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The measurement of frequency shifts for light beams exchanged between two test masses nearly in free
fall is at the heart of gravitational-wave detection. It is envisaged that the derivative of the frequency shift is
in fact limited by differential forces acting on those test masses. We calculate the derivative of the frequency
shift with a fully covariant, gauge-independent and coordinate-free method. This method is general and
does not require a congruence of nearby beams’ null geodesics as done in previous work. We show that the
derivative of the parallel transport is the only means by which gravitational effects shows up in the
frequency shift. This contribution is given as an integral of the Riemann tensor—the only physical
observable of curvature—along the beam’s geodesic. The remaining contributions are the difference of
velocities, the difference of nongravitational forces, and finally fictitious forces, either locally at the test
masses or nonlocally integrated along the beam’s geodesic. As an application relevant to gravitational-wave
detection, we work out the frequency shift in the local Lorentz frame of nearby geodesics.
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I. INTRODUCTION

The exchange of light beams between (almost) free-falling
test masses and the measurement of the corresponding
frequency shifts (see Fig. 1) is at the heart of any thought
(real) experiment devised for measuring in principle (in
practice) space-time curvature. It is in fact the key for the
direct observation of gravitational waves (GW) by interfer-
ometer detectors on the ground [1,2] and in space [3], and
pulsar timing arrays [4]. Particularly at low frequency, GW
detectors are limited by differential forces acting on the test
masses [5] and, as such, the derivative of the frequency shift
may be a good observable of space-time curvature and, in
general, a means to separate true gravitational forces from
spurious effects. Recently, two different approaches [6,7]
have put forward a formalism that allows the frequency shift
to be computed in terms of an integrated measure of
curvature. This is distinct from earlier attempts that often
relied on simplifying assumptions, e.g. metric expansion,
geodesic deviation, choice of a preferred coordinate system,
or fixing an a priori gauge (see the introduction of Ref. [6]
and references therein).
The only physical covariant quantity that unambiguously

describes the effect of curvature in vacuum is the Riemann
tensor [8]. In effect, other general-relativistic variables,
such as the Ricci tensor and the Ricci scalar are identically
zero in vacuum, even in a curved space-time. Additionally,
the Christoffel symbols can be set to zero by a proper
change of reference frame and the metric itself is in general
gauge dependent [9]. Consequently, all those quantities
are not good observables of the true gravitational effect
and, as such, they might eventually lead to ambiguous

results. Previous work has already pointed out, although in
different formulations, that the frequency shift is sensitive to
an integrated measure of the Riemann tensor over the space-
time between the two test masses. Those formulations
worked out this contribution by defining either a null
congruence of present and past null geodesics [6], or a
nonstandard time-like congruence of the emitter’s velocity
and the receiver’s velocity [7]. Although the relation between

FIG. 1 (color online). Instantaneous Minkowski diagram for the
thought experiment of two test masses exchanging light beams and
measuring the corresponding frequency shift. The 45° dot-dashed
line is the null geodesic connecting the emission event e to the
reception event r. Null geodesics at later instants are shown as
thinner lines. The other dashed lines (with slopes > 45°) are the
two time-like emitter and receiver’s geodesics. 4-velocities,
4-forces and the beam’s 4-momentum are also displayed for
clarity. The derivative of the fractional frequency shift depends
on the difference between tensors, including the Riemann tensor
and fictitious forces, at r and e, the latter being delayed by the
beam’s light time along the null geodesic.*giuseppe.congedo@physics.ox.ac.uk
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those two approaches is not fully clear at the moment, the
results are similar.
In this work we give a covariant gauge-independent

solution to the problem that does not need the definition of
a congruence of curves. Instead, starting from fundamental
principles, in particular the parallel transport of 4-vectors,
we derive the gravitational contribution to the frequency
shift in a very natural way. It is in fact reasonable to expect
that the gravitational effect should show up quite naturally
and directly from the physical interpretation of the
formulas. In doing so, we split the contribution of gravity
from those effects that can be made zero under some
reasonable assumptions or coordinate transformation—the
fictitious forces.
This paper is structured as follows. We calculate the

derivative of the frequency shift and make the parallel
transport explicit in this formalism. We examine the terms
arising from the differentiation in more detail, and we show
that the gravitational effect comes from the derivative of the
parallel transport. Finally, we discuss the limit for nearby
geodesics, which is interesting for the application to GW
detection.

II. THE DERIVATIVE OF THE
FREQUENCY SHIFT

Consider a thought experiment (see Fig. 1) where a test
mass, the emitter, emits light beams toward another test
mass, the receiver. We shall consider only a single emitted
beam and do a general-relativistic calculation of the
measured frequency shift. The emission (reception) event
is e≡ xμ (r≡ xμ). The emitter (receiver) is moving with
4-velocity uμ (vμ) under the action of an external non-
gravitational 4-force per unit mass [10] fμ (gμ) and gravity.

The proper time of the emitter (receiver) is τe (τr). The light
beam is characterized by the 4-momentum kμ and the null-
geodesic affine parameter λ. We want to derive information
about the underlying space-time curvature from the
observed frequency shift. It is worth noting that a phase-
meter employed in a space-borne GW interferometer
measures a phase difference between the incoming phase
and the phase of a local laser beam [11], or the light may be
split, directed toward different paths and then recombined
as in a ground interferometer. In any case, the measured
phase difference is related to the frequency difference via
δω ¼ dδϕ=dt. Therefore the natural observable for this
calculation is the frequency difference between the received
frequency ωr and the emitted frequency ωe: δω ¼ ωr − ωe.
Now, the emitted (received) frequency is ωe ¼ kμðeÞuμðeÞ
[ωr ¼ kμðrÞvμðrÞ] [9,12] and their difference can be written
as follows:

δω ¼ kμðrÞ½vμðrÞ − uμðeÞ − δuμ�; ð1Þ

where uμ has been subjected to a parallel transport from
e to r along the light beam’s null geodesic [13], i.e.
kα∇αuμ ¼ 0. Here, compared to Ref. [13], the parallel
transport has been made explicit such that uμðrÞ ¼
uμðeÞ þ δuμ, where

δuμ ¼
Z

λr

λe

Γμ
αβðλÞuαðλÞkβðλÞdλ ð2Þ

can be found by integrating the parallel transport equation.
Also, λr ¼ λðrÞ and λe ¼ λðeÞ. Additionally, as r and e are
causally connected by the beam’s geodesic, it turns out that
λ and τe are in effect functions of τr. Differentiating Eq. (1)
with respect to τr, the result is

dδω
dτr

¼ Dkμ
dτr

½vμðrÞ − uμðeÞ − δuμ�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

diff: velocityþpar: transportþfictitious ðaÞ

þ kμðrÞ½gμðrÞ − ~fμðeÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
diff: forceþfictitious ðbÞ

− kμðrÞ
Dδuμ

dτr|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
par: transport deriv:

þfictitious ðcÞ

: ð3Þ

III. WORKING OUT THE DIFFERENTIAL-
VELOCITY TERM (A)

This term accounts for the difference of velocities,
vμðrÞ − uμðeÞ, but also the parallel transport δuμ, both
projected along Dkμ=dτr. In the local Lorentz frame (LLF)
at r, Γα

μβ ¼ 0 so Dkμ=dτr ≡ dkμ=dτr but, being an integral

along a finite curve, δuμ ≠ 0. If the emitter and receiver are
assumed to be infinitely close to each other such that the
integral can be evaluated at a common reference frame
coincident to the above-defined LLF at r (we shall later call
it the LLF for nearby geodesics) then additionally δuμ ¼ 0.

Also, for every point along the null geodesic an LLF can
also be defined such that the integrand in Eq. (2) will be
zero locally. Therefore, while Dkμ=dτr includes local
fictitious forces at r, instead δuμ reproduces the nonlocal
effect coming from the integration of an infinitesimal
fictitious force along the beam’s null geodesic.

IV. WORKING OUT THE DIFFERENTIAL-FORCE
TERM (B)

Two contributions are included, the real force on the
receiver, gμðrÞ, and an effective force on the emitter, ~fμðeÞ,
which is given by
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~fμ ¼ dτe
dτr

fμ þ Γμ
αβu

α

�
vβ −

dτe
dτr

uβ
�
; ð4Þ

where dτe=dτr ¼ 1þ δω=ωe. Because the nongravitational
forces are assumed small, it is safe to approximate
dτe=dτr ≃ 1 to first order. The effective force ~fμðeÞ con-
tains a Γμ

αβ term evaluated at e that, in general, is not zero
when only the receiver’s LLF is considered. However, this
becomes zero in the nearby-geodesics LLF. Therefore this
second term may be interpreted as a local fictitious force at
the emitter.

V. WORKING OUT THE PARALLEL TRANSPORT
DERIVATIVE TERM (C)

This is the gravitational contribution that the derivative
of the frequency shift is sensitive to. Before going through
the calculation, it is worth noting that Γμ

αβ may be still
treated as a second-rank tensor when α is fixed [14], i.e. Γμ

ᾱβ

transforms as a tensor for fixed α≡ ᾱ, Γμ
ᾱβ

0 ¼ Λμ
ζΛβ

ξΓζ
ᾱξ,

under a general transformation Λμ
ζ from the unprimed to

the primed coordinate system. In differentiating the integral
in δuμ with respect to τr, the extremes of integration depend
on τr, so the commutation between the derivative and the
integral gives

Dδuμ

dτr
¼

Z
λr

λe

vν∇νðΓμ
αβu

αkβÞdλþ dλ
dτr

Γμ
αβu

αkβ
���r
e
; ð5Þ

where the integrand depends implicitly on λ. The last
contribution becomes zero in the nearby-geodesics LLF,
and thus it acts as local inertial forces at e and r. From now
on, the focus is on rearranging the integral in a more
familiar form. Applying the covariant derivative, the
integrand may be recast as follows:

vν∇νðΓμ
αβu

αkβÞ ¼ ð∂νΓ
μ
αβ þ Γμ

ξνΓ
ξ
αβÞuαvνkβ

þ Γμ
αβ∂νðuαkβÞvν: ð6Þ

In effect, the quantity between parentheses reproduces
the first two (positive) terms of the Riemann tensor. To
make it more explicit, it is useful to consider a thought
experiment where the role of the emitter and the receiver
are reversed. The observed physical effect will be
exactly the same. So, looking at Eq. (3), the role of
the emitter and the receiver may be swapped, and in
particular in the integral, vν ↔ uα and r ↔ e. The
integral will formally be the same, but with reversed
integration limits. Because of this symmetry, the original
derivative of the parallel transport can be rewritten as

Dδuμ

dτr
¼ 1

2

Z
λr

λe

Rμ
βναuαvνkβ

þ Γμ
αβ∇ν½kβðuαvν − uνvαÞ�dλ; ð7Þ

where the Riemann tensor arises from the antisymmetry
between α and ν. The second term can be recast as
Γμ
αβ½∇νkβðuαvν−uνvαÞþkβLvuα�, where Lvuα¼vν∇νuα−

uν∇νvα¼−Luvα. It turns out that (i) it is zero in the
LLF along the null geodesic, (ii) it is zero when the two
velocities are equal, and (iii) it is zero in the nearby-
geodesics LLF. Integrated out along the beam’s geo-
desic, it therefore gives a nonlocal fictitious force.
Instead, Rμ

ναβ ≠ 0 can not be set to zero in a purposely
chosen LLF: it is in fact an intrinsic property of
space-time that quantifies curvature. This curvature
contribution is

Rμ ¼ 1

2

Z
λr

λe

Rμ
ναβuαvβkνdλ: ð8Þ

Under the general assumption that the nongravitational
forces are small, then the original formula becomes

dδω
dτr

¼ Dkμ
dτr

½vμðrÞ − uμðeÞ� þ kμðrÞ½gμðrÞ − fμðeÞ�

þ kμðrÞRμ þ γfict½ΓðrÞ;ΓðeÞ;ΓðλÞ�; ð9Þ

where γfict collects all additional terms that may depend
on Γμ

αβ either locally (at event e or r) or nonlocally (via
an integral along the beam’s null geodesic). In any case,
γfict goes to zero in the nearby-geodesics LLF. The
above result shows that not only the derivative of the
frequency shift depends on the relative velocity and
relative nongravitational acceleration, but also contains a
contribution from the integral of the Riemann tensor
along the beam’s geodesic, plus local and nonlocal
fictitious forces.

VI. THE LOCAL REFERENCE FRAME FOR
NEARBY GEODESICS

As an application, it is worth calculating the limit for
nearby geodesics where a local approximately inertial
reference frame common to both the receiver and the
emitter can be set up. In such conditions, dτr ≃ dτe ≃ dt
so the effect of evaluating, for instance, a 4-vector at
emission or reception is just a light time delay
δt ¼ δx=c, where δx is the nominal distance between
the emitter and the receiver. Additionally, kμ ¼ ωe=cnμ,
δxμ ¼ δxnμ and nμ ¼ ð1; n̂Þ. The Minkowski diagram of
Fig. 1 shows this LLF and the geodesics of the emitter,
receiver and light beam. In this reference frame the
receiver appears still, and if we further assume that the
emitter’s apparent velocity is negligible to first order,
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then the derivative of the fractional frequency shift
becomes

d
dt

�
δω

ωe

�
¼ 1

c
dn̂
dt

· ½~vðtÞ − ~uðt − δtÞ�

þ 1

c
n̂ðtÞ · ½~gðtÞ − ~fðt − δtÞ�

þ c
2
δx½Rμν00ðtÞ − Rμν00ðt − δtÞ�nμnν; ð10Þ

where dn̂=dt ¼ ~Ω × n̂ and ~Ω is the observed rotation of
the line of sight [7]. The additional fictitious forces
contained in the more general result of Eq. (9) are
intentionally neglected here. As per the 4-velocity and
4-forces, the Riemann tensor must also be evaluated as a
difference at the reception time and the delayed emis-
sion time. Moreover, all tensors are here evaluated in the
defined LLF, and so is, of course, the Riemann tensor.
So, if we want to relate this Riemann tensor to the one
defined in the so-called transverse-traceless gauge wave
frame of an incoming GW, RTT

i0j0 ¼ 1=2hTTij;00, a rotation
Λμ
ν will naturally show up transforming the wave frame

into the LLF.

VII. CONCLUSIONS

This paper has addressed the issue of intimately under-
standing how space-time curvature can affect the frequency
shift of light beams exchanged between two test masses.
The nature of the problem is general, but ultimately relevant
to GW astronomy. Compared to previous work, the
calculation is straightforward and does not require a
congruence of curves, but is always matched to the ultimate
physical interpretation.
Without assuming any coordinate system or fixing the

gauge, and thus retaining the full covariant nature of the
formalism, we have found that the only gravitational
contribution to the time derivative of the observed
frequency shift comes just from the derivative of the
parallel transport of the emitter’s 4-velocity along the
light beam’s geodesic to the receiver. This is, in turn,
given by an integral of the Riemann tensor along the null

geodesic, although in a different form compared to
previous work [6,7]. Additionally, fictitious forces show
up locally at the receiver, at the emitter and nonlocally
integrated along the beam’s geodesic. Those terms were
not considered before, although we note here that they
are all proportional to Γμ

αβ, and thus they are negligible
under reasonable assumptions that are always met in
practice.
As an application, we have calculated the derivative of

the frequency shift for nearby geodesics in the reference
frame of the receiver, showing that it is given in terms of
differences between velocities, nongravitational forces,
and the Riemann tensor, all evaluated at time of reception
and delayed time of emission. Additionally, the observed
Riemann tensor can be directly related to the usual
Riemann tensor defined in the wave frame where the
gauge is transverse traceless.
It is worth commenting that all formulas containing

the metric perturbation hμν to an underlying flat metric,
as is customary in GW astronomy (see e.g. Ref. [15]),
can be derived from the result contained in this paper by
choosing a convenient coordinate system and by fixing
the gauge. Nonetheless this does not alleviate, at least in
principle, the problem of fictitious forces that may still
be dependent of hμν itself. But, ultimately, the existence
of a local LLF for both the receiver and the emitter
justifies the use of time-delayed differences in the
calculation of the detector response to GWs. An
example of this is found in Ref. [5] where the detector
response was given in terms of acceleration, a quantity
that is very convenient for marginalizing over detector
systematics.
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