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The light hadron states are satisfactorily described in the quark model using SUð3Þ flavor symmetry. If
the SUð3Þ flavor symmetry relating the light hadrons were exact, one would have an exchange symmetry
between these hadrons arising out of the exchange of the up, down and strange quarks. This aspect of
SUð3Þ symmetry is used extensively to relate many decay modes of heavy quarks. However, the nature
of the effects of SUð3Þ breaking in such decays is not well understood, and hence a reliable estimate of
SUð3Þ breaking effects is missing. In this work we propose a new method to quantitatively estimate
the extent of flavor symmetry breaking and better understand the nature of such breaking using the
Dalitz plot. We study the three noncommuting SUð2Þ symmetries [subsumed in SUð3Þ flavor
symmetry], isospin (or T-spin), U-spin and V-spin, using the Dalitz plots of some three-body meson
decays. We look at the Dalitz plot distributions of decays in which pairs of the final three particles are
related by two distinct SUð2Þ symmetries. We show that such decay modes have characteristic
distributions that enable the measurement of violation of each of the three SUð2Þ symmetries via Dalitz
plot asymmetries in a single decay mode. Experimental estimates of these easily measurable asymmetries
would help in better understanding the weak decays of heavy mesons into both two and three
light mesons.
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I. INTRODUCTION

A satisfactory understanding of the light hadronic states
using SUð3Þ flavor symmetry is one of the outstanding
success stories of particle physics [1–5]. In its true essence,
the SUð3Þ flavor symmetry denotes the full exchange
symmetry among the up (u), down (d) and strange (s)
quarks. Another implication of SUð3Þ flavor symmetry, if it
were an exact symmetry, is that the mesons formed by
combining the quarks u, d, s and the antiquarks ū, d̄, s̄
belonging to the same representation of SUð3Þ would also
be degenerate. One treats the three quarks on the same
footing even though the quark masses differ by allowing for
a breaking of the symmetry. The success of the Gell-Mann–
Okubo mass formula in relating the hadron masses is that it
takes the small SUð3Þ breaking into account but does not
depend on the details of SUð3Þ breaking effects. Such
SUð3Þ breaking effects cannot be calculated and must be
estimated using experimental inputs. Traditionally, the
mass differences between these mesons have been used
as a measure of the extent of the breaking of SUð3Þ flavor
symmetry. The masses of these mesons, which are bound
states of quark-antiquark pairs, depend on their binding
energies. It is not possible to estimate these binding
energies from QCD calculations since these resonances
lie in the nonrelativistic low-energy regime. Moreover, the
electromagnetic interactions between the quark and the
antiquark in the meson also contribute toward its binding
energy. Thus, by measuring the mass differences among the

mesons, one does not fully solicit the breaking of SUð3Þ
flavor symmetry. Another usual way to explore the break-
ing SUð3Þ flavor symmetry is to look at specific loop
diagrams where the down and strange quarks contribute.
The loop effects affect the amplitude of the process under
consideration, and its physical manifestations are then
studied for a quantitative estimation of the breaking of
SUð3Þ flavor symmetry. Since the up quark has a different
electric charge than down and strange, it cannot be treated
in the same way in these studies of loop contributions.
Therefore, such a method also fails to probe the full
exchange symmetry of these three light quarks. Hence,
all estimates of SUð3Þ breaking are currently empirical.
Several studies exist in the literature that have used

broken SUð3Þ flavor symmetry (i) in various decay modes
using the methods of amplitudes (usually isospin and
U-spin amplitudes) and various quark diagrams [6–52]
and (ii) in determinations of weak phases and CP violating
phases [53–64]. These methods involve comparison of
observables in distinct decay modes which are related by
some underlying SUð2Þ symmetries, such as isospin,
U-spin or V-spin. However, the full exchange symmetry
among the three light quarks has not yet been fully
exploited, in a single decay mode. Hadronic weak decays
involve several unknown parameters which can be reduced
by the use of SUð3Þ flavor symmetry. Since SUð3Þ flavor
symmetry is still extensively used to relate the few decay
modes of heavy quarks, it is important to realize other ways
to experimentally measure the breaking of SUð3Þ flavor
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symmetry and understand better the complete nature of
SUð3Þ breaking. In this paper we propose a method to
achieve precisely this by looking at asymmetries in the
Dalitz plot under exchange of the mesons in the final state.
These asymmetries can be measured in different regions of
the Dalitz plot. In particular these asymmetries can be
measured both along resonances and in the nonresonant
regions. A quantitative estimate of the variation of these
asymmetries obtained experimentally would provide valu-
able understanding of SUð3Þ breaking effects. It would also
be interesting to find regions of the Dalitz plots where
SUð3Þ is a good symmetry. The SUð3Þ flavor symmetry
subsumes three important and noncommuting SUð2Þ sym-
metries: isospin (or T-spin), U-spin and V-spin. All the
members of a SUð3Þmultiplet are related to one another by
combined operations of the raising and lowering operators
of these individual SUð2Þ symmetries. In this paper we
restrict ourselves to the breaking of these SUð2Þ sym-
metries in combinations.
We shall work with the three-body decays of the type

P → M1M2M3, where P can be either a B or a D meson
and the final particlesM1,M2 andM3 are distinct members
of the lightest pseudoscalar SUð3Þ multiplet (see Fig. 1).
Our approach toward experimental estimation of breaking
of SUð3Þ flavor symmetry primarily looks for violations of
two constituent SUð2Þ symmetries. Therefore, our final
state would have a pair of particles in one SUð2Þ multiplet
and another pair belonging to a different SUð2Þmultiplet. If
the SUð2Þ symmetry is assumed to be exact, the pairs of
final state particles that are members of the SUð2Þmultiplet
are identical bosons in the symmetry limit and must be

totally symmetric under exchange. This implies that if the
wave function is symmetric under SUð2Þ exchange it must
be even under space exchange, whereas if it is antisym-
metric in SUð2Þ, it must be odd under space exchange, too.
We shall explicitly explore this exchange symmetry to
deduce some simple relations that predict a pattern in the
distribution of events in the concerned Dalitz plot. Any
deviation from this predicted Dalitz plot distribution would,
therefore, constitute a test of the breaking of SUð3Þ flavor
symmetry. Dalitz plots have previously been used in
Refs. [65–67] to extract weak decay amplitudes and to
study CP, CPT and Bose symmetry violations. Here we
use the Dalitz plot to look for breaking of SUð3Þ flavor
symmetry in a single decay mode.
We start Sec. II by explaining briefly in Sec. II A the kind

of Dalitz plot we shall use to elucidate our method and also
set up the notation to be followed thenceforth. We shall
then illustrate the method in full detail in Sec. II B by
considering the decay mode Bþ → K0π0πþ which tests
both isospin and U-spin simultaneously. We show in detail
how the exchange π0 ↔ πþ under isospin and K0 ↔ π0

under U-spin results in a characteristic distribution of
events in the Dalitz plot if both isospin and U-spin are
exact symmetries. The method can equally well be applied
to the decay mode Dþ

s → K0π0πþ. We then show how
G-parity generalized to the V-spin further influences the
distribution of events in the Dalitz plot. The definition of
G-parity and its generalization to the U-spin and V-spin are
discussed in Appendix A for ready reference. We provide
Dalitz plot asymmetries which can then be easily used to
make a quantitative estimate of the breaking of SUð3Þ
flavor symmetry. Then, we sketch out the necessary steps
for handling cases of both isospin and V-spin violation (in
Sec. II C) as well as both U-spin and V-spin violation (in
Sec. II D) by considering the decay modes B0

d or B̄0
s →

Kþπ0π− and Bþ orDþ → Kþπ0K̄0, respectively. Finally in
Sec. II E, we sketch out how our method can be applied to a
decay mode Dþ → πþπ0K̄0 where each pair of particles in
the final state can be directly related by one of the three
SUð2Þ symmetries, namely isospin, U-spin and V-spin. We
point out how the Dalitz plot distribution for this mode
differs from the ones considered in the earlier subsections.
Finally, we conclude in Sec. III, emphasizing the salient
features of our method.

II. METHOD

A. General considerations

The method described in this paper relies on the
simultaneous application of two of the SUð2Þ symmetries
subsumed in SUð3Þ, i.e. isospin (or T-spin), U-spin or
V-spin, to a three body decay P → M1M2M3, where M1,
M2 and M3 are chosen such that M1 and M2 belong to the
triplet of one of the SUð2Þ subgroups and M2 and M3

belong to another. To be definiteM2 is always chosen to be

FIG. 1 (color online). The SUð3Þ meson octet of light pseu-
doscalar mesons. Here the horizontal axis shows the eigenvalues
of isospin (T3), and the vertical axis shows the eigenvalues of
hypercharge (Y ¼ Bþ S, with B being baryon number and S
being the strangeness number). The dotted lines parallel to the
U-spin (or isospin) axis signify that in no two-body decays of B
or D meson can the two connected mesons appear together in the
final state as that would violate conservation of electric charge (or
strangeness by two units).
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the π0, and the modes we consider are listed in Table I.
Under the limit of exact SUð2Þ, all the mesons belonging to
the triplet are identical bosons and must exhibit an overall
Bose symmetry under exchange. This behavior must also
be reflected in the Dalitz plot for the decay. We can
construct a Dalitz plot out of the Mandelstam-like variables
s, t and u. Let us denote the 4-momenta of particles P and
Mi (where i ∈ f1; 2; 3g) by p and pi and their masses bym
and mi, respectively. The variables s; t; u are defined in
terms of the 4-momenta as follows:

s ¼ ðp − p1Þ2 ¼ ðp2 þ p3Þ2;
t ¼ ðp − p2Þ2 ¼ ðp1 þ p3Þ2;
u ¼ ðp − p3Þ2 ¼ ðp1 þ p2Þ2: ð1Þ

It is easy to observe that ðm2þm3Þ2 ≤ s≤ ðm−m1Þ2,
ðm1 þm3Þ2 ≤ t ≤ ðm−m2Þ2, ðm1þm2Þ2 ≤ u ≤ ðm−m3Þ2
and sþ tþ u ¼ m2 þm2

1 þm2
2 þm2

3 ¼ M2 (say).
To give equal weight to s; t and u, we shall work with

a ternary plot of which s; t; u form the three axes. This
leads to an equilateral triangle as shown in Fig. 2. When
the final particles are ultrarelativistic, the full interior
of the equilateral triangle tends to get occupied. In any
case the Dalitz plot under our consideration would always
lie inside the equilateral triangle. The physically allowed
region is schematically shown in Fig. 2 by the yellow
colored region inside the equilateral triangle. The boun-
dary of the Dalitz plot for a three-body decay process
under consideration would not look symmetric under the
exchanges s ↔ t ↔ u due to the breaking of flavor SUð3Þ
symmetry on account of masses m1, m2 and m3 being
different. Any event inside the Dalitz plot, as illustrated in
Fig. 2, can be specified by its radial distance (r) from the
center of the equilateral triangle and the angle subtended
by its position vector with any of the three axes s; t or u.
The angle subtended by the position vector with the s axis
is denoted by θ, the one with the u axis is denoted by θ0,

and the one with the t-axis is denoted by θ00. An event
described by some values of s, t and u corresponds to
some values of r and θ as calculable from the relations
given below:

TABLE I. We look at decays with the final statesM1M2M3 given as in the table here. The particleM2, which is always π0, being at the
center of the pseudoscalar meson octet belongs to all the three SUð2Þ symmetries under consideration. The states are denoted with
subscripts for clarity; e.g. the state jU ¼ 1; U3 ¼ þ1i is denoted as j1;þ1iU. Modes with conjugate final states can as well be studied in
a similar manner. The primed states such as j10;�1i arise from the j0; 0i component of π0 under U-spin and V-spin considerations as
discussed in the text. The last mode in the table with final state πþπ0K̄0 has another exchange symmetry, namely exchange of πþ and K̄0

under V-spin. Thus, jπþK̄0i ¼ 1ffiffi
2

p ðj1; 0iV þ j0; 0iVÞ under V-spin.

Final state Kind of SUð2Þ exchange Expression for the state

M1 M2 M3 M1 ↔ M2 M2 ↔ M3 jM1M2i jM2M3i
K0 π0 πþ U-spin Isospin 1

2
ffiffi
2

p ðj2;þ1iU þ j1;þ1iUÞ −
ffiffi
3

p
2
j10;þ1iU − 1ffiffi

2
p ðj2;þ1iI − j1;þ1iIÞ

Kþ π0 π− V-spin Isospin − 1

2
ffiffi
2

p ðj2;þ1iV þ j1;þ1iVÞ þ
ffiffi
3

p
2
j10;þ1iV 1ffiffi

2
p ðj2;−1iI þ j1;−1iIÞ

Kþ π0 K̄0 V-spin U-spin − 1

2
ffiffi
2

p ðj2;þ1iV þ j1;þ1iVÞ þ
ffiffi
3

p
2
j10;þ1iV 1

2
ffiffi
2

p ðj2;−1iU þ j1;−1iUÞ −
ffiffi
3

p
2
j10;−1iU

πþ π0 K̄0 Isospin U-spin − 1ffiffi
2

p ðj2;þ1iI þ j1;þ1iIÞ − 1

2
ffiffi
2

p ðj2;−1iU þ j1;−1iUÞ þ
ffiffi
3

p
2
j10;−1iU

FIG. 2 (color online). A hypothetical Dalitz plot for the decay
P → M1M2M3, where the variables s; t; u are defined in Eq. (1).
The three sides of the equilateral triangle are given by s ¼ 0,
t ¼ 0 and u ¼ 0. The three vertices A, B and C correspond to
s ¼ M2, u ¼ M2 and t ¼ M2, respectively. The three medians
divide the interior of the equilateral triangle into six regions of
equal area. These six sextants are denoted by I; II; III; IV; V and
VI. The three vertices A; B and C of the equilateral triangle
have rectangular coordinates A ¼ ð0; 2Þ, B ¼ ð− ffiffiffi

3
p

;−1Þ and
C ¼ ð ffiffiffi

3
p

;−1Þ. This rectangular coordinate system has its origin
at the center of the equilateral triangle, and the y axis is along the
s axis as shown here. The angles θ, θ0 and θ00 are defined in the
text. The blobs with M1, M2 and M3 serve as mnemonic to
suggest that the exchanges s ↔ t ↔ u are equivalent to the
particle exchanges M1 ↔ M2 ↔ M3, respectively. The physi-
cally allowed region is always inside the equilateral triangle as
shown, schematically, by the yellow colored region.

MODEL INDEPENDENT METHOD FOR A QUANTITATIVE … PHYSICAL REVIEW D 91, 076013 (2015)

076013-3



s ¼ M2

3
ð1þ r cos θÞ; ð2Þ

t ¼ M2

3

�
1þ r cos

�
2π

3
þ θ

��
; ð3Þ

u ¼ M2

3

�
1þ r cos

�
2π

3
− θ

��
: ð4Þ

One can easily change the basis from ðr; θÞ to either ðr; θ0Þ
or ðr; θ00Þ by noting the fact that θ ¼ θ0 þ 2π

3
and θ ¼

θ00 þ 4π
3
(see Fig. 2).

Before we analyze the specific decay modes, we would
like to point out a few simple facts about the neutral pion,
which plays a pivotal role in all our decays. The neutral
pion is a pure isotriplet state j1; 0iI ≡ 1ffiffi

2
p ðdd̄ − uūÞ:

jπ0i ¼ −j1; 0iI: ð5Þ

But in case of U-spin, it is a linear combination of the
U-spin triplet state j1; 0iU ≡ 1ffiffi

2
p ðss̄ − dd̄Þ and the U-spin

singlet but SUð3Þ octet state j0;0iU;8≡ 1ffiffi
6

p ðdd̄þss̄−2uūÞ:

jπ0i ¼ 1

2
j1; 0iU −

ffiffiffi
3

p

2
j0; 0iU;8: ð6Þ

Similarly in case of V-spin, π0 is given by a linear
combination of the V-spin triplet state j1; 0iV ≡
1ffiffi
2

p ðss̄ − uūÞ and the V-spin singlet but SUð3Þ octet state

j0; 0iV;8 ≡ 1ffiffi
6

p ðuūþ ss̄ − 2dd̄Þ:

jπ0i ¼ −
1

2
j1; 0iV þ

ffiffiffi
3

p

2
j0; 0iV;8: ð7Þ

We have put subscripts I; U and V in the states to indicate
that they are written in isospin, U-spin and V-spin bases,
respectively.

B. Decay mode with final state K0π0πþ

We begin by considering as an example the decay mode
Bþ → K0π0πþ. We will see that the application of both the
isospin and U-spin results in unique tests of the validity of
both these constituent symmetries of SUð3Þ. The π0 and πþ
in the final state are identical under isospin, and the final
state must be totally symmetric under exchange. Under
U-spin (see Fig. 1), the K0 and π0 can be considered as
identical bosons and must similarly be totally symmetric
under exchange. This ensures the following exchanges in
the Dalitz plot:

U-spin exchange≡ K0 ↔ π0 ⇒ s ↔ t;

isospin exchange≡ π0 ↔ πþ ⇒ t ↔ u:

Under exactU-spin and isospin, the final state K0π0πþ has,
therefore, the following two possibilities:
(1) K0π0 would exist in either a symmetrical or antisym-

metrical state with respect to their exchange in space.
(2) π0πþ would exist in either a symmetrical or antisym-

metrical state with respect to their exchange in space.
The amplitude for this decay would then be described by

four independent functions defined by their symmetry and
antisymmetry properties as enunciated below:
(1) ASSðs; t; uÞ which is symmetric under both s ↔ t

and t ↔ u, or
(2) AAAðs; t; uÞ which is antisymmetric under both s ↔

t and t ↔ u, or
(3) ASAðs; t; uÞ which is symmetric under s ↔ t and

anti-symmetric under t ↔ u, or
(4) AASðs; t; uÞwhich is antisymmetric under s ↔ t and

symmetric under t ↔ u.
We now analyze each of the possible amplitude functions

in the most general manner. We start by ASSðs; t; uÞ, which
is a function symmetric under both s ↔ t and t ↔ u, to
show that ASSðs; t; uÞ must also be symmetric under
s ↔ u:

ASSðs; t; uÞ ¼s↔tASSðt; s; uÞ ¼t↔uASSðu; s; tÞ
¼s↔tASSðu; t; sÞ:

Since we have shown that ASSðs; t; uÞ ¼ ASSðu; t; sÞ, we
have demonstrated thatASSðs; t; uÞ is also symmetric under
s ↔ u. Hence, we conclude that ASSðs; t; uÞ is a fully
symmetric amplitude function. Let us next consider
AAAðs; t; uÞ which is a function antisymmetric under both
s ↔ t and t ↔ u, to show that it is also antisymmetric
under s ↔ u:

AAAðs; t; uÞ ¼s↔t −AAAðt; s; uÞ ¼t↔u þAAAðu; s; tÞ
¼s↔t −AAAðu; t; sÞ:

Since AAAðs; t; uÞ ¼ −AAAðu; t; sÞ we require that
AAAðs; t; uÞ must also be antisymmetric under s ↔ u.
Hence, we conclude that AAAðs; t; uÞ is a fully antisym-
metric amplitude function. Following the same arguments
as above, it is easy to conclude that both ASAðs; t; uÞ and
AASðs; t; uÞ must be identically zero. The details are as
follows. The function ASAðs; t; uÞ which is symmetric
under s ↔ t and anti-symmetric under t ↔ u must satisfy

ASAðs; t; uÞ ¼s↔tASAðt; s; uÞ ¼t↔u −ASAðu; s; tÞ
¼s↔t −ASAðu; t; sÞ ¼t↔u þASAðt; u; sÞ
¼s↔t þASAðs; u; tÞ ¼t↔u −ASAðs; t; uÞ ¼ 0:

Similarly, AASðs; t; uÞ being a function antisymmetric
under s ↔ t and symmetric under t ↔ u satisfies
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AASðs; t; uÞ ¼s↔t −AASðt; s; uÞ ¼t↔u −AASðu; s; tÞ
¼s↔t þAASðu; t; sÞ ¼t↔u þAASðt; u; sÞ
¼s↔t −AASðs; u; tÞ ¼t↔u −AASðs; t; uÞ ¼ 0:

We have shown that both ASAðs; t; uÞ ¼ 0 and
ASAðs; t; uÞ ¼ 0, which implies that these amplitudes never
contribute to the distribution of events on the Dalitz plot.
Since the function describing the distribution of events in
the Dalitz plot is proportional to the amplitude mod-square,
it also has only two parts, one which is fully symmetric
under s ↔ t ↔ u and another which is fully antisymmetric
under s ↔ t ↔ u.
We now examine the decay mode Bþ → K0π0πþ in

detail, by writing down the decay amplitude in terms of
isospin and U-spin amplitudes, eventually obtaining the
same conclusion as above about the distribution of events in
the Dalitz plot under consideration. The π0πþ combination
can exist in isospin states j2;þ1iI and j1;þ1iI (see
Table I). If isospin were an exact symmetry, the state
jπ0πþi would remain unchanged under π0 ↔ πþ
exchange. This puts the j2;þ1iI state in a space symmetric
(even partial wave) state and the j1;þ1iI state in a space
antisymmetric (odd partial wave) state. The isospin decom-
position of the final state jK0π0πþi is given by

jK0π0πþi ¼ −
1ffiffiffi
5

p
����52 ;þ

1

2

�
e

I
þ

ffiffiffi
3

p
ffiffiffiffiffi
10

p
����32 ;þ

1

2

�
e

I

þ 1ffiffiffi
6

p
����32 ;þ

1

2

�
o

I
−

1ffiffiffi
3

p
����12 ;þ

1

2

�
o

I
; ð8Þ

where the superscripts e and o denote the even and odd
natures of the state under the exchange π0 ↔ πþ. The sign
change in the odd states above is due to the odd j1;þ1iI
isospin component of the jπ0πþi state switching sign under
π0 ↔ πþ exchange, whereas the j2;þ1iI is even under the
same exchange. Since Bþ has isospin state j1

2
;þ 1

2
iI , and

only ΔI ¼ 0; 1 currents are allowed by the Hamiltonian in
the standard model, we would have no contributions from
the j5

2
;þ 1

2
iI state. The j3

2
;þ 1

2
iI state can arise from both

j1
2
;− 1

2
iI ⊗ j2;þ1iI and j1

2
;− 1

2
iI ⊗ j1;þ1iI , with the first

contribution being symmetric and the later being antisym-
metric. The state j1

2
;þ 1

2
iI on the other hand is purely

antisymmetric. Even though we shall work with the
standard model Hamiltonian, our conclusions are general
and are valid even when more general Hamiltonians exist.
The isospin I ¼ 1

2
initial state decays to a final state that

can be decomposed into either I ¼ 1
2
or I ¼ 3

2
states via a

Hamiltonian that allows ΔI ¼ 0 or ΔI ¼ 1 transitions. The
transition with ΔI ¼ 1 results in two amplitudes with I ¼ 1

2

or I ¼ 3
2
represented as T1;1

2
and T1;3

2
, respectively, whereas

the ΔI ¼ 0 transition results only in a single amplitude

with final state I ¼ 1
2
labeled as T0;1

2
. The isospin amplitudes

T1;1
2
, T1;3

2
and T0;1

2
are defined [16] in terms of the

Hamiltonian to be

T1;3
2
¼

ffiffiffi
1

3

r �
3

2
;� 1

2

����HΔI¼1

����12 ;�
1

2

�
;

T1;1
2
¼ �

ffiffiffi
2

3

r �
1

2
;� 1

2

����HΔI¼1

����12 ;�
1

2

�
;

T0;1
2
¼

ffiffiffi
2

3

r �
1

2
;� 1

2

����HΔI¼0

����12 ;�
1

2

�
: ð9Þ

The amplitude for the decay Bþ → K0π0πþ can then be
written in terms of the isospin amplitudes as

AðBþ → K0π0πþÞ ¼ 3ffiffiffiffiffi
10

p Te
1;3

2

X

−
1ffiffiffi
2

p
�
To
1;3

2

þ To
1;1

2

þ To
0;1

2

�
Y sin θ;

ð10Þ

where X and Y sin θ are introduced to take care of the
spatial and kinematic contributions as is seen from the
discussion above [see Eqs. (3) and (4)]. In general, X and Y
can be arbitrary functions of r and cos θ. The functions X
and Y are in general mode dependent; however, they are the
same for modes related by isospin symmetry. We retain the
subscripts e and o merely to track the even or odd isospin
state of the two pions in the three-body final state.
On the other hand, if U-spin were an exact symmetry,

the state K0π0 must remain unchanged under K0 ↔ π0

exchange. Under U-spin the K0π0 state can exist in
j2;þ1iU and j1;þ1iU (see Table I), out of which
j1;þ1iU has a contribution from the j0; 0iU;8 admixture
in π0 which is denoted by j10;þ1iU. Both j2;þ1iU and the
j1;þ1iU coming from the j0; 0iU;8 contribution of π0 exist
in space symmetric (even partial wave) states, and that part
of j1;þ1iU arising out of the j1; 0iU part of π0 exists in a
space antisymmetric (odd partial wave) state. The U-spin
decomposition of the final state jK0π0πþi is given by

jK0π0πþi ¼ −
1

2
ffiffiffi
5

p
����52 ;þ

1

2

�
e

U
−

ffiffiffi
3

p

2
ffiffiffiffiffi
10

p
����32 ;þ

1

2

�
e

U

−
1

2
ffiffiffi
6

p
����32 ;þ

1

2

�
o

U
−

1

2
ffiffiffi
3

p
����12 ;þ

1

2

�
o

U

þ 1

2

����3
0

2
;þ 1

2

�
e

U
þ 1ffiffiffi

2
p

����1
0

2
;þ 1

2

�
e

U
; ð11Þ

where the superscripts e and o denote that the state is even
or odd under the exchange K0 ↔ π0. The origin of the sign
change in the odd terms above is easy to understand from
the U-spin decomposition of the jK0π0i state,
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jK0π0i ¼ 1

2
ffiffiffi
2

p ðj2;þ1iU þ j1;þ1iUÞ −
ffiffiffi
3

p

2
j10;þ1iU;

which transforms as follows under the K0 ↔ π0 exchange:

jπ0K0i ¼ 1

2
ffiffiffi
2

p ðj2;þ1iU − j1;þ1iUÞ −
ffiffiffi
3

p

2
j10;þ1iU:

We recollect that j1;þ1iU is an odd state under K0 ↔ π0

exchange, whereas j2;þ1iU and j10;þ1iU are even states
under the same exchange. It is easy to see that j5

2
;þ 1

2
iU and

j3
2
;þ 1

2
iU states do not contribute since the parent particle

Bþ is a U-spin singlet, and only the ΔU ¼ 1
2
current

contributes to the decay. This unique feature follows from
the fact that the electroweak penguin does not violate U-
spin as d and s quarks carry the same electric charge (see
Ref. [34]). Hence, only the j 1

2
; 1
2
iU and j 10

2
; 1
2
iU can

contribute to the decay amplitude, and they correspond
to antisymmetric and symmetric contributions under
K0 ↔ π0, respectively. The U-spin amplitudes

U1
2
;1
2
¼ �

ffiffiffi
2

3

r �
1

2
;� 1

2

����HΔU¼1
2

����0; 0
�
;

U0
1
2
;1
2

¼
ffiffiffi
1

3

r �
10

2
;� 1

2

����HΔU¼1
2

����0; 0
�
: ð12Þ

Hence, the amplitude for the decay Bþ → K0π0πþ can then
be written in terms of the U-spin amplitudes as

AðBþ → K0π0πþÞ ¼ 3ffiffiffiffiffi
10

p U0e
1
2
;1
2

X0 þ Uo
1
2
;1
2

Y 0 sin θ0; ð13Þ

where X0 and Y 0 are functions that are, in general, arbitrary
functions of r and cos θ0 and are introduced to take care of
spatial and kinematic contributions to the decay amplitude.
The subscripts e and o are again retained to merely track the
even or odd U-spin state of K0 and π0 in the three-body
final state. As argued earlier the amplitude for the decay has
two parts, one fully symmetric under the exchanges s ↔
t ↔ u [i.e. ASSðs; t; uÞ] and another fully antisymmetric
under the same exchanges [i.e. AAAðs; t; uÞ]. Comparing
Eqs. (10) and (13), we obtain

ASS ¼
3ffiffiffiffiffi
10

p Te
1;3

2

X ¼ 3ffiffiffiffiffi
10

p U0e
1
2
;1
2

X0 ð14Þ

AAA ¼ −
1ffiffiffi
2

p ðTo
1;3

2

þ To
1;1

2

þ To
0;1

2

ÞY sin θ

¼ Uo
1
2
;1
2

Y 0 sin θ0: ð15Þ

The exchange s ↔ t ↔ u being equivalent to θ ↔ θ0 ↔
θ00 implies that the fully antisymmetric amplitude
AAAðs; t; uÞ must be proportional to sin 3θ because

sin 3θ ¼ sin 3θ0 ¼ sin 3θ00 as θ ¼ θ0 þ 2π
3
¼ θ00 þ 4π

3
. From

elementary trigonometry we know that sin3θ¼
sinθð4cos2θ−1Þ. This implies that the factor ð4cos2θ−1Þ
is an even function of cos θ and is a part of both Y
and Y 0 in Eq. (15); i.e. Y ¼ yð4 cos2 θ − 1Þ and Y 0 ¼
y0ð4 cos2 θ0 − 1Þ for some y and y0 such that

AAA ¼ −
1ffiffiffi
2

p ðTo
1;3

2

þ To
1;1

2

þ To
0;1

2

Þy sin 3θ

¼ Uo
1
2
;1
2

y0 sin 3θ0: ð16Þ

The Dalitz plot can be divided into six sextants by means
of the s, t and u axes which go along the medians of an
equilateral triangle as shown in Figs. 2 and 3. Since the
Dalitz plot distribution function is proportional to the
amplitude mod-square, it would also have a part which
is fully symmetric under s ↔ t ↔ u [denoted by
fSSðs; t; uÞ] and another part which is fully antisymmetric
under the same exchanges [denoted by fAAðs; t; uÞ]:

fSSðs; t; uÞ ∝ jASSðs; t; uÞj2 þ jAAAðs; t; uÞj2; ð17Þ

fAAðs; t; uÞ ∝ 2ReðASSðs; t; uÞ ·A�
AAðs; t; uÞÞ: ð18Þ

Let us denote the function describing distribution of events
in any sextant, say the ith one, of the Dalitz plot by fiðr; θÞ,
where the coordinates ðr; θÞ lie in the sextant i and we
could have as well used the other equivalent choices θ0 or
θ00 instead of θ, the choice of which is subject to the
underlying symmetry being considered (see Fig. 3).
Henceforth, we shall drop ðr; θÞ from the distribution
functions, except when necessary, as we implicitly assume
the r and θ dependence in them. The distribution function
must have only two parts as said above, the fully symmetric
and the fully antisymmetric parts. Let us assume that in
sextant I the Dalitz plot distribution is given by the function

FIG. 3. Exchanges that take us from one sextant to another
in the Dalitz plot. It must be noted that the following exchanges
are also equivalent: s ↔ t ↔ u≡ θ ↔ θ0 ↔ θ00 as well as
t ↔ u≡ θ ↔ −θ, s ↔ t≡ θ0 ↔ −θ0 and u ↔ s≡ θ00 ↔ −θ00.
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fI ¼ fSSðs; t; uÞ þ fAAðs; t; uÞ: ð19Þ
It is then trivial to see that the Dalitz plot distributions in the
even numbered sextants should be identical to one another,
and the odd numbered sextants would also be identically
populated, because

fI ¼ fIII ¼ fV ¼ fSSðs; t; uÞ þ fAAðs; t; uÞ; ð20Þ
fII ¼ fIV ¼ fVI ¼ fSSðs; t; uÞ − fAAðs; t; uÞ: ð21Þ

This is the signature of exact SUð3Þ flavor symmetry in the
Dalitz plots under our consideration. Any deviation from
this conclusion would constitute an observable evidence for
violation of the SUð3Þ flavor symmetry.
Until now the exchange properties of K0 ↔ π0 under

U-spin and π0 ↔ πþ under isospin have been used to
obtain the even and odd amplitudes contributing to
Bþ → K0π0πþ. Since K0 and πþ belong to different
multiplets of V-spin, in order to consider the symmetry
properties under K0 ↔ πþ, one needs to define the
G-parity analog of the V-spin, denoted by GV and defined
in Appendix A. Since charge conjugation is a good
symmetry in strong interaction, GV is as good as the
V-spin itself. The state jK0πþi is composed of states which
are even and odd under GV-parity,

jK0πþi ¼ 1

2
ðjK0πþie þ jK0πþioÞ;

where

jK0πþie ¼ jK0πþi − jπþK0i;
jK0πþio ¼ jK0πþi þ jπþK0i;

and

GV jK0πþie ¼ þjK0πþie;
GV jK0πþio ¼ −jK0πþio:

We have already proven that the amplitudes for the decay
Bþ → K0π0πþ have two parts, one even and the other odd
under the exchange of any two particles in the final state.
Hence, ASS is odd under GV, and AAA is even under GV.
Since the two GV-parity amplitudes do not interfere, the
two amplitudes ASS and AAA do not interfere in the Dalitz
plot distribution resulting in fAA being zero [Eq. (18)].
Therefore, if GV is a good symmetry of nature, it is
interesting to conclude that the Dalitz plot is completely
symmetric under s ↔ t ↔ u. This implies that

fI ¼ fII ¼ fIII ¼ fIV ¼ fV ¼ fVI ≡ fSSðs; t; uÞ: ð22Þ
This expression holds only if isospin, U-spin and V-spin
are all exact symmetries. However, if GV is broken, the
Dalitz plot distribution will still follow Eqs. (20) and (21)
when the isospin and U-spin are exact symmetries. In the

case when GV is exact, the exchange properties of the
distribution functions fI to fVI imply that, (a) if U-spin is
an exact symmetry, then fII ¼ fIII , fI ¼ fIV and fV ¼ fVI
irrespective of the validity of isospin symmetry and, (b) if
isospin is an exact symmetry, then fII ¼ fV , fI ¼ fVI and
fIII ¼ fIV irrespective of the validity of the U-spin
symmetry. However, when both GV and either the isospin
or U-spin is broken, then Eqs. (20) and (21) are no longer
valid. In such a case, we have the following possibilities:

(i) Test for isospin symmetry: By isospin symmetry, the
sextants I; II; III get mapped to the sextants
VI; V; IV, respectively. We note that, when isospin
is not broken, then

fI þ fVI ¼ fIII þ fIV ¼ fV þ fII ¼ 2fSSðs; t; uÞ;
ð23Þ

fI − fVI ¼ fIII − fIV ¼ fV − fII ¼ 2fAAðs; t; uÞ:
ð24Þ

However, when isospin is broken, the values of fSS
and fAA extracted from sextants I and VI need not be
same as those extracted from either II and V or III
and IV. For further clarification of this statement, we
introduce two quantities Σi

j and Δi
j defined as

Σi
jðr; θÞ ¼ fi þ fj; ð25Þ

Δi
jðr; θÞ ¼ fi − fj; ð26Þ

where i and j are two sextants and i ≠ j. For
conciseness of expressions, we shall also drop the
explicit ðr; θÞ dependence of Σi

j and Δi
j. In terms of

these quantities, the signature of isospin breaking
can be succinctly summarized by the inequalities

ΣI
VI ≠ ΣIII

IV ≠ ΣV
II; ð27Þ

ΔI
VI ≠ ΔIII

IV ≠ ΔV
II: ð28Þ

An asymmetry can now be constructed to measure
the isospin breaking as follows:

AIsospin ¼
���� Σ

I
VI − ΣIII

IV

ΣI
VI þ ΣIII

IV

����þ
���� Σ

III
IV − ΣV

II

ΣIII
IV þ ΣV

II

����þ
���� Σ

V
II − ΣI

VI

ΣV
II þ ΣI

VI

����
þ
����Δ

I
VI − ΔIII

IV

ΔI
VI þ ΔIII

IV

����þ
����Δ

III
IV − ΔV

II

ΔIII
IV þ ΔV

II

����
þ
����Δ

V
II − ΔI

VI

ΔV
II þ ΔI

VI

����: ð29Þ

(ii) Test for U-spin symmetry: By U-spin symmetry,
the sextants VI; I; II get mapped to the sextants
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V; IV; III, respectively. We note that, when U-spin
is not broken, then

ΣI
IV ¼ ΣIII

II ¼ ΣV
VI ¼ 2fSSðs; t; uÞ; ð30Þ

ΔI
IV ¼ ΔIII

II ¼ ΔV
VI ¼ 2fAAðs; t; uÞ: ð31Þ

Here it is profitable to consider the Σ’s andΔ’s being
functions of ðr; θ0Þ as we are considering s ↔ t
exchange which is equivalent to θ0 ↔ −θ0. When the
U-spin is broken,

ΣI
IV ≠ ΣIII

II ≠ ΣV
VI; ð32Þ

ΔI
IV ≠ ΔIII

II ≠ ΔV
VI: ð33Þ

The asymmetry for U-spin breaking is, therefore,
given by

AU-spin ¼
����Σ

I
IV −ΣIII

II

ΣI
IV þΣIII

II

����þ
����Σ

III
II −ΣV

VI

ΣIII
II þΣV

VI

����þ
����Σ

V
VI −ΣI

IV

ΣV
VI þΣI

IV

����
þ
����Δ

I
IV −ΔIII

II

ΔI
IV þΔIII

II

����þ
����Δ

III
II −ΔV

VI

ΔIII
II þΔV

VI

����þ
����Δ

V
VI −ΔI

IV

ΔV
VI þΔI

IV

����:
ð34Þ

(iii) Test for V-spin symmetry: As said before, GV-parity
is as badly broken as the V-spin because charge
conjugation is a good symmetry. When V-spin

symmetry is broken, then GV is also broken, and
the distribution of events in the Dalitz plot sextants
would follow Eqs. (20) and (21). In addition to that,
when V-spin is broken, K0 and πþ need not be even
under exchange. This leads to

ΣV
IV ≠ ΣIII

VI ≠ ΣI
II; ð35Þ

ΔV
IV ≠ ΔIII

VI ≠ ΔI
II: ð36Þ

The asymmetry for V-spin breaking is, therefore,
given by

AV-spin ¼
����Σ

V
IV −ΣI

II

ΣV
IV þΣI

II

����þ
����Σ

I
II −ΣIII

VI

ΣI
II þΣIII

VI

����þ
����Σ

III
VI −ΣV

IV

ΣIII
VI þΣV

IV

����
þ
����Δ

V
IV −ΔI

II

ΔV
IV þΔI

II

����þ
����Δ

I
II −ΔIII

VI

ΔI
II þΔIII

VI

����þ
����Δ

III
VI −ΔV

IV

ΔIII
VI þΔV

IV

����:
ð37Þ

Hence, the extent of the breaking of isospin, U-spin and
V-spin can easily be measured from the Dalitz plot
distribution. The asymmetries measuring isospin, U-spin
and V-spin are functions of r and 3θ≡ 3θ0 ≡ 3θ00 [see the
discussion leading to Eq. (16)]. These asymmetries are,
thus, valid in the full Dalitz plot, including the resonant
contributions, and can be measured in different regions of
the Dalitz plot. In particular these asymmetries can be
measured both along resonances and in the nonresonant

TABLE II. Comparison of decays of Bþ and Dþ
s to the final state K0π0πþ.

Bþ → K0π0πþ

Isospin (initial state j1
2
;þ 1

2
i) U-spin (initial state j0; 0i)

Transition Final state Symmetry Amplitude Transition Final state Symmetry Amplitude

ΔI ¼ 1 j3
2
;þ 1

2
i Mixed 3ffiffiffiffi

10
p Te

1;32
X þ 1ffiffi

2
p To

1;32
Y sin θ ΔU ¼ 1

2
j1
2
;þ 1

2
i Odd − 1

2
ffiffi
2

p Uo
1
2;
3
2

Y 0 sin θ0

ΔI ¼ 1 j1
2
;þ 1

2
i Odd − 1ffiffi

2
p To

1;1
2

Y sin θ ΔU ¼ 1
2
0 j1

2
;þ1

2
0i Even

ffiffi
3

pffiffi
2

p U0e
1
2
;1
2
0X0

ΔI ¼ 0 j1
2
;þ 1

2
i Odd − 1ffiffi

2
p To

0;1
2

Y sin θ

Dþ
s → K0π0πþ

Isospin (initial state j0; 0i) U-spin (initial state j1
2
;þ 1

2
i)

Transition Final state Symmetry Amplitude Transition Final state Symmetry Amplitude

ΔI ¼ 3
2

j3
2
;þ 1

2
i Mixed

ffiffi
3

pffiffiffiffi
10

p Te
3
2
;3
2

X þ 1ffiffi
6

p To
3
2
;3
2

Y sin θ ΔU ¼ 1 j3
2
;þ 1

2
i Mixed − 3

2
ffiffiffiffi
10

p Ue
1;3

2

X0 − 1

2
ffiffi
2

p Uo
1;3

2

Y 0 sin θ0

ΔI ¼ 1
2

j1
2
;þ 1

2
i Odd − 1ffiffi

2
p To

1
2
;1
2

Y sin θ ΔU ¼ 1 j3
2
0;þ 1

2
i Even

ffiffi
3

p
2
U0e

1;3
2
0X0

ΔU ¼ 1 j1
2
;þ 1

2
i Odd − 1

2
ffiffi
2

p Uo
1;1

2

Y 0 sin θ0

ΔU ¼ 1 j1
2
0;þ 1

2
i Even

ffiffi
3

p
2
U0e

1;1
2
0X0

ΔU ¼ 0 j1
2
;þ 1

2
i Odd − 1

2
ffiffi
2

p Uo
0;1

2

Y 0 sin θ0

ΔU ¼ 0 j1
2
0;þ 1

2
i Even

ffiffi
3

p
2
U0e

0;1
2
0X0
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regions. A quantitative estimate of the variation of these
asymmetries obtained experimentally would provide valu-
able understanding of SUð3Þ breaking effects. It would also
be interesting to find regions of the Dalitz plots where
SUð3Þ is a good symmetry. The procedure discussed above
can also be applied to other decay modes with the same
final state. In particular one can study the Dalitz plot dis-
tribution for the decay Dþ

s → K0π0πþ in a similar manner.
The amplitudes for this mode are tabulated in Table. II.

C. Decay mode with final state Kþπ0π−

Let us now consider the decay B0
d or B̄0

s → Kþπ0π− in
which isospin symmetry allows the exchange of π0 and π−

and V-spin symmetry allows exchange of Kþ and π0. This
leads to the following exchanges in the Dalitz plot:

V-spin≡ Kþ ↔ π0 ⇒ s ↔ t;

Isospin≡ π0 ↔ π− ⇒ t ↔ u:

Under exact isospin and V-spin, the final state Kþπ0π− has
the following two possibilities:

(i) Kþπ0 would exist in either a symmetrical or anti-
symmetrical state with respect to their exchange
in space.

(ii) π0π− would exist in either symmetrical or antisym-
metrical state with respect to their exchange in space.

Following the steps as enunciated in Sec. II B, the ampli-
tude for the decay can be shown to have two components,
one which is fully symmetric under exchange of any pair of
final particles and the other which is fully antisymmetric
under the same exchange.
The final state can be expanded in terms of isospin and

V-spin states as follows:
(i) Isospin:

jKþπ0π−i ¼ 1ffiffiffi
5

p
����52 ;−

1

2

�
e

I
þ

ffiffiffiffiffi
3

10

r ����32 ;−
1

2

�
e

I

þ 1ffiffiffi
6

p
����32 ;−

1

2

�
o

I
þ 1ffiffiffi

3
p

����12 ;−
1

2

�
o

I
;

ð38Þ

where the superscripts e and o denote even and odd
behavior of the state under the exchange π0 ↔ π−.

(ii) V-spin:

jKþπ0π−i ¼ 1

2
ffiffiffi
5

p
����52 ;þ

1

2

�
e

V
þ

ffiffiffi
3

p

2
ffiffiffiffiffi
10

p
����32 ;þ

1

2

�
e

V

þ 1

2
ffiffiffi
6

p
����32 ;þ

1

2

�
o

V
þ 1

2
ffiffiffi
3

p
����12 ;þ

1

2

�
o

V

−
1

2

����3
0

2
;þ 1

2

�
e

V
−

1ffiffiffi
2

p
����1

0

2
;þ 1

2

�
e

V
;

where the superscripts e and o denote even and odd
behavior of the state under the exchange Kþ ↔ π0.

The sign changes as can be noticed in the above states arise
from the exchange of particles in the two particle states
given below (as also noted in Table I):

(i) Isospin:

jπ0π−i ¼ 1ffiffiffi
2

p ðj2;−1iI þ j1;−1iIÞ; ð39Þ

jπ−π0i ¼ 1ffiffiffi
2

p ðj2;−1iI − j1;−1iIÞ: ð40Þ

(ii) V-spin:

jKþπ0i ¼ −
1

2
ffiffiffi
2

p ðj2;þ1iV þ j1;þ1iVÞ

þ
ffiffiffi
3

p

2
j10;þ1iV; ð41Þ

jπ0Kþi ¼ −
1

2
ffiffiffi
2

p ðj2;þ1iV − j1;þ1iVÞ

þ
ffiffiffi
3

p

2
j10;þ1iV: ð42Þ

It would be clear from the expressions above that if isospin
were an exact symmetry the j2;−1iI and j1;−1iI states of
jπ−π0i would exist in even and odd partial wave states,
respectively, as was the case in Sec. II B also. On the other
hand, if the V-spin were an exact symmetry, the state
jKþπ0imust remain unchanged under Kþ ↔ π0 exchange.
Under V-spin the jKþπ0i state can exist in j2;þ1iV and
j1;þ1iV , out of which j1;þ1iV has a contribution from the
j0; 0iV;8 admixture in π0, denoted above by j10;þ1iV. Both
the state j2;þ1iV and the state j10;þ1iV exist in space
symmetric (even partial wave) states, and that part of
j1;þ1iV arising out of the j1; 0iV part of π0 exists in a
space antisymmetric (odd partial wave) state.
If we consider the initial state to be B0

d which is the
isospin j1

2
;þ 1

2
iI state but V-spin singlet j0; 0iV state, the

standard model Hamiltonian allows only ΔI ¼ 0; 1 and
ΔV ¼ 1

2
; 3
2
transitions. Therefore, in addition to the isospin

amplitudes of Eq. (9), we can define the following V-spin
amplitudes:

V3
2
;3
2
¼

�
3

2
;� 1

2

����HΔV¼3
2
j0; 0

�
; ð43Þ

V 0
3
2
;3
2

¼
�
3

2

0
;� 1

2

����HΔV¼3
2
j0; 0

�
; ð44Þ

V1
2
;1
2
¼ �

ffiffiffi
2

3

r �
1

2
;� 1

2

����HΔV¼1
2
j0; 0

�
; ð45Þ

V 0
1
2
;1
2

¼
ffiffiffi
1

3

r �
10

2
;� 1

2

����HΔV¼1
2
j0; 0

�
: ð46Þ
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The amplitude for the process B0
d → Kþπ0π− can, there-

fore, be written as

AðB0
d → Kþπ0π−Þ ¼ −

3ffiffiffiffiffi
10

p Te
1;3

2

X

þ 1ffiffiffi
2

p
�
−To

1;1
2

þ To
0;1

2

�
Y sin θ; ð47Þ

AðB0
d → Kþπ0π−Þ ¼

ffiffiffi
3

2

r �
1ffiffiffiffiffi
20

p Ve
3
2
;3
2

−
1ffiffiffi
6

p V 0e
3
2
;3
2
0 − V 0e

1
2
;1
2
0

�
X00

þ 1

2
ffiffiffi
2

p
�

1ffiffiffi
3

p Vo
3
2
;3
2

þ Vo
1
2
;1
2

�
Y 00 sin θ00;

ð48Þ

where X00 and Y 00 are functions that are, in general, arbitrary
functions of r and cos θ00 and are introduced to take care of
spatial and kinematic contributions to the decay amplitude.
As argued before, the part of the amplitude even under
isospin must also be even under the V-spin, and the part
odd under isospin must again be odd under the V-spin:

ASS ¼
3ffiffiffiffiffi
10

p Te
1;3

2

X

¼
ffiffiffi
3

2

r �
1ffiffiffiffiffi
20

p Ve
3
2
;3
2

−
1ffiffiffi
6

p V 0e
3
2
;3
2
0 − V 0e

1
2
;1
2
0

�
X00; ð49Þ

AAA ¼ 1ffiffiffi
2

p
�
−To

1;1
2

þ To
0;1

2

�
Y sin θ

¼ 1

2
ffiffiffi
2

p
�

1ffiffiffi
3

p Vo
3
2
;3
2

þ Vo
1
2
;1
2

�
Y 00 sin θ00: ð50Þ

We can conclude that the Dalitz plot distribution in the
even numbered sextants would be identical to one another,
and those of odd numbered sextants would also be similar.
Any deviation from this would constitute a signature of
simultaneous violations of the isospin and V-spin.
Since Kþ and π− belong to different multiplets of the

U-spin, in order to consider the symmetry properties under
Kþ ↔ π−, one needs to define the G-parity analog of
the U-spin, denoted by GU and defined in Appendix A.
Since charge conjugation is a good symmetry in strong
interaction, GU is as good as the U-spin itself. The state
jKþπ−i is composed of states which are even and odd
under GU-parity,

jKþπ−i ¼ 1

2
ðjKþπ−ie þ jKþπ−ioÞ;

where

jKþπ−ie ¼ jKþπ−i − jπ−Kþi;
jKþπ−io ¼ jKþπ−i þ jπ−Kþi;

and

GUjKþπ−ie ¼ jKþπ−ie;
GUjKþπ−io ¼ −jKþπ−io:

We have already proven that the amplitudes for the decay
B0
d → Kþπ0π− have two parts, one even and the other odd,

under the exchange of any two particles in the final state.
Hence, ASS is odd under GU, and AAA is even under GU.
Since the two GU-parity amplitudes do not interfere the
two amplitudes, ASS and AAA do not interfere in the Dalitz
plot distribution resulting in fAA being zero [Eq. (18)].
Therefore, if GU is a good symmetry of nature, it is
interesting to conclude that the Dalitz plot is completely
symmetric under s ↔ t ↔ u. The Dalitz plot asymmetries
which would be a measure of the extent of the breaking of
the SUð3Þ flavor symmetry are, therefore, given by

AIsospin ¼
���� Σ

I
VI − ΣIII

IV

ΣI
VI þ ΣIII

IV

����þ
���� Σ

III
IV − ΣV

II

ΣIII
IV þ ΣV

II

����þ
���� Σ

V
II − ΣI

VI

ΣV
II þ ΣI

VI

����
þ
���� Δ

I
VI − ΔIII

IV

ΔI
VI þ ΔIII

IV

����þ
����Δ

III
IV − ΔV

II

ΔIII
IV þ ΔV

II

����þ
����Δ

V
II − ΔI

VI

ΔV
II þ ΔI

VI

����;
ð51Þ

AU-spin¼
����Σ

V
IV −ΣI

II

ΣV
IV þΣI

II

����þ
����Σ

I
II−ΣIII

VI

ΣI
IIþΣIII

VI

����þ
����Σ

III
VI −ΣV

IV

ΣIII
VI þΣV

IV

����
þ
����Δ

V
IV −ΔI

II

ΔV
IVþΔI

II

����þ
����Δ

I
II−ΔIII

VI

ΔI
IIþΔIII

VI

����þ
����Δ

III
VI −ΔV

IV

ΔIII
VI þΔV

IV

����; ð52Þ

AV-spin ¼
���� Σ

I
IV − ΣIII

II

ΣI
IV þ ΣIII

II

����þ
���� Σ

III
II − ΣV

VI

ΣIII
II þ ΣV

VI

����þ
���� Σ

V
VI − ΣI

IV

ΣV
VI þ ΣI

IV

����
þ
����Δ

I
IV − ΔIII

II

ΔI
IV þ ΔIII

II

����þ
����Δ

III
II − ΔV

VI

ΔIII
II þ ΔV

VI

����þ
����Δ

V
VI − ΔI

IV

ΔV
VI þ ΔI

IV

����;
ð53Þ

where the Σ’s and Δ’s are as defined in Eqs. (25) and (26),
respectively. It must again be noted that these asymmetries
are in general functions of r and θ (or θ0 or θ00) and are
defined throughout the Dalitz plot region, including resonant
regions. It would again be interesting to look for patterns in
the variations of these asymmetries inside the Dalitz plot.
Observation of these asymmetries would quantify the extent
of the breaking of SUð3Þ flavor symmetry in the concerned
decay mode. One can also look for such asymmetries in the
Dalitz plot for B̄0

s → Kþπ0π−. The amplitudes for this
process are given in Table III.

D. Decay mode with final state Kþπ0K̄0

For the study of simultaneous violations of both the
U-spin and V-spin, we look at decays such as Bþ or
Dþ → Kþπ0K̄0 and their conjugate modes. In this state,
Kþ and π0 are exchangeable under V-spin, and π0; K̄0 are
exchangeable under U-spin. Under V-spin, the Kþπ0 state
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can exist in j2;þ1iV and j1;þ1iV , out of which the state
j1;þ1iV has a contribution from the j0; 0iV;8 admixture in
π0. Thus, assuming V-spin to be an exact symmetry would
put the state j2;þ1iV and that part of the j1;þ1iV state
coming from the j0; 0iV;8 contribution of π0 in a space
symmetric (even partial wave) state. The remaining part of
the j1;þ1iV state would be in a space antisymmetric (odd
partial wave) state. Similarly, the π0K̄0 state would exist in
j2;−1iU and j1;−1iU, out of which the state j1;−1iU has
a contribution from the j0; 0iU;8 admixture in π0. Thus, if
U-spin were assumed to be an exact symmetry, the state
j2;−1iU and the j1;−1iU state coming from j0; 0iU;8 part
of π0 would exist in space symmetric (even partial wave)
states, and the other part of j1;−1iU would exist in a space
antisymmetric (odd partial wave) state.
Therefore, under exact U-spin and V-spin, the final state

Kþπ0K̄0 has the following two possibilities:
(i) Kþπ0 would exist in either a symmetrical or anti-

symmetrical state with respect to their exchange
in space.

(ii) π0K̄0 would exist in either a symmetrical or antisym-
metrical state with respect to their exchange in space.

Again, following the steps as enunciated in Sec. II B, we
can conclude that the Dalitz plot distribution in the even
numbered sextants would be identical to one another, and
those of odd numbered sextants would also be similar, as
given in Eqs. (20) and (21). Any deviation from this would
constitute a signature of simultaneous violations of U-spin

and V-spin. We can once again reaffirm the same logic as
given in Secs. II B and II C, by invoking the GI-parity
operator (see Appendix A) to connect Kþ and K̄0 belong-
ing to two different isospin doublets. This would lead to a
fully symmetric Dalitz plot which would be broken when
GI is broken. The amplitudes for the two decay modes
under consideration are given in Table IV. The Dalitz plot
asymmetries that can be useful in this case are given by

AIsospin ¼
���� Σ

V
IV − ΣI

II

ΣV
IV þ ΣI

II

����þ
���� Σ

I
II − ΣIII

VI

ΣI
II þ ΣIII

VI

����þ
���� Σ

III
VI − ΣV

IV

ΣIII
VI þ ΣV

IV

����
þ
���� Δ

V
IV − ΔI

II

ΔV
IV þ ΔI

II

����þ
����Δ

I
II − ΔIII

VI

ΔI
II þ ΔIII

VI

����þ
����Δ

III
VI − ΔV

IV

ΔIII
VI þ ΔV

IV

����;
ð54Þ

AU-spin¼
����Σ
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VI−ΣIII

IV
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����þ
����Σ

III
IV −ΣV
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ΣIII
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����þ
����Σ

V
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����
þ
����Δ

I
VI−ΔIII
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����þ
����Δ

III
IV −ΔV
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ΔIII
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����þ
����Δ

V
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ΔV
IIþΔI

VI

����; ð55Þ

AV-spin ¼
���� Σ

I
IV − ΣIII

II

ΣI
IV þ ΣIII

II

����þ
���� Σ

III
II − ΣV

VI

ΣIII
II þ ΣV
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����þ
���� Σ

V
VI − ΣI

IV

ΣV
VI þ ΣI
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����
þ
����Δ

I
IV − ΔIII
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ΔI
IV þ ΔIII
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����Δ
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II − ΔV
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ΔIII
II þ ΔV
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����þ
����Δ
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VI − ΔI

IV

ΔV
VI þ ΔI

IV

����:
ð56Þ

TABLE III. Comparison of decays of B0
d and B̄0

s to the final state Kþπ0π−.

B0
d → Kþπ0π−

Isospin (initial state j1
2
;− 1

2
i) V-spin (initial state j0; 0i)

Transition Final state Symmetry Amplitude Transition Final state Symmetry Amplitude

ΔI ¼ 1 j3
2
;− 1

2
i Mixed 3ffiffiffiffi

10
p Te

1;3
2

X þ 1ffiffi
2

p To
1;3

2

Y sin θ ΔV ¼ 3
2

j3
2
;þ 1

2
i Mixed

ffiffi
3

p
2
ffiffiffiffi
10

p Ve
3
2
;3
2

X00 þ 1

2
ffiffi
6

p Vo
3
2
;3
2

Y 00 sin θ00

ΔI ¼ 1 j1
2
;− 1

2
i Odd − 1ffiffi

2
p To

1;1
2

Y sin θ ΔV ¼ 3
2

j3
2
0;þ 1

2
i Even − 1

2
V 0e

3
2
;3
2
0X00

ΔI ¼ 0 j1
2
;− 1

2
i Odd 1ffiffi

2
p To

0;1
2

Y sin θ ΔV ¼ 1
2

j1
2
;þ 1

2
i Odd 1

2
ffiffi
2

p Vo
1
2
;1
2

Y 00 sin θ00

ΔV ¼ 1
2

j1
2
0;þ 1

2
i Even −

ffiffi
3

pffiffi
2

p V 0e
1
2
;1
2
0X00

B̄0
s → Kþπ0π−

Isospin (initial state j0; 0i) V-spin (initial state j1
2
;þ 1

2
i)

Transition Final state Summetry Amplitude Transition Final state Symmetry Amplitude

ΔI ¼ 3
2

j3
2
;− 1

2
i Mixed

ffiffi
3

pffiffiffiffi
10

p Te
3
2
;3
2

X þ 1ffiffi
6

p To
3
2
;3
2

Y sin θ ΔV ¼ 1 j3
2
;þ 1

2
i Mixed 3

2
ffiffiffiffi
10

p V 0e
1;3

2

X00 þ 1

2
ffiffi
2

p Vo
1;3

2

Y 00 sin θ00

ΔI ¼ 1
2

j1
2
;− 1

2
i Odd − 1ffiffi

2
p To

1
2
;1
2

Y sin θ ΔV ¼ 1 j3
2
0;þ 1

2
i Even −

ffiffi
3

p
2
V 0e
1;3

2
0X00

ΔV ¼ 1 j1
2
;þ 1

2
i Odd 1

2
ffiffi
2

p Vo
1;1

2

Y 00 sin θ00

ΔV ¼ 1 j1
2
0;þ 1

2
i Even −

ffiffi
3

p
2
Ve
1;1

2
0X00

ΔV ¼ 0 j1
2
;þ 1

2
i Odd 1

2
ffiffi
2

p Vo
0;1

2

Y 00 sin θ00

ΔV ¼ 0 j1
2
0;þ 1

2
i Even −

ffiffi
3

p
2
V 0e
0;1

2
0X00
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Once again the asymmetries being, in general, functions of r
and θ (or θ0 or θ00), it would be quite interesting to look for
their variation across the Dalitz plot. These would be the
visible signatures of the breaking of SUð3Þ flavor symmetry.

E. Decay mode with final state πþπ0K̄0

Finally, we consider a modewhere each pair of particles in
the final states can be directly related by one of the three
SUð2Þ symmetries, namely isospin,U-spin andV-spin. Here
we do not need GI, GV or GU to relate the final states. We
consider as an example decays with final state πþπ0K̄0 such
as Dþ → πþπ0K̄0 and the conjugate mode. In the final state
considered here, isospin exchange implies π0 ↔ πþ, U-spin
exchange implies π0 ↔ K̄0, and V-spin exchange implies

πþ ↔ K̄0. The SUð2Þ decompositions of all the pairs of
particles under their respective SUð2Þ symmetries have
already been considered in Secs. II B, II C and II D. Once
again, the steps elaborated on in Sec. II B are applicable to
this case also. The amplitudes for this decay mode can be
easily read off from Table V. However, in this mode the even
and odd contributions to the decay amplitude can interfere as
they are not eigenstates of GV , resulting in even and odd
numbered sextants to have distinctly different density of
events as depicted in Eqs. (20) and (21). Note that the Dalitz
plot distributions for the even (odd) numbered sextants of the
Dalitz plot would still be identical if isospin and U-spin are
exact symmetries. The breakdown of isospin, U-spin and V-
spin could be quantitatively measured using the following
asymmetries:

TABLE IV. Comparison of amplitudes for the decays of Bþ and Dþ to the final state Kþπ0K̄0.

Bþ → Kþπ0K̄0

U-spin (initial state j0; 0i) V-spin (initial state j1
2
;þ 1

2
i)

Transition Final state Symmetry Amplitude Transition Final state Symmetry Amplitude
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2
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2
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ffiffiffiffi
10

p Ue
3
2
;3
2

X0 − 1

2
ffiffi
6

p Uo
3
2
;3
2

Y 0 sin θ0 ΔV ¼ 1 j1
2
;þ 1

2
i Odd − 1

2
ffiffi
2

p Vo
1;1

2

Y 00 sin θ00

ΔU ¼ 3
2

j3
2
0;− 1

2
i Even 1

2
U0e

1
2
;1
2
0X0 ΔV ¼ 1 j1

2
0;þ 1

2
i Enen

ffiffi
3

p
2
V 0e
1;1

2
0X00

ΔV ¼ 0 j1
2
;þ 1

2
i Odd − 1

2
ffiffi
2

p Vo
0;1

2

Y 00 sin θ00

ΔV ¼ 0 j1
2
0;þ 1

2
i Even

ffiffi
3

p
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Dþ → Kþπ0K̄0

U-spin (initial state −j1
2
;− 1

2
i) V-spin (initial state j0; 0i)

Transition Final state Symmetry Amplitude Transition Final state Symmetry Amplitude
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TABLE V. Amplitudes for the decay Dþ → πþπ0K̄0. The V-spin amplitudes can be written in a similar manner. For brevity we have
not written them explicitly.

Dþ → πþπ0K̄0

Isospin (initial state j1
2
;þ 1

2
i) U-spin (initial state −j1

2
;− 1

2
i)

Transition Final state Symmetry Amplitude Transition Final state Symmetry Amplitude
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2
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2
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2
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AIsospin ¼
���� Σ
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Once again these asymmetries being, in general, functions of
r and θ (or θ0 or θ00), it would be very interesting to look for
their variation across the Dalitz plot. These would constitute
the visible signatures of the breaking of SUð3Þ flavor
symmetry.

III. CONCLUSION

In this paper we have elucidated a new model indepen-
dent method to look for the breaking of the SUð3Þ flavor
symmetry in many three-body decay modes, namely Bþ or
Dþ

s → K0π0πþ, B0
d or B̄0

s → Kþπ0π−, Bþ or Dþ →
Kþπ0K̄0 and Dþ → πþπ0K̄0. The novelty in choosing
these decay modes is that pairs of the final state do belong
to at least two different SUð2Þ triplets, and hence under the
assumption of exact SUð3Þ flavor symmetry, the amplitude
for the process has two parts: one fully symmetric and

another fully antisymmetric under the exchanges
s ↔ t ↔ u. This gives rise to a characteristic pattern in
the Dalitz plot distribution: the alternate sextants must have
identical distribution of events. Any deviation from this
behavior would constitute an evidence for the breaking of
SUð3Þ flavor symmetry, which indeed is broken in nature.
We have provided mode specific Dalitz plot asymmetries
which can be used to quantify the extent of SUð3Þ
symmetry breaking in each of the decay modes under
our consideration. These asymmetries are defined in the full
region of the Dalitz plot and can be measured both along
resonances and in the nonresonant regions. A quantitative
estimate of the variation of these asymmetries obtained
experimentally would provide a valuable understanding of
SUð3Þ breaking effects. It would also be interesting to find
regions of the Dalitz plots where SUð3Þ is a good
symmetry. A better understanding and measured estimate
of SUð3Þ breaking would help in reliably estimating
hadronic uncertainties and hence result in effectively using
it to measure weak phases and search for new physics
effects beyond the standard model.
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APPENDIX: G-PARITY AND FINAL STATES

The G-parity operator GI (or GU or GV) is defined as a
rotation through π radian (180°) around the second axis of
isospin (or U-spin or V-spin) space, followed by charge
conjugation (C), GI ¼ CeiπI2 ¼ Ceiπτ2=2, where I2 is the
second generator of SUð2Þ isospin (or U-spin or V-spin)
group and τ2 is the second Pauli matrix.G-parity as defined
here transforms the various SUð2Þ multiplets as follows:

GI

0
B@
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π0

π−

1
CA ¼ −
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