To study the inhomogeneous universe in a general

covariance formalism, one has to take into account the
dark energy perturbation together with the perturbation in
the baryonic as well as dark matter sector. But on small
scales, due to very small mass (∼10−33 eV), the effect of
dark energy perturbation is negligible and one can always
assume dark energy to be a smooth component. On horizon
scales, the dark energy perturbation can play an important
role; but it is also known that on these scales cosmological
measurements are strongly affected by cosmic variance.
Hence in general dark energy perturbation does not play
a major role in parameter estimation through CMB

1We shall demonstrate this fact in Section IV.
2Theoretically local inhomogeneities can also produce appar-

ent phantom behavior of dark energy [32] that is highly localized
in time. However, our analysis allows relatively smooth behavior
of dark energy, and sharp changes are beyond the scope of this
analysis.
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measurement. (It never plays any role for the background
expansion.) To get a meaningful constraint on the dark
energy perturbation, one needs to cross-correlate the large
scale CMB measurement with those from large scale
structures [41].
Nevertheless, to have a complete analysis, we consider

the dark energy perturbation in our analysis [42]. The
parameter that distinguishes different dark energy pertur-
bation is the sound speed through the dark energy compo-
nent, c2s , which is the ratio between the pressure and the
energy density perturbation for the dark energy. For dark
energy, modeled with a simple canonical scalar
field, c2s ¼ 1.
In our study, we do not consider any particular dark

energy model. Rather we consider different parametriza-
tions for the dark energy equation of state that represent a
broad class of dark energy behavior. This has been
discussed in detail in Section II. In particular, for GCG
parametrization, we should emphasize that this does not
represent the original GCG model for dark matter-dark
energy unification (where c2s can have different values for
different α and plays a major role); rather it represents the
scalar field models in general, giving the thawing and the
freezing behavior for the appropriate limit of parameter α.
This is also true for the other sets of parametrization that
represent different quintessence behavior that is considered
in literature. Therefore, we fix c2s ¼ 1 in our subsequent
calculations while considering dark energy perturbation.
We again want to mention that even if we do not include the
dark energy perturbation in our analysis, the conclusions
will not change much.
We have used the publicly available cosmological

Boltzmann code CAMB [43,44] to calculate the power
spectrum for CMB and different observables for non-CMB
observations, and for the Markov chain Monte Carlo
(MCMC) analysis we have used the COSMOMC [45,46].
Throughout our analysis we have fixed the number of
relativistic species to be Neff ¼ 3.046.

IV. RESULTS

We start this section by showing, in Table I, the best-fit
total χ2 (χ2best fit) values for cosmological models with
different dark energy parametrizations. In obtaining the
best fits, we have used Powell’s BOBYQA method of
iterative minimization [47], and the χ2best fit quoted are
obtained from the joint analysis with CMB and all non-
CMB data described in the previous section. The χ2best fit are
actually the minimum values obtained for the sums of χ2

calculated for different data sets.3 We have also presented
the breakdown of the χ2best fit from various data sets to clarify
the preference of any individual data set toward different
dark energy models. Note that allowing phantom behavior
(i.e., for both CPL and SS parametrizations) results in a
marginally better fit to the complete data sets by a
Δχ2best fit ∼Oð2 − 4Þ. The improvement from ΛCDM for
the CPL model is 3.6 and for the SS model is 2.6. This
improvement in χ2best fit is, arguably, not large enough to
justify the necessity to venture into the phantom regime.
GCG parametrization, which is a nonphantom model, has
similar χ2best fit values as in ΛCDM although it contains two
extra parameters. This shows that if we restrict ourselves to
nonphantommodels—a strong theoretical prior—it is hard
to distinguish them from a ΛCDM behavior as the best-fit
value is always close to a model with w ¼ −1.
It is clear from Table I, where the total and the individual

χ2best fit are given, that the Supernova data marginally favor
the concordance ΛCDM model as well as the nonphantom
GCG model compared to the other two parametrizations.
Planck data prefer lower H0 for ΛCDM, which does not
agree well with the H0 from HST, and the fit to HST gets
worse. However, CPL and SS models allowing a phantom
equation of state fit the data from both CMB and HST
better than the cosmological constant at their best fit values.

TABLE I. Best fit χ2best fit obtained for different models upon comparing against CMBþ non-CMB data sets. The
breakdown of the χ2best fit for individual data are also provided. To obtain the best fit we have used Powell’s
BOBYQA method of iterative minimization.

Data ΛCDM CPL SS GCG

Planck (low-lþ high-l) 7789.0 7787.4 7788.1 7789.0
WMAP-9 low-l polarization 2014.4 2014.436 2014.455 2014.383
BAO: SDSS DR7 0.410 0.073 0.265 0.451
BAO: SDSS DR9 0.826 0.793 0.677 0.777
BAO: 6DF 0.058 0.382 0.210 0.052
BAO: WiggleZ 0.020 0.069 0.033 0.019
SN: Union 2.1 545.127 546.1 545.675 545.131
HST 5.090 2.088 2.997 5.189
Total 10355.0 10351.4 10352.4 10355.0

3However, note that for obtaining the marginalized likelihoods
we do not use this information but perform a full MCMC analysis
using COSMOMC.
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A direct upshot of these phantom equations of state that fits
the CMB data better than the ΛCDMmodel is that it comes
with a higher value of H0 that in turn agrees with the HST
data better too. However, for the same choice of best fit
parameter values they do not provide similar improvement
in χ2best fit for Supernovae data. This indicates that SN data
favor the equations of state closer to the cosmological
constant. The breakdown of χ2best fit points to the tantalizing
possibility that different data sets, which effectively probe
different epochs in the history of our Universe, prefer
different kinds of dark energy behaviors. The improvement
in the total χ2best fit for the CPL and SS models over ΛCDM
and GCG is driven by the ability to have a higher H0 albeit
along with the associated preference for phantom behavior.
However, to be conclusive, one would need to evaluate the
complete marginalized likelihood behavior for the different
models with respect to the diverse data sets.

In Table II, we quote the mean values as well as the
68.3% errors bars for different parameters (Ωbh2, ΩCDMh2,
θ, τ, nS, AS, w0, wa, and the derived matter content Ωm and
Hubble constant H0). For each parameter, the first row
contains results from CMB data sets, the second row
contains the results when we combine high- and low-
redshift data, and the last row provides the results from non-
CMB data sets. Note that bounds on H0 become consid-
erably weak for CMB analysis alone when we allow a
phantom equation of state through CPL and SS. In all the
cases w0 (−A for GCG) is better constrained with non-
CMB data compared to the CMB data alone since w0

determines the behavior of the dark energy model at low
redshift. However, wa (α for GCG) is constrained better by
CMB data sets for CPL and GCG as it determines the
change in the dark energy equation of state throughout the
expansion of the Universe. It is clear that CPL and SS allow

TABLE II. The mean values and the 68.3% uncertainties for different cosmological parameters. CPL, SS, and GCG mark the dark
energy parametrizations used. The parameters w0 and wa represent −A and α for the GCG model and have been indicated in the table.
For each parameter the first, second, and last rows indicate the results from the analysis with CMB, CMBþ non-CMB, and non-CMB
data sets, respectively.

CPL SS GCG

Ωbh2 CMB 0.0221� 0.00028 0.0221� 0.00026 0.022� 0.00028
CMBþ non-CMB 0.022� 0.00026 0.0221þ0.00026

−0.00024 0.0223� 0.00024
Non-CMB 0.027þ0.004

−0.005 0.028þ0.004
−0.006 0.029� 0.005

ΩCDMh2 CMB 0.1196� 0.0027 0.1198� 0.0026 0.1199þ0.0026
−0.0028

CMBþ non-CMB 0.1209� 0.0023 0.1192� 0.0018 0.117� 0.0015
Non-CMB 0.126þ0.014

−0.017 0.128þ0.014
−0.018 0.127þ0.015

−0.018
100θ CMB 1.041� 0.0006 1.041� 0.0006 1.041� 0.0006

CMBþ non-CMB 1.041� 0.0006 1.041� 0.00056 1.042� 0.00056
Non-CMB 1.042� 0.023 1.048� 0.022 1.05þ0.019

−0.027
τ CMB 0.09þ0.012

−0.014 0.09þ0.012
−0.015 0.09þ0.013

−0.014
CMBþ non-CMB 0.087þ0.012

−0.014 0.091� 0.013 0.094� 0.014
Non-CMB � � � � � � � � �

w0½−A� CMB −1.13þ0.37
−0.66 −1.31þ0.19

unbounded −0.827þ0.06
non-phantom prior cut

CMBþ non-CMB −1.005þ0.15
−0.17 −1.14þ0.08

−0.09 −0.957þ0.007
non-phantom prior cut

Non-CMB −0.995þ0.23
−0.27 −1.02� 0.12 −0.92þ0.018

non-phantom prior cut

wa½α� CMB −1.15þ0.6
unbounded

� � � −1.97þ0.32
unbounded

CMBþ non-CMB −0.48þ0.77
−0.54 � � � −2.0þ0.29

unbounded
Non-CMB −0.5þ1.64

−0.94 � � � −1.49þ0.4
unbounded

nS CMB 0.9607� 0.007 0.9603� 0.007 0.9603�þ0.00073
CMBþ non-CMB 0.9579þ0.0063

−0.0066 0.9619þ0.0059
−0.0057 0.9669þ0.00056

−0.00059
Non-CMB � � � � � � � � �

ln½1010AS� CMB 3.089þ0.023
−0.027 3.089þ0.023

−0.028 3.09� 0.025
CMBþ non-CMB 3.087þ0.024

−0.026 3.091� 0.025 3.092� 0.026
Non-CMB � � � � � � � � �

Ωm CMB 0.239þ0.028
−0.099 0.27þ0.04

−0.1 0.344þ0.022
−0.032

CMBþ non-CMB 0.291þ0.011
−0.013 0.288þ0.012

−0.013 0.304þ0.009
−0.011

Non-CMB 0.29� 0.024 0.298þ0.02
−0.026 0.3þ0.021

−0.024
H0 CMB 80þ17.8

−7.8 74:8þ13.3
−9.8 64:6þ2.61

−1.91
CMBþ non-CMB 70.26� 1.4 70.3� 1.4 67:9þ0.9

−0.7
Non-CMB 72.68� 2.2 72.67� 2.15 72.4� 2.16
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lower Ωm and higher H0, whereas the GCG allows higher
Ωm and lower H0 consistently for all the analyses.4 It
should be noted that for the CPL model the mean value of
H0 for the analysis with CMB data sets comes out to be 80
and the 1σ uncertainty stretches the upper bound to 98. For
the SS model the bound on the H0 CMB only analysis is
better than CPL since the model has one dark energy
parameter and therefore is less degenerate.
It should be mentioned that the use of the BAO data

tightens the constraints on the background parameters. In
this context we performed our CMBþ non-CMB analysis
without BAO data as well. For the SS model we find the
bounds onΩm andH0 relax to 0.286

þ0.014
−0.015 and 70.44� 1.6,

respectively. For the GCG model we find Ωm ¼ 0.3þ0.013
−0.015

and H0 ¼ 68.08� 1.1. Notice that though marginal, the
addition of BAO data certainly help us to constrain the
background parameter more precisely. For the CPL model
too we find results similar to Planck analysis [34]. Since the
six BAO data sets do not contribute much to the total
likelihood, the mean values of the parameters do not change
as expected. However, compared to CMB only data
from PlanckþWP we find significant improvement in
constraints when we add BAO. For the CPL model CMBþ
BAO provides Ωm ¼ 0.307þ0.041

−0.046 and H0 ¼ 68:9þ4.1
−5.65; for

the SS model we find Ωm ¼ 0.283þ0.028
−0.03 and H0 ¼

71:3þ3.5
−3.3 ; and for GCG we find Ωm ¼ 0.32þ0.013

−0.02 and
H0 ¼ 66:3þ1.6

−1.12. If we compare the results for these two
quantities from the CMB only analysis from Table II, we
find that while CMB cannot put tight constraints on the
Hubble parameter and the matter density due to degener-
acies with the equation of state of dark energy, the addition
of BAO data breaks the degeneracies and can provide
tighter constraints on these parameters. Moreover, note that
for the CPL and SS models, BAO drags matter density to a
higher value and the Hubble parameter to a lower value
compared to CMB only values. For the GCG model, we
notice opposite behavior.
We now present the marginalized likelihoods of param-

eters for the different dark energy parametrizations. The
one-dimensional marginalized likelihoods for equation of
state parameters for different dark energy models are shown
in Fig. 1. Interestingly, in CPL as well as SS parametriza-
tion, the CMB data from Planck drag the present value of
the equation of state (w0) toward higher phantom values,5

whereas the non-CMB data bring it closer to the cosmo-
logical constant (w0 ¼ −1). For the combined data sets, we
find that the mean w0 comes close to the cosmological
constant (w ¼ −1) but still stays in the phantom region.
One can argue that there remains a moderate tension

between CMB and non-CMB data, which questions the

effectiveness of a joint analysis of CMBþ non-CMB data
together in the future. However, it is hard to pull out a
decisive argument from these plots whether and to what
extent the cosmological constant is consistent with the data.
The GCG model suggests no tension in CMB and non-
CMB data sets, and the cosmological constant (A ¼ 1),
which is our prior limit, is certainly well inside the
marginalized likelihoods obtained from all combinations
of the data sets. For a better understanding of the tension
between the data sets, which till now seems to be due to
phantom priors, we need to look at the two-dimensional
(2D) marginalized contours of dark energy equation of state
parameters.
In Fig. 2, we show the marginalized 2D contour plots in

w0 − wa and A − α parameter planes for CPL and GCG
parametrizations, respectively. The CPL case confirms the
results earlier obtained by the Planck collaborations.6

It shows that the cosmological constant behavior
(w0 ¼ −1; wa ¼ 0) is disallowed at more than 1σ confi-
dence level. Moreover, the region w0 > −1 and wa > 0 is
highly constrained even at the 3σ confidence level, showing
that it is very unlikely that dark energy behaved in non-
phantom manner at all epochs. For the 2σ confidence
contour, we find that the area under the region containing a
complete nonphantom history/total area ∼0.002; i.e., the
probability of a complete nonphantom history of dark
energy is 0.2% out of the total probability at 95.5%. This
certainly points to the fact that the combined data sets have
a strong inclination toward a dark energy that goes through
w < −1 at least once in the past.
For GCG parametrization (which is valid only for the

nonphantom region), as seen in Fig. 2, from the relative
shaded region below and above the α ¼ −1 horizontal
line we find that the thawing behavior (α < −1) is more
probable than the freezing behavior (α > −1) for dark
energy. Note here that the parameter α is unconstrained in
the thawing direction, i.e., from below. From Eq. (6)
we argue that for negative α, wðtodayÞ ¼ −A and
wðpastÞ → −1. For α → −∞, the equation of state will
start today at −A and immediately reach the cosmological
constant in the past. The GCG plot in Fig. 2 indicates the
more negative α is allowed, the less −A (or w0) can be
constrained. Since more negative α brings faster conver-
gence to the cosmological constant, the role of the
parameter −A in the expansion history of the Universe
becomes negligible, and the data sets are not sensitive to the
change of the parameter. Moreover, we would like to
highlight that CMB and non-CMB data, in this context
of GCG models, qualitatively distinguish the equation of
state of dark energy. For example, while the CMB data

4For analysis with non-CMB data sets GCG indicates a higher
value of H05Basically w0 is unconstrained in the phantom direction (with
CMB only) up to the prior range considered in our analysis.

6A tiny deviation from the Planck result is mainly due
to the addition of all the non-CMB data together
(UNION2.1þ BAO þ HST) with the CMB data from Planck
and WP in our analysis.
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constrain the value of α from above, non-CMB cannot
provide a bound there. On the other hand, in constraining
−A, the opposite happens (see the GCG plots in Fig. 1).
Since non-CMB data (mainly SN) provide the most
stringent constraints at the present epoch, it can constrain
A much better than CMB data from Planck. However, SN
data do not provide any information beyond z ∼ 1.4 and
therefore cannot constrain α as good as CMB data. Note
that for 1þ α > 0 the denominator of Eq. (6) diverges at
high redshift (small a) and makes w≃ 0 (regardless of A),
which is not supported by CMB data. This result clearly
shows the sensitivity of two different probes toward two
different parameters in the dark energy equation of state.
Here, unlike the CPL and SS parametrizations, we can
argue that CMB and non-CMB data may go through a
joint analysis in order to obtain a tighter constraint on
the dark energy equation of state. For both CPL and SS

parametrization (that allow phantom behavior), the
phantom-type equation of state is preferred for CMBþ
non-CMB data. Hence, irrespective of the equation of state
parametrization with different numbers of parameters,
phantom is preferred behavior for combined data. We
should point out that allowing the phantom region in the
parameter space brings in moderate tension between CMB
and non-CMB (specifically SN data); note that there is no
tension between them when we just concentrate on the
nonphantom scenarios (as in GCG). At this point we would
like to stress that if the two data sets do not have any
systematic effects and since we claim that a reasonable
theory should address different observational data to similar
extent, our results highlight the interesting possibility of
exploring and expanding theoretical ideas of dark energy.
These new theories should fundamentally support an
equation of state that evolves from a phantom nature at
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FIG. 1 (color online). The one-dimensional marginalized likelihoods for different parameters of the equation of state. The
parametrizations are mentioned at the top of each plot. The color codes are for different analyses with different observational data
and are described in the plot. Note here that for GCG, −A corresponds to the equation of state of dark energy today, i.e., w0.
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high redshifts toward a cosmological constant behavior at
low redshifts (as our results indicates).
Next, we analyze 2D confidence regions for other

cosmological parameters. In Fig. 3, we show the confi-
dence contours in the w0 −H0 plane for all three dark
energy parametrizations. For the GCG model w0 is defined
as −A. The Planck best-fit measurements for H0 for a
concordance ΛCDM model is shown by the horizontal red
line. The vertical black line represents the cosmological
constant. In Fig. 4, we show the confidence contours in
theΩm −H0 parameter plane for all three parametrizations;
the red lines show the best-fit values for Ωm and H0 as
measured by Planck for a concordance ΛCDM model. Our
main aim is to address the issue of phantom behavior of the
dark energy, i.e., whether it is allowed; and, if allowed, to
what extend does it affect the constraints on other cosmo-
logical parameters?
Figures 3 and 4 show that if we allow a phantom

equation of state (i.e., for CPL and SS parametrizations),
the best fit cosmology shifts to a higher value of H0 and a
lower value of Ωm. This shift leaves the base ΛCDM values
measured by Planck outside the 2σ (95.5%) confidence

limit (C.L.) for dark energy models captured by the CPL
parametrization and at the border of the 2σ contour in case
of SS parametrized models. However, for dark energy
models described by the GCG parametrization—which
does not allow phantommodels—the PlanckΛCDMvalues
are at the border of the 1σ C.L. To summarize, Planck
measurements of high Ωm and low H0 values for the
ΛCDM model are consistent with measurements of these
two parameters using both CMBþ non-CMB data if we
restrict ourselves only to nonphantom models like GCG.
The behaviors of the equation of state as a function of

redshift at 1σ and 2σ confidence levels, for the three
parametrizations, are shown in Fig. 5. Below we point
out the importance of this figure.
(A) The CPL parametrization (left panel in Fig. 5)

prefers the dark energy equation of state to be
phantom at more than the 1σ level beyond
z > 0.2. Only at z < 0.2, we get the w ¼ −1 line
within the 1σ bound. In this parametrization, the
mean dark energy equation of state starts as a
cosmological constant at only z ¼ 0 and quickly
deviates from it to become phantomlike as redshift
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FIG. 2 (color online). Marginalized likelihoods in the w0 − wa plane for CPL and the A − α plane for the GCG parametrization.
Inward to outward the black bounding lines represent 68.3%, 95.5%, and 99.7% confidence contours, respectively. For CPL we have
marked the cosmological constant with the intersection of two black lines, and for GCG we have marked the 1þ α ¼ 0 line to
distinguish between the freezing and thawing regions. Note here that for GCG, −A corresponds to the equation of state of dark
energy today, i.e., w0.
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FIG. 3 (color online). Marginalized likelihoods in w0 −H0 parameter plane for CPL (left), SS (middle), and GCG (right)
parametrizations. The red horizontal lines represent the best-fit value for H0 obtained from Planck for ΛCDM case. Inward to outward
the black bounding lines represent 68.3%, 95.5%, and 99.7% confidence contours, respectively.
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increases. w is best constrained at roughly around
z ∼ 0.3. Note that dark energy with w ≥ −1 lies
outside the inner grey region (1σ) in the range
(0.2 < z < 2). Moreover, the equation of state
parameters have an extremely small area to have
w ≥ −1 around z≃ 0.3 and still be inside the 2σ
band. This behavior of the equation of state is
consistent with what we observe in the w0 − wa
confidence plane as discussed earlier. To summarize,
w is consistent with ΛCDM only around z ¼ 0 but
becomes increasingly phantomlike with increasing
redshift.7

(B) It is apparent that SS parametrization (middle panel
in Fig. 5) constrains the equation of state to evolve
very closely to w ¼ −1; the 1σ region for w is
always less than but within ∼5% to the cosmological
constant at all epochs. This is expected as this
parametrization represents thawing class scalar field
models with small deviations from the cosmological
constant. Hence, though the nonphantom behavior is

not allowed at 1σ confidence level, at 2σ, w is
consistent with the cosmological constant. Note that
the mean w is always phantom and can provide
reasonable deviation from cosmological constant
behavior at the present epoch.
It is easy to understand the difference in the

behavior of w for CPL and SS parametrizations.
SS parametrization is designed to follow w ¼ −1 in
the early epoch and has flexibilities only at low
redshifts. CPL, on the other hand, can allow more
scenarios with one more degree of freedom. The
important similarity between them is both the
solutions permit a larger area in the phantom region.
Note that the mean w from SS is allowed within the
CPL 1σ bounds. The tighter constraints on w for the
SS model at high redshift also reflects the inability of
the SS model to depart from w ¼ −1 at early epochs.

(C) The mean equation of state for the GCG
parametrization (right panel in Fig. 5) shows that
w ≈ −0.96 at the present epoch and reaches close to
w ¼ −1 at high redshifts. The error bands clearly
point to a preference toward the thawer class of
models and hence provides an important constraint
for scalar field models for dark energy. For this class
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FIG. 4 (color online). Marginalized likelihoods in Ωm −H0 parameter plane for CPL (left), SS (middle), and GCG (right)
parametrizations. The red lines represent the best-fit values for H0 and Ωm obtained from Planck for ΛCDM model. Inward to outward
the black bounding lines represent 68.3%, 95.5%, and 99.7% confidence contours, respectively.
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7Similar conclusions about the phantom behavior of dark
energy has been recently reported by the Pan-STARRS1 survey
[48].
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of models, in the entire redshift range, the deviation
of w from a cosmological constant is far less than
what is found for the other two models.

From Fig. 5, the overall picture that emerges is the
following: if one allows phantom behavior, early dark
energy is very close to the cosmological constant (thawer
type); in the recent past there is possible phantom crossing.
Provided that CMB and non-CMB joint analysis does not
impose systematic errors as has been discussed before, our
results can therefore be thought of as an invitation to
construct models of dark energy that lead to phantom
behavior, at least at the scales probed by the Planck and
non-CMB observations. In the nonphantom scenarios,
thawer models are preferred and the dark energy equation
of state increases toward higher values in the future
resulting in the Universe decelerating again.

V. CONCLUSIONS

The post-Planck era has seen cosmological parameters
best constrained till date using a CMB and a host of non-
CMBmeasurements. This raises the possibility of precision
determination of the nature of dark energy. In this paper we
do a detailed investigation with such an aim in mind.8

Currently, almost all the cosmological constraints on dark
energy are based on a single parametrization, e.g., the CPL
parametrization. However, theoretical models of dark
energy abound in the literature, which leads to possibilities
of having models that may not be fairly represented by such
a parametrization. The question remains as to whether there
are possible dark energy evolutions that one misses using
the CPL parametrization.
To address the above-mentioned question we work with

two other parametrizations, namely SS and GCG, apart
from CPL. The SS model, which describes the dynamical
equation of state with a single parameter, allows both
phantom and nonphantom behavior and probes deviations
close to the cosmological constant. The GCGmodel, on the
other hand, represents only nonphantom models allowing
only positive kinetic energies of an underlying scalar field
model and provides a clear distinction between tracker and
thawer models. Finally, while the CPL parametrization was
proposed as a phenomenological form for the equation of
state of dark energy, both the SS and GCG parametrizations
were obtained from a specific field theory Lagrangian
under certain conditions [11,25]. Hence, the three para-
metrizations together probe a significantly large parameter
space for dark energy models.
Having the three parametrizations in hand, we use CMB

and non-CMB data in a separate and combined analysis to
look at dark energy behaviors. The main results of this
study are summarized below:

(i) We find that if we allow phantom behavior of dark
energy, irrespective of misgivings to its use due to
the negative kinetic energy of scalar fields, the CMB
data favor phantom behavior and the nonphantom
equation of states stays at the edge of the 2σ region.
On the other hand non-CMB data prefer nonphan-
tom behavior for every parametrization considered.
Once phantom behavior is allowed (i.e., in CPL
and SS parametrizations), the combined CMBþ
non-CMB data allow regions such that the cosmo-
logical constant (w ¼ −1) is pushed outside the 1σ
confidence level contour. In this context, we refer to
Table II where for the SS model the mean value of
w0 for non-CMB data sets (w0 ¼ −1.02) is more
than 1σ away from the mean value obtained in the
CMB-only analysis. Figure 1 also qualitatively
indicates the same. This tension may be attributed
to unknown systematics or the lack of a better
theory/parametrization of the dark energy equation
of state.

(ii) The GCG parametrization, which is theoretically
constructed so as not to allow phantom models,
shows consistency between CMB and non-CMB
data although they have marginally worse likelihood
than other parametrizations. It is found that the CMB
and non-CMB observations are separately sensitive
to the two parameters of the GCG parametrization
and that the joint constraint is consistent with the
cosmological constant. For these models, the cos-
mological parameters too are consistent with base
Planck best-fit measurements.

(iii) From the results obtained with the three parametri-
zations, it comes out that for scalar field dark energy
models, a thawing behavior is more probable than
the freezing behavior. This is most clearly demon-
strated in GCG models. Such an outcome is par-
ticularly interesting for quintessence model building
in string theory. Currently the only quintessence
model that has been constructed in string theory is
the one given by Panda, Sumitomo, and Trivedi [28].
It was shown explicitly by them that this model does
not allow a tracker behavior. Subsequently the
thawer nature of this model was confirmed by [50].

(iv) The constraints on dark energy, coming out of a joint
analysis of all available data, differ from model to
model. Not only does the mean w depend on the
parametrization of choice but also the error bar on
the mean has different behavior. For SS and GCG
parametrization, the nature of dark energy is best
constrained at high redshifts; however, for the CPL
parametrization the best constraints come in the
redshift range of ≈0.2–0.3.

(v) Using the correlation between the equation of state
parameters, we reconstruct the late time (i.e., z < 2)
evolution of dark energy. For the SS models, the

8After we submitted our paper to the arXiv, a similar study and
very similar conclusions were shown in [49].
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w ¼ −1 line stays outside the 1σ reconstructed band
of the evolution history of dark energy for the entire
redshift range. In the case of the CPL model, the
w ¼ −1 line stays outside the 1σ region for z > 0.2.
From the ratio of the contour area occupied by
complete nonphantomhistory and the overall equation
of state allowed in CPL,we also note that a fine-tuning
in w is required to have a complete nonphantom
history and still be inside the 95.5% limit.

(vi) It has already been noticed in the cosmology
community that the Planck measurement for the
parameter H0 for the ΛCDM model is in tension
with the measurements from the HST. Note that as
has been described in [51], the significance of this
tension strongly depends on the analyses of the
Cepheid calibration; and the use of the revised maser
distance to NGC 4258 makes the obtained H0

compatible with the Planck reported value. How-
ever, if we use the HST data from Riess et al. [40] we
find that for SS and CPL parametrizations, where we
allow phantom, a better fit to the data comes with a
large value of H0, which helps to agree better with
the HST data. As has been described at the begin-
ning of Sec. IV, in fact, the improvement in the total
χ2 for the CPL and SS model over ΛCDM and GCG
is driven by the ability to have a higher H0 albeit
along with the associated preference for phantom
behavior. However, in these parametrizations, the
phantom effect drags the background cosmological
parameter space (say, Ωm −H0) in such a way that
the corresponding best-fit base model and that from
Planck becomes 2σ away from each other. For a pure
nonphantom model (as in GCG), the above said
parameters stay close to the values obtained in the
ΛCDM model analysis. Hence, we demonstrated
how to find the different model assumption bias
cosmological parameter estimation. In this particular
case, the extension to the phantom equation of state
plays that crucial role.
Also, note that when we allow phantom behavior,

the H0 becomes highly degenerate with the dark
energy equation of state in the case of CMB only
measurements. Other parametrizations that allow
nonphantom behaviors only do not exhibit similar
behavior; the H0 errors for CPL are ≈5 times larger
compared to GCG for CMB only, even though both
have the same number of degrees of freedom.

The conclusions drawn above, in the current work, come
from a joint analysis of CMB and non-CMB data using
different evolving dark energy models having different
parametrizations of the equation of state of dark energy. In a
detailed analysis of SNe data (along with other data sets),
the PAN-STARRS1 survey [48] recently found hints for
similar phantom behavior of dark energy, although using a
constant equation of state. Their value of w is inconsistent

with the cosmological constant at > 2σ level (if used along
with Planck data) or at < 2σ (if used along with WMAP-9
data). Recently, in an arXiv submission [49] following our
work, it was also reported that for data set Planckþ HSTþ
BAOþ SNLS3 the ΛCDM model is just outside the 2σ
confidence regime, while for the data set WMAP − 9þ
HSTþ BAOþ SNLS3 the ΛCDM model is 1σ away from
the best fit. All these works complement each other.
A very important point, not adequately appreciated in

the literature (and missed in the two papers [48,49] cited
above), comes out in Fig. 5. This is the fact that our
constraints on w and hence the nature of dark energy that
we infer from cosmological observation depends crucially
on the choice of the underlying parametrization of the
equation of state. In fact, (any) deviation of w from a
cosmological constant with redshift depends on the para-
metrization; whereas for the current available data, both
SS and GCG infer dark energy being close to the
cosmological constant at high redshift but “deviating from
it in two different directions” when we approach the
current epoch; on the other hand, CPL is close to the
cosmological constant at the current epoch and deviates
away at high z. Given this trichotomy, it is important to do
nonparametric reconstruction of w for the total data set to
infer the correct nature of dark energy without any priors
on the form of w.
To summarize once again, we have performed one of the

most comprehensive studies of the dark energy equation of
state constraints from a joint analysis of Planck CMB data
along with SNe, BAO, and H0 data. A central result of our
analysis is that if one allows for phantom behavior in the
dark energy equation of state, the phantom region provides
a better fit to the combined CMB and non-CMB data. This
result motivates the construction of models of dark energy
that lead to phantom behavior. This means violating the
weak energy condition that cannot be possible with a single
scalar field having a positive kinetic energy term. However,
it is well known that in consistent theories of gravity, like
string theory, the weak energy condition and also the null
energy condition can be violated due to the presence of
higher derivative corrections [52]. We leave it as an
intriguing question for the reader as to whether such
violations can be used to construct a model of dark energy
that would fit the data better than, say, a positive cosmo-
logical constant.
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