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We propose a quantum symmetry reduction of loop quantum gravity to Bianchi I spacetimes. To this
end, we choose the diagonal metric gauge for the spatial diffeomorphism constraint at the classical level,
leading to an RBohr gauge theory, and quantize the resulting theory via loop quantum gravity methods.
Constraints which lead classically to a suitable reduction are imposed at the quantum level. The dynamics
of the resulting model turn out to be very simple and manifestly coincide with those of a polymer
quantization of a Bianchi I model for the simplest choice of full theory quantum states compatible with the
Bianchi I reduction. In particular, the “improved” μ̄ dynamics of loop quantum cosmology can be obtained
by modifying the regularization of the Hamiltonian constraint with similar ideas, in turn yielding insights
into the full theory dynamics.
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I. INTRODUCTION

Identifying symmetry reduced sectors within full theo-
ries is an important problem, since success in this endeavor
usually allows one to perform computations which are
otherwise intractable. Within loop quantum gravity (LQG),
there has been a lot of recent interest in this subject; see e.g.
[1–9]. Different strategies can be employed towards this
goal, the most active one being the identification of suitable
symmetry reduced states directly within the full, not
classically gauge fixed, quantum theory. While success
along this route might be preferable, we will deal with
another approach in this paper, which consists of choosing
a gauge fixing at the classical level, adapted to the
symmetry reduction that one wants to achieve. In particular,
we gauge fix the spatial metric to be diagonal (also called
an orthogonal system [10]), which is a gauge fixing
admitted by Bianchi I models. Our strategy will then be
to quantize this model and impose a symmetry reduction at
the quantum level. This strategy clearly separates the steps
of gauge fixing and symmetry reduction, which is less
transparent when performing both at the quantum level. A
related proposal is in [6], which inspired us to write the
present paper in the first place. The approach taken in this
paper is similar to the one in [11], where a reduction to
spherical symmetry is achieved within a quantization of
general relativity in the radial gauge.

II. THE DIAGONAL METRIC GAUGE

We start with the ADM formulation of general relativity,
that is, with the phase space coordinatized by the spatial
metric qab and its momentum Pab, living on the spatial
slice Σ of 3-torus topology, with the canonical Poisson
brackets fqabðσÞ;Pcdðσ0Þg¼δcðaδ

d
bÞδ

ð3Þðσ;σ0Þ, subject to the
Hamiltonian constraint H and the spatial diffeomorphism

constraint Ca≔−2∇bPb
a¼0. We now introduce the gauge

fixing qab ¼ 0 for a ≠ b, i.e. qab ¼ diagðqxx; qyy; qzzÞab,
for the spatial diffeomorphism constraint, which is at least
locally accessible [10]. We note that not all spatial diffeo-
morphisms are gauge fixed by this condition, but only those
which do not preserve the off-diagonal components of qab.
In particular, Ca smeared with a lapse function of the form
~N ¼ ðNxðxÞ; NyðyÞ; NzðzÞÞ is still a first-class constraint
[12]. We will call diffeomorphisms generated by such shift
vectors “restricted.”
We would now like to go to the reduced phase space,

which is coordinatized by qxx; qyy; qzz and Pxx; Pyy; Pzz,
and obtained by solving the second-class pair qa≠b ¼
0 ¼ Ca. While solving qa≠b ¼ 0 is straightforward, we
need to compute an expression for Pxy; Pxz, and Pyz in
terms of the reduced phase space coordinates by using
Ca ¼ 0. For, say, Pxy, this is due to linearity of Ca in Pab,
equivalent [16] to solving the equation

δ

δPc≠dðxÞ ðP
xy½ωxy� þ Ca½Na�Þ

���
qa≠b¼0

¼ 0 ð1Þ

for Na as a functional of ωxy, where by Pxy½ωxy� we mean
the smearing

R
Σ d

3σPxyðσÞωxyðσÞ. Given Na as a function
of ωxy, we can evaluate ~Pxy½ωxy� ≔ Pxy½ωxy� þ Ca½Na� at
Pc≠d ¼ 0 ¼ qc≠d since ~Pxy no longer depends on Pc≠d for
Na solving (1), and we obtain the desired expression for
Pxy on the reduced phase space, i.e. as a functional of
qxx; qyy; qzz and Pxx; Pyy; Pzz. By construction, ~Pxy pre-
serves the gauge fixing condition qa≠b ¼ 0. Up to a
boundary term, we have

~Pxy½ωxy�

¼
Z
Σ
d3σðPxxL ~Nqxx þ PyyL ~Nqyy þ PzzL ~NqzzÞ

���
qa≠b¼0

;
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where L ~N denotes the Lie derivative with respect to the

vector field ~N.
For a general smearing Pab½ωab�, we obtain from (1) the

equations

2∇ðxNyÞ ¼ qyy∂xNy þ qxx∂yNx ¼ ωxy; ð3Þ

2∇ðyNzÞ ¼ qzz∂yNz þ qyy∂zNy ¼ ωyz; ð4Þ

2∇ðzNxÞ ¼ qxx∂zNx þ qzz∂xNz ¼ ωzx: ð5Þ

A general solution to these equations might be hard to find;
however, it is not needed for what follows. Instead, we will
show that by choosing ωa≠b appropriately, we can generate
arbitrary vector fields Na. In particular, choosing ωyz ¼ 0,
we find the solution Ny ¼ 0 ¼ Nz, and

Nxðx; y; zÞ ¼
Z

y
dy0qxxðx; y0; zÞωxyðx; y0; zÞ; ð6Þ

along with the consistency condition

Nxðx; y; zÞ ¼
Z

z
dz0qxxðx; y; z0Þωxzðx; y; z0Þ: ð7Þ

We can now choose ωxy to generate an arbitrary Nx in (6),
while choosing ωxz to satisfy (7) [17]. The argument can be
repeated to generate arbitrary Ny and Nz by adding the
respective ωa≠b. We could choose to exclude diffeomor-
phisms of the restricted type by properly adding the
corresponding spatial diffeomorphism constraints; how-
ever, this is not of importance, as we will see later. We
conclude that the complete set of Pa≠b½ωa≠b� on the
reduced phase space, along with the restricted spatial
diffeomorphisms, corresponds to a complete set of gen-
erators of spatial diffeomorphisms acting on the reduced
phase space if Pa≠b ¼ 0 is satisfied. This last condition is
necessary in order for (2) to generate spatial diffeomor-
phisms in both qaa and Pbb. The condition Pa≠b½ωa≠b� ¼ 0
thus corresponds to implementing spatial diffeomorphism
invariance for arbitrary shift vector fields on the reduced
phase space, on top of having solved large parts of the
spatial diffeomorphism constraint already via a gauge
fixing.
Our strategy will now be to kinematically quantize the

above system, which still corresponds to full general
relativity. We will not define the full theory Hamiltonian
constraint, since this requires the solution of Eqs. (3), (4),
and (5). Instead, we will impose Pa≠b ¼ 0 as invariance
under finite spatial diffeomorphisms along with another
constraint, which will lead to a quantum system capturing
the degrees of freedom of a Bianchi I model, yet leaving
room for inhomogeneities. On the corresponding quantum
states, one can quantize the classical Hamiltonian evaluated
at Pa≠b ¼ 0, which is consistent with the reduction. Since

Pa≠b½ωa≠b� ¼ 0 is an additional condition on the reduced
phase space, the passage to spatially diffeomorphism
invariant states has to be interpreted as a reduction of
physical degrees of freedom.

III. QUANTUM THEORY

We first need a set of variables suited for a LQG-type
quantization. We define ea ≔

ffiffiffiffiffiffiffi
qaa

p
with no summation

implied. Ea ≔
ffiffiffiffiffiffiffiffiffiffi
det q

p
ea corresponds to the densitized triad

of the Ashtekar-Barbero variables. Next, we define
Kx ≔ Kxxex, where Kab is the extrinsic curvature, appear-

ing in Pab ¼
ffiffiffiffiffiffiffi
det q

p
2

ðKab − qabKÞ. The new Poisson
brackets read

fKaðσÞ; Ebðσ0Þg ¼ δbaδ
ð3Þðσ; σ0Þ; ð8Þ

and the spatial diffeomorphism constraint (for an arbitrary
shift vector) becomes, up to a boundary term,

Ca½Na� ¼
Z
Σ
d3σEaL ~NKa þ � � � ; ð9Þ

where � � � stands for terms of the form ∂aeb, a ≠ b,
and ∂aKb, a ≠ b, which vanish for the special case of
restricted diffeomorphisms and originate from the fact that
L ~Nqab ≠ 2eðaL ~NebÞ, even for a ¼ b. Up to these terms, Ka

transforms as a one-form, and Ea as a densitized vector.
Since we would like to have an explicit interpretation of the
action of Ca as spatial diffeomorphisms, we will impose the
additional constraints

∂aeb ¼ 0 ¼ ∂aKb; a ≠ b; ð10Þ

up to which (9) generates spatial diffeomorphisms. We note
that these constraints are fully consistent with the Bianchi I
symmetry. Moreover, they are first class with respect to the
restricted diffeomorphisms. In fact, they e.g. impose
ex ¼ exðxÞ, such that the remaining x dependence is
removed by the restricted diffeomorphisms in the x
direction. The proper generator of spatial diffeomorphisms,
i.e. the one without the � � �, will be denoted by C̄a.
Since we want to perform a Dirac-type quantization, i.e.

impose constraint operators on the kinematical Hilbert
space, we need to pick a first-class subset of (9) and
(10), also known as “gauge unfixing” the above constraint
system [18,19]. First, we choose C̄a ¼ 0, since it can be
implemented in the quantum theory by the methods
developed in [20]. Next, we need to pick further constraints
from (10), which (upon quantization) are first class with
C̄a ¼ 0 as well as the Hamiltonian constraint. A natural
choice is G ≔ ∂aEa ¼ 0, the Gauß law, which we also
adopt due to its simplicity. While not having a rigorous
proof, we do not believe that additional first-class con-
straints with the above properties can be found within (9)
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and (10). In any case, imposing C̄a ¼ 0 ¼ G in the
quantum theory turns out to be sufficient to reduce the
quantum states in such a way that the simplest reduced
states exactly encode the degrees of freedom of a Bianchi I
model and that the dynamics agrees with the corresponding
minisuperspace quantization.
Let us now deal with the kinematical quantization, based

on (8). At this stage, the theory still encodes all degrees
of freedom of general relativity (if compatible with
the diagonal gauge). We will treat Ka in analogy to the
Ashtekar-Barbero connection in LQG: we define the
holonomies hλγðKÞ ≔ exp ðiλ Rγ KadsaÞ for an arbitrary
oriented path γ and λ ∈ R labeling a representation of
the group ðR;þÞ. By smearing Ea over two surfaces, we
obtain fluxes and, consequently, a standard holonomy-flux
algebra of an R gauge theory. Holonomies can be readily
generalized to charge networks, the Abelian analogues of
spin networks. It is also possible to introduce a Barbero-
Immirzi-like parameter by rescaling Ea; Ka accordingly. A
similar system, Maxwell theory, has been quantized by the
same methods in [21].
Quantization can now be achieved via the Gelfand-

Neimark-Segal construction by specifying the positive
linear Ashtekar-Lewandowski functional ωAL on the hol-
onomy-flux algebra [22,23]. Since this functional is only
well defined for compact groups, we need to substitute R
by its Bohr compactification RBohr, which is compact and
admits a normalized and translation-invariant (Haar)
measure μH, given by (see e.g. [24])

μHðfÞ ¼
Z
RBohr

dμHfðxÞ ≔ lim
R→∞

1

2R

Z
R

−R
dxfðxÞ: ð11Þ

An inner product can now be defined as

hhλγjhλ0γ i ≔
Z
RBohr

dμHeiλxeiλ
0x ¼ δλ;λ0 ð12Þ

for two holonomies defined on the same edge, and
following the usual construction [23] for more complicated
graphs. General cylindrical functions over a single edge
can be identified with almost periodic functions [24].
Completion with respect to (12) then yields the Hilbert
space L2ðRBohr; dμHÞ for each edge. Within loop quantum
gravity, this Hilbert space is well known from loop
quantum cosmology [25].
We can now define an operator measuring the area A of a

surface S by substituting the flux operator in the expression
AðSÞ ¼ j RS Ead2saj. The important difference from the
usual SU(2) case [26] is that we do not need to define the
area operator as

R ffiffiffiffiffiffiffiffiffiffiffiffiffi
jflux2j

p
, since Ea is gauge invariant as

opposed to the SU(2) densitized triad Ea
i . Thus, in analogy

to electric charge, the area operator of a closed contractible
surface (electric flux through S) we consider vanishes e.g.

on a single contractible Wilson loop, since the contributions
coming from two intersections always cancel.
On this Hilbert space, the hλγðKÞ, seen as cylindrical

functions, provide a basis and classically separate points
on the configuration space. They are further subject only
to the Hamiltonian constraint and the restricted set of
spatial diffeomorphisms. In particular, these restricted
spatial diffeomorphisms are not sufficient to reduce our
quantum states to diffeomorphism equivalence classes,
since they only contain a small subset of all shift vectors,
but the Hilbert space all possible graphs. Thus, after
modding out the restricted spatial diffeomorphisms, the
quantum states still know about the embedding informa-
tion of the paths γ into Σ, which is in stark contrast to
the spatially diffeomorphism invariant Hilbert space of
LQG [20].
We are now in a position to discuss a reduction of the

proposed quantum theory to Bianchi I models. Following
the previous discussion, we implement C̄a ¼ 0 ¼ G on the
kinematical Hilbert space. Gauge invariance, following
from G ¼ 0, is easily incorporated by only using charge
networks satisfying

P
iλi ¼ 0 at vertices, where the ori-

entations of the edges are chosen to coincide. Spatial
diffeomorphism invariance, following from C̄a ¼ 0, is
implemented using the methods of [20], roughly by going
over to diffeomorphism equivalence classes of graphs. The
resulting picture thus mirrors the quantization of Abelian
BF theory; see the seminal work [27], as well as [28].
Since we restrict the topology of Σ to be a 3-torus T3, we

can naturally identify three 2-tori T2
x, T2

y, T2
z , orthogonal to

the x, y, and z directions. Wilson loops on Σ can be either
contractible or wrap around the three 1-tori T1

x, T 1
y, and T 1

z ,
in the x, y, and z directions.
The most elementary example jλx; λy; λzi of a charge

network describing a Bianchi I universe with T 3 topology
and satisfying all the above constraints is to consider three
Wilson loops with R-labels λx; λy; λz, wrapping around T 1

x,
T1
y, and T 1

z , respectively, with winding number 1. We
furthermore require that these Wilson loops intersect in a
single 6-valent vertex. We choose three closed surfaces Sx,
Sy, and Sz wrapping around the 2-tori and consider the area
operators ÂðSxÞ; ÂðSyÞ; ÂðSzÞ. They are observables with
respect to G and C̄a, since their action on gauge invariant
charge network states is equivalent for two surfaces S and
S0 which differ by a spatial diffeomorphism. This property
directly results from the Abelian gauge group. More
precisely, given a Wilson loop along T 1

x with winding
number n ∈ Z and representation label λ, ÂðSxÞ acts by
multiplying jnλj, independently of the local intersection
characteristics. Thus, ÂðSxÞ; ÂðSyÞ; ÂðSzÞ provide us with
(global) observables which we can directly relate to
the minisuperspace variables ~Eb ¼ 1

2

R
T2
b
Ecϵcdedxd∧dxe.

Furthermore, on jλx; λy; λzi, we define the holonomy
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observables hλγðKÞ for γ coinciding with one of the three
noncontractible Wilson loops defining the quantum state.
More complicated states can be constructed by adding

Wilson loops, either wrapping around a torus, or contract-
ible, thus changing the local properties of the charge
network, e.g. adding new edges and changing the repre-
sentation labels on existing edges. While contractible
Wilson loops do not change the “homogeneous modes”
ÂðSxÞ; ÂðSyÞ; ÂðSzÞ, they behave as “inhomogeneous per-
turbations” on the homogeneous background, since their
presence can be detected by local operators such as the
Ricci scalar (to be discussed below). Thus, the present
framework naturally incorporates a notion of inhomo-
geneous perturbations on top of the Bianchi I background.
The Hamiltonian constraint now needs to be regulated in

terms of holonomies and fluxes. As remarked before, we do
not know the solution to (3), (4), and (5), prohibiting the
construction of the full theory Hamiltonian constraint.
However, on the space of spatially diffeomorphism invari-
ant distributions, we have Pa≠b½ωa≠b� ¼ 0, which suggests
that one should just quantize the classical Hamiltonian
with Pa≠b ¼ 0, such that it is consistent with all the
constraints imposed. Under this condition, and in the
diagonal metric gauge, the Hamiltonian constraint becomes
H ¼ ðexKyKz þ eyKxKz þ ezKxKyÞ=2þ ffiffiffi

q
p

R. In order
to quantize it, we are going to adapt the methods developed
in [29,30] to our case, focusing on states of the type
jλx; λy; λzi. Thiemann’s trick e.g. amounts to
ex ¼ 2fKx; Vg, where V can be taken to be the total
volume of the universe. Thus,

H ¼ fKxKyKz; Vg þ
ffiffiffi
q

p
R: ð13Þ

The volume operator can be regularized in the standard
way following [31], yielding a diagonal operator due
to the Abelian gauge group. Kx has to be approximated
in H via holonomies. The naive choice is simplyR
γx
Kxdx ≈ 1

2i ðh1γxðKÞ − h1γxð−KÞÞ, where γx is some path
in the x direction, and similarly for y, z. However, since the
paths γ span the whole universe in the state jλx; λy; λzi, and
we work within a graph-preserving regularization, thus
having γx coinciding with the corresponding path defining
jλx; λy; λzi, the approximation will be unsuitable in most
situations since

R
γx
Kxdx will be large in general. In fact,

proceeding with this regularization, we end up with the
so-called μ0 dynamics of loop quantum cosmology (LQC)
[25], which have been shown to lead to physically
unacceptable results [32]. More precisely, we can identify
the (isotropic) variables c; p from [25] as c ∼

R
γx
Kxdx and

p ∼ ~Ex (or y, z).
This problem can be solved by applying the ideas of

the “improved” μ̄ dynamics of LQC [33] also in the full
theory: instead of using the representation label λ0x ¼ 1, we
use λ̄x ¼ 1=

R
γx
exdx; i.e. we normalize the integrated

connection by the appropriate sizes of the universe asR
γx
Kxdx ≈ 1

2iλ̄x
ðhλ̄xγxðKÞ − hλ̄xγxð−KÞÞ. At the level of dynam-

ics, it follows that departures from classical general
relativity only occur in regimes where the Planck density
is approached [34]. We regularize

R
γx
exdx as an operator as

in [34] as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j ~Ey ~Ez= ~Exj

q
, and the Hamiltonian has to be

symmetrized, e.g. as in [34].
While we may choose to exclude the Ricci curvature

from the Hamiltonian by gauge unfixing arguments (we
additionally introduce ∂aea ¼ 0, which does not change
the result of the gauge unfixing), it is still instructive to see
that a standard regularization in terms of fluxes would
vanish. This follows from the fact that derivatives of the
type ∂aEb would be regularized via a neighboring vertex
finite difference approximation; however, on jλx; λy; λzi, the
resulting operator would vanish since the single vertex in
the underlying graph is its own neighbor. A similar result
would hold for a more refined, yet still purely homo-
geneous state due to Eb acting diagonally. However, when
introducing inhomogeneities via contractible Wilson loops,
the situation is expected to change. The precise regulari-
zation of the Hamiltonian constraint for more general
quantum states, e.g. along the lines of [30], will be reported
elsewhere.
The above discussion now allows us to conclude that

we have achieved a dynamical equivalence between a
LQC-type quantization and our computation within a
reduced sector of the full theory. The crucial last step is
to identify the minisuperspace variables as observables with
respect to the constraints responsible for the reduction. In
particular, the state jλx; λy; λzi is just mapped into its LQC
analogue [34] jp1; p2; p3i. The Hamiltonian constraint in
the full theory then acts on jλx; λy; λzi in the same way as
in LQC [35]. The matter clocks that are usually coupled in
LQC can also be incorporated in the full theory by
standard means.

IV. COMMENTS

From standard SU(2)-based LQG, one might expect that
the gauge group in the reduced setting would be U(1) [36].
However, this leads to the μ0 dynamics of LQC when using
a maximally coarse state, and one needs to incorporate also
noninteger representations through the use of RBohr as a
gauge group in order to support the μ̄ dynamics. The
discrepancy between the LQC and LQG volume spectra is
thus naturally resolved in our framework by using an RBohr
instead of U(1) as a gauge group. Still, it would be more
desirable to see the μ̄ dynamics emerge from a coarse
graining limit of standard SU(2)-based LQG; see e.g. [37]
for recent work. In turn, we can conclude for the full theory
that a graph preserving Hamiltonian constraint operator, at
least when acting on very coarse states encoding large
geometries, should be modified according to the μ̄ pre-
scription in order to avoid the shortcomings pointed out in
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[32]. Also here, it would be desirable to see a similar
property emerge from a coarse graining limit.

V. CONCLUSION

We have presented a derivation of a Bianchi I subsector
of a quantization of general relativity in the diagonal metric
gauge, using quantization methods of LQG. Constraints
which reduce the classical theory to a Bianchi I model have
been imposed in the quantum theory as operator equations
and their kernel has been computed. In the case of the most
simple quantum states, the evolution coincides with a
polymer quantization of the corresponding minisuperspace
model. The especially attractive feature of our model is its
simplicity, being within the full theory while purely built on
an Abelian gauge group. Issues like singularity resolution

and the influence of the dynamics on coarse graining can
thus be discussed explicitly, or transferred to the full theory
directly from existing LQC calculations. Future work
should also explore inhomogeneous perturbations of the
Bianchi I background, which our model naturally incor-
porates, and study, in particular, the corrections they induce
for the LQC dynamics.
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