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We describe a method using the integrated Sachs-Wolfe (ISW) effect caused by individual inhomo-
geneities to determine the cosmological parameters H0, Ωm, and ΩΛ, etc. This ISW-redshift test requires
detailed knowledge of the internal kinematics of a set of individual density perturbations, e.g., galaxy
clusters and/or cosmic voids, in particular their density and velocity profiles, and their mass accretion rates.
It assumes the density perturbations are isolated and embedded (equivalently compensated) and makes use
of the newly found relation between the ISW temperature perturbation of the cosmic microwave
background (CMB) and the Fermat potential of the lens. Given measurements of the amplitudes of the
temperature variations in the CMB caused by such clusters or voids at various redshifts and estimates of
their angular sizes or masses, one can constrain the cosmological parameters. More realistically, the
converse is more likely, i.e., if the background cosmology is sufficiently constrained, measurement of
ISW profiles of clusters and voids (e.g., hot and cold spots and rings) can constrain dynamical properties of
the dark matter, including accretion, associated with such lenses and thus constrain the evolution of these
objects with redshift.
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I. INTRODUCTION

The late time Integrated Sachs-Wolfe (ISW) effect [1],
also called the Rees-Sciama effect [2], has recently been
suggested (as well as disputed) as the source of observed
hot and cold spots in the cosmic microwave background
(CMB) temperature around some known large scale
structures—galaxy clusters and cosmic voids [3–5]. By
modeling cluster and void density profiles, and by adjusting
cluster masses and void depths, observed temperature
excesses or deficits can be matched by ISW predictions
[6–11]. Several proposals also exist to use lensing of the
CMB to determine properties of these clusters and voids as
well as the cosmological parameters [12–15]. What we
present in this paper is not unrelated to these proposals but
offers an easier and more direct method for relating the
ISW temperature shifts to the cluster or void structure and
the background cosmology. The conventional approach to
determine the ISW effect is to first construct the “lensing
potential” of a cluster or void from a model of its density
profile and then compute the potential’s effect on the
observed CMB’s temperature. Our approach uses another
lensing quantity, the “Fermat potential” or equivalently the
potential part of the time delay, to relate the lens and
cosmology to the ISW temperature fluctuations. Our method

of evaluating the ISW effect is directly related to the lens’
mass profile and is more transparent than the conventional
approach. It is simpler to use and requires the construction of
only one single function, the potential part of the time delay
[16]. It is also flexible to use, i.e., the lens structure and/or its
evolution can easily be varied and the effects of either are
separately discerned.
We have recently developed the embedded lens theory

[17–23] which could be called the Swiss cheese lens
theory or, at lowest order, the compensated lens theory.
The theory originated from the Swiss cheese models of
general relativity (GR) [24–26]; therefore, one can be
confident of its gravitational predictions, if GR is indeed
the correct theory. An embedded lens at redshift zd is
constructed by first removing a comoving sphere of radius
χb from a homogeneous Friedman-Lemaître-Robertson-
Walker (FLRW) cosmology producing a Swiss cheese void;
see Fig. 1. The void has a physical radius rd ¼ χbRðtdÞ at
cosmic time td that expands with the radius of the back-
ground cosmology RðtÞ but has a constant angular radius θM
as seen by an observer, as the observer ages. In the lowest
order lensing theory [19] these radii are related (by embed-
ding) to the Schwarzschild radius rs of the removed mass
Md by

θM ¼ rd
Dd

¼ 1

1þ zd

1

Dd

�
rs
Ωm

c2

H2
0

�
1=3

; ð1Þ

where Dd is the angular diameter distance of the void’s
center in the background cosmology (e.g., a standard FLRW
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cosmology), H0 the Hubble constant, and Ωm the matter
density parameter. The total mass removed Md is next
replaced with any appropriate spherical density while keep-
ing Einstein’s equations satisfied throughout the Swiss
cheese void and on its time-evolving boundary. The logic
for embedding is simple: by computing the mean density
inside larger and larger spheres centered on a density
perturbation, a radius will be reached beyond which the
mean density coincides with the FLRW background.
The minimum radius at which this takes place can be
chosen as rd. The simplest such exact Swiss cheese models
are constructed by filling the void with one of the Lemaître-
Tolman-Bondi models [27–29]. Since we are only interested
in the lowest order lensing theory, any nonrelativistic fluid
whose net mass is the same as the removed Swiss cheese
void’s mass Md will suffice. Consequently, models of
physical voids must be surrounded by higher density regions
and cluster models surrounded by lower density regions.
Such linearized gravitational models are often referred to as
compensated [30–35].
For spherical density perturbations we have shown in

[21,22] that to lowest order an embedded lens can be
completely described by its Fermat potential (equivalent to
the sum of the geometrical and potential time delays,
cT ¼ cTg þ Tp)

cTðθS; θIÞ ¼ ð1þ zdÞ
DdDs

Dds

�ðθS − θIÞ2
2

þ θ2E

Z
1

x

fðx0; zdÞ − fRWðx0Þ
x0

dx0
�
: ð2Þ

Here x≡ θI=θM is the normalized image angle, fðxÞ≡
MdiskðθIÞ=MdiskðθMÞ is the fraction of the embedded lens’
mass projected within the impact disk of angular radius θI ,

and fRWðxÞ ¼ 1 − ð1 − x2Þ3=2 is the corresponding quan-
tity for the removed comoving FLRW dust sphere. At (and
beyond) the boundary of the embedded lens, fðxÞ ¼
fRWðxÞ ¼ 1. The angle θE ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2rsDds=DdDs

p
is the usual

Einstein ring angle. Distances Ds and Dds are angular
diameter distances to the source measured from the
observer and the deflector, respectively. The geometrical
part of the time delay Tg, i.e., the first term in Eq. (2), has a
universal form whereas the potential part Tp depends on the
individual lens structure. To construct the Fermat potential
all that is needed is a mass density profile ρðr; zdÞ for which

cTpðθI; zdÞ ¼ 2ð1þ zdÞrs
Z

1

x

fðx0; zdÞ − fRWðx0Þ
x0

dx0

ð3Þ

can be integrated. All embedded lens properties can be
constructed once the specific TpðθI; zdÞ is known. For
example the specific lens equation is given by a θI variation
δTðθS; θIÞ=δθI ¼ 0. In [22] we have shown that the ISW
effect [1,2] is obtained by a zd derivative of Tp (or T since
∂Tg=∂zd ≡ 0):

ΔT ðθI; zdÞ
T

¼ Hd
∂TpðθI; zdÞ

∂zd : ð4Þ

In this expression ΔT is the change in the CMB’s
temperature T caused by CMB photons passing through
an evolving gravitational lens at impact angle θI . The
cosmic-time evolution of the lens is replaced by a depend-
ence on the redshift zd at which it is seen and the Hubble
parameter at that redshift is denoted by Hd ¼ HðzdÞ. To
compute the ISW effect caused by an embedded lens, we
need not only the density profile as required by conven-
tional lens theory [36] to compute image properties, but
we also need the density profile’s evolution rate to compute
the zd derivative. Because Eq. (4) contains only a first
derivative we do not need to know the lens’ history (i.e., the
dynamics of its motion), only its density profile and its
velocity distribution at lensing time zd.
A somewhat different connection between the ISWeffect

and lensing, other than the relation of Eq. (4) to Eq. (2), has
been noted by prior analytic work. While investigating
corrections to the linear ISW effect caused by keeping
nonlinear terms in the dark matter momentum density,
[37–39] found a term in the time derivative of the lensing
potential (the integral of which is conventionally used to
compute the ISW effect) that depends on the local deflec-
tion angle and the local transverse motion of the gravita-
tional lens. This term is reminiscent of the transverse
Doppler effect that produces a dipole signal in the
CMB, i.e., the Birkinshaw-Gull effect [40,41]. Even though
Eqs. (2)–(4) are tailored for spherical lenses whose centers
do not move transversely relative to the CMB, their

FIG. 1 (color online). The comoving geometry of an embedded
lens at redshift 1þ zd ¼ R0=RðtdÞ. Angles θS and θI , respec-
tively, are source and image angles; χd and χs are the comoving
angular distances of the lens and the source. The (constant)
angular size of the void, in lowest order lensing theory, is
θM ≡ χb=χd, where χb is the comoving radius of the Swiss
cheese void. The physical radius of the deflecting lens depends on
the cosmic time td, i.e., rd ¼ RðtdÞχb. The shadowed area
represents an embedded cluster. The dashed circle shows the
impact disk of angular radius θI , used to compute the included
projected mass fraction fðxÞ of the lens; see Eq. (2). The
equivalent figure for a void lens has a mass condensation
surrounding a low density central region and a repulsive instead
of attractive deflection angle α.
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evolving projected mass densities ð2πxÞ−1df=dx are
associated with radially directed divergent momentum
densities. That motion would produce local effects on
the transiting photons that could be similarity identified if
analyzed conventionally using the lensing potential as done
by [37–39].

II. THE PRINCIPLE BEHIND THE ISW-z TEST

Equation (4) gives the fluctuation in the observed CMB
temperature as a function of angular position across a
given, possibly evolving, density perturbation (a lens)
caused by the ISW effect. From Eq. (4) the ISW signal
is seen to depend on the lens’ redshift zd, its mass rs, its
projected fractional density profile fðx; zdÞ (including its
evolution, i.e., its first derivative with respect to redshift),
as well as the background cosmology. We construct the new
cosmology test using this simple relation. By splitting
Eq. (4) into an amplitude term proportional to the product
of the lens mass and the Hubble parameter, times a lens
structure dependent term SðθI; zdÞ we have

ΔT ðθI; zdÞ
T

¼ 2rs
Hd

c
× SðθI; zdÞ; ð5Þ

where the lens structure dependent term is defined by

SðθI; zdÞ≡ ∂
∂zd

�
ð1þ zdÞ

Z
1

x

fðx0; zdÞ − fRWðx0Þ
x0

dx0
�
:

ð6Þ
If the lens mass and structure are known, the amplitude of
ΔT ðθI; zdÞ=T at the lens’ center (θI ¼ 0) can in principle
be used to determine the Hubble parameter HðzdÞ. In
practice, to apply Eq. (5) to a cold or hot spot associated
with a single void or cluster lens it must be averaged over
the aperture of the detector; i.e., ΔT ðθI; zdÞ and SðθI; zdÞ
are replaced by their averaged values,ΔT ðzdÞ and SðzdÞ. If

a set of clusters and/or voids can be found whose redshifts,
masses, and evolving structures can be determined, then
SðθI; zdÞ and SðzdÞ can be determined. Given the CMB
temperature data at the positions of these clusters and/or
voids, Eq. (5) will determine the Hubble parameter Hd as a
function of zd. The redshift-dependent Hubble parameter
can then be used to constrain all the cosmological param-
eters. In Sec. III we illustrate the procedure by applying it to
simple top-hat cluster and void models.
The above form of the ISW-z test assumes the mass of

the lensing cluster or void is known; however for cosmic
voids, radii can be more easily determined than masses
[42]. We now present a second form of the ISW-redshift test
preferable for such voids. This second test requires knowl-
edge of the energy content of the FLRW background before
it can be applied. We construct this form of ISW-redshift
test by looking at the central region of the void or cluster,
eliminating rs from Eq. (4) by using Eq. (1), and dividing
by the cube of the angular radius of the Swiss cheese void
θ3M to obtain the H0 and rs independent result

ΔT ðzdÞ=T
ðθMÞ3

¼ CðzdÞ × SðzdÞ; ð7Þ

where the pure curvature dependent part CðzdÞ is defined by

CðzdÞ≡ 2Ωm
Hd

H0

�
ð1þ zdÞDd

H0

c

�
3

ð8Þ

and the lens structure dependent term SðzdÞ is again
defined by Eq. (6).
By replacing the Hubble parameter Hd and the angular

diameter distance Dd by functions of the curvature and
redshift, assuming for example a simple possibly evolving
dark-energy ΛCDM-like gravity source with pΛ=ρΛc2 ¼
½w0 þ waz=ð1þ zÞ�, we have

Hd=H0 ≡ EðzdÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛð1þ zdÞ3ð1þw0þwaÞe−3wazd=ð1þzdÞ þΩmð1þ zdÞ3 þ ð1 −Ωm − ΩΛÞð1þ zdÞ2

q
; ð9Þ

and

ð1þ zdÞDd
H0

c
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij1 −Ωm − ΩΛj

p

× Sinh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1 −Ωm −ΩΛj

p Z
zd

0

dz
EðzÞ

�
;

ð10Þ

where SinhðxÞ ¼ sinðxÞ, x, and sinhðxÞ for a closed, flat,
or open universe, respectively. The conventional ΛCDM

cosmology is recovered when w0 ¼ −1 and wa ¼ 0.
The curvature part of Eq. (7) becomes

CðzdÞ≡ 2ΩmEðzdÞ
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij1 −Ωm −ΩΛ

p j

× Sinh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1 − Ωm −ΩΛj

p Z
zd

0

dz
EðzÞ

��
3

: ð11Þ

The sensitivity of CðzdÞ to the cosmological parameters can
be seen by its series expansion for zd ≪ 1:
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CðzdÞ ≈ 2Ωmz3d

�
1 −

1

2

�
1þ 1

2
Ωm þ 1

2
ΩΛ½1þ 3w0�

�
zd

þ 1

4

�
3 −Ωm − ½1 − 3w0�ΩΛ

þ 1

4
ðΩm þΩΛ½1þ 3w0�Þ2

�
z2d þO½z3d�

�
: ð12Þ

It is obviously most sensitive toΩm and does not depend on
wa to this order.
We plot the curvature part, Eq. (11), in the left panel of

Fig. 2 for four familiar cosmologies as solid curves: the
Einstein de Sitter (EdS) universe, ðΩm;ΩΛÞ ¼ ð1; 0Þ; a dark
matter only universe, ðΩm;ΩΛÞ ¼ ð0.3; 0Þ; a ΛCDM uni-
verse, ðΩm;ΩΛÞ ¼ ð0.3; 0.7Þ; and a baryonic matter only
universe, ðΩm;ΩΛÞ ¼ ð0.05; 0Þ. We also indicate the range
of variation in CðzdÞ for flat ΛCDM models by plotting, as
dashed curves, the ðΩm;ΩΛÞ ¼ ð0.35; 0.65Þ and (0.25,0.75)
cases. In the right panel of Fig. 2 we plot these same curves
but with the common factor z3d divided out, i.e., CðzdÞ=z3d.
A significant dependence on Ωm is easily seen.
In Fig. 3 we show the accuracy of the series approxi-

mation for CðzdÞ as given by the first three terms of Eq. (12)
by plotting the fractional difference between CðzdÞ as given
by Eq. (12) and CðzdÞ as given by Eq. (11) for the indicated
cosmologies. For lenses of redshift up to 0.5 the series
approximation is accurate to 1%. In Fig. 4 we plot, for flat
ΛCDM models, the fractional change in CðzdÞ for various
ðΩm;ΩΛÞ values compared to CðzdÞ for the (0.3, 0.7)
universe. From the plots in the left panel we see that
CðzdÞ is more sensitive to Ωm at smaller redshifts, and from
the red curves on the right we see the uncertainty in
measurement of the curvature term scales roughly linearly
with that in Ωm. Combining these observations with Fig. 3

we see that the series approximation should be accurate
enough to determine Ωm up to about 2% at redshifts up to
zd ≈ 0.7 if the universe is in the neighborhood of (0.3, 0.7).
The blue curves plotted in the right panel of Fig. 4 and

the curves plotted in Fig. 5 compare curvature functions of
Eq. (11) for the concordance ΛCDM universe with uni-
verses whose Λ-like field has a dynamical equation of state
pΛ=ρΛc2 ¼ ½w0 þ waz=ð1þ zÞ�. We have varied ðw0; waÞ
about ð−1; 0Þ keeping ðΩm;ΩΛÞ ¼ ð0.3; 0.7Þ without

FIG. 2 (color online). Plots of the curvature term CðzdÞ from Eq. (11) for four background cosmologies (the solid curves from top to
bottom): the Einstein de Sitter universe, ðΩm;ΩΛÞ ¼ ð1; 0Þ, red curve; a dark matter only universe, ðΩm;ΩΛÞ ¼ ð0.3; 0Þ, blue curve; a
ΛCDM universe, ðΩm;ΩΛÞ ¼ ð0.3; 0.7Þ, green curve; and a baryonic matter only universe, ðΩm;ΩΛÞ ¼ ð0.05; 0Þ, cyan curve. The two
dashed curves show the extent to which CðzdÞ varies for small changes about ðΩm;ΩΛÞ ¼ ð0.3; 0.7Þ. In the right panel the small zd
dependence is factored out.

FIG. 3 (color online). The fractional difference of the series
approximation for CðzdÞ as given by Eq. (12) and the exact value
as given by Eq. (11) is plotted for five flat cosmologies (from top to
bottom): ðΩm;ΩΛÞ ¼ ð0.50; 0.50Þ, dot-dashed magenta curve;
(0.40,0.60), dashed cyan curve; (0.30,0.70), solid green curve;
(0.20,0.80), dotted orange curve; (0.10,0.90), dashed blue
curve.
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placing any physical constraint on their values. For the
range of variation of the two parameters shown, the
maximum sensitivity is only reached beyond zd ¼ 1.
Cosmic voids identified through galaxy surveys gener-

ally have low redshifts z≲ 0.5 [43,44], and as can be seen
in Eq. (12) and the right panel of Fig. 2, at small redshifts
the curvature term is dominated by the mass density

parameter Ωm. Consequently, this test should place its
strongest constraint on Ωm.

III. EXAMPLES

The structure term SðθI; zdÞ has to be accurately mod-
eled before we can use either of the two tests presented in
the previous section to constrain the cosmological param-
eters. Modeling strong gravitational lenses (galaxies or
clusters of galaxies) traditionally requires only the density
profiles ρðrÞ of the lenses, whereas modeling ISW effects
requires the additional knowledge of the first time deriva-
tive of ρðrÞ at lensing (equivalent to the first derivative with
respect to zd). Even if we assume that galaxy clusters are
virialized, their density contrasts with respect to the FLRW
background evolve with redshift, and so do their projected
fractional mass profiles fðx; zdÞ. To numerically evaluate
Fermat potentials for compensated cluster lens models with
realistic profiles, e.g., cluster lenses with profiles such as
the embedded Navarro-Frenk-White profile [45] is straight-
forward but analytical evaluation is challenging. Dark
matter density profiles for cosmic voids are currently
estimated by stacking and averaging galaxy counts over
large numbers of voids. This assumes that luminous matter
as tracers of dark matter is not significantly biased and even
if correct, far less is known about void evolution than about
cluster evolution. There are hints indicating that voids can
be deep in the central regions, with δ≲ −0.8 near the void
center [42]. If this is indeed the case, then δ might be
evolving very slowly (already approaching its lower bound
of −1) and the zd dependence in fðx; zdÞ might be
negligible. If so, the structure term would consequently

FIG. 4 (color online). (Left) Sensitivity of CðzdÞ to the matter density parameter Ωm. The fractional change in the curvature CðzdÞ
given by Eq. (11) is plotted as a function of the redshift zd for several flat ΛCDM cosmologies close to Ωm ¼ 0.3, i.e., δC=C≡
½Cð0.3þ δΩmÞ − Cð0.3Þ�=Cð0.3Þ is plotted for δΩm ¼ 0;�0.03;�0.06, and �0.09. (Right) The linear response of the curvature term
(relative to the fiducial ΛCDM cosmology) as a function of variations of Ωm for lens redshift zd ¼ 0.5, 1.0, and 2.0 (respectively, dot-
dashed, long dashed, and dashed curves) is plotted as the three red curves (larger slopes). The three blue curves (smaller slopes) are
similarly produced by variations of w0 about w0 ¼ −1. For a lens at redshift zd ≈ 1, a measurement of C within 10% constrains Ωm and
w0 up to about 12% and 25%, respectively.

FIG. 5 (color online). Sensitivity of CðzdÞ to the dark energy
parameters w0 and wa. For all plotted cosmologies ðΩm;ΩΛÞ ¼
ð0.3; 0.7Þ but w0 and wa are allowed to, respectively, vary about
−1 and 0; i.e., we test for δw0 ¼ 0;�0.1;�0.2, and
δwa ¼ 0;�0.1;�0.2. The curvature term CðzdÞ is more sensitive
to variations in w0 than wa; see Eq. (12).
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be easier to model. Voids would simply be expanding with
the background and the ISW effect would be determined
by the time-delay contribution alone [22]. The ISW-z test
might be more fruitfully applied to cosmic voids than
galaxy clusters because it is very sensitive to cluster
accretion (see below) and the CMB temperature seen
through a cluster is contaminated by hot gas emissions
from the cluster itself and from other secondary anisotro-
pies such as the Sunyaev-Zeldovich effect [46,47].
As a first attempt to illustrate the procedure of con-

structing the structure term SðzdÞ, we approximate cosmic
density perturbations by a two-parameter family of either
top-hat models for clusters or inverted top-hat models for
voids; see Fig. 6. Both the cluster and void models are
compensated with density profiles defined as

ρ − ρ̄

ρ̄
¼

�
δ; 0 ≤ x < a;

−δ=ða−3 − 1Þ; a ≤ x < 1;
ð13Þ

where ρ̄ is the cosmic mean at the lens redshift, the
parameter a delineates the over- and underdense regions,
and −1 ≤ δ ≤ ða−3 − 1Þ is the density contrast of the inner
region. When δ is negative this is a void model and when
positive a model for an overdensity. The density contrast of
the outer region ða < x ≤ 1Þ is entirely determined by the
necessity of compensating for the excess or depleted central
density. For this simple top-hat lens model we findZ

1

0

fðx0; zdÞ − fRWðx0Þ
x0

dx0 ¼ −δ
log a

ða−3 − 1Þ ; ð14Þ

and the structure term from Eq. (6) is

SðzdÞ ¼ −
δ log a

ða−3 − 1Þ − ð1þ zdÞ
log a

ða−3 − 1Þ
dδ
dzd

− ð1þ zdÞδ
d
dzd

�
log a

ða−3 − 1Þ
�
: ð15Þ

If the lens does not evolve in comoving space, i.e., if δ
and a are both constants, the density perturbation is not
evolving in size or shape relative to the background
cosmology and SðzdÞ is just a constant given by
Eq. (14). We refer to this nonevolving, i.e., coexpanding,
value as S0; see the horizontal dashed brown curve in
Fig. 7. If the density perturbation evolves relative to the
FLRW background, then δ and/or a are functions of the
deflector redshift zd, the quantity given by Eq. (14) evolves
with time, and the additional derivative terms in Eq. (15)
are present. The structure term SðzdÞ will depend on the
background cosmological parameters if either of the two
parameters δ or a does. If δ evolves but a does not, the
second term is present and the perturbation’s amplitude
evolves relative to the background cosmology but the
perturbation does not change its shape. Linear perturbations
are of this type (see the four cosmological parameter
dependent curves in Fig. 7). If a evolves, the last term is
present and the shape of the perturbation evolves. Relaxed
clusters (see Fig. 8) and voids produced by explosive
motion are of this type [48–50]. We next discuss linear
perturbations and relaxed clusters in more detail.

A. Linearly evolving cosmic voids and large
scale overdensities

As a first example of the ISW-z test using Eq. (7) we
assume linear growth for the clusters or voids of the form
given in Eq. (13). The fractional comoving radius of the top
hat remains constant (a ¼ a0) while δ evolves as

δ ¼ DþðzdÞδ0; ð16Þ

where the linear perturbation growth factor [53]

DþðzÞ ¼ EðzÞ
Z

∞

z

ð1þ z0Þ
½Eðz0Þ�3 dz

0
	Z

∞

0

ð1þ z0Þ
½Eðz0Þ�3 dz

0 ð17Þ

FIG. 6 (color online). Compensated top-hat models for a cluster on the left a ¼ 0.2; δ ¼ 99 and a void on the right a ¼ 0.8; δ ¼ −0.9.
The well surrounding the cluster (and the wall surrounding the void) begins at physical radius r ¼ ard.
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depends on the cosmological parameters through EðzÞ;
see Eq. (9). Consequently, linear evolution produces an
evolving structure-dependent term SðzdÞ that depends on
cosmological parameters such as Ωm and ΩΛ:

SðzdÞ ¼ −δ0
log a0

ða−30 − 1Þ
�
DþðzdÞ þ ð1þ zdÞ

dDþðzdÞ
dzd

�
:

ð18Þ
In Fig. 7 we have plotted SðzdÞ ÷ ½−δ0 log a0=ða−30 − 1Þ�

for the top-hat cluster and void models of Eq. (13) to
illustrate evolution of the structure parts of Eqs. (5) and (7).
To obtain the zd dependence of the structure part for a
particular lens simply multiply each curve by the appro-
priate value of S0 ≡ ½−δ0 log a0=ða−30 − 1Þ�. To understand
why the various evolutionary schemes produce different
central temperatures at zd ¼ 0 for exactly the same per-
turbation density at zd ¼ 0, one has only to identify the
two sources of the zd dependence in Eq. (6). When the
derivative acts on the ð1þ zdÞ term the contribution to
Eq. (4) is HdTp=ð1þ zdÞ which is directly proportional to
the potential part of the lensing time delay Tp. At the
delayed exit time the background CMB photons have
further cooled and reddened whereas the lensed CMB
photons, stuck in the lens, were not so reddened and hence
appear relatively bluer. This time-delay contribution to the
temperature shift of the CMB is common to all evolutionary
schemes and constitutes the entire temperature shift if the

lens mass structure is evolving exactly like the background
cosmology, i.e., coexpanding. If the lens density evolves
differently than the background, transiting CMB photons
can lose or gain energy by virtue of the changing depth
of the transited gravitational potential within the lens. If
the lens is more condensed in the past, ∂fðx; zdÞ=∂zd > 0
in Eq. (6), the fractional projected lens mass fðx; zdÞ
decreased with cosmic time and transiting photons lose
less energy when climbing out of the lens’ potential well
than they gain when falling in. They would thus appear
even bluer because of the evolution. However, if
∂fðx; zdÞ=∂zd < 0, the lens structure is becoming more
condensed with time (as shown in Fig. 7 for linear
perturbations) and the CMB photons are redshifted because
of evolution. The larger the evolution rate, the more
reduction takes place in the time-delay blueshift. In the
EdS universe DþðzdÞ ∝ RðtdÞ assuming linear evolution
[see Eq. (18)], and the evolution reddening completely

FIG. 7 (color online). Plots of the redshift evolution of the
structure function SðzdÞ=S0, where S0 ≡ −δ0 log a0=ða−30 − 1Þ
for cluster (S0 > 0) and void (S0 < 0) models; see Eq. (13). The
dashed brown curve is for cluster or void lenses coexpanding with
the background cosmology. The solid curves are computed
assuming linear evolution in four background cosmologies
(bottom to top): the Einstein de Sitter universe, ðΩm;ΩΛÞ ¼
ð1; 0Þ, red curve; a ΛCDM universe, ðΩm;ΩΛÞ ¼ ð0.3; 0.7Þ,
green curve; a dark matter only universe, ðΩm;ΩΛÞ ¼ ð0.3; 0Þ,
blue curve; and a baryonic-matter only universe, ðΩm;ΩΛÞ ¼
ð0.05; 0Þ, cyan curve.

FIG. 8 (color online). Structure function SðzdÞ for four cluster
models from Table I. The effect of mass accretion on
Md=Mcð0Þ × SðzdÞ in the flat ΛCDM background cosmology
is plotted for clusters whose mass at z ¼ 0 is Mcð0Þ ¼ 1015M⊙.
The Md=Mcð0Þ factor is included for the purpose of comparing
ΔT ’s of Eq. (5) because rs ∝ Md. Thick lines are for clusters
condensed from homogeneous spherical regions containing a
total mass Md ¼ 10Mcð0Þ, and thin lines for Md ¼ 2Mcð0Þ.
Consequently clusters in larger lenses (thick curves) have smaller
fractional radii a resulting in different SðzdÞ values; see Eq. (15).
The two top horizontal black curves are for coexpanding non-
accreting clusters and the next two straight green lines are for
static nonaccreting clusters. The curved lines are accreting
models. Blue models accrete according to [51] (McBride) and
red models according to [52] (van den Bosch). The solid line
models assume the cluster’s central density enhancement remains
at ð1þ δÞ ¼ 200 during accretion and the physical radius ra
increases. The dashed line models assume the physical radii ra
remain constant and the central density enhancements 1þ δðzÞ
increase with time. Even though accretion histories described by
Eqs. (23) and (24) are very similar, the associated accretion rates
are very different near z ∼ 0 and estimated values for SðzdÞ based
on these rates, clearly, cannot be trusted for zd < 0.1.
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cancels the time-delay blueshift (see the solid red curve in
Fig. 7). See Chen, Kantowski, and Dai [22] for more
discussion about the time-delay and evolutionary contri-
butions to the ISW effect.

B. Virialized clusters

We evaluate the structure function SðzdÞ for four cluster
models, one completely static, one coexpanding, and two
virialized but accreting (see Table I). A virialized cluster
model of the top-hat form given in Eq. (13) that has stopped
evolving, i.e., one that is completely static, would have a
constant physical radius ra and a constant central density
ρc, or equivalently a z-dependent comoving radius

a ¼ ra
rdðzÞ

¼ a0ð1þ zÞ; ð19Þ

and a z-dependent central density enhancement

1þ δðzÞ≡ ρc
ρ̄ðzÞ ¼ ð1þ δ0Þð1þ zÞ−3: ð20Þ

The mass contained in the cluster is

McðzÞ ¼
4

3
πr3aρc ¼ a3½1þ δðzÞ�Md; ð21Þ

whereMd ¼ 4=3πr3dρ̄ðzÞ is the (constant) mass contained in
the comoving Swiss cheese sphere from which the cluster
condensed. The mass remaining in the depleted region
around the cluster is simply ðMd −McÞ and is the source
of the accreting mass. If the cluster was not virialized but
simply coexpanding with the background cosmology, a and
the central density enhancement 1þ δ would both remain
constant. For either of these two scenarios: model I, a static
cluster with constant physical radius ra and constant central
density ρc, or model II, a coexpanding cluster with constant
fractional comoving radius a and constant central density
contrast δ, the mass of the central cluster remains constant.
Even though there are no observational measurements of
mass accretion rates for clusters, they are all widely believed
to be accreting mass. To use the simple two-component
mass profile models of the form given in Eq. (13) to estimate
the effect of accretion on the structure function SðzdÞ we
allow mass from the depleted background material sur-
rounding the cluster ðra ≤ r ≤ rdÞ, whose mass density is

½1 − δ=ða−3 − 1Þ� × ρ̄, and whose partially depleted contents
previously collapsed to form the cluster, to be continually
falling onto that cluster after virialization at some specified
rate

dMc

dt
¼ −ð1þ zÞHd

dMc

dz
: ð22Þ

If mass accretes, a and/or δðzÞ differ from the values given
by Eqs. (19) and/or (20). To make use of current accretion
rate estimates we choose two accreting scenarios: the first,
model III, keep the central density contrast fixed with
ρcðzÞ ¼ ð1þ δÞρ̄ðzÞ ¼ 200ρ̄ðzÞ and let the comoving
radius aðzÞ increase with cosmic time (decrease with red-
shift); see Eq. (21). In the second accreting scenario, model
IV, assume the physical radius ra ¼ aðzÞrdðzÞ remains
constant while the central density enhancement 1þ δðzÞ
increases with time to accommodate the accreting mass. A
comparison of these four simple cluster models is shown in
Table I.
Even though there are no observational data giving

dMc=dz for accreting clusters, there are several fitting
formulas arrived at by using the extended Press-Schechter
formalism and N-body simulations to estimate that rate.
Two such simple fitting formulas are two-parameter
expressions due to McBride, Fakhouri, and Ma [51]:

McðzÞ=Mcð0Þ ¼ ð1þ zÞβe−γz ð23Þ

and van den Bosch [52]:

McðzÞ=Mcð0Þ ¼ exp

�
lnð1=2Þ

�
lnð1þ zÞ
lnð1þ zfÞ

�
ν
�
: ð24Þ

These models are designed to represent stochastic averages
of field galaxies and groups merging with the cluster and
increasing its mass at the specified rate. Other fitting
formulas can be found in [54,55]. Estimates of the
parameters ðβ; γÞ and ðzf; νÞ can be found in [56] for
the conventional ΛCDM background.
In Fig. 8 we estimate the effect of mass accretion,

Eq. (22), on the structure function SðzdÞ of clusters by
assuming mass accretion histories of the form Eqs. (23)
and (24). Because of the limited availability of fitting data
we choose for all four cases shown a cluster mass of

TABLE I. Cluster models.

Model Mc constant ra constant a constant δ constant Descriptions

I Yes Yes No No Nonaccreting static
II Yes No Yes Yes Nonaccreting coexpanding
III No No No Yes Accreting with fixed δ
IV No Yes No No Accreting with fixed ra
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Mcð0Þ ¼ 1015M⊙ at z ¼ 0 and a central density enhance-
ment 1þ δ0 ¼ 200 at z ¼ 0 in a concordance background.
We take ðβ; γÞ ¼ ð−0.690; 1.280Þ and ðzf; νÞ ¼ ð0.381;
1.252Þ in Eqs. (23) and (24), respectively, from fits found
in [56].
The top four curves give SðzdÞ of Eq. (6) for non-

accreting (constant cluster mass Mc) models I and II, the
static and coexpanding models (green and black curves,
respectively). The thick lines are cluster models whose
cluster mass McðzÞ at z ¼ 0 is 1=10 of the Swiss cheese
void’s constant mass Md (the mass of the homogeneous
sphere from which the cluster condensed). The thin lines
are for smaller void masses, Md ¼ 2Mcð0Þ with corre-
spondingly smaller radii ∝ ð2=10Þ1=3.
The blue and red curves in Fig. 8 are computed assuming

the McBride and van den Bosch accretion histories of
Eqs. (23) and (24), respectively. The solid and dashed
curves are for constant central density contrast δ (model III)
and constant physical radius ra (model IV), respectively;
see Table I. For z ≤ 0.1 estimated values of SðzdÞ cannot be
accurate because the fitted values of dMðzÞ=dz differ
significantly between Eqs. (23) and (24). In general the mass
accreted while the CMB photons transit the cluster deepens
the potential well from which the photons must climb to
reenter the background cosmology. They are thus reddened
by accretion. As can be seen in Fig. 8 the effect of accretion
seems to dominate the ISW effect for cluster centers.
The large negative values of SðzdÞ seen in Fig. 8 for the

two accreting cluster models III and IVare highly uncertain
but are clearly worrisome since they would make the CMB
temperature in the center of the cluster much cooler than
expected and would even produce a central cold spot. This
is in contrast to conventional wisdom that galaxy clusters
produce CMB hot spots at z≲ 1 because the accelerated
expansion of the Universe reduces the depth of the potential
well from which the transiting photons must climb. We find
that when accretion is happening its effects can overwhelm
the effects of acceleration; i.e., the potential well might be
deepening in spite of the acceleration. Of course the
accuracy of the predictions made by these models can
be questioned because they assume continuous accretion
whereas the consensus is that mass accretes via discrete
mergers of halos associated with galaxy groups (≤ 1013M⊙)
and/or galaxies (≤ 1012M⊙). To estimate the reasonableness
of the continuous accretion model we compare the photon’s
lensing time with the time between mergers. The time it
takes a photon to cross the Swiss cheese void is ∼2.5 ×
10−1 Gyr for a 1015M⊙ cluster lens with Md=Mcð0Þ ¼ 10

and ∼1.5 × 10−1 Gyr when Md=Mcð0Þ ¼ 2. Time between
mergers is ∼7 × 10−3 Gyr for galaxies and ∼7 × 10−2 Gyr
for groups. If only galaxies were accreting, then ∼35 [21 for
Md=Mcð0Þ ¼ 2] would merge while the photon transited
the lens whereas if groups were responsible for the mass
accretion, only ∼3.5 [2.1 for Md=Mcð0Þ ¼ 2] would have
merged. The time taken for photons to cross the central

cluster itself is only ∼2.0 × 10−2 Gyr; however, it is the
change of the potential across the entire compensated lens
that determines the ISW temperature shift—i.e., transiting
CMB photons have to make their way across the large
continually depleting low density compensating region
before reentering the background cosmology. We consider
two extreme physical pictures in the following. A more
realistic picture would be a combination of the two. If
1015M⊙ clusters assemble their masses by accreting only
1012M⊙ galaxies, there would be ∼1000 galaxies in the
cluster and∼9000 galaxies surrounding the cluster in the low
density compensating region [for the Md ¼ 10Mcð0Þ Swiss
cheese lens]. During the time it took the CMB photons to
cross the entire lens ∼35 galaxies would have accreted from
the compensating region to the central cluster. If clusters
assembled their masses by accreting 1013M⊙ groups, all
numbers would be decreased by a factor of 10. If the low
density compensating region surrounding the cluster was
smaller, i.e., if Md ¼ 2Mcð0Þ, then there would be only
1000 galaxies in the compensating region and during the
CMB crossing only ∼21 galaxies would have accreted.
The current state of accretion theory, as judged by Fig. 8,
clearly suggests that Eq. (5) is more likely to constrain
cluster structure and evolution than cosmology at this time.
If accurate density profiles can be constructed, combined
with additional measurements of central cluster temperatures
deficits, one should be able to put limits on cluster mass
accretion rates.

IV. CONCLUSIONS

The ISW effect has been recently detected via the
aperture photometry method (stacking or averaging patches
of the CMB maps around known cosmic voids or galaxy
clusters) by several groups [3,5,9–11] and future observa-
tions promise more and better data. We present a new
method of using these data to potentially constrain the
cosmological parameters by applying the ISW effect to
individual inhomogeneities such as galaxy clusters and
cosmic voids. We were able to develop this ISW-redshift
test only after discovering a simple relation between the
Fermat potential of an embedded lens and the frequency
shift of photon crossing that lens. However, to use this test
to extract the Hubble parameter and/or the curvature
parameters the evolution of the lens has to be well under-
stood. We have illustrated use of the ISW-z test by
constructing models for clusters and voids with very simple
density profiles and simple evolutions (i.e., top hats for
linearly evolving clusters and voids and completely virial-
ized clusters with and without accretion). However, for
both galaxy clusters and cosmic voids, neither their density
profiles nor their time evolution is currently well enough
constrained by observations to be used in this test.
Consequently, the proposed ISW-z test might be more
appropriately used to measure structure functions SðzdÞ
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and constrain dark matter profiles, evolution, and accretion
by assuming a specific cosmology and using the CMB
observations. There are several theoretical and numerical
papers modeling the formation and evolution of cosmic
voids [48–50,57] which can be used to estimate the
structure term SðθI; zdÞ of Eq. (6) and the ISW-z test
can possibly confirm or reject such models as more data
become available. The density profile of galaxy clusters is
thought to be much better constrained than profiles of
cosmic voids, and for their low redshift evolution it is
reasonable to assume that they are virialized. However, as
seen in Fig. 8 the structure term SðθI; zdÞ is sensitive to the

accretion rate which is poorly understood. What is clear
from Fig. 8 is that accretion can make the centers of clusters
appear unexpectedly cool just as is currently being seen
[58]. Obviously better models for cosmic voids and galaxy
clusters are needed before the ISW-z test will constrain the
cosmological parameters.
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