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We consider hybrid inflation for small couplings of the inflaton to matter such that the critical value
of the inflaton field exceeds the Planck mass. It has recently been shown that inflation then continues
at subcritical inflaton field values where quantum fluctuations generate an effective inflaton mass. The
effective inflaton potential interpolates between a quadratic potential at small field values and a plateau at
large field values. An analysis of the allowed parameter space leads to predictions for the scalar spectral
index ns and the tensor-to-scalar ratio r similar to those of natural inflation. Using the ranges for ns and r
favored by the Planck data, we find that the energy scale of the plateau is constrained to the interval
ð1.6–2.4Þ × 1016 GeV, which includes the energy scale of gauge coupling unification in the super-
symmetric standard model. The tensor-to-scalar ratio is predicted to satisfy the lower bound r > 0.049 for
60 e-folds before the end of inflation.
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I. INTRODUCTION

The observations and analyses of the cosmic microwave
background (CMB) by the WMAP [1] and Planck [2]
collaborations strongly support single-field slow-roll infla-
tion as the paradigm of early Universe cosmology. The
current CMB data can be successfully described by
many models of inflation. Prominent examples are the
Starobinsky model [3], chaotic inflation [4], natural infla-
tion [5] and hybrid inflation [6], which differ significantly
in their predictions for the scalar spectral index ns and
the tensor-to-scalar ratio r of the primordial density
fluctuations. The recently released BICEP2 data [7],
which are presently under intense scrutiny [8–10], have
renewed the interest in models with a large fraction of
tensor modes.
A theoretically attractive framework is supersymmetric

D-term inflation [11–13]. It is remarkable that it contains
the rather different models listed above for different choices
of the Kähler potential: For a canonical Kähler potential,
one obtains standard hybrid inflation; for a superconformal
or no-scale Kähler potential, the Starobinsky model
emerges [14]; and in case of a shift symmetric Kähler
potential [15], D-term inflation includes a “chaotic regime”
with a large tensor-to-scalar ratio [16].
In this paper we study the chaotic regime of D-term

inflation in more detail. It turns out that the predictions are
qualitatively similar to those of natural inflation, although
the theoretical interpretation is entirely different. Moreover,
there are significant quantitative differences.
The parameters of D-term inflation are a Yukawa

coupling, the Fayet–Iliopoulos (FI) term and a gauge
coupling. The last two determine the energy scale Minf
of hybrid inflation. The measured amplitude of scalar
fluctuations determines Minf as function of the Yukawa
coupling. Imposing the bounds of the Planck data on ns and
r as constraints [2],

ns ¼ 0.9603� 0.0073;

r < 0.11ð95%CLÞ; ð1Þ

we find that Minf has to be close to the energy scale MGUT
of grand unification. Furthermore, we obtain a lower bound
on the tensor-to-scalar ratio, r > 0.049ð0.085Þ for 60(50)
e-folds before the end of inflation, which is in reach of
upcoming experiments.

II. SUBCRITICAL HYBRID INFLATION

The framework of D-term hybrid inflation in super-
gravity is defined by a Kähler potential, a superpotential
and a D-term scalar potential [11,12,15,16],

K ¼ 1

2
ðΦþ Φ†Þ2 þ jSþj2 þ jS−j2; ð2Þ

W ¼ λΦSþS−; ð3Þ

VD ¼ g2

2
ðjSþj2 − jS−j2 − ξÞ2: ð4Þ

The “waterfall fields” S� carry the U(1) charges �1, and
the inflaton is contained in the gauge singlet Φ. The Kähler
potential is invariant under the shift ImðΦÞ → ImðΦÞ þ α
where α is a real constant; i.e., it is independent of the
constant part of φ≡ ffiffiffi

2
p

ImðΦÞ, which is identified as the
inflaton field. The gauge coupling g ¼ Oð1Þ, and λ is a
Yukawa coupling, which may be much smaller than g. The
only dimensionful parameter is the FI term ξ that sets the
energy scale of inflation.1

1Note that FI terms in supergravity are a subtle issue [17–20].
For recent discussions and references on field-dependent and
field-independent FI terms, see Refs. [21,22]. In the following we
shall treat ξ as a constant.
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Standard hybrid inflation takes place at inflaton field
values φ larger than the critical value φc ¼ ðg=λÞ ffiffiffiffiffi

2ξ
p

. Here
the waterfall fields S� have a positive mass squared and are
stabilized at the origin. Classically, the potential is inde-
pendent of modulus and phase of the gauge-singlet Φ. The
flatness in jΦj is lifted by quantum corrections.
For subcritical field values jΦj < ffiffiffi

2
p

φc, the complex
scalar S− remains stabilized at the origin, whereas Sþ
acquires a tachyonic instability. The sum of F- and D-terms
yields for the scalar potential as function of φ and
s≡ ffiffiffi

2
p jSþj

Vðφ; sÞ ¼ VFðφ; sÞ þ VDðsÞ

¼ λ2

4
s2φ2 þ g2

8
ðs2 − 2ξÞ2 þOðs2nφ2Þ; n ≥ 2:

ð5Þ
Note that, due to the shift symmetry of the Kähler potential,
the Planck suppressed terms are also only quadratic in φ.
The scalar potential contains higher powers in ReðΦÞ,
which we have neglected since they are not important for
inflation.
Following Ref. [16], we solve the classical equations of

motion for homogeneous fields, corresponding to the scalar
potential (5),

φ̈þ 3H _φþ λ2

2
s2φ ¼ 0;

̈sþ 3H_s −
�
g2ξ −

λ2

2
φ2

�
sþ g2

2
s3 ¼ 0: ð6Þ

The initial conditions for the waterfall field are obtained by
considering the tachyonic growth of its quantum fluctua-
tions [23–26] close to the critical point φc,

hs2ðtÞi≃
Z

kbðtÞ

0

dk
k2

2π2
e−3HctjskðtÞj2: ð7Þ

Here skðtÞ are the momentum modes of the field operator
in an exponentially expanding, spatially flat background
with Hubble parameter Hc ¼ HðφcÞ and a time-dependent
inflaton field φðtÞ ¼ φc þ _φct [24],

̈sk þ
�
k2e−2Hct −

9

4
H2

c −D3t

�
sk ¼ 0: ð8Þ

The integration in Eq. (7) extends over all soft momentum
modes below kbðtÞ where the time-dependent mass
operator for skðtÞ in the brackets of Eq. (8) vanishes. At
a decoherence time tdec ∼ ð3 lnð2RdecÞ=4Þ2=3=D, where
Rdec ∼ 100 and D ¼ ð ffiffiffiffiffi

2ξ
p

gλj _φcjÞ1=3, the waterfall field
becomes classical. Matching the variance and classical field
near the decoherence time, sðtÞ≡ hs2ðtÞi1=2, one obtains s
and _s at t ¼ tdec. As shown in Ref. [16], the classical

waterfall field reaches the local, inflaton-dependent mini-
mum soon after the decoherence time,

s2minðφÞ ¼ 2ξ − ðλ2=g2Þφ2; ð9Þ

and, together with the inflaton field, it reaches the global
minimum after a large number of e-folds.
On the inflationary trajectory, the inflaton potential takes

a simple form,

V infðφÞ ¼ Vðφ; sminðφÞÞ ¼ g2ξ2
φ2

φ2
c

�
1 −

1

2

φ2

φ2
c

�
; φ ≤ φc:

ð10Þ

For small φ, the potential is quadratic, and as φ approaches
φc, the potential reaches the plateau g2ξ2=2. Figure 1 shows
the potential for a certain choice of parameters. As we shall
see in the following sections, in the relevant parameter
range, the predictions for ns and r only depend on the
potential (10). The initial conditions, in particular the initial
value of φ and the tachyonic growth of the waterfall field,
only affect the total number of e-folds and the formation of
cosmic strings.

III. COSMOLOGICAL OBSERVABLES

In this section we analyze the implications of the
constraints on the cosmological observables ns and r by
the Planck data on the parameters of the inflaton potential
(10). Obviously, the potential only depends on two param-
eters, which can be chosen as

FIG. 1 (color online). Effective inflaton potential in subcritical
hybrid inflation (solid line) normalized to M4

GUT, with
MGUT ¼ 2 × 1016 GeV. For reference, a quadratic potential is
shown (dashed line). φc, φ� and φf are the inflaton field values
at the beginning of the waterfall transition, beginning and end
of the last 50 e-folds of inflation. Parameters: λ̄ ¼ 7 × 10−4,
Minf ¼ 1.95 × 1016 GeV. (See also Fig. 3 in Ref. [16]).
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Minf ¼
�
gξffiffiffi
2

p
�

1=2
; λ̄ ¼ λffiffiffi

g
p ; ð11Þ

where we have used φ2
c ¼ 2

ffiffiffi
2

p
M2

inf=λ̄
2. Then the energy

density of the plateau is given by V infðφcÞ ¼ M4
inf.

Scalar spectral index and tensor-to-scalar ratio are
conveniently expressed in terms of the slow-roll parameters
of the inflaton potential,

ϵðφÞ ¼ 1

2

�
V 0
inf

V inf

�
2

; ηðφÞ ¼ V 00
inf

V inf
; ð12Þ

where the superscript “prime” denotes the derivative with
respect to φ and we have set the Planck mass Mpl ¼ 1.
Inflation ends at φ ¼ φf which is defined by
maxfϵðφfÞ; jηðφfÞjg ¼ 1. The number of e-folds between
t� and tf can then be expressed as

Ne ¼
Z

tf

t�
dtH ¼

Z
φ�

φf

dφ
1ffiffiffiffiffiffiffiffiffiffiffiffi
2ϵðφÞp ; ð13Þ

where φ� ¼ φðt�Þ. Solving this equation, one obtains φ� in
terms of Ne,

φ2� ¼ 4Ne þ 2 −
X
n≥1

an
φ2n
c
; ð14Þ

where a1¼4ðN2
eþNeþ1Þ, a2¼ð2=3Þð2N2

e−3Þð2Neþ3Þ,
a3 ¼ −ð4=3ÞðN4

e þ 2N3
e þ 6N2

e − 3Þ;…. The first three
terms in the expansion (14) yield φ� to sufficient accuracy.
Together with the standard expressions for ns and r,

ns ¼ 1þ 2η� − 6ϵ�; r ¼ 16ϵ�; ð15Þ

where ϵ� ¼ ϵðφ�Þ and η� ¼ ηðφ�Þ, this yields ns and r for a
given number of e-folds Ne.

Finally, a crucial observable is the amplitude of the scalar
power spectrum As,

As ¼
V infðφ�Þ
24π2ϵ�

; ð16Þ

which is determined as As¼2.196þ0.051
−0.060 ×10−9 at 68% C.L.

[27] from the combined data sets of the Planck and WMAP
collaborations. Imposing the central value of As as con-
straint yields a line in the λ̄ −Minf plane for a given number
of e-folds. The result is shown in Fig. 2 for Ne ¼ 60 and
50. The shaded region is consistent with the constraints (1)
of the Planck data on ns and r. The energy scale of the
plateau is rather precisely determined,

1.6ð1.9Þ ≤
�

Minf

1016 GeV

�
≤ 2.4ð2.2Þ; ð17Þ

for Ne ¼ 60ð50Þ. It is very remarkable how accurately the
energy scale Minf of the plateau agrees with the energy
scale MGUT of gauge coupling unification in the super-
symmetric standard model. For comparison, Fig. 2 also
shows the allowed region in the λ̄ − φc plane. The allowed
values of φc, and also φ� are super-Planckian, similar to
chaotic inflation.2

Varying λ̄ yields a line also in the r − ns plane for a given
number of e-folds. In Fig. 3 the result is compared with
various constraints from CMB data and the prediction of
natural inflation [2]. As one can see, subcritical hybrid
inflation and natural inflation [5,28] yield qualitatively
similar predictions. This is not surprising, given the
similarity of the potential (10) to a cosine potential.3

FIG. 2 (color online). Lines in the λ̄ −Minf plane (left) and the λ̄ − φc plane (right), which are determined by the measured amplitude
of the scalar power spectrum for Ne ¼ 60 and 50. The shaded regions are allowed by the bound on ns and r obtained from the Planck
data. MGUT ¼ 2 × 1016 GeV.

2Note that for λ̄≳ 10−4 the treatment of the initial tachyonic
growth of the waterfall field is consistent, while λ̄ ≲ 10−3 is small
enough to allow for 60 e-folds below the critical point [16].

3A similar potential can be obtained in chaotic inflation with
nonminimal coupling to gravity [29]. For a recent discussion of
universality classes for models of inflation, see Ref. [30].
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The interpretation, however, is very different. In natural
inflation the band is obtained by varying a super-Planckian
axion decay constant or, as in aligned two-axion models
[31], the ratio of sub-Planckian decay constants. On the
contrary, in subcritical hybrid inflation, different points of
the band correspond to different values of the ratio of a
small Yukawa coupling and a gauge coupling Oð1Þ. The
lower bound from the Planck data on the spectral index ns
implies the lower bound on the tensor-to-scalar ratio r >
0.049ð0.085Þ for 60(50) e-folds before the end of inflation.
Let us finally comment on the formation of cosmic

strings in subcritical hybrid inflation. Cosmic strings are
produced during the tachyonic growth of the waterfall field,
which spontaneously breaks the U(1) symmetry. The initial
average distance of the cosmic strings can be estimated
as [16]

dcsðtlocsp Þ ∼ k−1b ðtÞaðtÞjt¼tlocsp
¼ O

�
1

Hc

�
; ð18Þ

where aðtÞ is the scale factor and tlocsp is the spinodal time at
which sðtÞ reaches the local, inflaton-dependent minimum
sminðφÞ. Between tlocsp and t�, the beginning of the last 50–60
e-folds, the scale factor grows by ΔNe e-folds, whereas
the Hubble parameter remains almost constant, H� ∼Hc,
which yields for the average string separation at t�

dcsðt�Þ ∼ eΔNe
1

H�
: ð19Þ

The smallest value of ΔNe is obtained for the largest
coupling λ̄max¼7×10−4: ΔNmin

e ≃ 380 (see Figs. 1 and 2).
During the final 50–60 e-folds, the horizon at t� is blown up
to 1=H0, the size of the present Universe. We thus obtain
the lower bound on the average cosmic string distance

dcsðt0Þ > e380
1

H0

: ð20Þ

Hence, cosmic strings are unobservable in subcritical
hybrid inflation for parameters consistent with the
Planck data.

IV. CONCLUSIONS

We have studied subcritical hybrid inflation, which
occurs in supersymmetric D-term inflation for small
couplings of the inflaton to matter. The effective inflaton
potential interpolates between a quadratic potential at
small field values and a plateau at large field values. It
is characterized by two parameters, the energy scale of the
plateau and the critical value of the inflaton field, at which
the plateau is reached.
The model can accommodate the Planck data very well,

and it is striking how accurately the energy scale Minf of
inflation agrees with the scale MGUT of gauge coupling
unification in the supersymmetric standard model. This
reopens the question on the possible connection between
grand unification and inflation.
The predictions for the scalar spectral index and tensor-

to-scalar ratio are qualitatively similar to those from natural
inflation. Quantitatively, however, the predicted values for
the tensor-to-scalar ratio are larger, and one obtains the
lower bounds r > 0.049ð0.085Þ for 60(50) e-folds before
the end of inflation, which is in reach of upcoming
experiments.
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