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We discuss the relation between the concentration of the Brown-York mass and the formation of trapped
surfaces in nonspherical massive systems. In particular, we formulate and prove a precise version of
the Thorne hoop conjecture in conformally flat three-geometries sliced by equipotential foliation leaves.
An intriguing relationship between the total rest mass and the Brown-York mass is shown. This is a further
investigation of the previous work on the Brown-York mass hoop conjecture in spherical symmetry.
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I. INTRODUCTION

The Brown-York quasilocal mass [1] is one of many
mass concepts developed in last decades. Its potential has
been revealed in [2], where the Brown-York mass has been
used in order to prove the trapped surface conjecture [3] in
spherically symmetric geometries. The trapped surface
conjecture states that large mass enclosed in a small volume
has to be trapped, and it constitutes an attempt to concretize
a loose idea expressed by Thorne in his hoop conjecture [4].
In this paper we demonstrate that the Brown-York mass

is useful in proving the hoop conjecture in certain classes of
nonspherical geometries. They include systems having an
equipotential surface foliation, that is convex in a certain
sense. We present sufficient conditions for the existence of
trapped surfaces. It appears convenient to split the consid-
eration into two stages. In the first step one deals with
2-surfaces that satisfy an integral condition—that they are
averaged trapped surfaces [5]. In the second step one finds
additional conditions that ensure the pointwise trapping of
averaged trapped surfaces.
The paper is organized as follows. Section II gives a

concise historical account on the hoop conjecture.
Section III contains the description of the formalism and
needed definitions. We propose various sufficient and
necessary conditions for the existence of averaged trapped
surfaces in general settings. This is done in terms of the
reference geometry. Section IV defines an equipotential
foliation, assuming conformally flat geometry. We provide
therein necessary and sufficient conditions for averaged
trapped surfaces in terms of the original physical geometry.
As an aside, but important result, we show that the Brown-
York mass is not larger than the total rest mass. The
question whether an averaged trapped surface is indeed
pointwise trapped is examined in Sec. V. There is an extra
mass term required to balance the nonsphericality, that can

be written down explicitly. The last section summarizes
obtained results.

II. HOOP CONJECTURE

There is a folk belief in general relativity that if matter is
sufficiently concentrated into a finite volume, the gravita-
tional system ultimately has to collapse to a black hole.
Thorne proposed a hoop conjecture (HC) [4] which states:

Horizons form when and only when a mass M gets
compacted into a region whose circumference in EVERY
direction satisfies C ≲ 4πM.

His conjecture deals with global event horizons and the
“circumference” and the mass are deliberately left unspeci-
fied. Notice, however, that in the Schwarzschild spacetime
we have the equality: C ¼ 4πM. In this case M is the
asymptotic mass [6]. Seifert [3] formulated the more
concrete trapped surface conjecture (TSC), according to
which massive singularities have to be surrounded by a
closed trapped 2-surface. This is an easier concept, because
trapped surfaces are local in time. Proving the HC would
require the study of the full history of a spacetime, while in
order to prove the TSC one needs only to consider a single
Cauchy slice.
There have been many attempts to prove the HC/TSC. In

the early period the concentration of matter was assumed in
spherically symmetric spacetimes [7–15]. Early results
have been reviewed in [16]. Recently Khuri [17] applied
in this context the generalized Jang equation [18]. Schoen
and Yau dealt with nonsymmetric spacetimes [19]. Their
sufficient condition for the formation of trapped surfaces
required a special spacelike foliation of a spacetime with
large extrinsic curvature. Within a single Cauchy slice,
assuming the matter density to be large on a “large region,”
trapped surfaces have to form. That was a consequence of
the blow-up analysis of the Jang equation [20] for an
asymptotically flat initial data set [21]. In later studies the
TSC has been proved in special classes of systems, with
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matter [16,22,23] or in vacuum [9,24]. Some of the recent
development has been reviewed in [25].
In spherical symmetric systems one can measure their

“size” by the circumference. It is reasonable to take C ¼
2πR where R is the Schwarzschild or the areal radius of the
surface in question, i.e. R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Area=4π
p

. Then one can
prove a precise statement of the hoop conjecture using the
Brown-York mass as the mass measure [2]. The theorem
says that if C < 2πmBY, then the surface is trapped. There
exists a discrepancy between the 4π in Thorne’s HC and the
coefficient 2π in [2]. This can be traced back to the fact that
at the horizon of the Schwarzschild spacetime the Brown-
York mass is equal to R, the area radius of the horizon. That
is mBY ¼ 2M, where M is the asymptotic mass.

III. AVERAGED TRAPPED SURFACES

Let ðΩ3; g; KÞ be a subset of a Cauchy slice for the
Einstein field equations. Here g is the 3-metric of a Cauchy
hypersurface and K stands for its extrinsic curvature. We
assume that Ω is time-symmetric, i.e. it lies in a totally
geodesic Cauchy hypersurface, K ≡ 0.
In this paper, we concentrate on the case of Ω being a

compact domain with boundary and since it is time
symmetric, we use the Brown-York mass as our measure
of the mass within Ω.
Assume further that the boundary Σ ¼ ∂Ω is a topo-

logical 2-sphere. There exists a unit normal n (directed
outward) to Σ; its divergence ∇ini is equal to the mean
curvature k. Here ∇i denotes the covariant derivative with
respect to the 3-metric g. The sign of k has an important
physical meaning. Take a bundle of outgoing null rays,
normal to Σ. If k > 0 along Σ, then the bundle is divergent;
while if k < 0, then the null rays must converge. If k < 0
everywhere along Σ, then the two-surface is said to be
trapped. Trapped surfaces (TS) do not exist in the
Euclidean geometry and their presence is associated with
strongly curved geometries.
On the other hand, the first derivative of the area of Σ

with respect to the uniform normal deformation gives the
total mean curvature,

HðΣÞ ¼
Z
Σ
kdΣ: ð1Þ

The concept of a trapped surface is purely local, but it
appears useful to deal with surfaces that are trapped in the
average:
Definition A surface Σ is called an averaged trapped

surface (ATS) if HðΣÞ is negative.
Assume further that Σ has positive Gauss curvature and

thus can be isometrically embedded into the Euclidean
spaceR3, i.e. i: Σ ↪ iðΣÞ ⊂ R3. This isometric embedding
is called the Weyl embedding and it is unique up to a rigid
motion in R3 [26].

Then the Brown-York mass [1] is defined as

mBYðΣ; gÞ ¼
1

8π

Z
Σ
ðk0 − kÞdΣ ð2Þ

where k is the mean curvature of Σ with respect to the
physical metric g and k0 is that of iðΣÞ with respect to the
Euclidean metric. Note that k0 is completely determined by
the intrinsic 2-metric on the surface Σ but does not depend
on the extrinsic geometry how Σ bends in Ω.
The above definition implies in a straightforward way

the important proposition.
Proposition 1: The surface Σ is an ATS if and only if

mBYðΣ; gÞ >
1

8π

Z
Σ
k0dΣ: ð3Þ

It is interesting that here the integral and the mean curvature
k0 in Proposition 1 are in the Euclidean space. One can
employ well-known geometric estimates and reexpress the
proposition in a number of ways. This is done in the
remainder of this section. The total mean curvature

R
Σ k0dΣ

represents an “averaged size” of a solid convex body in the
Euclidean space [27]. Suppose that a compact oriented
convex surface Σ lies inR3. Let x0 be a fixed point enclosed
by Σ. The Minkowski integral formula [[28], Lemma 6.2.9,
Page 136] gives

Z
Σ

k0
2
dΣ ¼

Z
Σ
KðxÞ < nðxÞ; XðxÞ − x0 >R3 dΣ: ð4Þ

Here KðxÞ is the Gauss curvature and XðxÞ is the position
vector of Σ in R3, nðxÞ is the unit normal at XðxÞ and h·; ·i
denotes the Euclidean inner product.
Recall that Σ is a topological sphere. By the

Gauss-Bonnet theorem
R
Σ KðxÞdΣ ¼ 2πχðS2Þ ¼ 4π, it

gives an upper bound of the right-hand side of (4),
4πsupx∈ΣjXðxÞ − x0j.
If we measure the “size” of a surface by looking at the

position vector of its image when embedded isometrically
into R3, then we have
Theorem 1: (Sufficient Condition for an ATS.) If

mBYðΣ; gÞ > sup
x∈Σ

jXðxÞ − x0j; ð5Þ

then Σ is an ATS.
Another upper bound of the total mean curvature is given

by the Blaschke cap body inequality, cf. Page 387 in [29].
Let V be a compact convex body in R3. Then

Areað∂VÞ ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3VolðVÞ

Z
Σ

k0
2
dð∂VÞ

s
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where k0 is the mean curvature of the boundary ∂V.
This leads to the following theorem.
Theorem 2: (Sufficient Condition for an ATS.) If

mBYðΣ; gÞ >
1

4π

ðAreaðΣÞÞ2
3VolðΩ0Þ

; ð6Þ

then Σ is an ATS. HereΩ0 is the body inR3 enclosed by the
image of Σ via the (unique) Weyl embedding.
At this stage we have a hybrid picture. The Brown-York

mass lives in a physical space while the upper bounds are
given in the reference space. Again things are easy in the
spherically symmetric case [2], when k0 ¼ 2=R, where R is
the areal radius. In general Riemannian geometries, life
becomes harder. It is difficult to define a workable concept
of a “circumference” [30,31]. Fortunately, one finds a
quantitative link between the total mean curvature in the
reference space

R
Σ k0dΣ and the original physical geometric

data in a class of foliations of conformally flat 3-manifolds.
The details will be discussed in the next section.
To provide necessary conditions for an ATS, we need the

lower bound estimates of the total mean curvature
R
Σ k0dΣ.

There are two candidates both of which are in terms of
intrinsic 2-geometry of the surface. One is given by the
classical geometric inequality [29] and the other one is
given by the Birkhoff invariant of the intrinsic 2-metric
[32]. Let ðΣ; hÞ be a topological sphere with a 2-metric h
and let F: Σ → R be a function with just two critical points,
a maximum and a minimum. Then for any c ∈ R, each
level set F−1ðcÞ has a length lðcÞ. The Birkhoff invariant
βðΣ; hÞ is defined as βðΣ; hÞ ≔ infFmaxclðcÞ.
Theorem 3: (Necessary Condition for an ATS.) Assume

that Σ is an ATS, then

ð1Þ mBYðΣ; gÞ >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AreaðΣÞ

4π

r
; ð7Þ

ð2Þ mBYðΣ; gÞ >
1

8π
· 4β ¼ β

2π
: ð8Þ

Here β is the Birkhoff invariant of the surface Σ.

IV. CONFORMALLY FLAT GEOMETRIES

Herein we shall investigate the following concrete class
of three-spaces. Assume that

(i) g is conformally flat, gab ¼ f4ĝab where ĝab is the
standard Euclidean metric.

(ii) There is an equipotential foliation on Ω,

g ¼ f4ðσÞ½ĝσσdσ2 þ ĝijdxidxj� ði; j ¼ 2; 3Þ ð9Þ

where σ ≥ 0 and σ foliates the level surfaces of f
which are assumed to be convex, and x2 and x3 are
quasi-angle variables.

(iii) Σ ¼ fσ ¼ σ0g.

Thus, n̂ ¼ ðn̂σ; 0; 0Þ and n̂σ ¼
ffiffiffiffiffiffiffi
ĝσσ

p
. The conformal

factor f satisfies the elliptic equation Δ̂f ¼ −2πρf5, which
is the Hamiltonian constraint for momentarily static initial
data of the Einstein equations. The energy density ρ is
nonnegative due to energy conditions.
Remark.—In order to detect whether a surface Σ is

trapped or not, one only needs the geometry in a
neighborhood of Σ in Ω, or within Σ. The dominant
view nowadays is that trapped surfaces are of physical
interest because of their roles in the proof of scenarios
of the cosmic censorship. That demands that Ω con-
stitutes a domain of an asymptotically flat Cauchy slice
and hence one should assume that the equipotential
surface foliation, that covers Ω, is extendible onto the
entire slice with the asymptotic condition fð∞Þ ¼ 1.
That in turn implies that fjΣ ≥ 1 by the maximum
principle.
We emphasize that Σ refers to the σ ¼ σ0 surface

with induced metric f4ðσ0ÞðĝijdxidxjÞ. Denote by Σ̂ the
σ-constant surface with induced metric ĝijdxidxj. Let k be
the mean curvature of Σ with respect to the physical metric
g and let k̂ be the mean curvature of Σ̂ with respect to the
Euclidean metric ĝσσdσ2 þ ĝijdxidxj.
We isometrically embed Σ into the reference space

f4ðσ0Þ½ĝσσdσ2 þ ĝijdxidxj� which is also Euclidean.

Then it gives a relation between k0 and k̂, i.e. k0 ¼
k̂=f2ðσ0Þ and that of the induced area forms is dΣ ¼
f4ðσ0ÞdΣ̂.
Below we shall write down some criteria for ATS’s,

obtained in Sec. III, in terms of the geometry of the physical
space ðΩ; gÞ.

(i) Proposition 1 states that Σ must be an ATS if
mBYðΣ; gÞ >

R
Σ k0dΣ; but

R
Σ k0dΣ¼ f2ðσ0Þ

R
Σ k̂dΣ̂

represents an “averaged areal size” RAv of a body
enclosed by the (convex) 2-surface Σ. The suffi-
ciency condition states simplymBYðΣ; gÞ > RAvðΣÞ.

(ii) In the same way one may also rewrite Theorem 1
as: If mBYðΣ; gÞ > RsupðΣÞ, where RsupðΣÞ ≔
f2ðσ0Þsupx∈Σ̂jX̂ðxÞ − x0j, then Σ is an ATS. Here
X̂ is the position vector of the surface Σ̂ in the
Euclidean space ĝσσdσ2 þ ĝijdxidxj.

As a consequence of the uniqueness of the Weyl
embedding, the lower bounds given in Theorems 2
and 3 are completely determined by the intrinsic
2-geometry on the surface. They are the same no
matter calculated either in the physical space ðΩ; gÞ
or in the reference Euclidean space. In particular,

(iii) If we define the areal radius of Σ as RS ≔ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AreaðΣÞ=4πp

, then the first condition in Theorem
3 becomes mBYðΣ; gÞ > RS.

(iv) In the second condition of Theorem 3, the Birkhoff
invariant β is the minimum length of a closed string
being slipped over the 2-surface [33]. One defines
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the Birkhoff radius RB ≔ β=2π and then the con-
dition becomes mBYðΣ; gÞ > RB.

We have introduced the above four size measures for Σ.
Notice that in spherical geometries and for a round sphere
Σ centered at the symmetry center, all these measures
coincide, RAv ¼ Rsup ¼ RS ¼ RB.
The physical and “embedded” mean curvatures along Σ

are related as

kjΣ ¼ k̂jΣ̂ðσ¼σ0Þ
f2ðσ0Þ

þ 4

f3ðσ0Þ
n̂a∇̂afjΣ̂ðσ¼σ0Þ: ð10Þ

There is a simple calculation that allows us to give an
upper bound onto the Brown-York mass mBYðΣ; gÞ by the
total rest mass MðΣÞ ¼ R

Ω ρdvolg within Σ. Indeed,

mBYðΣ; gÞ ¼
1

8π

Z
Σ

k̂
f2ðσ0Þ

f4ðσ0ÞdΣ̂

− 1

8π

Z
Σ

�
k̂

f2ðσ0Þ
þ 4

f3ðσ0Þ
n̂a∇̂af

�
f4ðσ0ÞdΣ̂

¼ −4fðσ0Þ
8π

Z
Σ
n̂a∇̂afdΣ̂¼ −fðσ0Þ

2π

Z
Ω
Δ̂fdvolĝ

¼
Z
Ω
fðσ0Þρf5f−6dvolg ¼

Z
Ω
ρ
fðσ0Þ
f

dvolg;

ð11Þ

where Δ̂f ¼ −2πρf5. If we assume the dominant (or weak)
energy condition, i.e. ρ ≥ 0, then f is a superharmonic
function (with respect to the Euclidean metric) and
the maximum principle yields that for any x ∈ Ω,
fðxÞ ≥ fjΣ ¼ fðσ0Þ. Therefore,
Theorem 4: One hasmBYðΣ;gÞ≤MðΣÞ whereMðΣÞ ¼R

Ω ρdvolg.
Remark.—The total rest mass has been employed in

[7,8,23,34] in the derivation of sufficient conditions for
ATS’s and further TS’s under certain additional conditions.
The conditions therein are of the formMðΣÞ > DðΣÞwhere
DðΣÞ is a certain “size measure” coming from an upper
bound of the geometric size of the domain enclosed by Σ.
As a corollary of Theorem 4, if mBYðΣ; gÞ > DðΣÞ, then Σ
must be an ATS or TS. One is expecting to find a refined
size measure D0ðΣÞ (which is smaller than DðΣÞ) for the
Brown-York mass. We shall do it in the next section.
If Σ is a marginally trapped massive shell where the

derivative of f has a discontinuity, then Eq. (11), as a
consequence of integration by parts, is no longer valid. But
in spherical symmetry, one shows that the total rest mass
equals twice of the asymptotic mass [[35], Eq. (1.14)].
This value also agrees with the Brown-York mass.

V. FROM AVERAGED TRAPPED SURFACE TO
TRAPPED SURFACE

In spherically symmetric geometries, if we take a
spherical two-surface Σ centered at the symmetry center,
then its mean curvature becomes a constant. That means
that it is trapped if and only if it is an ATS. This is the
situation considered in [2]. In nonspherical geometries,
the existence of an ATS is not sufficient to make use of
the Penrose singularity theorem [36] predicting incom-
plete null geodesics. In this section, we formulate certain
additional conditions which guarantee that an “ellipsoi-
dal” ATS is indeed trapped. We would ask how much
Brown-York mass compacted into the system can pro-
duce a pointwise TS. The reasoning is analogous to that
used in [16,22,23,34].
Suppose that Σ is not a TS, there must be at least a point

on which the mean curvature k is non-negative. Then the
maximal value of nσk must be non-negative and hence

Z
Σ
nσðnσkÞmaxdΣ ≥ 0: ð12Þ

There is no summation for σ here. Instead, nσ denotes the
particular σ-component of the unit normal in the equipo-
tential foliation (9). Then one must have

1

8π

Z
Σ
nσ½ðnσkÞmax − nσk�dΣþ 1

8π

Z
Σ
k0dΣ ≥ mBYðΣ; gÞ:

ð13Þ

Equivalently, we have
Proposition 2: If

mBYðΣ; gÞ >
1

8π

Z
Σ
nσ½ðnσkÞmax − nσk�dΣþ 1

8π

Z
Σ
k0dΣ;

ð14Þ

then Σ must be a pointwise TS.
Now we apply Eq. (12) in [23]:

∂σ

�Z
Σ̂
k̂dΣ̂

�
¼ 2

Z
Σ̂
K̂n̂σdΣ̂ ≔ 8πCðσÞ: ð15Þ

Integrating from 0 to σ0, we have

1

8π

Z
Σ
k0dΣ ¼ 1

8π

Z
Σ̂ðσ¼σ0Þ

k̂
f2ðσ0Þ

f4ðσ0ÞdΣ̂

¼ f2ðσ0Þ
8π

Z
Σ̂ðσ¼0Þ

k̂dΣ̂þ f2ðσ0Þ
Z

σ0

0

CðsÞds:

ð16Þ

Note that the fσ ¼ 0g “surface” is the set of points for
which the conformal factor f achieves its maximal value.
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One may find an upper bound of the first term, Eq. (18)
in [37],

f2ðσ0Þ
8π

Z
Σ̂ðσ¼0Þ

k̂dΣ̂ ≤
f2ðσ0Þπ

4
sup lðSð0ÞÞ: ð17Þ

Here sup lðSð0ÞÞ is the largest flat radius of the disk on
which the conformal factor f achieves its maximal value.
Finally, we have arrived at
Theorem 5: (Sufficient condition for a pointwise TS.) If

mBYðΣ; gÞ >
1

8π

Z
Σ
nσ½ðnσkÞmax − nσk�dΣ

þ f2ðσ0Þπ
4

sup lðSð0ÞÞ

þ f2ðσ0Þ
Z

σ0

0

CðsÞds; ð18Þ

then Σ is a pointwise TS.
The physical significance of this theorem is as follows.
(i) The line integral term f2ðσ0Þ

R σ0
0 CðsÞds represents

an appropriate “size” of the hoop for mass
concentration.

(ii) The surface integral term
R
Σn

σ½ðnσkÞmax−nσk�dΣ=8π
reflects the “boundary effect” when the surface is not
spherical.

(iii) The radius term f2ðσ0Þπ sup lðSð0ÞÞ=4 is influenced
by the behavior of the conformal factor f within the
entire foliation and thus can be interpreted as the
“global deviation” the system from being spherical.

The sum

1

8π

Z
Σ
nσ½ðnσkÞmax − nσk�dΣþ f2ðσ0Þπ

4
sup lðSð0ÞÞ ð19Þ

is the energy required to balance the nonsphericality
when producing a trapped surface. By maximum
principle, for 0 ≤ σ ≤ σ0, fðσÞ ≥ fðσ0Þ. Then the
radius term f2ðσ0Þπ sup lðSð0ÞÞ=4 and the hoop term
f2ðσ0Þ

R σ0
0 CðsÞds are both less than the terms in the

sufficient condition for TS in terms of MðΣÞ [23],
f2ð0Þπ sup lðSð0ÞÞ=4 ≔ πradð0Þ=4 and

R σ0
0 f2ðsÞCðsÞds,

respectively. However, the “boundary effect” energy com-
pensating terms

R
Σ n

σ½ðnσkÞmax − nσk�dΣ=8π are the same.
We obtain a sufficient condition for TS’s, employing the
Brown-York mass, that is finer than that implied by
Theorem 4 (cf. Remark beneath Theorem 4).
In spherical symmetry, both of the two terms in Eq. (19)

vanish, and CðsÞ≡ 1 and hence f2ðσ0Þ
R σ0
0 CðsÞds equals

the areal radius of the surface. The inequality (18) is sharp
and it reduces to the result in [2].

VI. CONCLUSIONS

We have shown, using conformally flat geometries and a
suitable foliation, that the Brown-York mass is bounded
from above by the total rest mass. The more nonspherical is
a surface, the more Brown-York energy must be compacted
within to make it trapped. We employ a number of
geometric inequalities in Euclidean space, that yield several
necessary and sufficient conditions for ATS’s and pointwise
trapped surfaces. These results hold true for a large class
of nonspherical geometries whose metrics are conformal
(with convex layer surfaces) to the flat metric, and for
adapted foliations.
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