Violation of partial conservation of the axial-vector current and two-body baryonic B and D_s decays

Y. K. Hsiao^{1,2} and C. Q. Geng^{1,2,3}

 ¹Physics Division, National Center for Theoretical Sciences, Hsinchu 300, Taiwan
 ²Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan
 ³Chongqing University of Posts and Telecommunications, Chongqing 400065, China (Received 11 November 2014; published 29 April 2015)

We study the two-body baryonic *B* and D_s decays based on the annihilation mechanism without the partial conservation of the axial-vector current (PCAC) at the GeV scale. We demonstrate that the contributions of $B^- \to \Lambda \bar{p}$, $B^- \to \Sigma^0 \bar{p}$, and $\bar{B}_s^0 \to \Lambda \bar{\Lambda}$ are mainly from the scalar and pseudoscalar currents with their branching ratios predicted to be around (3.5, 5.3, 5.3) × 10⁻⁸, respectively, exactly the sizes of $\mathcal{B}(B \to \mathbf{B}\bar{\mathbf{B}}')$ established by the data. We also apply the annihilation mechanism to all of the charmless twobody baryonic *B* and D_s decays. In particular, we can explain $\mathcal{B}(\bar{B}_{(s)}^0 \to p\bar{p})$ of order 10⁻⁸ and $\mathcal{B}(D_s^+ \to p\bar{n})$ of order 10⁻³, which are from the axial-vector currents. In addition, the branching ratios of $\bar{B}^0 \to \Lambda \bar{\Lambda}$, $B^- \to n\bar{p}$, and $B^- \to \Sigma^- \bar{\Sigma}^0$ are predicted to be (0.3, 3.2, 9.6) × 10⁻⁸, which can be measured by LHCb and viewed as tests for the violation of the partial conservation of the axial-vector current at the GeV scale.

DOI: 10.1103/PhysRevD.91.077501

PACS numbers: 13.25.-k, 12.38.Bx, 11.40.Ha, 13.60.Rj

I. INTRODUCTION

For the abundantly observed three-body baryonic *B* decays $(B \rightarrow \mathbf{B}\bar{\mathbf{B}}'M)$, the theoretical approach for the systematic study has been established [1–6]. It leads to the theoretical predictions, among which at least five decay modes [7,8] are observed to agree with the data [9]. On the other hand, the two-body baryonic *B* decays $(B \rightarrow \mathbf{B}\bar{\mathbf{B}}')$ are poorly understood due to the smaller branching ratios, causing a much later observation than $B \rightarrow \mathbf{B}\bar{\mathbf{B}}'M$. Recently, the LHCb collaboration has presented the first observations of the charmless $B \rightarrow \mathbf{B}\bar{\mathbf{B}}'$ decays [10], given by

$$\mathcal{B}(\bar{B}^0 \to p\bar{p}) = (1.47^{+0.62+0.35}_{-0.51-0.14}) \times 10^{-8},$$

$$\mathcal{B}(\bar{B}^0_s \to p\bar{p}) = (2.84^{+2.03+0.85}_{-1.68-0.18}) \times 10^{-8}, \qquad (1)$$

with the statistical significances to be 3.3σ and 1.9σ , respectively.

Based on the factorization, when the *B* meson annihilates with the momentum transfer *q*, the amplitudes $\mathcal{A}(\bar{B}_{(s)}^0 \rightarrow p\bar{p})$ can be decomposed as $q^{\mu} \langle p\bar{p} | A_{\mu} | 0 \rangle$, where the matrix element is for the proton pair production and A_{μ} is the axial-vector current. From the hypothesis of the partial conservation of the axial-vector current (PCAC) [11] at the GeV scale, $q^{\mu}A_{\mu}$ is proportional to m_{π}^2 , which leads to $\mathcal{A}(\bar{B}_{(s)}^0 \rightarrow p\bar{p}) \approx 0$. This is the reason why the nonfactorizable effects were believed to dominate the branching ratios in Eq. (1) [12].¹ However, since the predictions from these models differ from each other, and commonly exceed the data, a reliable theoretical approach has not been established yet.

In this work, we would propose a new method without the use of the PCAC. In fact, the smallness of the previous estimations is not caused by the annihilation mechanism [13] but the assumption of PCAC. Moreover, this assumption has never been tested at the GeV scale. For example, $\mathcal{B}(B^- \to \Lambda \bar{p})$ and $\mathcal{B}(\bar{B}^0_s \to \Lambda \bar{\Lambda})$ are found to have the amplitudes decomposed as $(m_B^2/m_b)\langle p\bar{p}|S+P|0\rangle$ with S(P) the (pseudo)scalar current, which has no connection to the PCAC. Since they can be estimated to be of order 10^{-8} , exactly the order of the magnitude of $\mathcal{B}(B \to \mathbf{B}\bar{\mathbf{B}}')$ measured by the experiments, the annihilation mechanism can be justified. If the axial-vector current is asymptotically conserved, the result of $\mathcal{B}(D_s^+ \to p\bar{n}) = (0.4^{+1.1}_{-0.3}) \times 10^{-6}$ in Ref. [14] would yield $\mathcal{B}(D_s^+ \to p\bar{n})/\mathcal{B}(D_s^+ \to \tau\bar{\nu}_{\tau}) \simeq$ 10^{-5} , which was indeed suggested as the test of the PCAC at the GeV scale [13]. Nonetheless, with $\mathcal{B}(D_s^+ \to p\bar{n}) =$ $(1.30 \pm 0.36^{+0.12}_{-0.16}) \times 10^{-3}$ measured by the CLEO Collaboration [15], one obtains that $\mathcal{B}(D_s^+ \to p\bar{n})/$ $\mathcal{B}(D_s^+ \to \tau \bar{\nu}_{\tau}) \simeq 0.02$, which is too large and can be viewed as a countercase of the PCAC [16].

In this paper, we apply the annihilation mechanism to the two-body baryonic *B* decays, provided that the axial-vector current is not asymptotically conserved. By modifying the timelike baryonic form factors via the axial-vector current without respect to the PCAC, we can explain $\mathcal{B}(\bar{B}^0_{(s)} \to p\bar{p})$ as well as $\mathcal{B}(D_s^+ \to p\bar{n})$. We shall also predict $\mathcal{B}(B^- \to \Lambda(\Sigma^0)\bar{p})$ and $\mathcal{B}(\bar{B}^0_s \to \Lambda\bar{\Lambda})$ in terms of the timelike baryonic form factors via the scalar and pseudoscalar currents.

The paper is organized as follows. In Sec. II, we present the formalism of the two-body baryonic B and D_s decays.

¹For the review of the various models, please consult Ref. [12] and the references therein.

In Sec. III, we proceed with our numerical analysis. Section IV contains our discussions and conclusions.

II. FORMALISM

The nonleptonic *B* and *D* decays in the factorization hypothesis are in analogy with the semileptonic cases like $\mathcal{A}(B \to \pi e \bar{\nu}_e) \propto \langle \pi | u \gamma^{\mu} (1 - \gamma_5) b | B \rangle \bar{e} \gamma_{\mu} (1 - \gamma_5) \nu_e$ to have the amplitudes with an additional matrix element in the form of $\langle X_2 | J^{2(\mu)} | 0 \rangle \langle X_1 | J_{(\mu)}^1 | B \rangle$, where $J_{(\mu)}^{1,2}$ are the quark currents, and $X_{1,2}$ can be multihadron states [17,18]. Although the derivation may not be analytically satisfactory, the factorization approximation can still be justified by theoretically reproducing the data and predicting notyet-observed decay modes to be approved by the later measurements in the two-body and three-body mesonic *B* decays as well as the three-body baryonic *B* decays [8,19–21].

Like the measured $\bar{B}_{(s)}^0 \rightarrow p\bar{p}$ and $D_s^+ \rightarrow p\bar{n}$ with the decaying processes depicted in Fig. 1, in the two-body baryonic *B* and D_s decays, the factorizable amplitudes are known to depend on the annihilation mechanism [13,16], where *B* and D_s annihilate, followed by the baryon pair production. Thus, the amplitudes can have two types, A_1 and A_2 , which consist of (axial)vectors and (pseudo)scalar quark currents, respectively. For example, the amplitudes of $\bar{B}^0 \rightarrow (p\bar{p}, \Lambda\bar{\Lambda}), B^- \rightarrow (n\bar{p}, \Sigma^-\bar{\Sigma}^0)$, and $D_s^+ \rightarrow p\bar{n}$ are of the first type, given by [13,14,16]

$$\begin{aligned} \mathcal{A}_{1}(\bar{B}^{0} \rightarrow \mathbf{B_{1}}\bar{\mathbf{B}}_{1}') &= \frac{G_{F}}{\sqrt{2}} V_{ub} V_{ud}^{*} a_{2} \\ &\times \langle \mathbf{B_{1}}\bar{\mathbf{B}}_{1}' | (\bar{u}u)_{V-A} | 0 \rangle \langle 0 | (\bar{d}b)_{V-A} | \bar{B}^{0} \rangle, \\ \mathcal{A}_{1}(B^{-} \rightarrow \mathbf{B_{2}}\bar{\mathbf{B}}_{2}') &= \frac{G_{F}}{\sqrt{2}} V_{ub} V_{ud}^{*} a_{1} \\ &\times \langle \mathbf{B_{2}}\bar{\mathbf{B}}_{2}' | (\bar{d}u)_{V-A} | 0 \rangle \langle 0 | (\bar{u}b)_{V-A} | B^{-} \rangle, \\ \mathcal{A}_{1}(D_{s}^{+} \rightarrow p\bar{n}) &= \frac{G_{F}}{\sqrt{2}} V_{cs} V_{ud}^{*} a_{1} \\ &\times \langle p\bar{n} | (\bar{u}d)_{V-A} | 0 \rangle \langle 0 | (\bar{s}c)_{V-A} | D_{s}^{+} \rangle, \end{aligned}$$
(2)

where $\mathbf{B_1}\mathbf{\bar{B}'_1} = p\bar{p} \text{ or } \Lambda\bar{\Lambda}, \mathbf{B_2}\mathbf{\bar{B}'_2} = n\bar{p} \text{ or } \Sigma^-\bar{\Sigma}^0, (\bar{q}_1q_2)_{V-A}$ denotes $\bar{q}_1\gamma_{\mu}(1-\gamma_5)q_2, G_F$ is the Fermi constant, a_i are the effective Wilson coefficients, and $V_{q_1q_2}$ are the Cabibbo–Kobayashi–Maskawa (CKM) matrix elements. The amplitudes of $\bar{B}^0_s \to (p\bar{p},\Lambda\bar{\Lambda})$ and $B^- \to (\Lambda\bar{p},\Sigma^0\bar{p})$ are more complicated, written as

$$\mathcal{A}(\bar{B}_{s}^{0} \rightarrow \mathbf{B_{1}}\bar{\mathbf{B}}_{1}^{\prime}) = \mathcal{A}_{1}(\bar{B}_{s}^{0} \rightarrow \mathbf{B_{1}}\bar{\mathbf{B}}_{1}^{\prime}) + \mathcal{A}_{2}(\bar{B}_{s}^{0} \rightarrow \mathbf{B_{1}}\bar{\mathbf{B}}_{1}^{\prime}),$$

$$\mathcal{A}(B^{-} \rightarrow \mathbf{B_{2}}\bar{\mathbf{B}}_{2}^{\prime}) = \mathcal{A}_{1}(B^{-} \rightarrow \mathbf{B_{2}}\bar{\mathbf{B}}_{2}^{\prime}) + \mathcal{A}_{2}(B^{-} \rightarrow \mathbf{B_{2}}\bar{\mathbf{B}}_{2}^{\prime}),$$

(3)

where

$$\mathcal{A}_{1}(\bar{B}_{s}^{0} \rightarrow \mathbf{B_{1}}\bar{\mathbf{B}}_{1}^{\prime}) = \frac{G_{F}}{\sqrt{2}} \left\{ V_{ub}V_{us}^{*}a_{2}\langle \mathbf{B_{1}}\bar{\mathbf{B}}_{1}^{\prime}|(\bar{u}u)_{V-A}|0\rangle - V_{tb}V_{ts}^{*} \left[a_{3}\langle \mathbf{B_{1}}\bar{\mathbf{B}}_{1}^{\prime}|(\bar{u}u + \bar{d}d + \bar{s}s)_{V-A}|0\rangle + a_{4}\langle \mathbf{B_{1}}\bar{\mathbf{B}}_{1}^{\prime}|(\bar{s}s)_{V-A}|0\rangle + a_{5}\langle \mathbf{B_{1}}\bar{\mathbf{B}}_{1}^{\prime}|(\bar{u}u + \bar{d}d + \bar{s}s)_{V+A}|0\rangle + \frac{a_{9}}{2}\langle \mathbf{B_{1}}\bar{\mathbf{B}}_{1}^{\prime}|(2\bar{u}u - \bar{d}d - \bar{s}s)_{V-A}|0\rangle \right] \right\} \langle 0|(\bar{s}b)_{V-A}|\bar{B}_{s}^{0}\rangle,$$

$$\mathcal{A}_{1}(B^{-} \rightarrow \mathbf{B_{2}}\bar{\mathbf{B}}_{2}^{\prime}) = \frac{G_{F}}{\sqrt{2}}(V_{ub}V_{us}^{*}a_{1} - V_{tb}V_{ts}^{*}a_{4})\langle \mathbf{B_{2}}\bar{\mathbf{B}}_{2}^{\prime}|(\bar{s}u)_{V-A}|0\rangle \langle 0|(\bar{u}b)_{V-A}|B^{-}\rangle, \tag{4}$$

and

$$\mathcal{A}_{2}(\bar{B}_{s}^{0} \rightarrow \mathbf{B_{1}}\bar{\mathbf{B}}_{1}^{\prime}) = \frac{G_{F}}{\sqrt{2}} V_{tb} V_{ts}^{*} 2a_{6}$$

$$\times \langle \mathbf{B_{1}}\bar{\mathbf{B}}_{1}^{\prime} | (\bar{s}s)_{S+P} | 0 \rangle \langle 0 | (\bar{s}b)_{S-P} | \bar{B}_{s}^{0} \rangle,$$

$$\mathcal{A}_{2}(B^{-} \rightarrow \mathbf{B_{2}}\bar{\mathbf{B}}_{2}^{\prime}) = \frac{G_{F}}{\sqrt{2}} V_{tb} V_{ts}^{*} 2a_{6}$$

$$\times \langle \mathbf{B_{2}}\bar{\mathbf{B}}_{2}^{\prime} | (\bar{s}u)_{S+P} | 0 \rangle \langle 0 | (\bar{u}b)_{S-P} | B^{-} \rangle,$$
(5)

with $\mathbf{B}_1 \bar{\mathbf{B}}'_1 = p \bar{p}$ or $\Lambda \bar{\Lambda}$, $\mathbf{B}_2 \bar{\mathbf{B}}'_2 = \Lambda \bar{p}$ or $\Sigma^0 \bar{p}$ and $(\bar{q}_1 q_2)_{S \pm P}$ representing $\bar{q}_1 (1 \pm \gamma_5) q_2$. For the coefficients a_i in Eqs. (2)–(5), we use the same inputs as those in $B \rightarrow \mathbf{B}\bar{\mathbf{B}}'M$ [7,8], where $a_i = c_i^{\text{eff}} + c_{i\pm 1}^{\text{eff}}/N_c$ with the color number N_c for i = odd (even) in terms of the effective Wilson coefficients c_i^{eff} , defined in Refs. [19,20]. Note that N_c is floating between 2 and ∞ in the generalized factorization for the correction of the nonfactorizable effects. In Eqs. (3)–(5), the matrix element for the annihilation of the pseudoscalar meson is defined by

$$\langle 0|\bar{q}_1\gamma_{\mu}\gamma_5 q_2|P\rangle = if_P q_{\mu},\tag{6}$$

with f_P the decay constant, from which we can obtain $\langle 0|\bar{q}_1\gamma_5q_2|P\rangle$ by using the equation of motion: $-i\partial^{\mu}(\bar{q}_1\gamma_{\mu}q_2) = (m_{q_1} - m_{q_2})\bar{q}_1q_2$ and $-i\partial^{\mu}(\bar{q}_1\gamma_{\mu}\gamma_5q_2) = (m_{q_1} + m_{q_2})\bar{q}_1\gamma_5q_2$. For the dibaryon production, the matrix elements read VIOLATION OF PARTIAL CONSERVATION OF THE AXIAL-

FIG. 1 (color online). The two-body baryonic decays of (a) $\bar{B}^0 \to p\bar{p}$, (b) $\bar{B}^0_s \to p\bar{p}$, and (c) $D^+_s \to p\bar{n}$.

$$\langle \mathbf{B}\bar{\mathbf{B}}'|\bar{q}_{1}\gamma_{\mu}q_{2}|0\rangle = \bar{u}\left\{F_{1}\gamma_{\mu} + \frac{F_{2}}{m_{\mathbf{B}} + m_{\bar{\mathbf{B}}'}}i\sigma_{\mu\nu}q_{\mu}\right\}v, \langle \mathbf{B}\bar{\mathbf{B}}'|\bar{q}_{1}\gamma_{\mu}\gamma_{5}q_{2}|0\rangle = \bar{u}\left\{g_{A}\gamma_{\mu} + \frac{h_{A}}{m_{\mathbf{B}} + m_{\bar{\mathbf{B}}'}}q_{\mu}\right\}\gamma_{5}v, \langle \mathbf{B}\bar{\mathbf{B}}'|\bar{q}_{1}q_{2}|0\rangle = f_{S}\bar{u}v, \langle \mathbf{B}\bar{\mathbf{B}}'|\bar{q}_{1}\gamma_{5}q_{2}|0\rangle = g_{P}\bar{u}\gamma_{5}v,$$
(7)

with u(v) as the (anti)baryon spinor, where $F_{1,2}$, g_A , h_A , f_S , and g_P are the timelike baryonic form factors. The amplitudes A_1 and A_2 now can be reduced as

$$\mathcal{A}_{1} \propto \frac{1}{(m_{\mathbf{B}} + m_{\bar{\mathbf{B}}'})} \bar{u}[(m_{\mathbf{B}} + m_{\bar{\mathbf{B}}'})^{2}g_{A} + m_{B(D_{s})}^{2}h_{A}]\gamma_{5}v,$$

$$\mathcal{A}_{2} \propto \frac{m_{B}^{2}}{m_{h}} \bar{u}(f_{S} + g_{P}\gamma_{5})v.$$
(8)

Note that f_s and g_P are not suppressed by any relations, such that the factorization obviously works for the decay modes with A_2 . Besides, the absence of $F_{1,2}$ in A_1 corresponds to the conserved vector current. However, due to the equation of motion, F_1 reappears as a part of f_s in A_2 , given by

$$f_S = n_q F_1, \tag{9}$$

with $n_q = (m_{\mathbf{B}} - m_{\mathbf{B}'})/(m_{q_1} - m_{q_2})$, which is fixed to be 1.3 [3,7], presenting 30% of the SU(3) flavor symmetry breaking effect. In perturbative QCD counting rules, the momentum dependences of F_1 and g_A can be written as [22–24]

$$F_1 = \frac{C_{F_1}}{t^2} \left[\ln\left(\frac{t}{\Lambda_0^2}\right) \right]^{-\gamma}, \quad g_A = \frac{C_{g_A}}{t^2} \left[\ln\left(\frac{t}{\Lambda_0^2}\right) \right]^{-\gamma}, \quad (10)$$

with $t \equiv (p_{\mathbf{B}} + p_{\mathbf{B}'})^2$, where $\gamma = 2 + 4/(3\beta) = 2.148$, with β being the QCD β function and $\Lambda_0 = 0.3$ GeV. We note that, as the leading-order expansion, F_1 and $g_A (\propto 1/t^2)$ account for two hard gluons, which connect to the valence quarks within the dibaryon. In terms of the PCAC, one obtains the relations of

$$h_A = -\frac{(m_{\mathbf{B}} + m_{\mathbf{B}'})^2}{t - m_M^2} g_A, \qquad g_P = -\frac{m_{\mathbf{B}} + m_{\mathbf{B}'}}{m_{q_1} + m_{q_2}} \frac{m_M^2}{t - m_M^2} g_A,$$
(11)

where m_M stands for the meson pole, while g_P is related to g_A from the equation of motion. When h_A in Eq. (11) is used for

 $B \to \mathbf{B}\bar{\mathbf{B}}'$ with $t = m_B^2 \gg m_M^2$, $\mathcal{B}(\bar{B}_{(s)}^0 \to p\bar{p})$ with a suppressed $A_1 \simeq 0$ fails to explain the data by several orders of magnitude. Similarly, $\mathcal{B}(\bar{B}^0 \to \Lambda \bar{p}\pi^+(\rho^+))$ cannot be understood either with g_P in Eq. (11) [2,3]. We hence conclude that h_A and g_P in Eq. (11) from the PCAC at the GeV scale are unsuitable. Recall that F_1 and g_A , where $F_1 = F_1(0)/((1 - t/m_V^2)^2)$ and $g_A = g_A(0)/((1 - t/m_A^2)^2)$ [25] with the pole effects for low momentum transfer, have been replaced by Eq. (10) for the decays at the GeV scale. It is reasonable to rewrite h_A and g_P to be

$$h_A = \frac{C_{h_A}}{t^2}, \qquad g_P = f_S, \tag{12}$$

where h_A is inspired by the relation in Eq. (11). For h_A in Eq. (11), since the prefactor, $-(m_{\mathbf{B}} + m_{\mathbf{B}'})^2/t$, arises from the equation of motion, it indicates that both h_A and g_A behave as $1/t^2$. Besides, at the threshold area of $t \simeq (m_{\mathbf{B}} + m_{\mathbf{B}'})^2$, it turns out that $h_A \simeq -g_A$. We regard $h_A = C_{h_A}/t^2$ as the modification of Eq. (11). Consequently, the PCAC is violated; i.e., the axial-vector current is no more asymptotically conserved. As a result of the SU(3) flavor and SU(2) helicity symmetries, $g_P = f_S$ was first derived in Ref. [4], which successfully explained $\mathcal{B}(\bar{B}^0 \to \Lambda \bar{p}\pi^+(\rho^+))$ [4,26].

In Refs. [22–24,26], C_{F_1} and C_{g_A} have been derived carefully to be combined as another set of parameters C_{\parallel} and C_{\parallel} , which are from the chiral currents. Here, we take the $p\bar{n}$ production for our description. First, due to the crossing symmetry, $\langle p\bar{n}|(\bar{u}d)_{V(A)}|0\rangle$ for the timelike $p\bar{n}$ production and $\langle p|(\bar{u}d)_{V(A)}|n\rangle$ for the spacelike *n* to *p* transiton are in fact identical. Therefore, the approach of the pQCD counting rules for the spacelike $\mathbf{B}' \rightarrow \mathbf{B}$ transition is useful [24]. We hence combine the vector and axial-vector quark currents, $V_{\mu} = \bar{u}\gamma_{\mu}d$ and $A_{\mu} = \bar{u}\gamma_{\mu}\gamma_5 d$, to be the right-handed chiral current $J_R^{\mu} = (V^{\mu} + A^{\mu})/2$, which corresponds to another set of matrix elements for the *n* to *p* transition,

$$\langle p_{R+L}|J_R^{\mu}|n_{R+L}\rangle = \bar{u} \bigg[\gamma_{\mu} \frac{1+\gamma_5}{2} G^{\uparrow}(t) + \gamma_{\mu} \frac{1-\gamma_5}{2} G^{\downarrow}(t) \bigg] u,$$
(13)

where the two chiral baryon states $|\mathbf{B}_{R+L}\rangle$ become the two helicity states $|\mathbf{B}_{\uparrow+\downarrow}\rangle \equiv |\mathbf{B}_{\uparrow}\rangle + |\mathbf{B}_{\downarrow}\rangle$ in the large *t* limit. The new set of form factors $G^{\uparrow}(t)$ and $G^{\downarrow}(t)$ are defined as

$$G^{\uparrow}(t) = e_{\parallel}^{\uparrow}G_{\parallel}(t) + e_{\bar{\parallel}}^{\uparrow}G_{\bar{\parallel}}(t),$$

$$G^{\downarrow}(t) = e_{\parallel}^{\downarrow}G_{\parallel}(t) + e_{\bar{\parallel}}^{\downarrow}G_{\bar{\parallel}}(t),$$
(14)

where

$$G_{\parallel(\bar{\parallel})}(t) = \frac{C_{\parallel(\bar{\parallel})}}{t^2} \left[\ln\left(\frac{t}{\Lambda_0^2}\right) \right]^{-\gamma}, \tag{15}$$

$$e_{\parallel(\bar{\parallel})}^{\uparrow} = \langle p_{\uparrow} | \mathbf{Q}_{\parallel(\bar{\parallel})} | n_{\uparrow} \rangle, \qquad e_{\parallel(\bar{\parallel})}^{\downarrow} = \langle p_{\downarrow} | \mathbf{Q}_{\parallel(\bar{\parallel})} | n_{\downarrow} \rangle, \quad (16)$$

which characterize the conservation of SU(3) flavor and SU(2) spin symmetries in the $n \rightarrow p$ transition. Note that $\mathbf{Q}_{\parallel(\bar{\parallel})} = \sum_i \mathcal{Q}_{\parallel(\bar{\parallel})}(i)$ with i = 1, 2, 3 as the chiral charge operators are coming from $\mathcal{Q}_R \equiv J_R^0 = u_R^{\dagger} d_R$, which convert one of the valence d quarks in $|n_{\uparrow,\downarrow}\rangle$ to be the u quark, while the converted d quark can be parallel or antiparallel to the n's helicity, denoted as the subscript (\parallel or \parallel). By comparing Eqs. (7) and (10) with Eqs. (13), (14), (15), and (16), we obtain

$$C_{F_{1}} = (e_{\parallel}^{\uparrow} + e_{\parallel}^{\downarrow})C_{\parallel} + (e_{\bar{\parallel}}^{\uparrow} + e_{\bar{\parallel}}^{\downarrow})C_{\bar{\parallel}},$$

$$C_{g_{A}} = (e_{\parallel}^{\uparrow} - e_{\parallel}^{\downarrow})C_{\parallel} + (e_{\bar{\parallel}}^{\uparrow} - e_{\bar{\parallel}}^{\downarrow})C_{\bar{\parallel}},$$
(17)

with $(e_{\parallel}^{\uparrow}, e_{\parallel}^{\uparrow}, e_{\parallel}^{\downarrow}, e_{\parallel}^{\downarrow}) = (4/3, 0, 0, -1/3)$ for the *n* to *p* transition. Similarly, we are able to relate C_{F_1} and C_{g_A} for other decay modes, given in Table I. However, C_{h_A} in Eq. (12) only has the SU(3) flavor symmetry to relate different decay modes, given by

$$\langle \mathbf{B}_{a}^{i} \bar{\mathbf{B}}_{b}^{\prime j} | (A_{\mu})_{c}^{k} | 0 \rangle = \bar{u} [Dd_{abc}^{ijk} + Ff_{abc}^{ijk} + Ss_{abc}^{ijk}] q_{\mu} \gamma_{5} v,$$
(18)

TABLE I. The parameters C_{F_1} and C_{g_A} in Eq. (10) are combined with C_{\parallel} and $C_{\bar{\parallel}}$, where the upper (lower) sign is for C_{F_1} (C_{g_A}), while C_{h_A} consists of C_D , C_F , and C_S .

Matrix element	$C_{F_1}(C_{g_A})$	C_{h_A}
$\langle p\bar{p} (\bar{u}u) 0\rangle$	$\frac{5}{3}C_{\parallel}\pm\frac{1}{3}C_{\bar{\parallel}}$	$C_D + C_F + C_S$
$\langle p \bar{p} (\bar{d}d) 0 angle$	$\frac{1}{3}C_{\parallel} \pm \frac{2}{3}C_{\parallel}$	C_S
$\langle p\bar{p} (\bar{s}s) 0\rangle$	0	$C_D - C_F + C_S$
$\langle p \bar{n} (\bar{u}d) 0 \rangle$	$\frac{4}{3}C_{\parallel} \mp \frac{1}{3}C_{\parallel}$	$C_D + C_F$
$\langle \Sigma^- \bar{\Sigma}^0 (\bar{d}u) 0 \rangle$	$\frac{1}{3\sqrt{2}}(5C_{\parallel}\pm C_{\ })$	$\sqrt{2}C_F$
$\langle\Lambda\bar{\Lambda} (\bar{u}u) 0 angle$	$\frac{1}{2}C_{\parallel} \pm \frac{1}{2}C_{\parallel}$	$\frac{1}{3}C_{D} + C_{S}$
$\langle\Lambda\bar{\Lambda} (ar{d}d) 0 angle$	$\frac{1}{2}C_{\parallel} \pm \frac{1}{2}C_{\parallel}$	$\frac{1}{3}C_{D} + C_{S}$
$\langle \Lambda \bar{\Lambda} (\bar{s}s) 0 angle$	C_{\parallel}	$\frac{4}{3}C_{D} + C_{S}$
$\langle \Lambda \bar{p} (\bar{s}u) 0 \rangle$	$-\sqrt{\frac{3}{2}}C_{\parallel}$	$-\frac{1}{\sqrt{6}}(C_D+3C_F)$
$\langle \Sigma^0 \bar{p} (\bar{s}u) 0 \rangle$	$\frac{-1}{3\sqrt{2}}(C_{\parallel} \pm 2C_{\bar{\parallel}})$	$\frac{1}{\sqrt{2}}(C_D - C_F)$

where $D = C_D/t^2$, $F = C_F/t^2$, and $S = C_S/t^2$ stand for the symmetric, antisymmetric, and singlet form factors for h_A ; \mathbf{B}_a^i and $\mathbf{\bar{B}'}_b^{ij}$ are the baryon and antibaryon octets; and d_{abc}^{ijk} , f_{abc}^{ijk} , and s_{abc}^{ijk} are given by [27]

$$d_{abc}^{ijk} = \delta_b^i \delta_c^j \delta_a^k + \delta_c^i \delta_a^j \delta_b^k,$$

$$f_{abc}^{ijk} = \delta_b^i \delta_c^j \delta_a^k - \delta_c^i \delta_a^j \delta_b^k,$$

$$s_{abc}^{ijk} = \delta_b^i \delta_a^j \delta_c^k,$$
(19)

respectively. For $\langle p\bar{n}|\bar{u}\gamma_{\mu}\gamma_{5}d|0\rangle$, $(A_{\mu})_{2}^{1} = \bar{u}\gamma_{\mu}\gamma_{5}d$, we obtain $C_{h_{A}} = C_{D} + C_{F}$ in terms of $\mathbf{B}_{3}^{1}\mathbf{\bar{B}}_{2}^{\prime 3} = p\bar{n}$. We also list $C_{h_{A}}$ for other decay modes in Table I.

III. NUMERICAL ANALYSIS

For the numerical analysis, the CKM matrix elements and the quark masses are taken from the particle data group [9], where $m_b = 4.2$ GeV. The decay constants in Eq. (6) are given by [28,29]

$$(f_B, f_{B_s}, f_{D_s}) = (190, 225, 250) \text{ MeV.}$$
 (20)

For the parameters in Table I, we refit C_{\parallel} and C_{\parallel} by the approach of Ref. [6] with the data of $\mathcal{B}(\bar{B}_{(s)}^{0} \to p\bar{p})$, $\mathcal{B}(D_{s}^{+} \to p\bar{n})$, $\mathcal{B}(\bar{B}^{0} \to n\bar{p}D^{*+})$, and $\mathcal{B}(\bar{B}^{0} \to \Lambda\bar{p}\pi^{+})$, while C_{D} , C_{F} , and C_{S} are newly added in the fitting. Note that the OZI suppression makes $\langle p\bar{p}|(\bar{s}s)|0\rangle = 0$, which results in $C_{S} = C_{F} - C_{D}$. With $N_{c} = 2$ fixed in a_{i} as the best fit, the parameters are fitted to be

$$(C_{\parallel}, C_{\bar{\parallel}}) = (-102.4 \pm 7.3, 210.9 \pm 85.2) \text{ GeV}^4,$$

 $(C_D, C_F) = (-1.7 \pm 1.6, 4.2 \pm 0.7) \text{ GeV}^4.$ (21)

As shown in Table II, we can reproduce the data of $\bar{B}^0_{(s)} \to p\bar{p}$ and $D^+_s \to p\bar{n}$. In addition, we predict the

TABLE II. The branching ratios of $B_{(s)} \rightarrow \mathbf{B}\bar{\mathbf{B}}' \ (D_s \rightarrow \mathbf{B}\bar{\mathbf{B}}')$ decays in units of $10^{-8} \ (10^{-3})$, where the uncertainties arise from the timelike baryonic $0 \rightarrow \mathbf{B}\bar{\mathbf{B}}'$ form factors.

Decay mode	Our result	Data
$\bar{B}^0 \rightarrow p \bar{p}$	$1.4^{+0.5}_{-0.5}$	$1.47^{+0.71}_{-0.53}$ [10]
$\bar{B}^0_s \rightarrow p \bar{p}$	$3.0^{+1.5}_{-1.2}$	$2.84^{+2.20}_{-1.69}$ [10]
$D_s^+ \to p \bar{n}$	$1.3^{+13.2}_{-1.3}$	$1.30_{-0.39}^{+0.38}$ [15]
$B^- \to n \bar{p}$	$3.2_{-3.0}^{+6.9}$	
$B^- \to \Lambda \bar{p}$	$3.5_{-0.5}^{+0.7}$	< 32 [30]
$\bar{B}^0 \to \Lambda \bar{\Lambda}$	$0.3_{-0.2}^{+0.2}$	< 32 [30]
$\bar{B}^0_s \to \Lambda \bar{\Lambda}$	$5.3^{+1.4}_{-1.2}$	
$B^- \to \Sigma^0 \bar{p}$	$5.3^{+3.8}_{-2.7}$	
$\frac{B^- \to \Sigma^- \bar{\Sigma}^0}{2}$	$9.6^{+4.0}_{-3.3}$	

branching ratios of $\bar{B}^0_{(s)} \to \Lambda \bar{\Lambda}$, $B^- \to (\Lambda \bar{p}, \Sigma^0 \bar{p})$, and $B^- \to (n\bar{p}, \Sigma^- \bar{\Sigma}^0)$ in Table II.

IV. DISCUSSIONS AND CONCLUSIONS

When the axial-vector current is not asymptotically conserved, we can evaluate the two-body baryonic $B_{(s)}$ and D_s decays with the annihilation mechanism to explain the data. In particular, the experimental values of $\mathcal{B}(\bar{B}^0_{(s)} \rightarrow$ $p\bar{p}$) and $\mathcal{B}(D_s^+ \to p\bar{n})$ can be reproduced. It is the violation of the PCAC that makes $\mathcal{B}(D_s^+ \to p\bar{n})$ to be of order 10^{-3} , which was considered as the consequence of the longdistance contribution in Ref. [14]. With $m_{D_s} \simeq m_p + m_{\bar{n}}$, the amplitude of $\mathcal{A}_1(D_s^+ \to p\bar{n})$ from Eq. (8) is in fact proportional to $\bar{u}(g_A + h_A)v$. Instead of $h_A = -g_A$ from the PCAC in Eq. (11) with $t = m_{D_e}^2$, our approach with $h_A =$ $-0.7g_A$ shows that the 30% broken effect of the PCAC suffices to reveal $\mathcal{B}(D_s^+ \to p\bar{n})$. As seen from Table I, $C_{h_{\star}} = C_D + C_F$ for the $p\bar{n}$ production with the uncertainties fitted in Eq. (21) has the solutions of $h_A = 0$ to $h_A = -g_A,$ which allows $\mathcal{B}(D_s^+ \to p\bar{n}) =$ $(0-16) \times 10^{-3}$. With the OZI suppression of $\langle p\bar{p}|(\bar{s}s)|0\rangle = 0$, which eliminates A_2 , the decay of $\bar{B}^0_s \to p\bar{p}$ is the same as that of $\bar{B}^0 \to p\bar{p}$ to be the first type. In contrast with $D_s^+ \to p\bar{n}$, since $\mathcal{A}_1(\bar{B}^0_{(s)} \to p\bar{p}) \propto$ $m_B^2 [(\frac{m_p + m_{\bar{p}}}{m_B})^2 g_A + h_A] \bar{u} \gamma_5 v$ with a suppressed g_A contribution at the m_B scale, the decay branching ratios are enhanced by h_A with m_B^2 . Similarly, being of the first type, our predicted results for $\mathcal{B}(\bar{B}^0 \to \Lambda \bar{\Lambda}), \ \mathcal{B}(B^- \to n\bar{p})$, and $\mathcal{B}(B^- \to \Sigma^- \bar{\Sigma}^0)$ can be used to test the violation of the PCAC at the GeV scale.

On the contrary, $\mathcal{B}(B^- \to \Lambda(\Sigma^0)\bar{p})$ and $\mathcal{B}(\bar{B}_s^0 \to \Lambda\bar{\Lambda})$ are primarily contributed from \mathcal{A}_2 . Similar to the theoretical relation between $B^- \to p\bar{p}\ell\bar{\nu}$ [31] and $B \to p\bar{p}M$, which are associated with the same form factors in the *B* to $\mathbf{B}\bar{\mathbf{B}}'$ transition, resulting in the first observation of the semileptonic baryonic *B* decays [32], there are connections between the two-body $B^- \to \Lambda(\Sigma^0)\bar{p}$ and $\bar{B}^0_s \to \Lambda\bar{\Lambda}$ and three-body $\bar{B}^0 \to \Lambda\bar{p}\pi^+$ and $B \to \Lambda\bar{\Lambda}K$ decays with the same form factors via the (pseudo)scalar currents. As a result, without the PCAC, the observations of these twobody modes can serve as the test of the factorization, which accounts for the short-distance contribution. Note that the recent work by fitting $\bar{B}^0 \to p\bar{p}$ with the nonfactorizable contributions leads $\mathcal{B}(\bar{B}^0_s \to p\bar{p})$ and $\mathcal{B}(\bar{B}^0 \to \Lambda\bar{\Lambda})$ to be nearly zero [33], which are clearly different from our results.

In summary, we have proposed that, based on the factorization, the annihilation mechanism can be applied to all of the two-body baryonic $B_{(s)}$ and D_s decays, which indicates that the hypothesis of the PCAC is violated at the GeV scale. With the modified timelike baryonic form factors via the axial-vector currents, we are able to explain $\mathcal{B}(\bar{B}^0_{(s)} \rightarrow p\bar{p})$ and $\mathcal{B}(D_s^+ \rightarrow p\bar{n})$ of order 10^{-8} and 10^{-3} , respectively. For the decay modes that have the contributions from the (pseudo)scalar currents, they have been predicted as $\mathcal{B}(B^- \rightarrow \Lambda \bar{p}) = (3.5^{+0.7}_{-0.5}) \times 10^{-8}$, $\mathcal{B}(B^- \rightarrow \Sigma^0 \bar{p}) = (5.3^{+3.8}_{-2.7}) \times 10^{-8}$, and $\mathcal{B}(\bar{B}^0_s \rightarrow \Lambda \bar{\Lambda}) = (5.3^{+1.4}_{-1.2}) \times 10^{-8}$, which can be used to test the annihilation mechanism. Besides, the branching ratios of $\bar{B}^0 \rightarrow \Lambda \bar{\Lambda}$, $B^- \rightarrow n\bar{p}$, and $B^- \rightarrow \Sigma^- \bar{\Sigma}^0$, predicted to be $(0.3, 3.2, 9.6) \times 10^{-8}$, can be viewed as the test of the PCAC, which are accessible to the experiments at the LHCb.

ACKNOWLEDGMENTS

We thank H. Y. Cheng and C. K. Chua for discussions. This work was partially supported by National Center for Theoretical Sciences, National Science Council (Grant No. NSC-101-2112-M-007-006-MY3) and National Tsing Hua University (Grant No. 103N2724E1).

- [1] W. S. Hou and A. Soni, Phys. Rev. Lett. **86**, 4247 (2001).
- [2] H. Y. Cheng and K. C. Yang, Phys. Rev. D 66, 014020 (2002).
- [3] C. K. Chua, W. S. Hou, and S. Y. Tsai, Phys. Rev. D 66, 054004 (2002).
- [4] C. K. Chua and W. S. Hou, Eur. Phys. J. C 29, 27 (2003).
- [5] C. Q. Geng and Y. K. Hsiao, Phys. Rev. D 74, 094023 (2006).
- [6] C. Q. Geng and Y. K. Hsiao, Phys. Rev. D 75, 094005 (2007).
- [7] C. Q. Geng and Y. K. Hsiao, Phys. Lett. B 619, 305 (2005).
- [8] C. H. Chen, H. Y. Cheng, C. Q. Geng, and Y. K. Hsiao, Phys. Rev. D 78, 054016 (2008); Y. K. Hsiao, Int. J. Mod. Phys. A 24, 3638 (2009).
- [9] J. Beringer *et al.* (Particle Data Group), Phys. Rev. D 86, 010001 (2012) and 2013 partial update for the 2014 edition (http://pdg.lbl.gov).
- [10] R. Aaij *et al.* (LHCb Collaboration), J. High Energy Phys. 10 (2013) 005.
- [11] M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (1960); Y. Nambu, Phys. Rev. Lett. 4, 380 (1960).
- [12] C. K. Chua, Phys. Rev. D 68, 074001 (2003).
- [13] X. Y. Pham, Phys. Rev. Lett. 45, 1663 (1980); Phys. Lett. 94B, 231 (1980).
- [14] C. H. Chen, H. Y. Cheng, and Y. K. Hsiao, Phys. Lett. B 663, 326 (2008).

- [15] S. B. Athar *et al.* (CLEO Collaboration), Phys. Rev. Lett. 100, 181802 (2008).
- [16] I. Bediaga and E. Predazzi, Phys. Lett. B 275, 161 (1992).
- [17] M. Bauer and B. Stech, Phys. Lett. 152B, 380 (1985).
- [18] M. Bauer, B. Stech, and M. Wirbel, Z. Phys. C 34, 103 (1987).
- [19] Y. H. Chen, H.-Y. Cheng, B. Tseng, and K.-C. Yang, Phys. Rev. D 60, 094014 (1999); H. Y. Cheng and K. C. Yang, Phys. Rev. D 62, 054029 (2000).
- [20] A. Ali, G. Kramer, and C. D. Lu, Phys. Rev. D 58, 094009 (1998).
- [21] H. Y. Cheng and C. K. Chua, Phys. Rev. D 89, 074025 (2014).
- [22] G. P. Lepage and S. J. Brodsky, Phys. Rev. Lett. 43, 545 (1979); 43, 1625(E) (1979).
- [23] G. P. Lepage and S. J. Brodsky, Phys. Rev. D 22, 2157 (1980).

- [24] S. J. Brodsky, G. P. Lepage, and S. A. A. Zaidi, Phys. Rev. D 23, 1152 (1981).
- [25] C. Q. Geng and Y. K. Hsiao, Phys. Lett. B 632, 215 (2006).
- [26] C. Q. Geng and Y. K. Hsiao, Phys. Rev. D 85, 017501 (2012).
- [27] T. D. Lee, Particle physics and introduction to field theory, Contemp. Concepts Phys. 1, 1 (1981).
- [28] C. Aubin et al., Phys. Rev. Lett. 95, 122002 (2005).
- [29] H. Na, C. J. Monahan, C. T. H. Davies, R. Horgan, G. Peter Lepage, and J. Shigemitsu, Phys. Rev. D 86, 034506 (2012).
- [30] Y. T. Tsai *et al.* (BELLE Collaboration), Phys. Rev. D 75, 111101 (2007).
- [31] C. Q. Geng and Y. K. Hsiao, Phys. Lett. B 704, 495 (2011);
 Phys. Rev. D 85, 094019 (2012).
- [32] K. J. Tien *et al.* (Belle Collaboration), Phys. Rev. D 89, 011101 (2014).
- [33] C. K. Chua, Phys. Rev. D 89, 056003 (2014).