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This paper gives a complete characterization of the location of resonant orbits in a Kerr spacetime for all
possible black hole spins and orbital parameter values. A resonant orbit in this work is defined as a geodesic
for which the longitudinal and radial orbital frequencies are commensurate. Our analysis is based on
expressing the resonance condition in its most symmetric form using Carlson’s elliptic integrals, which
enable us to provide exact results together with a number of concise formulas characterizing the explicit
dependence on the system parameters. The locations of resonant orbits identify regions where intriguing
observable phenomena could occur in astrophysical situations when various sources of perturbation act on
the binary system. Resonant effects may have observable implications for the inspirals of compact objects
into a supermassive black hole. During a generic inspiral the slowly evolving orbital frequencies will pass
through a series of low-order resonances where the ratio of orbital frequencies is equal to the ratio of two
small integers. At these locations rapid changes in the orbital parameters could produce a measurable phase
shift in the emitted gravitational and electromagnetic radiation. Resonant orbits may also capture gas or
larger objects leading to further observable characteristic electromagnetic emission. According to the
Kolmogorov-Arnold-Moser theorem, low-order resonant orbits demarcate the regions where the onset of
geodesic chaos could occur when the Kerr Hamiltonian is perturbed. Perturbations are induced for example
if the spacetime of the central object is non-Kerr, if gravity is modified, if the orbiting particle has large
multipole moments, or if additional masses are nearby. We find that the 1=2 and 2=3 resonances occur at
approximately 4 and 5.4 Schwarzschild radii (Rs) from the black hole’s event horizon. For compact object
inspirals into supermassive black holes (∼106M⊙) this region lies within the sensitivity band of space-
based gravitational wave detectors such as eLISA. When interpreted within the context of the supermassive
black hole at the Galactic center, Sgr A*, this implies that characteristic length scales of 41 μas and 55 μas
and time scales of 50 min and 79 min respectively should be associated with resonant effects if Sgr A* is
nonspinning, while spin decreases these values by up to ∼32% and ∼28%. These length scales are
potentially resolvable with radio very-long-baseline interferometry measurements using the Event Horizon
Telescope. We find that all low-order resonances are localized to the strong field region. In particular, for
distances r > 50Rs from the black hole, the order of the resonances is sufficiently large that resonant effects
of generic perturbations are not expected to lead to drastic changes in the dynamics. This fact guarantees the
validity of using approximations based on averaging to model the orbital trajectory and frequency evolution
of a test object in this region. Observing orbital motion in the intermediate region 50Rs < r < 1000Rs is
thus a “sweet spot” for systematically extracting the multipole moments of the central object by observing
the orbit of a pulsar—since the object is close enough to be sensitive to the quadruple moment of the central
object but far enough away not to be subjected to resonant effects.
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I. INTRODUCTION

Supermassive black holes such as Sgr A* at the center of
our Galaxy are at zeroth order mathematically idealized as
Kerr black holes. In practice this description is not complete
due to a plethora of small perturbing effects which slightly
alter the spacetime geometry. In general these perturbations
are small andwell accounted for with canonical perturbation
theory. In the special case that the perturbation excites one of
the intrinsic resonant structures of the spacetime’s orbits, the

effect may be larger than expected due to an anomalous
transfer of energy and angularmomentum that occurs during
such a perturbation. Resonance phenomena are ubiquitous
in any multifrequency system. In celestial mechanics they
strongly influence satellite dynamics and ring formation.
Examples include the gaps in the asteroid belt betweenMars
and Jupiter [1] and the gaps in the rings of Saturn [2–4].
Resonances are further intimately connected with the onset
of dynamical chaos [5].
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As radio telescopes increase in sensitivity and collecting
area they will be able to resolve length scales typical of
resonant phenomena in the spacetime of the black hole at
the center of our Galaxy. The Event Horizon Telescope is
one such observational tool currently under development
[6]. Space-based gravitational wave detectors such as
eLISA may observe shifts in the phasing of the gravita-
tional waves emitted during the inspiral of a compact object
as it passes through the various resonant bands. X-ray,
optical and infrared telescopes do not have the resolving
power to image Sgr A* directly, but can potentially record
flux variations from this region that may display time scales
characteristic of resonant events.
This paper investigates resonant orbits in the Kerr metric

expanding on the discussion in [7]. The aim is to provide a
complete characterization of the parameter space where
resonant orbits occur as a function of black hole spin and
the orbital parameters. Since geodesic orbital motion in
Kerr is completely integrable, it is akin to geodesic flow on
a two-dimensional torus in phase space. Generic orbits are
ergodic and sample the entire surface of the torus after a
sufficiently long time. Low-order resonant orbits however
only trace out a simple, codimension-one curve on the
torus. Some of the features of resonant orbital trajectories
are illustrated in [8–12]. By the Kolmogorov-Arnold-
Moser (KAM) theorem which is discussed in Sec. II,
low-order resonant orbits are most likely to exhibit the
nonsmooth anomalous behavior associated with a rapid
change in the constants of motion and the breaking of the
resonant torus. Test particles entering a low-order reso-
nance often display subsequent dynamics with a sensitive
dependence on initial conditions.
To date a number of authors have studied resonant effects

in Kerr-like metrics in the context of various forms of
perturbations. The effect of perturbations originating from
adding a quadruple moment to the Kerr metric has been
quantified by exploring orbital motion in the Manko-
Novikov metric [13–17]. Perturbations from the presence
of a disk were considered in Ref. [18], and the effects of the
small mass’s spin in [19–21]. The features of traversing a
resonance during an inspiral, where the perturbation arises
from the small mass’s gravitational self-force, have been
explored by [22,23], and the possibility of sustained
resonance has been considered in [24]. Resonances involv-
ing one of the fundamental frequencies of the motion on the
torus and the orbit’s rotational frequency were studied in
the context of enhanced gravitational recoil [25,26], and
isofrequency orbits were discussed in [27].
Most of these studies have focused on a particular orbital

trajectory or a small subset of parameters in a specific
perturbed setting. The idea of this paper is to refrain from
specializing to a particular perturbation and instead provide
insights that apply to all types of resonant behavior. We will
use tools such as the results of the KAM theorem that hold
true regardless of the source of perturbation. The results

obtained here are thus robust in the sense that the time and
length scales of resonance effects for astrophysical appli-
cations are to be associated with properties of the under-
lying Kerr metric and resonance location rather than the
details of the effect causing the perturbation. The aim of
this paper is to make the typical resonance time and length
scales accessible to the larger astrophysics community by
means of easily evaluated formulas and tabulated results.
To explore the resonance effects we describe the orbits in

the Kerr metric using a set of variables adapted to the
orbital geometry [28] that reduce to the Keplerian orbital
parameters in the Newtonian limit rather than the constants
of motion associated with the spacetime’s Killing fields.
The properties of the Keplerian constants will be reviewed
in Sec. III A. Plotting the location of resonances in terms of
these variables immediately allows us to interpret the result
as a physical location in the actual spacetime.
The resonances considered in this paper arise due to the

libration frequencies associated with the longitudinal and
radial motion around the black hole discussed further in
Sec. III A. These two frequencies are particularly important
for the systematic study of the breakup of resonant tori in
systems where the azimuthal Killing vector is maintained.
In this case the ϕ-motion and associated frequency, ωϕ, is
computed once the librational motions have been deter-
mined and plays a passive role in the dynamics. The two
libration frequencies further play a dominant role in the
computed gravitational wave phase shift during resonant
passage in an extreme mass ratio inspiral. The ωϕ fre-
quency only contributes to the phase shift at higher order in
mass ratio [29]. In the context of the resonances observed in
quasiperiodic oscillations (QPOs), Török et al. [30] argue
that it is more difficult to find a plausible explanation
involving the ωϕ frequency than a mechanism involving the
libration frequencies, although such possibilities do exist.
Discussions of resonant effects associated with the ωϕ

frequency can be found in [12,26,31].
A resonant orbit in this work occurs if the ratio of the

characteristic radial, ωr, and longitudinal, ωθ, frequencies
is a rational fraction, ωr=ωθ ¼ n=m where n;m ∈ N. Most
of the technical aspects of this paper deal with how to
efficiently examine this expression and extract the physics.
Closed-form analytic expressions for the frequencies in
terms of elliptic integrals have been presented by [28,32]
which serve as companions to this work. Here, however, we
opt in Sec. IV to take advantage of a more symmetric
representation of the elliptic functions appearing in the
resonance condition and write them in terms of Carlson’s
integrals [33–35]. This allows us to identify the important
parameters in the problem and exploit the identities
associated with Carlson’s integrals to manipulate the
expressions. In Sec. V we consider solutions to the
resonance condition. We first specialize to the weak field
limit where we introduce the key properties of a “resonant
surface” in the parameter space. We then give a number of

JEANDREW BRINK, MARISA GEYER, AND TANJA HINDERER PHYSICAL REVIEW D 91, 083001 (2015)

083001-2



exact analytic solutions to the resonance condition that can
be used to describe resonances in the strong field region
near the black hole. Finally, several low-order (small nþm
value) resonant surfaces such as the 1=2, 2=3 and 3=4 are
evaluated numerically and compared to the analytic results
and approximate formulas.
The breakdown of integrability around a resonance in

“almost”-Kerr spacetimes is often quantified by numeri-
cally generating Poincaré maps for a fixed energy E and
angular momentum component Lz. Associated with each
Poincaré plot is a rotation curve which characterizes the
frequency ratio as a function of initial condition given a
fixed E and Lz. In Sec. VII we give a representative
example of orbital breakdown around the 2=3 resonance
and analytically compute Kerr’s rotation curve. We further
provide expressions for finding the E and Lz values
associated with a particular resonance.
The exact nature of a perturbed system’s response in the

region of a resonance depends on the source of perturba-
tion. In Sec. VIII we heuristically discuss how one would
estimate the size of a perturbation required to see a dramatic
change in dynamics. It is important to note that the KAM
theorem does not guarantee the breakdown of integrability
at any particular resonance. It merely states that if integra-
bility breaks down it will occur first at the location of a
low-order resonant orbit.1 Since this is true of all possible
sources of perturbation, the cumulative effect of many
sources of perturbation could result in a Saturn ringlike
structure (see Fig. 16) being established around the black
hole. This and other potentially observable effects due to
resonances are discussed in Sec. IX. We focus in particular
on the Galactic center, Sgr A*, as a possible observational
realization of an extreme mass ratio inspiral (EMRI). We
note which detectors will be sensitive to resonant orbits as
well as the implications of regions where we can guarantee
the absence of low-order resonances and in which we
expect orbits to be approximately integrable. Regions that
only contain high-order resonances we consider to be the
“sweet spot” for observationally determining the higher-
order multipole moments of the supermassive black hole in
the Milky way.

II. KAM THEOREM AND IMPORTANCE
OF RESONANT ORBITS

Bound geodesic motion in the Kerr spacetimes is inte-
grable [36] since theHamiltonianHK ¼ 1=2gμνK pμpν, where
gμνK is the inverse Kerr metric and pμ the test particle’s four-
momentum, admits a full set of isolating integrals. Two of
these integrals result from the absence of explicit time and
azimuthal dependence in the Kerr metric functions, the third
is due to the conservation of rest mass and the fourth integral

is known as the Carter constant [36]. Integrability implies
that action-angle variables can be defined. The phase space
is foliated by invariant level surfaces of the actions with the
compact dimensions of these surfaces diffeomorphic to a
torus. Geodesic motion in an integrable system is thus akin
to geodesic flow on a torus.
To illustrate this idea for the Kerr metric, consider the

reduced Hamiltonian, which is constructed by replacing the
conjugate momenta associated with the time and azimuthal
symmetries by their constant values to obtain an integrable
2-degree-of-freedom system with an effective potential
[16]. The main features of geodesic flow for such a system
are sketched in Fig. 1. The trajectory on the torus is
described by two characteristic frequencies, associated with
the angles θ1 and θ2, labeled ω1 and ω2, which in the Kerr
metric correspond to the radial and longitudinal motions.
For rational values of ω2=ω1 the orbit will sample only a
finite region of the torus before retracing its own path,
while for irrational values of ω2=ω1 a trajectory will fill the
torus densely. Orbits with rational frequency ratios involv-
ing large integers are very similar to irrational ones; it is
only those with small integer ratios that are substantially
distinct from the ergodic case.
When describing the astrophysical environment around a

black hole such as Sgr A* we need to take into account a
number of corrections to themathematically idealized vacuum
Kerr metric. In this case we are interested in the Hamiltonian

H ¼ HK þ ϵH1; ð1Þ
where H1 is the perturbing Hamiltonian and ϵ is a
dimensionless parameter characterizing the strength of the
perturbation. H1 contains information about a possible
accretion disk [37–39], other sources of matter [40] or dark
matter [41,42], structural deviations of the central black hole

FIG. 1. The orbits in an integrable system with 2 degrees of
freedom can be visualized as trajectories wrapping around a two-
dimensional torus in phase space with characteristic frequencies
ω1 and ω2, relating to the angular advances in θ1 and θ2. For
rational values of ω2=ω1 ¼ m=n the orbital trajectory will trace
out a distinct path, wrapping n times around the θ1 axis and m
times about the θ2 axis. For irrational values of ω2=ω1 on the
other hand a trajectory will fill the surface of the torus densely.

1Integrability could also break down at a homoclinic orbit, e.g.
the last stable orbit discussed in Appendix A. However, this is of
less observational interest than the resonances because it marks
the transition to the plunge, where the nature of the motion
changes drastically.
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away from the Kerr metric (i.e. bumpy black hole effects
[43–47]), the influence of modified gravity [48,49], or effects
of the multipoles of the small mass [19,50,51]. The exact
nature of the perturbation does not concern us here. In what
follows we simply assume that these modifications are small
and represent this by considering the case where ϵ ≪ 1.
To quantify the effect of an arbitrary perturbation on the

orbital motion and to find the regions where the impact of
the perturbation will be greatest, we make use of the KAM
theorem [52,53]. The KAM theorem investigates the
stability of near-integrable systems and suggests that a
torus associated with a rational ratio of frequencies will be
destroyed in the presence of perturbations. However,
provided that the perturbation is small enough, tori for
which the ratio of associated characteristic frequencies
are sufficiently irrational will remain stable and persist,
although slightly deformed, in the perturbed Hamiltonian
[54,55]. More specifically, consider the vector of frequen-
cies ω in the unperturbed Hamiltonian and a vector of
integers k, and let d denote the dimension of these vectors.
The condition for resonance is ω · k ¼ 0, which can
generally be satisfied to arbitrary accuracy by choosing
large integers for k. When sufficiently large integers are
necessary to satisfy the resonance condition the tori will be
preserved, where the definition of sufficiently is such that
Arnold’s criterion holds [52,53]:

jω · kj > KðϵÞ
�Xd

i¼1

jkij
�−ðdþ1Þ

: ð2Þ

We will henceforth call Ok ¼Pd
i¼1 jkij the order of the

resonance. The factor KðϵÞ in Eq. (2) approaches zero as
the perturbation vanishes, i.e. limϵ→0KðϵÞ → 0, but its
functional form depends on the nature of the perturbation.
In a nonintegrable Hamiltonian system, when ϵ≲ 1, Eq. (2)
suggests a hierarchy of resonant orbits of increasing order
whose stability cannot be guaranteed. These are the low-
order resonances 1, 1=2, 1=3, 2=3, 1=4, 1=5, 3=4, 2=5, 1=6.
We expect these tori to be destroyed first if the Hamiltonian
is perturbed; however, from Eq. (2) we cannot guarantee
their destruction either. Changing the Kerr metric’s spin
parameter is an example of a Hamiltonian perturbation to
an integrable Hamiltonian for which none of the lower-
order resonant tori is broken.
The destruction of resonant tori corresponds to the

physical idea that energy transfer takes place most rapidly
if the frequency of the driving force coincides with multi-
ples of the internal frequencies of the system. Similarly,
even without a direct input of energy, if a system is
deformed the modes that could potentially be altered most
are those whose frequencies are rationally related to other
modes and which thus have the greatest potential to
exchange energy and interact among themselves.
The study of torus destruction is not the subject of this

paper. We do however give a heuristic discussion on how to
estimate the size of the perturbation required for the onset of

strongly chaotic dynamics in Sec. VIII. The detailed calcu-
lation will differ depending on the characteristics of the
perturbation. The main focus in the following sections is to
identify the regions in parameter and physical space where
resonant dynamics are likely to occur. If they do occur the
KAM theorem limits the impact to low-order resonances.

III. GEODESIC MOTION IN THE KERR METRIC

A. Physically motivated constants of motion

The orbital motion of a bound trajectory of two bodies in
Newtonian gravity is described completely by an ellipse
restricted to a plane. The manner in which this ellipse is
traversed is characterized by a single frequency, ωϕ. A
schematic representation of a typical elliptic orbit and the
Keplerian variables used to describe it is given in Fig. 2. By

θ
ι

FIG. 2 (color online). Top: Keplerian orbital parameters. The
eccentricity, e, is a measure of how elliptic the orbit is. When
e ¼ 0, the orbit is circular; when e ¼ 1 the trajectory becomes
parabolic. The semilatus rectum, p, can be defined in terms of the
eccentricity and the semimajor axis of the ellipse as is shown in
green in the figure. The point of closest approach rp is called the
periastron, while the most outlying point the orbit reaches is the
apastron denoted by ra. Bottom: The orbital trajectory as shown
in three dimensions. The third orbital parameter, namely the
maximum inclination angle ι ¼ π=2 − θ�, is the angle with
respect to the black hole’s equatorial plane and θ� is the minimum
Boyer-Lindquist θ value attained.
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contrast in the Kerr metric bound orbits are not restricted to
a plane but are confined to a toroidal region whose shape is
characterized by the constants of motion, the energy E, the
z-component of angular momentum Lz and Carter constant
Q. For geodesics in Kerr, the rotational frequency ωϕ

describing the rotational motion in the azimuthal direction
is augmented by two libration-type frequencies ωr and ωθ

which characterize motion in the radial and longitudinal
directions respectively. The bottom panel in Fig. 2 gives a
schematic representation of the origin of the ωr and ωθ

frequencies associated with the orbit.
In the subsequent sections we will explore the location of

the resonances for the ωr and ωθ frequencies in Boyer-
Lindquist coordinates. Instead of using the constants of
motion fE=μ; Lz=μ; Q=μ2g2 we will describe the orbits
using variables analogous to the Keplerian variables of
classical celestial mechanics, namely the eccentricity (e),
sine of the maximum inclination angle (sin ι ¼ cos θ�) and
semilatus rectum (p) as illustrated in Fig. 2. These are
defined bywriting the periastron or point of closest approach
to the central object as rp ¼ p=ð1þ eÞ, the apastron or
furthest point the trajectory reaches as ra ¼ p=ð1 − eÞ (both
in units of the black hole mass) and the turning point of
the longitudinal motion as θ�. The typical frequency of
oscillations between ra and rp is described by ωr, whereas
the longitudinal oscillations about the equatorial plane,
−ðπ=2 − θ�Þ ≤ ι ≤ π=2 − θ�, are described by ωθ.

B. Equations of motion

For a test mass in orbit around a Kerr black hole the
equations governing the radial and longitudinal motion,
expressed inBoyer-Lindquist coordinates ðt; r; θ;ϕÞ, are [36]�

dr
dλ

�
2

¼ RðrÞ;
�
dz
dλ

�
2

¼ ΘðzÞ; ð3Þ

where z ¼ cosðθÞ and we have chosen to parametrize the
orbit in terms of a nonaffine evolution parameter λ ¼R
dτ=ðr2 þ a2cos2θÞ, rather than the proper time τ, so that

the radial and longitudinal equations decouple (this in fact
just corresponds to working in the extended phase space).
The radial and longitudinal potentials can respectively be
expressed as

R¼ ½ðr2þa2ÞE−aLz�2−Δ½μ2r2þðLz−aEÞ2þQ�; ð4Þ

Θ ¼ Qð1 − z2Þ − ½ðμ2 − E2Þa2ð1 − z2Þ þ L2
z �z2; ð5Þ

where Δ ¼ r2 − 2Mrþ a2 and a ¼ S=M is the spin per
unitmass. (Wewill henceforth useunitswhereM ¼ 1.) TheR
and Θ potentials are quartic polynomials of their respective

arguments and can equivalently be expressed in factored
form as

R ¼ −
β2

a2
ðr − r1Þðr − r2Þðr − r3Þðr − r4Þ ð6Þ

Θ ¼ β2ðz2 − z2−Þðz2 − z2þÞ ð7Þ

where β2 ¼ ðμ2 − E2Þa2. In Eq. (6) we label the roots so that
r1 ≥ r2 ≥ r3 > r4 and in Eq. (7) so that zþ ≥ z−. For bound
orbits, Eq. (3) dictates that the rðλÞ and zðλÞ functions
describing the orbital motion oscillate between two of the
roots of Eqs. (6) and (7) respectively. The generalized
Keplerian variables are defined in terms of the roots of the
potential functions as

r1 ¼
p

1 − e
; r2 ¼

p
1þ e

; z− ¼ cosðθ�Þ: ð8Þ

When quantifying the resonance behavior in the subsequent
sections we would like to express the results entirely in terms
of the variables fp; e; z−g rather than using fE;Lz;Qg. The
fact that the roots r3; r4, and z2þ cannot be viewed as
independent functions but rather must be interpreted as
functions of the set of independent variables fp; e; z−g
complicates the calculation. By comparing Eqs. (5) and (7)
we can find z2� is given explicitly in terms of fE; Lz;Qg as
follows:

z2� ¼ ½ðL2
z þQþ β2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL2

z þQþ β2Þ2 − 4Qβ2
p

�
2β2

: ð9Þ

Equating the coefficients of r in the two expressions for
the radial equation, Eqs. (4) and (6), allows us to obtain the
following expressions relating the constants fE;Lz;Qg to
the roots of the factorization

E2

μ2
¼ 1 −

2ð1 − e2Þ
2pþ ð1 − e2Þϖþ

;

L2
z

μ2
¼ 2pðpþ 2ϖþÞ − 2a2ð1 − e2Þ

2pþ ð1 − e2Þϖþ

þ 2ða2ð1 − e2Þ − p2Þϖ×

a2ð2pþ ð1 − e2ÞϖþÞ
;

Q
μ2

¼ 2p2ϖ×

a2ð2pþ ð1 − e2ÞϖþÞ
ð10Þ

where we have set ϖþ ¼ r3 þ r4 and ϖ× ¼ r3r4. In
addition the condition

2aELz

μ2
¼ a2 þ 2ðϖ× − 2a2Þð1 − e2Þ − 2pϖ×

ð2pþ ð1 − e2ÞϖþÞ
−p2ðϖþ − 2Þ þ 4pϖþ
ð2pþ ð1 − e2ÞϖþÞ

ð11Þ2The rest mass of the probe, μ, is introduced here to ensure the
constants of motion are dimensionless.
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must also hold. Squaring Eq. (11) and then substituting in
the expressions for E2 and L2

z , Eq. (10) results in a
quadratic equation for ϖþ and ϖ− in terms of p and e:

ϖþϖ×½pð1 − e2Þðpþ 4 − a2Þ þ p2ðp − 4Þ − a2ð1 − e2Þ2�
þϖ2

×½pþ e2 − 1�2 þ 2pϖ×½ðp − a2Þðpþ e2 − 1Þ�

þ 1

4
ϖ2þ½a4ð1 − e2Þ2 − 2a2ð1 − e2Þpðpþ 4Þ

þ ðp − 4Þ2p2� þ pϖþ½a2ð1 − e2Þða2 þ pÞ
− a2pðpþ 4Þ − ðp − 4Þp2� þ p2ða2 − pÞ2 ¼ 0: ð12Þ

If z2− ≠ 0 we can use Eqs. (9) and (10) to rewrite z2þ as

z2þ ¼ p2ϖ×

a4ð1 − e2Þz2−
: ð13Þ

We will always treat the z2− ¼ 0 or Q ¼ 0 limit of orbits
restricted to the equatorial plane separately. Using Eqs. (9),
(10) and (13) we can further show that

2a2pϖþz2− ¼ ða2ð1 − e2Þz2− − p2Þða2z2− −ϖ×Þ: ð14Þ

Equation (14) is a linear condition inϖþ andϖ× which, in
conjunction with (12), implicitly determines ϖþðp; e; z−Þ
and ϖ×ðp; e; z2−Þ and thus the roots r3 and r4 in terms of
fp; e; z−g. Substituting Eq. (14) into (12) eliminates ϖþ
and yields a quadratic equation in ϖ×. As a result a closed-
form expression can easily be found for ϖ× and sub-
sequently ϖþ. We will not give the expressions here and
continue to work with the implicit quantities ϖþ and ϖ×,
substituting their actual values only at the end of the
calculations. The two solutions that result from the quad-
ratic equation can be interpreted as test masses that either
corotate or counter-rotate with respect to the spin, a, of the
black hole. Orbits that corotate with the black hole (Lz has
the same sign as a) are called prograde and those that
counter-rotate (Lz has the opposite sign to a) are retrograde
orbits. For a given fp; e; z−g the prograde orbit’s angular
momentum is higher than that of the retrograde orbit. On
the other hand prograde orbits have lower orbital energy
than their retrograde counterparts [28].
One special set of orbital parameters is the case when the

roots satisfy r3 ¼ r2, which corresponds to the innermost
stable orbit (ISO) separating stable bound orbits from those
that plunge into the black hole. For a given eccentricity and
longitudinal parameter z− the semimajor axis satisfying this
condition demarcates the smallest value of p at which a
stable bound orbit can exist. We shall explicitly solve for
the ISO for all values of a, e and z− in Appendix A and use
it as a comparative benchmark for the location of resonant
orbits in the subsequent sections.

IV. THE RESONANCE CONDITION

In this section we begin to characterize the orbits which
will exhibit resonant behavior. We are interested in the
parameter values for which ωr and ωθ are commensurate.
Given relatively prime integersm and nwe seek the surface
in the three-dimensional parameter space spanned by p, e
and z− where

mωr ¼ nωθ: ð15Þ

This is equivalent to saying that the time it takes the
longitudinal motion to traverse exactly n times between its
turning points is equal to the time it takes the radial motion
to traverse m times between its turning points. For Kerr
geodesics m ≥ n since the radial frequency is always the
smallest of the three frequencies. This translates into the
following integral condition

m
Z

z−

−z−

dzffiffiffiffi
Θ

p ¼ n
Z

r1

r2

drffiffiffiffi
R

p : ð16Þ

Substituting Eqs. (6) and (7) we find that this is equivalent
to the condition

an
Z

r2

r1

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr1 − rÞðr − r2Þðr − r3Þðr − r4Þ
p

¼ −m
Z

z−

−z−

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz2 − z2−Þðz2 − z2þÞ

p : ð17Þ

The subject of the rest of the paper is to characterize the
solutions to this equation. The strategy is to express both
the radial and longitudinal integrals in their most symmetric
form using Carlson’s integrals [33–35]. Carlson’s integral
of the first kind is defined to be

RFðα; β; γÞ ¼
1

2

Z
∞

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðtþ αÞðtþ βÞðtþ γÞp : ð18Þ

In Appendix B we list a number of identities and rapidly
converging approximation techniques that make Carlson’s
integrals a valuable analytic tool for characterizing the
resonant surfaces. Using Eq. (B2) of Appendix B we can
rewrite Eq. (17) as

anRFð0; ðr2 − r3Þðr1 − r4Þ; ðr2 − r4Þðr1 − r3ÞÞ
¼ −mRFð0; ðz− þ zþÞ2; ðz− − zþÞ2Þ: ð19Þ

This expression can be further simplified using the identity
(B8) to rewrite the right-hand side and the fact that the
equations are homogeneous (B6) to absorb the constant
factor. We shall refer to the resulting equation,

JEANDREW BRINK, MARISA GEYER, AND TANJA HINDERER PHYSICAL REVIEW D 91, 083001 (2015)

083001-6



RFð0; ðr2 − r3Þðr1 − r4Þ; ðr2 − r4Þðr1 − r3ÞÞ
¼ RFð0; κa2ðz2þ − z2−Þ; κa2z2þÞ; ð20Þ

as the resonance condition and explore its properties by
studying various limiting cases. In this expression we have
defined the parameter 0 < κ < 1 to indicate which reso-
nance we are considering,

κ ¼ n2

m2
: ð21Þ

In the subsequent section we will explore all the qualitative
features of a resonance by examining an easily evaluated
approximation to Eq. (20) for large p. We then give a
number of formulas valid in the region near the black hole
in special cases.

V. SOLUTIONS TO THE
RESONANCE CONDITION

When seeking solutions of Eq. (20) it is convenient to
rewrite it in terms of a rapidly converging series. This series
allows us to identify the three important parameters in the
problem. The first sets the overall scale and a rough
location of the resonance. The remaining two are expansion
parameters <1 that determine the more subtle structure of
the resonance surface. We give explicit expressions for
these parameters in terms of the variables introduced in
Sec. III B. Next, we evaluate the series in the large p limit to
obtain a simple analytic model which illustrates the
important features of any resonance. We then turn to the
astrophysically more interesting strong field region where
the low-order resonances occur and give a number of exact
analytic formulas for special cases. We conclude the section
by numerically computing the detailed behavior of the 2=3
resonance and compare our analytic results and approx-
imations to the numerical solutions.

A. General series expansion

The resonance condition (20) can be rewritten in the
form

RFð0; y1 þ δ1; y1 − δ1Þ ¼ RFð0; κðy2 þ δ2Þ; κðy2 − δ2ÞÞ;
ð22Þ

where

y1 ¼
p2 − pðr3 þ r4Þ

1 − e2
þ r3r4; δ1 ¼

epðr4 − r3Þ
1 − e2

;

y2 ¼
a2

2
ð2z2þ − z2−Þ; δ2 ¼ −

a2z2−
2

: ð23Þ

It will be shown below Eq. (25) that δi=yi ≪ 1 for all
physically interesting parameters. As a result, each side of

Eq. (22) can be expanded in δi ≪ yi, using the rapidly
converging series of Eq. (B10). Squaring the resulting
expansions, moving all the terms containing the small
parameters δi=yi to one side, and reexpanding the result, we
obtain the equation

y1
κy2

¼ 1þ 3

8

�
δ21
y21

−
δ22
y22

�
−

9

64

δ21δ
2
2

y21y
2
2

þ 123

512

�
δ41
y41

−
δ41
y41

�
þO

�
δ6

y6

�
: ð24Þ

In terms of the variables introduced in Sec. III B, the
three quantities that enter the expansion of the resonance
condition (24) are

y1
y2

¼ 2a2z2−ðð1 − e2Þϖ× þ p2 − pϖþÞ
ða4ðe2 − 1Þz4− þ 2p2ϖ×Þ

;

δ1
y1

¼ −ep
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϖ2þ − 4ϖ×

p
ð1 − e2Þϖ× þ p2 − pϖþ

;

δ2
y2

¼ ð1 − e2Þa4z4−
ð1 − e2Þa4z4− − 2p2ϖ×

: ð25Þ

The first term y1=y2 ultimately sets the overall scale of p at
which a particular resonance occurs. Recall that the
parameters fz−; e; a; κg ∈ ½0; 1�. By examining Eq. (25)
one can further verify that the δi=yi terms are always less
than unity ensuring the convergence of the series in
Eq. (24). The parameters δ1=y1 and δ2=y2 vanish when
e ¼ 0 and z− ¼ 0 respectively. The special limiting case
when both these conditions hold allows us to find an exact
analytic result that is valid in all regions of the spacetime.
We shall examine this special case in Sec. V C. However
before we do so, it is instructive to examine the properties
of resonances that occur at large p values. The features we
explore in this limit qualitatively capture the characteristics
of resonances in general.

B. Anatomy of a resonance in the weak
field limit p → ∞

In the weak field limit, when p → ∞, the dominant terms
in the expansion of ϖ× and ϖþ found by solving Eqs. (14)
and (12) are

ϖ×¼a2z2−

�
1þ 4

p
�8a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−z21Þ

p
p3=2

�
þO

�
1

p2

�
;

ϖþ¼2þ8þ2a2ð1−z2−Þ
p

�4a

ffiffiffiffiffiffiffiffiffiffiffiffi
1−z2−
p

s �
1þ 6

p

�
þO

�
1

p2

�
:

ð26Þ

Substituting Eq. (26) into Eq. (25) and simplifying the
result gives the dominant behavior of the three essential
parameters in the resonance condition
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y1
y2

¼ 1 −
6

p
∓ 12a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2−

p
p3=2 −

3a2ððe2 − 5Þz2− þ 4Þ
2p2

þO

�
1

p5=2

�
; ð27Þ

δ1
y1

¼ −
2e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2z2−

p
p

∓ 4ae

p3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2− − 1

a2z2− − 1

s
þO

�
1

p2

�

δ2
y2

¼ −
a2ð1 − e2Þz2−

2p2
þO

�
1

p3

�
: ð28Þ

The small δ1=y1 and δ2=y2 parameters scale with 1=p and
1=p2 respectively indicating that they become almost
negligible for large p and reaffirming the choice of δi as
an expansion parameter.
To illustrate the basic properties of the resonance

condition we substitute Eqs. (27) and (28) into Eq. (24)
and keep terms up to Oðp−2Þ. The resulting approximate
resonance condition,

�24a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1 − z2−Þ

q
¼ 2p2ðκ − 1Þ þ 12ðpþ a2Þ þ 3e2κ

− 3a2z2−ðe2ðκ − 1Þ þ 5Þ; ð29Þ
is valid for large p values only. However, this weak field
approximation demonstrates all the qualitative properties of
resonant surfaces and gives a good approximation even
relatively close to the black hole. The precise manner in
which Eq. (29) breaks down for low-order resonances is
numerically explored in Sec. V E.
To build our intuition of the typical features of resonant

surfaces and their dependence on the parameters a; e; z−; κ
and p we analyze Eq. (29) in detail. For quasicircular orbits
and vanishing black hole spins ða; eÞ → 0, the resonances
occur at

p� ¼ pða ¼ 0; e ¼ 0; z−; κÞ ¼
6

1 − κ
: ð30Þ

For a given κ, this value of p� sets the general mean radius
in physical space (measured in units of GM=c2) about
which all the interesting features of a resonance occur. This
is a robust result that remains an exact analytic solution
even in the region near the horizon, as we will prove in
Sec. V C. For a fixed integer m, resonances with κ ¼
½ðm − 1Þ=m�2 correspond to the maximum resonance radius
given by p ¼ 6m2=ð2m − 1Þ. Resonances with n < m − 1
occur at a radius less than that associated with n ¼ m − 1.
The maximum p associated with a denominator m thus
scales linearly with m for large values of m.
In the limiting case a → 0 the dependence on eccen-

tricity is

pða ¼ 0; e; z−; κÞ ¼
p�

2

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2

�
p� − 6

p�2

�s !
: ð31Þ

Since e ≤ 1 and p� > 6 we see that the effect of eccen-
tricity on the resonance location is small. We also observe
that in the case a → 0 the location of the resonance
becomes independent of z−.
We now examine the general spinning case. Squaring

both sides of Eq. (29) results in a polynomial condition that
is quartic in p and quadratic in z2−. We choose to analyze the
solution surface by specifying the z2− ¼ z2−ða; e; p; κÞ for a
fixed κ rather than explicitly working with the quartic roots
associated with p. The appropriate expression for z2− is

z2− ¼
4a2 þ e2 − 6e2þ4p2

p�

a2ð5 − 6e2
p� Þ

−
12pð2e2p� þ 1Þ
a2ð5 − 6e2

p� Þ2

þ 8

a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p½a2 − e2 þ 6e2ð1−a2Þþ4p2

p� �
ð5 − 6e2

p� Þ3
−
4p2ð1 − 6e2

p� Þ
ð5 − 6e2

p� Þ4

s
: ð32Þ

This function is depicted in Fig. 3 for a fixed spin parameter
of a ¼ 9=10 and integer ratio κ ¼ ð9=10Þ2. It has the
shape of a parabolic arch centered around p� ≈ 31.6.
Furthermore, the qualitative features that will be discussed
here are characteristic for all resonances. The function
given in Eq. (32) has a maximum value of z2− ¼ 1 which
occurs when ppolar ¼ pða; e; z− ¼ 1; κÞ has the value

ppolar

p� ¼ 1

2

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðe2 − a2Þ

p� −
6ð1 − a2Þe2

p�2

s !
: ð33Þ

Since fe; ag ∈ ½0; 1� and p� ≫ 8, the maximum only
deviates by a few percent from the p� value as the spin
and eccentricity deviate from zero. The analytic value of the
maximum given by Eq. (33) is plotted as a dark line in
Fig. 3. When z2− < 1 there are two possible values of p that
lie on the resonance sheet for a given eccentricity: the
resonance for a retrograde orbit p− > ppolar and the
resonance for a prograde orbit which occurs closer to
the black hole pþ < ppolar. The sign in the naming
convention of retrograde and prograde orbits relates to
the sign of the product of the angular momentum and the
spin of the black hole (aLz), and not the orbit’s relative
position with respect to ppolar.
As z− decreases and the resonance surface moves from

the polar towards the equatorial region, the influence of
spin becomes increasingly important and the distance p− to
pþ monotonically increases. The expression for p− and pþ
can easily be found in closed form by substituting z− ¼ 0
into Eq. (29) and solving the resulting quartic for p.
However, since the results are messy and add little to
the discussion we do not give the general results explicitly
and merely plot these curves in Fig. 3. To benchmark the
size of the arch we consider the limit of vanishing
eccentricity and inclination and obtain
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p�ða; e ¼ 0; z− ¼ 0; κÞ
p� ¼ 1

2

0
B@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1∓ 4affiffiffiffiffi

p�p
s

∓ 2affiffiffiffiffi
p�p

1
CA:

ð34Þ
The maximum span of the arch occurs for a maximally
spinning black hole, a ¼ 1. For lower spin values a good
approximation of the span of the arch is ðp− − pþÞ ≈
4a

ffiffiffiffiffi
p�p ð1þ a2=p�Þ. The lowest-order correction to

Eq. (34) with respect to eccentricity is e2ðp� − 6Þ=ð4p�2Þ
and is the same for both pro- and retrograde orbits.
Having thus explored the basic features of a resonance

for a given spin parameter a and observed the weak
dependence of these features on eccentricity, we will
now choose a representative eccentricity and then study
the spin dependence. The right-hand three panels of Fig. 3
show the κ ¼ ð9=10Þ2 resonance surface for eccentricity
values of e ¼ 9=10 and 1=10 as a function of black hole
spin and p. As predicted by Eq. (34) the arch width exhibits
a strong spin dependence. The arch’s inverted “U” profile
pinches off to a single column “I” profile at p ¼ ppolar
[Eq. (33)] when a → 0. This indicates that resonances in
the nonspinning limit become independent of inclination
because the longitudinal frequency degenerates to the ϕ-
frequency in this case. As the black hole’s spin increases

from zero the opening width of the arch between the
pro- and retrograde branches increases until a maximum
arch width is attained at a ¼ 1. The result is a “V”-shaped
footprint of the arch in the p − a plane, with the V profile’s
vertex corresponding to a ¼ 0. The inclination dependence
of the resonance surfaces can simply be characterized as the
monotonic closing off of the V profile’s pro- and retrograde
branches with increasing inclination until they merge into a
single line forming the arch’s spine at ppolar.
This completes our discussion of resonances in the weak

field limit. The features described here and the U-V-I
transitions are characteristic of all resonances. The actual
values of the resonant surface of the true resonance condition
begin to deviate from our weak field model as the black hole
is approached. The largest deviation occurs in the equatorial
limit, where the effect of spin is most marked. In the polar
regions, the weak field resonance condition remains a
remarkably accurate approximation to the true resonance
surface. In Sec. V E we numerically characterize several
low-order resonances and provide a quantitative comparison
with the approximate results obtained in this section.
Aswe shall see next, in the strong field region it is possible

to obtain exact analytic results for the V equatorial footprint
for e ¼ 0. Since the resonant surface depends very weakly
on e this result is a good indicator for all resonant behavior.

FIG. 3 (color online). Graphical representation of the approximate resonance condition (29) or equivalently (32) plotted for the
κ ¼ ð9=10Þ2 resonance. The eccentricity dependence is shown in the three plots on the left. The top left plot displays the typical arch
shape seen for all resonances. Here the arch is centered around p� ≈ 31.6 reaching a maximum value of z− ¼ 1 at p ¼ ppolar given in
Eq. (33) and indicated by a dark line on the plot. The lines where arches intersect the z− ¼ 0 plane are indicated in magenta (right) and
cyan (left) and show the maximum (retrograde) and minimum (prograde) values p attains for a fixed e. Note that the resonance shape for
a fixed spin is very weakly dependent on the eccentricity of the orbits. The spin dependence of the approximate resonance condition is
shown in the three plots on the right for e ¼ 1=10 and e ¼ 9=10. Observe that as a → 0 the arch pinches off to a line at p ¼ ppolar,
Eq. (33). The maximum arch width occurs for a maximally spinning black hole a ¼ 1 as predicted by Eq. (34).
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C. Exact solutions to the resonance condition
in special cases

In this section we explore easily evaluated exact sol-
utions to the resonance condition of Eq. (20) that can be
used to characterize the resonant behavior near the black
hole. The case we will consider first is the limit of circular
equatorial orbits, i.e. e → 0 and z− → 0. As remarked in
Sec. VA this case sets the parameters δ1=y1 ¼ δ2=y2 ¼ 0 in
Eq. (22) and thus a valid solution to the resonance condition
is found when

y1
y2

¼ κ: ð35Þ

Note that in evaluating this case we will not be resorting to
Eq. (25) that was derived using Eq. (13) which assumed
that z2− ≠ 0. Instead we return to Eq. (9) and observe that
z− ¼ 0 if and only ifQ ¼ 0. By Eq. (10) we see thatQ ¼ 0
implies ϖ× ¼ 0. The simplified version of Eq. (10) is

E2

μ2
¼ 1 −

2

2pþϖþ
;

L2
z

μ2
¼ 4p − 2

a2 þ 3p2

2pþϖþ
: ð36Þ

Substituting Eq. (36) into Eq. (9) gives an expression for zþ,

z2þ ¼ pðpþ 2ϖþÞ
a2

: ð37Þ

Settingϖ× ¼ 0 in Eq. (11) results in a quadratic equation for
ϖþ which has the following roots,

ϖþ ¼ 2pða� ffiffiffiffi
p

p Þ2
pðp − 4Þ − a2∓4a

ffiffiffiffi
p

p : ð38Þ

Weare now in a position to evaluate Eq. (35)which becomes

y1
y2

¼ pðp −ϖþÞ
a2z2þ

¼ p −ϖþ
ðpþ 2ϖþÞ

¼ κ: ð39Þ

Inserting the value for ϖþ from Eq. (38) leads to

κ ¼ ðp − 6Þp − 3a2 � 8a
ffiffiffiffi
p

p
p2 þ 3a2∓4a

ffiffiffiffi
p

p ; ð40Þ

where the upper (lower) sign corresponds to prograde
(retrograde) orbits. This result can alternatively be obtained
from the frequencies of linear perturbations to circular
equatorial orbits [56,57]. An equivalent way of expressing
Eq. (40) is in terms of the quartic polynomial:

½pðp − p�Þ − a2ðp� − 3Þ�2 − 4a2pðp� − 2Þ2 ¼ 0: ð41Þ

In the above expression we chose to use p� ¼ 6=ð1 − κÞ to
identify the resonance rather than κ itself. This choicemakes
it obvious that in the nonspinning limitp ¼ p� is an analytic
solution to the resonance condition.

Equation (41) is a key result of this paper because
it characterizes the exact V profile of all resonances for
z− → 0 as a function of spin. As discussed in Sec. V B on
the weak field limit, eccentricity has very little effect on the
resonance surface and inclination merely deforms the V
profile into a line as z− → 1. This single formula thus
allows us to characterize all resonant effects of arbitrarily
spinning black holes.
To efficiently evaluate Eq. (41) it is useful to view it as a

quadratic polynomial in a2 instead of a quartic polynomial
in p. Solving for a2 in terms of p and p� leads to

a2�ðpÞ ¼
p2ðp� − 3Þ þ pðp�2 − 5p� þ 8Þ

ðp� − 3Þ2

þ −2pðp� − 2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðp� − 3Þ − p� þ 4

p
ðp� − 3Þ2 : ð42Þ

We use Eq. (42) to plot the spin dependence of the V profile
for z− ¼ 0 for several low-order resonances in Fig. 4.
The maximum splitting of the retrograde and prograde

branches of the V occurs when a ¼ 1; in this case the
relevant roots of Eq. (41) are

p� ¼ p� − 1∓2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p� − 2

p
: ð43Þ

The maximum opening distance of the V profile is then

ðp− − pþÞ ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p� − 2

p
: ð44Þ

Even though Eq. (41) can readily be solved for p, the
expression is complicated and it is often difficult to identify
which roots correspond to the retrograde and prograde
branches; we thus provide a useful series expansion. For
low spin values, the solutions to Eq. (41) admit the
expansion

p∓ ¼ p� � 2aðp� − 2Þffiffiffiffiffi
p�p −

a2ðp�2 − 5p� þ 8Þ
p�2

� a3ðp� − 2Þð2p�2 − 11p� þ 20Þ
p�7=2 þOða4Þ: ð45Þ

Table I summarizes the numerical values associated with
the low-order resonances depicted in Fig 4, both in
dimensionless and physical units for the special case of
the Galactic center, Sgr A*. Lower-order resonances,
shown in bold in this table, are likely to have observatio-
nally detectable dynamics. According to the KAM theorem
these tori, when perturbed, are most likely to be disrupted
and the ensuing rapid changes in the orbital parameters
should have a dramatic effect when compared to the
systematic smooth distortion of perturbation induced
effects away from resonant orbits. We will discuss this
further in Sec. IX. In Sec. V E we give a numerical
characterization of several of the lower-order resonances
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introduced here. However before we turn to the numerical
solution we analytically quantify the effect of eccentricity
in greater detail.

D. Quantifying the effect of eccentricity

To quantify the effect of eccentricity, we consider the
limiting case of polar orbits with

z2− ¼ 1; Lz ¼ 0; z2þ ¼ Q
β2

¼ p2ϖ×

a4ð1 − e2Þ : ð46Þ

This choice puts us at the top of the inverted U where the
effects of spin are minimal. In this case we can solve
Eqs. (12) and (14) forϖ× andϖ−. Since Lz is zero Eq. (12)
reduces to a linear equation. As a result, only one solution

TABLE I. Time and length scales associated with low-order resonances depicted in Fig. 4. This table gives the values for the e ¼ 0,
a ¼ 0, z− ¼ 0 vertices seen in Fig. 4, first in dimensionless units and subsequently in physical units for the special case of the Galactic
center, Sgr A*. Lower-order resonances, shown in bold in this table, are most likely to have observationally detectable dynamics.

Resonance Location ðGM=c2Þ Spin splitting Period ðGM=c3Þ Galactic center: Sgr A*ffiffiffi
κ

p ¼ n=m p� ¼ 6=ð1 − κÞ Max½ðp1 − pþÞ=p�� T ¼ 2πp�3=2 p� (μas) T (min) f (10−4 Hz)

ISCO 6 1.33 92.3 30.6 32.7 5.10
1=2 8 1.22 142.1 40.9 50.3 3.31
1=3 27=4 ¼ 6.8 1.29 110.2 34.5 39.0 4.27
2=3 54=5 ¼ 10.8 1.10 223.0 55.2 78.9 2.11
1=4 32=5 ¼ 6.4 1.31 101.7 32.7 36.0 4.63
3=4 96=7 ¼ 13.7 1.00 319.1 70.1 112.9 1.48
1=5 25=4 ¼ 6.3 1.32 98.2 31.9 34.7 4.80
2=5 50=7 ¼ 7.1 1.27 119.9 36.5 42.4 3.93
3=5 75=8 ¼ 9.4 1.16 180.4 47.9 63.8 2.61
4=5 50=3 ¼ 16.7 0.92 427.5 85.1 151.3 1.10
1=6 216=35 ¼ 6.2 1.32 96.3 31.5 34.1 4.89
5=6 216=11 ¼ 19.6 0.86 546.7 100.3 193.5 0.86
1=7 49=8 ¼ 6.1 1.33 95.2 31.3 33.7 4.94
2=7 98=15 ¼ 6.5 1.30 104.9 33.4 37.1 4.49
3=7 147=20 ¼ 7.4 1.26 125.2 37.5 44.3 3.76
4=7 98=11 ¼ 8.9 1.18 167.1 45.5 59.1 2.82
5=7 49=4 ¼ 12.3 1.05 269.4 62.6 95.3 1.75
6=7 294=13 ¼ 22.6 0.80 675.8 115.5 239.1 0.70

5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

a

p

6/75/64/53/42/31/2 5/73/51/3

FIG. 4 (color online). The location of orbits with resonant frequencies in the limiting case of e ¼ 0 and z− ¼ 0 as a function of spin, a
and semilatus rectum, p [7]. Resonances are labeled at their vertex by the rational ratio n=m. All resonances with m ≤ 7 are shown. For
a ¼ 0 the prograde and retrograde branches are degenerate at p ¼ p�, as the spin increases the retrograde branch leans right (copper
tinge) and the prograde branch leans left (blue tinge). In general lower-order resonances are colored more darkly than their higher-order
counterparts. Note the accumulation of resonances as the strong field region is approached.
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exists as is expected because the retrograde and prograde
branches should coincide for polar orbits.
Here to illustrate the effect of eccentricity we only

give the results in the a ¼ 0 limit, since the expressions
for a ≠ 0 are unwieldy, so that

ϖ× ¼ 0; ϖþ ¼ 2p
p − 4

: ð47Þ

Substituting these values into Eq. (25) gives expressions for
the parameters that enter into the series expansion of
Eq. (24),

y1
y2

¼ p − 6

p
;

δ1
y1

¼ −
2e

p − 6
;

δ2
y2

¼ 0: ð48Þ

We now reexpand the series in Eq. (24) and substitute
Eq. (48) to obtain an explicit expression for κ,

κ ¼ ð1 − 6=pÞ
�
1 −

3e2

2ðp − 6Þ2 −
51e4

32ðp − 6Þ4 þOðe6Þ
�
:

Inverting this series expansion we find that the dominant
behavior of the resonance’s dependence on eccentricity is

p ¼ p�
�
1þ e2

4ðp� − 6Þ −
e4ð4p� − 17Þ
64ðp� − 6Þ3 þOðe6Þ

�
: ð49Þ

The expansion given in Eq. (49) is valid in the strong field
region. Note that as the resonant surfaces approach the
innermost stable circular orbit (ISCO) (p ¼ 6) the effects of
eccentricity become increasingly important.

E. Detailed numerical characterization
of low-order resonances

Having studied the resonances in limiting cases, we now
provide a full numerical characterization of the properties
of the low-order resonances and a comparison with the
analytic formulas. We quantify the error in using the weak
field approximation of Sec. V B for low-order resonant
surfaces and confirm the veracity of the exact analytic
solutions found for special cases in the strong field regime.
We calculated the location of the resonances numerically

by means of two methods. The first method directly uses
the closed-form general expressions for the fundamental
frequencies presented by Schmidt [28] [see for example
Eqs. (33) and (34) where the frequencies are given in terms
of elliptic integrals]. These formulas are not well defined
for the limiting cases e ¼ 0 and z− ¼ 1 which require
explicit modifications [28]. The integrals also become
indeterminate when reducing to a ¼ 0 or a ¼ 1. A careful
numerical treatment in the limiting cases ðe ¼ 0; z− ¼ 0Þ,
where the numerical values are calculated using the
procedure presented in Appendix B of [28], recovers the
analytic values predicted by Eqs. (42) and (49) to within
≲0.01% over the entire range of the remaining parameters.

The accuracy of the agreement in these cases is limited by
the numerical procedure, e.g. taking a ¼ 0.005 and z− ¼
0.99995 instead of 0 and 1 respectively.
The second semianalytic scheme that we implemented

exploits the analytic development of Secs. III B and IV to
reduce the computational cost in the following way. The
resonance condition Eq. (22) is recast in terms of the three
parameters that appear in the series expansion of Eq. (25) as

ωr

ωθ
¼ ffiffiffi

κ
p ¼

ffiffiffiffiffi
y1
y2

r RFð0; 1þ δ2
y2
; 1 − δ2

y2
Þ

RFð0; 1þ δ1
y1
; 1 − δ1

y1
Þ : ð50Þ

For a given a; e; z2− > 0 we calculate the values of p that lie
on the resonance surfaces by first finding an expression for
ϖþ in terms ofϖ× using Eq. (14) and substituting this into
Eq. (12). Solving the resulting quadratic for ϖ× yields two
choices for ϖ×ðpÞ, corresponding to the prograde and
retrograde solutions. Having expressed ϖ× and thus ϖþ in
terms of p we can write the three parameters in Eq. (25) as
explicit functions of p. The right-hand side of Eq. (50) can
be evaluated for a given p by repeatedly applying the
relation (B8) which tends to make the two arguments in the
RFð0; x2; y2Þ function equal (five iterations usually suffice
to reach machine precision) and then using (B7) to yield
the result; alternately one can use Eq. (B12) to express
Carlson’s RF functions as elliptic integrals of the first kind.
A line search method can then be used to find a value p that
solves (50) for a given κ, using p ¼ p� as the first guess.
This method has yielded accurate results for all parameter
values except in the equatorial case z− ¼ 0. The cases
e ¼ 0, z− ¼ 1, a ¼ 0 and a ¼ 1 do not require special
treatment, in contrast to the first direct numerical method.
The special case of z− ¼ 0 can be treated analytically, as
was shown in the previous sections. The results computed
with this semianalytical method are in complete agreement
with those obtained by the direct numerical method. This
serves as an independent check of our computations. We
note, however, that the computational costs for the semi-
analytic method are substantially lower than for the direct
method.
In the numerical investigation shown in Figs. 5 and 6 we

sample the parameter space by choosing several values of e
and z− in the range (0,1) and numerically solve the equation
ωr=ωθ ¼ 1=2; 2=3 or 3=4 for p, given a fixed spin value a.
Figure 5 shows several surfaces or sheets corresponding to
different black hole spins. The sheets are plotted on the
fe; p; z2−g coordinate axis to make the correspondence to
Fig. 3 clear. The blue sheets ðaÞ–ðcÞ indicate the location of
prograde orbits. The spin value is decreased from sheet ðaÞ
to ðcÞ. The red sheets indicate retrograde orbits with spin
values increasing from ðdÞ to ðfÞ. The higher the eccen-
tricity, the further out in p the resonances occur. The more
inclined the orbital plane, the further out (closer in) the
resonances for prograde (retrograde) orbits occur. These
qualitative features are the same as those identified in the
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weak field limit in Sec. V B. Since the value of the orbital
eccentricity has the smallest impact on the location of the
resonance, we subsequently choose a representative eccen-
tricity and explore the spin dependence for several low-
order resonances. In Fig. 6 the 1=2, 2=3 and 3=4 resonances
are shown for prograde and retrograde orbits with e ¼ 0.6
around a Kerr black hole for several different spin values.
We see that the typical shape of the resonances shown in
Fig. 5 is preserved. Prograde resonances with larger spin
values are closer to the black hole in comparison to the
point p� whereas retrograde resonances associated with
higher spin values occur further outward. The shapes of
these resonances are in qualitative agreement with the weak
field U-I transition discussed with respect to Fig. 3.
A quantitative comparison between the numerically

computed position for the 2=3, 6=7, 14=15 and 29=30
resonances and the weak field approximation developed in
Sec. V B is given in Fig. 7. The analytic result is obtained

from Eq. (32), with e ¼ 0.6 and varying spin values. The
weak field approximation provides a good fit for high
orbital inclination (z2− ¼ 1) even when p < 20. The weak
field approximation deviates more strongly from the
analytic results as the spin value increases, such that the
orbits with a ¼ 0.2 exhibit a better fit than those for which
a ¼ 0.99. For a given spin value the approximation fits the
retrograde orbits (higher p) better than the corresponding
prograde orbits (lower p). This is to be expected since in the
approximation of Sec. V B we used a quadratic approxi-
mation to the resonance condition valid only for p → ∞
and included spin effects only up to Oða2=p2Þ. Figure 7
also shows the analytic solution on the equatorial plane as
calculated from the roots of Eq. (41) with the added second-
order correction for nonzero eccentricity p�e2=4ðp� − 6Þ
given in Eq. (49). These equatorial solutions are in very
good agreement with the numerical results. They provide
an easily computed indicator of where the weak field
approximation strongly departs from the analytically com-
puted surfaces.

VI. THE LOCATIONOF RESONANT SURFACES IN
TERMS OF E, Lz PARAMETERS

When conducting numerical investigations of orbits in
spacetimes that are more general than Kerr it is often useful
to plot a Poincaré map at fixed E and Lz as a diagnostic tool
to explore the breakdown of KAM tori. This method of
surveying the parameter space is not as well suited for
describing the physical location of the orbit, but it unam-
biguously generalizes to metrics where a Carter constant Q
does not exist. In this section we develop some intuition for
the features of resonant surfaces in E, Lz space. This picture
will be invaluable as we discuss departures from integra-
bility and torus breakdown in the next section.

FIG. 5 (color online). Numerically computed surfaces for the
2=3 resonance. Prograde orbits are shown in blue (left) for spin
values (a) 0.99, (b) 0.5 and (c) 0.2. Retrograde orbits are shown in
red (right) for spin values (d) 0.2, (e) 0.5 and (f) 0.99.

a 0.99 a 0.5 a 0.2 a 0.2 a 0.5 a 0.99

1 2 3 42 3

5 10 15 20

0.0

0.2
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0.8
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p

z 2

FIG. 6 (color online). The numerically computed location of the 1=2, 2=3 and 3=4 resonance for fixed eccentricity e ¼ 0.6 for the spin
values a ¼ 0.2; 0.5; 0.99. (These are the same spin values used in Fig. 5.) The resonances for prograde orbits are shown in solid lines and
those for retrograde orbits in dashed lines. The resonances appear centered around the corresponding p� values given in Table I, with the
1=2 resonance (cyan) centered around p� ¼ 8, the 2=3 resonance (blue and red) centered around p� ¼ 10.8 and the 3=4 resonances
(magenta) around p� ¼ 13.7. The features of these plots agree qualitatively with those of Fig. 3.
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In Fig. 8 we show the 2=3 resonant surface for a
maximally spinning black hole, a ¼ 1, computed using
the second numerical method of Sec. V E. In this figure the
dots correspond to computed points on the resonance
surface. The lines indicate fixed values of eccentricity
and longitudinal angles at which the sampling took place:
horizontal lines correspond to z2− ¼ f0; sinðπ=8Þ; 1= ffiffiffi

2
p

;
cosðπ=8Þ; 1g, and the bent arches correspond to
e ¼ f0; 1=4; 1=2; 3=4; 1g. For each point (p, e, z2−) on
the resonant surface, the corresponding E and Lz values
were computed using Eqs. (10) and (11). Care was taken to
compute the appropriate ϖ× root associated with the
retrograde p− or prograde pþ branch of the resonant
surface under consideration. The outcome is shown in

Fig. 9. Note the large asymmetry about the Lz ¼ 0 line that
is due to the fact that the black hole is maximally spinning.
The low energy spike that coincides with prograde orbits
close to the equatorial plane with low eccentricity is easy to
miss numerically when exploring the parameter space in
terms of E, Lz parameters. This spike constitutes a set of
parameter values that potentially have important astro-
physical implications: Most particles in thin astrophysical
discs around rapidly spinning black holes are expected to
be prograde and on nearly circular equatorial orbits. As the
spin of the black hole decreases the resonance footprint on
the E, Lz plane will become increasingly symmetrical as is
shown in Figs. 10 and 11.
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FIG. 7 (color online). Quantitative comparison between the
numerically calculated resonance surfaces and weak field
approximation of Sec. V B for the 2=3, 6=7, 14=15 and 29=30
resonances. The eccentricity is fixed at e ¼ 0.6. The weak field
approximation is computed using Eq. (32) and is shown for spin
values a ¼ 0.2 in red (inner arch), a ¼ 0.5 in blue (middle arch)
and a ¼ 0.99 in magenta (the outer arch). The analytic results on
the equatorial plane are shown in matching colored dots, with the
numerical solutions overlayed using black dashes.
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FIG. 8 (color online). The 2=3 resonant surface for a maximally
spinning black hole a ¼ 1 represented in terms of ðp; e; z2−Þ
coordinates. Horizontal lines indicate longitudinal values of
z2− ¼ f0; sin π
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FIG. 9 (color online). The 2=3 resonant surface for a ¼ 1, μ ¼
1 projected onto E, Lz coordinates [7]. Lines indicate constant
values of z2− ¼ f0; sin π
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corresponding to those in Fig. 8. The large asymmetry across
the Lz ¼ 0 line is indicative of the large spin value under
consideration.
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In Fig. 12 the E, Lz projection of the 3=4 resonance
surface is given for a black hole with spin a ¼ 0.5. The
higher-order resonance surface has features that are quali-
tatively similar to those of the 2=3 resonance of equal spin
shown in Fig. 10. For the higher-order resonances however
the E values are slightly higher and the Lz values span a
marginally larger range.
From the figures in this section it should be clear

that the representation of orbital parameters in terms of
the ðp; e; z2−Þ coordinates is better adapted to the geometry
of the resonant orbit, making it generally easier to quantify
the resonance surfaces using these variables. Once obtained
the resonant surfaces projected onto the E and Lz
orbital variables can potentially be used to aid numerical
exploration into Kerr-like spacetimes discussed in the next
section.

VII. ROTATION CURVES AND THE BREAKDOWN
OF KAM TORI

A number of groups have numerically explored the
breakdown of integrability in stationary axisymmetric
vacuum metrics such as the Manko-Novikov metric that
reduces to the Kerr metric for a certain choice of parameters
[13–15,17,58]. One of the tools used to explore the non-
Kerr spacetimes numerically is to plot the Poincaré map of
the orbital motion for a fixed choice of energy (E) and
angular momentum (Lz). An example of a Poincaré map
exhibiting broken tori is given in Fig. 13. Each closed curve

4 2 0 2

Lz
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0.97

0.98
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1.00
E

FIG. 10 (color online). The 2=3 resonance for a ¼ 0.5 in
E, Lz coordinates for z2− ¼ f0; sin π

8
; 1=

ffiffiffi
2

p
; cos π

8
; 1g, and

e ¼ f0; 1
4
; 1
2
; 3
4
; 1g, with units μ ¼ M ¼ 1. Note the decrease in

asymmetry across the Lz ¼ 0 line when compared to Fig. 9 which
is maximally spinning.
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FIG. 11 (color online). The 2=3 resonance for a ¼ 0.1 in
E, Lz coordinates for z2− ¼ f0; sin π

8
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ffiffiffi
2

p
; cos π

8
; 1g, and

e ¼ f0; 1
4
; 1
2
; 3
4
; 1g. Since the spin is almost vanishing the figure

is much more symmetrical about the Lz axis than Figs. 10 and 9.
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FIG. 12 (color online). The 3=4 resonant surface for a ¼ 0.5
projected onto E, Lz coordinates, for z2− ¼ f0; sin π

8
; 1=

ffiffiffi
2

p
;

cos π
8
; 1g, and e ¼ f0; 1

4
; 1
2
; 3
4
; 1g. The main difference between

the parameter space covered by the 2=3 and 3=4 resonance
in Fig. 10 is that slightly lower energies are reached for the
lower-order resonance and for the higher-order resonance the Lz
values have a marginally larger span; the other features remain
qualitatively similar.

FIG. 13 (color online). A Poincaré map generated for the
Manko-Novikov metric. The inlay shows a closeup of one of
the islands in the Birkhoff chain of multiplicity 3. This island is
associated with the breakdown of the 2=3 resonance as indicated
using the rotation curve in Fig. 14. The spin value for this
simulation was chosen to be a ¼ 0.9 and the dimensionless
quadrupole deviation parameter q ¼ 0.95 was chosen to be very
large. The other orbital parameters are E ¼ 0.95, Lz ¼ 3 and rest
mass μ ¼ 1.
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in the Poincaré map corresponds to an orbit that was started
on the equatorial plane and given an initial momentum out
of the plane. Each intersection of the orbit with the
equatorial plane generates a point on the Poincaré map.
The radial coordinate (here ρ) and corresponding radial
momentum (pρ) of these piercing points are plotted. The
closed curves in this Poincaré map indicate that for most
initial conditions geodesic motion in the Manko-Novikov
metric remains integrable or regular. However, among the
closed curves, a Birkhoff chain of islands can be seen
(enlarged in inset), which indicates that for certain initial
conditions the regularity of orbits break down. This break-
ing of regular structure is associated with resonances in the
fundamental frequencies describing the orbit as predicted
by the KAM theorem.
The second diagnostic tool that gives insight during a

numerical exploration is the rotation curve. This is a plot of
the frequency ratio ωr=ωθ as a function of initial conditions
for the Hamiltonian potential being studied. For an inte-
grable system the rotation curve is a smooth function of
initial conditions. In systems for which the KAM tori have
broken, there are plateaus in the rotation curve where the
numerically computed rotation number [59,60] remains
roughly constant. This situation is depicted in Fig. 14.
In the numerical investigation of the Manko-Novikov

metric, the breaking of low-order resonant tori is observed
most dramatically at the 2=3 resonance. The apparent
dominance of the 2=3 resonance over other integer ratios
could heuristically be explained by the fact that in these
studies, the deviation from Kerr was mainly a quadrupole
perturbation and thus roughly proportional to cos 2θ. This
geometric dependence of the perturbation indicates that any
2=m resonance is expected to be strongly excited. Integers
other than n ¼ 2 would arise from the nonlinear coupling
between the angle variables and the coordinates, which is a

higher-order effect. Since ωr < ωθ for Kerr we always have
that m > n, so 2=3 is the resonance with the lowest-order
integer ratio. It is thus expected to dominate the breakdown
of integrability for a system subjected to a quadrupole
perturbation.
The numerical explorations of the breakdown of KAM

tori has to date been limited to a very small subset of the
allowed parameter space. To guide future studies covering
the entire parameter space associated with the 2=3 and 3=4
resonances discussed in Sec. VI, we now describe how to
use the machinery developed in this paper to analytically
compute the rotation curve for the Kerr metric. An
important caveat to bear in mind when exploring large
deviations from the Kerr metric is that although the torus
structure is not destroyed it may be distorted and the
breakdown of quasiperiodic orbits may be shifted from the
exact location of the resonance predicted by the rotation
curve for orbits in Kerr spacetime. To zeroth order,
however, the Kerr rotation curve provides an indication
of the interesting regions in the parameter space.
For the Kerr metric the rotation curve is computed by

evaluating Eq. (50) for a fixed E and Lz using the
parameters defined in Eq. (25). A representative example
is given in Fig. 15. For a given E and Lz, bound orbital
motion is usually restricted to a small region of physical
space. Equatorial orbits (Q ¼ z− ¼ 0) have the largest
radial extent while circular orbits (e ¼ 0) have the largest
longitudinal reach, z−max ¼ z−ðe ¼ 0Þ. These two extreme
points define the boundaries of the rotation curve. We
examine themmore closely by first computing the variables
fp; e; z−g and subsequently the ratio ωr=ωθ.
On the equatorial plane, z−eq ¼ 0 and the radial potential

Eq. (4) has one zero root; thus ϖ× ¼ 0. The largest two
roots of the remaining cubic determine peq and eeq. First

FIG. 14 (color online). The rotation curve is obtained by
calculating the rotation number of each orbit from the Poincaré
map given in Fig. 13. The rotation number, νθ, which is equal to
the ratio of orbital frequencies, ωr=ωθ, is plotted as a function of
the initial radial coordinate of the orbit. The rotation curve is
generally smooth and monotonically increasing. However, cor-
responding to the Birkhoff chains of islands seen in the Poincaré
map, there is a plateau in the rotation curve for which ωr=ωθ ¼
2=3 is resonant.

FIG. 15 (color online). The rotation curves for geodesics with
E ¼ 0.95μ, in a Kerr black hole spacetime with spin a ¼ 9=10.
The different curves correspond to different Lz values uniformly
spaced between Lz ¼ 2.482μ (lower curve) and Lz ¼ 3.343μ
(upper curve). For reference purposes, the 2=3 resonance value is
indicated by the central red line, the 1=2 resonance by the lower
black line and the 3=4 resonance by the upper black line. The
radius (r) refers to the radius of closest approach of the orbit to the
black hole, i.e. its periastron r2 given in Eq. (8).
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consider the effect of eccentricity eeq where the two
extreme cases for bound orbits are eeq ¼ 0 and eeq ¼ 1.
Making use of Eq. (40) we have that if eeq ¼ 0 the rotation
curve reduces to a single dot at

ωr=ωθ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − 6Þp − 3a2 � 8a

ffiffiffiffi
p

p
p2 þ 3a2∓4a

ffiffiffiffi
p

p
s

: ð51Þ

If the E and Lz values have been chosen to lie on the 2=3
resonance, this value would correspond to either the lower
rightmost or lower leftmost points in Figs. 9, 10 and 11
depending on the spin of the black hole and whether
the retrograde (left) or prograde (right) orbit is under
consideration. Equation (51) in conjunction with Eqs. (36)
and (38) can be used to estimate the characteristic E
and Lz associated with the κ resonance in the nonspinning
limit to be

E2

μ2
¼ 2ð2þ κÞ2

9ð1þ κÞ ;
L2
z

μ2
¼ 12

1 − κ
: ð52Þ

For the 2=3 resonance this evaluates to E ¼ 0.95879μ and
Lz ¼ �3.86702μ. If the spin is maximal, a ¼ 1, the
prograde branch has E ¼ 0.88009μ, Lz ¼ 2.26471μ, p ¼
3.86704 while the retrograde branch has E ¼ 0.971899μ,
Lz ¼ −4.6614μ, p ¼ 15.733. These values can be com-
pared to the lower corner points in Fig. 9.
For parabolic equatorial orbits, eeq → 1 and E ¼ μ. This

case corresponds to the largest possible radial extent a
marginally bound orbit can have. For the 2=3 resonance
these values are indicated by the upper leftmost and upper
rightmost points on Figs. 9, 10 and 11. We define the
dimensionless angular momentum parameter lz ¼ Lz=μ
and note that on the equatorial plane, ϖ× ¼ 0,
ϖþ ¼ lz=2. Using Eqs. (10) and (11) implies that the
values of p are restricted to

p ¼ l2z
2

0
B@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

4

lz
þ 4a

l2z

��
1þ 4

lz
−
4a
l2z

�s 1
CA: ð53Þ

The factor under the square root is positive only if lz >
2ð1þ ffiffiffiffiffiffiffiffiffiffiffi

1 − a
p Þ or lz < −2ð1þ ffiffiffiffiffiffiffiffiffiffiffi

1þ a
p Þ. The smallest

value of p that can be attained for equatorial parabolic
orbits is thus p� ¼ 2ð1þ ffiffiffiffiffiffiffiffiffiffi

1∓a
p Þ2 for prograde (pþ) and

retrograde (p−) orbits respectively.
The parameters that enter into Eq. (24) for equatorial

parabolic orbits are

y1
y2

¼ 3p − l2z
2l2z

;
δ1
y1

¼ l2z − p
l2z − 3p

;
δ2
y2

¼ 0: ð54Þ

Evaluating Eq. (50) we find that
ffiffiffi
κ

p
is a monotonically

increasing function of p or equivalently lz. In the limit of a

spin zero black hole the resonance
ffiffiffi
κ

p ¼ 2=3 occurs when
p ¼ 11.3273, lz ¼ 4.18461. Parabolic orbits with larger
jlzj will not sample the 2=3 resonance regardless of
inclination. For a maximally spinning black hole, the
2=3 resonance occurs at p− ¼ 16.2914, lz ¼ −5.01845
for retrograde orbits and at pþ ¼ 4.14634, lz ¼ 2.53177
for prograde orbits (see Fig. 9).
Finally we consider the maximal vertical extent an

orbit can have. This occurs for circular orbits given a fixed
E and Lz. If e ¼ 0, δ1=y1 ¼ 0 and ϖþ ¼ −2pþ 2

1−E2=μ2.
Equation (11) gives ϖ× to be

ϖ× ¼
a2ð1 − 2 E2

μ2
Þ þ 2a E

μ lz þ pðE2

μ2
ðp − 3Þp − ðp − 2Þ2Þ

ðp − 1ÞðE2

μ2
− 1Þ ;

ð55Þ

which can be substituted back into L2
z in Eq. (10) to give a

polynomial in p that can be solved to find pe¼0 for the
given E and Lz. Substituting these results into the remain-
ing expansion parameters of Eq. (25) and evaluating
Eq. (50) yields the maximum value the rotation curve
attains.

VIII. ESTIMATING THE SIZE OF THE
PERTURBATION THAT RESULTS IN A
DRAMATIC CHANGE OF DYNAMICS

DUE TO TORUS BREAKDOWN

The KAM criterion for the possible destruction of tori
can be augmented by further estimates. A generic analytic
perturbation Fðr; θ; pr; pθ; pϕÞ to geodesic quantities such
as the energy can be written as a Fourier expansion of the
form

Fðr; θ; pr; pθ; pϕÞ ¼
X∞
n¼−∞

Fnðe; p; z−Þein·q; ð56Þ

where q are the angle variables corresponding to the
frequencies via

dq
dλ

¼ ωþOðϵÞ: ð57Þ

For most orbits, all the Fourier components in Eq. (56) with
n ≠ 0 will be oscillatory and their contribution approx-
imately averages out over an orbit. The orbit’s leading-
order secular evolution is driven by the component with
n ¼ 0. However, at a resonance where k · ω ¼ 0 the
Fourier components in Eq. (56) that involve the resonant
combination ðk · qÞ momentarily cease to be oscillatory
since their phase becomes stationary. These components
thus generically contribute order unity corrections to the
secular evolution over the resonance time, except when the
amplitude of these components isOðϵÞ or smaller. Since for
analytic functions the Fourier amplitudes Fk fall off
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exponentially with k, we expect the resonance to have an
appreciable effect on the dynamics only when

Ok ¼
X
i

jkij≲Oðj lnðϵÞjÞ: ð58Þ

This criterion on k in (58) for “essential” resonances [61]
refines the bound for sufficient irrationality discussed in
Eq. (2) for the special case of analytic perturbations.
For EMRIs with the only source of perturbation being

the gravitational self-force, even the low-order resonances
are expected to be weak in the sense that the dominant
dissipation F0 is generically larger than the resonance
potential related to Fk. The resonances will therefore
appreciably modify but not destroy the object’s continued
inspiral. Now, however, consider the case of additional
perturbations that lead to very strong resonance modifica-
tions, where heuristically Fk ≫ F0. Chirikov’s resonance
overlap criterion [62] specifies the conditions under which
the complete loss of quasiperiodic motion is expected to
occur as follows. Each strong resonance captures orbits in
its vicinity and is thus surrounded by an oscillation region
similar to the Birkhoff islands shown in Fig. 13 and
manifests as a plateau in the frequency evolution similar
to that in Fig. 14. The onset of full-blown chaos occurs
when these Birkhoff chains associated with nearby reso-
nances become large enough that they touch. More pre-
cisely, Chirikov’s criterion states that the transition to
stochastic behavior arises when two neighboring strong
resonances overlap in the sense that the frequency width of
their oscillation regions is larger than their spacing in
frequency. An estimate for the width of the resonance
regions is [62,63]

Δjk · ωj ∼ ffiffiffi
ϵ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðk · ωÞ;JαFαkj

q
; ð59Þ

where Jα ¼ ðe; p; z−Þ and Fαk are the forces such that _Jα ¼
ϵFα þOðϵ2Þ and Fα is Fourier expanded as explained
above. Overlap occurs for two resonances associated with
lattice vectors k and k0 respectively when

ΔωðkÞ
i þ Δωðk0Þ

i > jωk
i − ωk0

i j ð60Þ

for each of the frequenciesωi evaluated at the resonances of
the unperturbed system. This estimate of the criterion for
overlap is only a crude indicator for the transition to
stochasticity, and in cases of interest the local dynamics
must be systematically analyzed [64,65].
For most systems explored numerically to date, the

plateaus in the rotation number curve remain small, and
thus do not satisfy Chirikov’s criterion. This indicates that
we expect at most weak chaos in the sense that torus
disruption, if it occurs, is limited to a small region in
phase space.

IX. ASTROPHYSICAL IMPLICATIONS

For astrophysical processes near supermassive black
holes the Kerr geometry usually provides the background
stage on which several small perturbation effects play their
part. In select regions of the spacetime corresponding to
low-order resonant orbits the smooth distortion due to
perturbation induced effects is disrupted. The background
spacetime geometry largely sets the location of these
resonance induced disruptions imprinted on the dynamical
structures of the perturbed system, while their details
depend on the properties of the perturbations.
Generally these effects are expected to be small,

although persistent and robust. They are induced by all
nonintegrable perturbations of the Kerr metric. If the
perturbation is not too large resonant effects occur at the
locations quantified in this paper irrespective of the source
of the perturbation. Table I indicates the characteristic
length and time scales associated with resonances in
dimensionless units and as well as in units characteristic
of the region around Sgr A*. In Fig. 16 we have plotted all
the low-order resonances with order Oκ ¼ nþm ≤ 15
superimposed on an embedding diagram for a nonspinning
black hole. This plot gives an indication of how strongly the
spacetime for a particular resonant surface is curved and the
relative extent of the regions of influence of the low-order
resonances. Note the accumulation of resonances near the
ISO which can also be observed in Fig. 4 and persists for
the spinning case. In Fig. 16 we have scaled the width of the

FIG. 16 (color online). The location of low-order resonances
around a black hole [7]. Here low-order resonances are plotted
superimposed on an embedding diagram to give an indication of
how strongly the spacetime in their vicinity is curved. The line
width in each case is scaled with 3=Oκ whereOκ ¼ mþ n to give
an indication of the relative importance of a particular radius. This
image gives an overestimate of the importance of higher-order
resonances since the correct scaling according to Eq. (2) is K=O3

κ .
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lines demarcating each resonance by KðϵÞ=Oκ with an
arbitrary choice of K ¼ 3 to result in good rendering.
Recall that Arnold’s criterion, in Eq. (2), governs the
persistence of tori scales as K=O3

κ . Higher-order resonances
are thus likely to be strongly suppressed compared to the
schematic representation given here.
The three lowest-order resonant tori, 1=2; 1=3; 2=3,

whose parameters are indicated in bold in Table I are
mathematically most likely to break. Of these it is likely
that astrophysically the 2=3 resonance will have the greatest
probability of being directly observable based on the
following arguments: (i) For an EMRI, the impact of the
broken resonance is likely to be larger if the perturbing
object remains in the vicinity of the resonance for a
considerable amount of time. The 1=2 and 1=3 resonances
lie at 4RS and 3.4RS respectively, close to the ISO at 3RS
where the radiation reaction force is large and the orbit is
transitioning to the plunge phase. The time and number of
orbits that an inspiraling object of mass μ spends near
a given radius roughly scale as t ∼ p4=ðμ=MÞ and N∼
p5=2=ðμ=MÞ; thus the influence of the 2=3 resonance can
accumulate longer than for the 1=2 and 1=3 resonances. See
also Ref. [9] for more precise estimates. (ii) For electro-
magnetic observations, the fact that the 1=2 and 1=3
resonances lie in the region of high curvature and possibly
near or on the edge of the accretion disc is likely to confuse
any distinct signal originating from this region. The 2=3
resonance on the other hand is located at roughly 5.4RS
further out of the potential well, making it easier for
electromagnetic radiation to escape. (iii) The final reason
for expecting the 2=3 resonance to dominate is akin to the
discussion in Sec. VII where it was argued that quadrupolar
gravitational potential perturbations will preferentially
excite the 2=3 rather than lower-order resonances.
If the resonance condition is satisfied the particle motion

either passes through the resonance, or, when the resonance
dominates over dissipation so that Fk > F0 in Eq. (56)
holds and depending on the initial conditions, the object
can temporarily be captured in the resonance. For captured
particles the resonance effectively fixes the orbital fre-
quency ratio of the object’s orbit which manifests as a
plateau in its rotation curve, as seen in Fig. 14. This is
indicative of a stable, attracting resonance. Repelling
resonances, typified by an inflection point or jump in
the rotation curve, are associated with unstable periodic
orbits [59,66] and will be short lived in the presence of
dissipative effects. The detailed study of the dynamics
when a small mass enters the resonance region under
various forms of perturbation is the subject of future work
and has been studied in a particular Newtonian case in [67].
In the event of resonant capture the orbital parameters will
linger within the resonance surface, possibly altering
constants of motion because of the interchange of energy
and angular momentum between the perturbation and the
orbit. When the gravitational radiation reaction is signifi-
cant, the dissipation will most likely cause the orbit to

evolve towards a lower energy state, i.e. increasingly
circular equatorial configurations, corresponding to the
lower right-hand corner of Figs. 8 and 9.
Now consider a collection of particles in a low-density

accretion disk around an astrophysical black hole. As
explained in the Introduction, their orbits will be influenced
by a number of small perturbations which could cause them
to become captured by a resonance, since the gravitational
dissipation is small for low mass ratios. The evolution
towards prograde circular equatorial orbits during resonance
will limit the collisional interaction of the swarm of trapped
particles, potentially creating a cohesive structure. It is thus
possible that the characteristic structure associated with the
resonances, such as the resonance zones visualized in
Fig. 16, will be imprinted on any thin disk surrounding a
black hole in the form of density inhomogeneities in much
the sameway as the resonant structures imprinted onSaturn’s
rings [4]. Unlike the rings of Saturn where matter largely
remains captured indefinitely, the black hole rings will be
dynamical because radiation reaction will alter the resonant
structures and enable escape from resonance (as can be
quantified using e.g. the methods in [68]). In this scenario,
when a trapped overdensity becomesmassive enough for the
radiation reaction force to become important the black hole
ring will partially disintegrate, depositing an overdensity of
matter on the next inward ring in the disk. There, the matter
will again be trapped for some time before continuing the
infall. Thus in one related catastrophic event the whole ring
structure will readjust, with the emitted radiation carrying an
imprint of the particular resonances involved. Provided the
accretion rate is slow enough the ring structure will reform
after each radiation reaction dominated ring collapse event.
Since the radiation reaction force scales with mass ratio it is
further expected that therewill be a segregation in the particle
sizes found in each ring. The tendency for captured orbits
to evolve to a more circular, equatorial configuration is
expected tominimize the ejection of simultaneously captured
particles due to collisional interactions.
Another mechanism that could excite the resonant ring

structure and lead to a distinct signature in the emitted
radiation is the collision of a compact object with the matter
in successive rings. The resulting collisional hot spot of
excited gas will rotate with an azimuthal frequency set by
the characteristic resonance surface. A detailed study of the
possibility of a ring structure, its dynamics and observa-
tional signatures is left for future work.
We now conduct a very precursory search for phenom-

ena that could possibly be associated with the resonant
structure around black holes. The closest supermassive
black hole at the center of our Galaxy presents an
interesting test bed. Recent monitoring of Sgr A* with
the 1.3 mm very-long-baseline interferometry showed
time-variable structures on scales of ∼4Rs [69,70]. The
physical origin of this structure is not yet clear, but it is
interesting to note that the scale is similar to that of the low-
order resonances given in Table I. As discussed above it is
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possible that temporary capture of material or gas near the
resonance location could lead to a time-varying signature in
the photon emission. For argument’s sake, suppose that the
origin of the structure at ∼4RS ¼ 8M is in fact the 2=3
resonance but displaced from the nonspinning value listed
in Table I because Sgr A* has spin. Using Eq. (45) the spin
displacement of the prograde 2=3 resonant surface is
pþ ¼ 10.8 − 5.36a. From the amount of spin displacement
of the resonance needed to match the observed structure one
could then infer that Sgr A* has a ¼ 0.5. The plausibility of
identifying this structure with the 2=3 resonance could be
confirmed if the variability has characteristic time scales of
slightly less than an hour. The increase in sensitivity of
the very-long-baseline interferometry measurements will
enable resolving more of the horizon scales, and it will be
fascinating to see if the resonance structure can be revealed.
Table I provides a quick reference for the possible char-
acteristic time and length scales. Note that because the
coefficients in Eq. (45) differ for different resonances,
observing more than one resonant structure places an
independent check on the veracity of this method of
determining the spin, since the displacement of both
resonances due to spin must be consistent.
Another example of a phenomenon that could potentially

be associated with the orbital resonances is the quasiperi-
odic oscillations (QPOs) observed in the x-ray spectra of
several black hole candidates. Four stellar mass black hole
systems exhibit quasiperiodic variability with peaks at
harmonic pairs of frequencies in a 2=3 ratio; one also
shows an additional 3=5 ratio [71]. Recently, QPOs have
also been identified in a supermassive black hole [72] and
in a tidal disruption event [73]. A definitive physical
explanation for the origin of the QPOs is currently lacking.
Numerous models have been proposed, including orbital
resonances of any combination of the three orbital frequen-
cies and their corresponding beats [31,74], accretion disk
oscillations with nonlinear effects [75–77], or variations in
the geometry of the accretion flow [78]. For the case where
both the 2=3 and 3=5 ratios are observed, it is very
interesting to note from Table I that these two resonances
are in fact nearest neighbors in p, with the 3=5 occurring at
just slightly smaller p values than the 2=3 resonance. A
disruption event at the 2=3 resonance could excite an event
at the 3=5 resonance because of their physical proximity.
Measuring the frequencies of the observed resonances in
QPO’s will give further clues as to whether they can
correctly be attributed to orbital resonances around Kerr
or whether other physics dominate over the orbital
dynamics.
The concentration of low-order resonances near the

black hole and their absence further out has important
implications for the key science objective of testing the
no-hair theorems using a supermassive black hole such as
Sgr A*. The no-hair theorems state that, provided the
cosmic censorship and causality axioms hold, if the black

hole’s mass and spin are known the quadrupole moment is
fixed. Liu et al. [79] have shown that recording the time of
arrival signals of a pulsar orbiting Sgr A*, with orbital
period ∼4 months, for several years with the Square
Kilometer Array (SKA) will enable us to measure the
mass of Sgr A* to a precision of 10−6, the spin 10−3 and the
quadrupole moment to 10−2. This will allow a definitive
test of the no-hair theorems. The detection of a pulsar even
closer to the central object could allow the extraction of
additional multipole moments through long term monitor-
ing, thus mapping out more and more details of the
structure of the central black hole.
The analysis in this paper assures us that orbits around

Sgr A* with a period of the order of weeks to months are
sufficiently far from the low-order resonances that the
KAM theorem guarantees quasiperiodic motion and the
persistence of invariant tori under perturbations. This result
implies that frequency drifts computed using perturbative
methods based on averaging, as done in [80], accurately
describe the physical system that is effectively free of
stochastic motion. It also ensures that tracking the regular
motion of a pulsar will reflect a map of the gravitational
potential it samples. We conclude this section by mention-
ing in passing the relevance to future gravitational wave
detectors such as eLISA and their potential to directly
probe resonant dynamics. A detector sensitive to the
frequency band ∼10−4–10−1 Hz, observing an EMRI near
SgrA* MSgrA� ≈ 4 × 106M⊙ [81], can probe mean radial
distances ranging from the event horizon to ∼50M [17].
This overlaps with the region where the strongest reso-
nances occur (see Table I ). The potential direct detection of
gravitational wave emission from a resonance transit is an
exciting possibility. It does however underscore the neces-
sity to carefully model and incorporate resonant effects in
the search templates. The loss of phase coherence as the
small mass object passes through a resonance could
potentially make parameter estimation difficult.

X. SUMMARY AND DISCUSSION

In this paper we have computed the location and
associated time scales of resonant orbits in the Kerr
spacetime and commented on the observational and math-
ematical implications. We have considered resonances
between the two fundamental frequencies corresponding
to the radial and longitudinal motion, which are the key
quantities relevant to phenomena associated with the
underlying phase space of the system. Our results provide
a complete survey of the parameter space of resonant orbits,
together with simple expressions for locating the resonan-
ces valid in the strong field region. If resonant phenomena
are observed these expressions could provide an easy
way of determining the spin of the central black hole.
We considered several examples of electromagnetic obser-
vations at different wavelengths that could be related to the
capture and escape of material from resonances.
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We have computed the resonant surfaces both in terms of
generalized Keplerian variables (related to the orbital
geometry) and projected onto the E and Lz parameter
space (related to the spacetime symmetries) to help identify
promising choices of parameters for numerical investiga-
tions of torus breakdown in resonance regions. We have
further found an analytic expression for the rotation curve
associated with the Kerr metric as a function of E and Lz
that can be used for comparing to numerically computed
rotation curves associated with Poincaré maps. We expect
low-order resonances such as the 2=3 and 1=2 resonances
to have the strongest observable effects on orbital motion,
electromagnetic emission and the phase of emitted gravi-
tational waves. These resonances occur in the strong field
regions of the spacetime at a distance of ≲5.4Rs from the
black hole and are fairly widely spaced by ∼1.4Rs in the
limiting case of a nonspinning black hole.
According to the KAM theorem low-order resonances

indicate where in a dynamical system the transition to chaos
is likely to occur first. Such a transition requires a suffi-
ciently large perturbation that could arise from various
sources such as the non-Kerr nature of the spacetime, the
internal structure of the probe, alternative theories of gravity
or the presence of other bodies or gas. We summarized the
KAM estimate and additional arguments by Arnold and
Chirikov to assess which resonant tori are expected to
survive under the perturbation and where dramatic changes
in the dynamics could occur. Combining these general
bounds with our results for the resonances indicates that
there is a large region for mean radii 50Rs ≲ p≲ 1000Rs
where resonance effects are negligible but where the
spacetime curvature is sufficiently high that multipoles of
the central object have an observable effect on the motion.
This will enable tests of the no-hair theorem unimpeded by
drastic changes in the dynamics.
More stringent bounds than discussed in this paper on the

occurrence of strong resonances and the transition to sto-
chastic behavior require detailed studies of the dynamics near
resonant tori for the different kinds of perturbations.
We noted in Sec. VIII that for EMRIs the gravitational
radiation reaction force, which is important in the region
where low-order resonances occur, sets an approximate
scale for the strength of the perturbation required to destroy
the tori. In future work we intend to study the details of the
breakup of the tori and quantify the strength of the perturba-
tion required for observable consequences in each case.
Regions where lower-order resonances occur also ear-

mark the most likely positions in phase space where
averaging methods must be modified to account for the
resonances. If an orbit passes through a resonance it
effectively acquires a sudden change in the frequencies
whose magnitude depends on the initial conditions. For
sufficiently strong resonances, orbits can enter a resonance
region, linger near it and subsequently escape. This
manifests as a plateau in the frequency evolution similar

to that seen in the rotation curve of Fig. 14 but tilted
because of radiation reaction. More work will be needed
to determine how well the frequencies must be resolved to
detect such a plateau and exploit the measurements to
determine the system parameters with LISA.
In addition to exploring the parameter space of reso-

nances in this paper, we characterize in the Appendixes the
locations of the innermost stable orbit beyond which
geodesics plunge into the black hole. This provides a
useful benchmark for the resonance locations and also
indicates the region where zoom-whirl behavior would
occur and where higher-order resonances accumulate.
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APPENDIX A: LOCATION OF THE
INNERMOST STABLE ORBIT

In this appendix we explore the location of the ISO
using the notation and variables given in Sec. III B.
Observationally this is an important location in the black
hole spacetime since it demarcates the radius from which
the test mass will enter the plunge phase of its orbit. Near
the ISO a noncircular orbit exhibits zoom-whirl behavior
as the radial frequency goes to zero while ωθ and ωϕ remain
finite. The test mass will linger near its periastron for many
periods of the ϕ and θ motion, then rapidly zoom out to
apastron and back, giving rise to a characteristic signature
in the emitted gravitational waves. When tracking the
frequency evolution of a particular orbit, this determines
the final set of ωϕ, ωθ frequencies that will be recorded
before the test mass begins its plunge into the black hole.
When discussing resonant orbits of a spinning black hole it
is often useful to view their location relative to the location
of the ISO for the same spin, inclination and eccentricity.
The ISO surface (where ωr vanishes) shares many of the
qualitative features of the resonance surfaces (where the
combination of frequenciesmωr − nωθ vanishes) discussed
in the main body of the text and both are related to
degenerate structures in the phase space that are broken
under small perturbations.
The ISO occurs when the potential barrier in the radial

potential no longer shields the orbit from the singularity.
Mathematically the condition that defines this orbit is that
the middle two roots of Eq. (4) coincide,

r3 ¼ r2 ¼
p

1þ e
: ðA1Þ

This allows us to express the ϖþ and ϖ× variables as
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ϖþ ¼ r4 þ
p

1þ e
; ϖ× ¼ r4p

1þ e
: ðA2Þ

Equation (14) allows us to find an expression for z2− in
terms of r4,

z2−¼
pð ~r4ðe−3Þ−ðeþ3ÞpÞ
2a2ðe−1Þðeþ1Þ2

þp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe−3Þ2 ~r42þ2ðe2þ7Þp ~r4þðeþ3Þ2p2

p
2a2ðe−1Þðeþ1Þ2 ; ðA3Þ

where we have set ~r4 ¼ ð1þ eÞr4 to yield a more
compact expression. Equation (12) provides a quadratic
equation for r4 that allows us to determine its value
in terms of p and e. The solution can be written down
in the form,

r4 ¼ ð−Br4 þ
ffiffiffiffiffiffiffi
Δr4

p Þ=Ar4 ; ðA4Þ

with

Δr4 ¼ 64ðeþ 1Þp3½p − ðe − 1Þð ~a − 1Þ�½pþ ðe − 1Þð ~aþ 1Þ�½p − ðeþ 1Þð ~aþ 1Þ�2½pþ ðeþ 1Þð ~a − 1Þ�2;
Ar4 ¼ a4ðe − 1Þ2ðeþ 1Þ4 − 4a2ð1 − eÞð3 − eÞðeþ 1Þ3pþ 2ðeþ 1Þ2p2ða2ð3þ eÞðe − 1Þ þ 2ðe − 3Þ2Þ

− 4ðe2 þ 7Þðeþ 1Þp3 þ ðeþ 3Þ2p4;

Br4 ¼ a4ðe − 3Þðe − 1Þðeþ 1Þ3p − 4a2ðeþ 1Þ2ðe2 − 2eþ 3Þp2 þ 2ðeþ 1Þp3ða2ðe2 − 5Þ þ 2e2 þ 14Þ
− 4ðe2 þ 2eþ 3Þp4 þ ðeþ 3Þp5: ðA5Þ

We have set ~a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
. In Eq. (A4) we chose the “þ”

root of the quadratic to yield the correct behavior for z2−. The
ISO surface exhibits many of the characteristics seen in the
resonance surfaces studied in Sec. V. These include the fact
that as inclination increases the p values of the prograde/
retrograde ISOs respectively increase/decrease until the two

branches coincide for z2− ¼ 1. This behavior is due to the fact
that polar orbits are less influenced by the spin of the black
hole. Also note that for z2− ¼ 1, dz2−=dp ¼ 0. A graphical
representation of the ISO surface is given in Fig. 17.
We now give a number of easily evaluated formulas for

special parameter values. For circular orbits around a

FIG. 17 (color online). Graphical representation of ISO surface constructed using Eqs. (A3)–(A4). The ISO surfaces displayed in the
top two images show the same qualitativeU-V-I transitions as the resonant orbits. Smaller images in the bottom row give the top view of
the resonant surfaces for various spins and eccentricities. The top left and the two images on the bottom left display the eccentricity
dependence for different spin values. The ISO is linearly dependent on eccentricity (as opposed to the quadratic dependence observed in
resonant surfaces). The spin dependence at various fixed eccentricities is illustrated in the right three plots where the typical V profile is
obvious irrespective of eccentricity.
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maximally spinning black hole (e ¼ 0, a ¼ 1), the behav-
ior of z2− as a function of p is described by

z21 ¼ −
p2ð−3 ffiffiffiffi

p
p þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3pþ 2

ffiffiffiffi
p

p þ 3
p

− 3Þ
3
ffiffiffiffi
p

p − 1
: ðA6Þ

Furthermore when e ¼ 1, a ¼ 1,

z21 ¼
8
ffiffiffi
2

p
p7=2 − 3p4 − 4p3 þ 4p2

4ð9p2 þ 4pþ 4Þ : ðA7Þ

On the equatorial plane z− ¼ 0 and r4 ¼ 0. Just as for the
resonances the strongest spin dependent effects can be
observed here. The behavior of the ISO can be well
characterized by merely examining the behavior on the
equator. As inclination increases, the location on the ISO
will lie between the extremes of the prograde and retro-
grade values found on the equatorial plane. The character-
istic V-I transition seen in the resonances occurs for the
ISO as well. If r4 ¼ 0 only the constant term (with respect
to r4) in Eq. (12) with Eq. (A2) substituted remains. This
term results in a quartic equation for p that implicitly
defines the location of the ISO on the equator, as also found
in [82],

ðp − 6 − 2eÞ2p2 þ a4ð1þ eÞ2ð3 − eÞ2
− 2a2ð1þ eÞp½2ðe2 þ 7Þ þ ð3 − eÞp� ¼ 0: ðA8Þ

If the black hole is nonspinning, a ¼ 0, then p ¼ 6þ 2e. If
it is maximally spinning, a ¼ 1, there are three roots to
Eq. (A8), namely p ¼ 5þ e� 4

ffiffiffiffiffiffiffiffiffiffiffi
1þ e

p
and a double root

at p ¼ 1þ e. Of these the correct limiting cases for the
retro- and prograde ISO orbits are p− ¼ 5þ eþ 4

ffiffiffiffiffiffiffiffiffiffiffi
1þ e

p
and pþ ¼ 1þ e respectively. Thus the maximum splitting
between the pro- and retrograde branches on the equatorial
plane is p− − pþ ¼ 4ð1þ ffiffiffiffiffiffiffiffiffiffiffi

1þ e
p Þ.

If a ≠ 0 the ISO can be found by solving the quartic. [For
plotting purposes it is easier to consider Eq. (A8) to be a
quadratic equation for a2 and plot the square root of the
result as a function of p.] For convenience, the leading-
order spin dependence is also given here,

p∓ ¼ 6þ 2e� 4a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
1þ e
3þ e

�s
þOða2Þ: ðA9Þ

APPENDIX B: PROPERTIES OF
CARLSON’S INTEGRALS

Carlson [35] [33] [34] has provided us with a number of
symmetric, rapidly convergent schemes to evaluate elliptic
integrals both numerically and analytically. This appendix
summarizes the identities and properties associated with
Carlson’s integrals used in the body of the paper. Carlson
showed that any elliptic integrals of the form

I1 ¼
Z

x

y

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðα1 þ β1tÞðα2 þ β2tÞðα3 þ β3tÞðα4 þ β4tÞ
p

ðB1Þ

can be expressed as

I1 ¼ 2RFðU2
12; U

2
13; U

2
14Þ; ðB2Þ

where

Uij ¼ ðXiXjYkYm þ YiYjXkXmÞ=ðx − yÞ;
Xi ¼ ðαi þ βixÞ1=2; Yi ¼ ðαi þ βiyÞ1=2 ðB3Þ

and

RFðα; β; γÞ ¼
1

2

Z
∞

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðtþ αÞðtþ βÞðtþ γÞp : ðB4Þ

This symmetric representation greatly reduces the number
of parameters from ten in Eq. (B1) to the three arguments in
Eq. (B4). All integrals have the same boundary conditions
and the arguments enter only in the denominator of the
integrand. An added advantage of using Carlson’s integrals
is that they obey a number of identities that make
manipulation of the parameters that enter as arguments
possible without necessarily evaluating the integral. These
identities include the duplication theorem,

RFðα; β; γÞ ¼ 2RFðαþ λ; β þ λ; γ þ λÞ; ðB5Þ

where λ ¼ ðαβÞ1=2 þ ðαγÞ1=2 þ ðβγÞ1=2; and the fact that
Carlson’s function is homogeneous of degree − 1

2
,

RFðλα; λβ; λγÞ ¼ λ−1=2RFðα; β; γÞ; ðB6Þ

for any λ and a number of special symmetric cases that can
easily be evaluated,

RFðβ; β; βÞ ¼ β−1=2; RFð0; β; βÞ ¼
π

2
β−1=2: ðB7Þ

If the first argument is α ¼ 0 a restricted version of the
duplication theorem also holds: for x > 0, y > 0, z ¼
ðxþ yÞ=2,

RFð0; x2; y2Þ ¼ RFð0; xy; z2Þ: ðB8Þ

For small deviations from the symmetric case it is possible
to construct a rapidly converging series. We now derive this
series for RFð0; yþ δ; y − δÞ. Start with the integral rep-
resentation of RF, Eq. (B4) in the special case,

RFð0;yþδ;y−δÞ¼ 1

2

Z
∞

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðtþyþδÞðtþy−δÞp ; ðB9Þ
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and make a Taylor series expansion of the integrand in
terms of δ. Integrate the result term by term to yield

RFð0; yþ δ; y − δÞ ¼ π

2
ffiffiffi
y

p
�
1þ 3δ2

16y2
þ 105δ4

1024y4

�

þ π

2
ffiffiffi
y

p
�
1155δ6

16384y6
þ 225225δ8

4194304y8

þOðδ10Þ
�
: ðB10Þ

Since only quadratic terms in the parameter δ=y appear this
series converges very rapidly. To complete the discussion
on Carlson’s integrals and mainly for comparison with
other work we now give the relationship between Carlson’s
integrals and some of the elliptic functions,

Rfð0; 1 − k2; 1Þ ¼ KðkÞ; ðB11Þ

RFð0; α; βÞ ¼ β−1=2Kð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α=β

p
Þ: ðB12Þ

Here KðkÞ is the complete elliptic integral of the first kind.
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