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The single integral form of the Pasquier inversion representation of the Khuri–Treiman equation presents
great advantages for describing the final-state interaction of three-body decay or production processes.
However, the original form of the Pasquier inversion representation is only given in the decay region and
regions below. For the regions above, analytic continuation of original form is required. Because of the
nontrivial nature of the analytic continuation procedure, it is the purpose of this work to obtain a well-
defined Pasquier inversion representation of the Khuri–Treiman equation for the entire energy range.

DOI: 10.1103/PhysRevD.91.076012 PACS numbers: 11.55.Fv, 11.80.Et, 13.25.−k

I. INTRODUCTION

The theoretical framework for describing low-energy
hadronic three-body interaction has attracted significant
attention in the past, and different approaches have been
developed, such as field theory based Faddeev- and Bethe–
Salpeter-type equations [1–5] and the dispersion relation
oriented Khuri–Treiman (KT) equation [6,7]. In processes
such as η → 3π, three-body final-state interaction has been
reported to play an important role in explaining the dis-
crepancy of Dalitz plot expansion parameters between
experimental measurements and theoretical calculations
[8–17].
Among different methods, the dispersion approach

based KT equation shows some advantages because of its
simplicity of formalism and analog to the naive isobar model
approximation [18,19]. Since being first proposed in
Ref. [6], the KT equation has been further developed by
many authors [7,20–25]. Because of the fact that the KT
equation framework is based on the elastic approximation in
each subenergy channel, it is often suggested [7,20–24]
that the KT equation is suitable for low-energy three-body
decay or production processes, such as η=ω=ϕ → 3π
[9,10,13,14,17,26–31]. The original form of the KTequation
is written in a form of a double-integral dispersion equation,
one integral coming from the dispersion integration and
another relating to partial wave projection. By using the
Pasquier inversion technique [23,25,32], the orders of two
integrals are being exchanged, and it results in a single
integral representation of the KT equation that is more
suitable for numerical computation [20–25]. Compared to
the double-integral representation of the KT equation that
has been used in analyzing processes of η=ω=ϕ → 3π in
Refs. [9,10,13,14,17,26–31], the Pasquier inversion repre-
sentation bears great computational advantage since it is a
single-integral equation and is entirely defined on the real

axis [25]. Therefore, the Pasquier inversion representation is
certainly more robust, especially for the purpose of future
high-statistics data analysis. Unfortunately, the original form
of the Pasquier inversion representation of the KTequation is
not well defined for the entire energy range; in fact, the
original form is only given in the physical decay region and
regions below. For other energy regions, analytic continu-
ation of the Pasquier inversion representation of the KT
equation has to be carried out deliberately to avoid singu-
larities generated by contour integrations. As will be dis-
cussed in this work, the energy range above the two-particle
threshold is divided by a complex contour into three parts:
decay, unphysical, and scattering regions. The unphysical
region is disconnected from decay and scattering regions; in
this region, the original form of the KT equation has to be
modified, and an extra term is needed to keep the solution of
the KTequation staying on physical sheet. Mathematically, it
is certainly interesting to have the Pasquier inversion
representation of the KT equation well defined and con-
structed not just in the physical region but also in the
unphysical region. Most importantly, even for some physical
purpose, we may still require the amplitude in the unphysical
region as well. For example, to extract the light-quark mass
difference from η → 3π, the decay amplitude has to be
matched to the χPT prediction [14]. For the sake of
convergence of the χPT result, one may choose to match
the decay amplitude Tðs; t; uÞ along the line s ¼ u, and
the matching point is usually chosen for s ¼ u below the
two-body threshold, near the Adler zero, for instance [14],
such that t usually ends up in the unphysical region
above the decay region due to kinematic constraints:
t ¼ M2

η þ 3m2
π − 2s. A well-defined solution of the KT

equation is thus necessary for such a matching procedure.
Because of the nontrivial procedure of analytic continuation,
we describe some details of analytic continuation in this
work and present a well-defined form of the Pasquier
inversion representation of the KT equation in all energy
regions.*pguo@jlab.org
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The paper is organized as follows. The original form of
the Pasquier inversion representation of the KT equation is
briefly introduced in Sec. II. The procedure of analytic
continuation is described in Sec. III. The summary and
conclusion are given in Sec. IV.

II. SUBENERGY DISPERSION APPROACH TO
THREE-BODY FINAL STATE INTERACTION

A general amplitude for a particle with spin-J decaying
into three spinless particles, such as in J=ψ decays [33,34],
reads

h123; outjJðλÞ; ini ¼ ið2πÞ4δ4
� X

i¼1;2;3

pi − P

�
Tλ; ð1Þ

where we denote the 4-momenta by pi; P for the ith final-
state particle and initial decay particle and λ is the spin
projection of the initial state along a fixed axis. Suppressing
the isospin coupling among initial and final states, the
isobar model amplitude Tλ is given by

Tλðs; t; uÞ ¼
X
S;L;μ

NSLμDJ�
λ;μðrsÞdSμ;0ðθsÞaðsÞSLðsÞ

þ ðs → tÞ þ ðs → uÞ; ð2Þ

where the invariants are defined by s ¼ ðp1 þ p2Þ2,
t ¼ ðp2 þ p3Þ2, and u ¼ ðp3 þ p1Þ2 and they are con-
strained by relation sþ tþ u ¼ M2 þP

im
2
i (mi’s are

final-state particle masses, and M is the mass of the initial
particle), NSLμ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2Sþ 1Þð2Lþ 1Þp hSμ;L0jJμi, and D
and d’s are the standard WignerD and dmatrices. The spin
of pair (12) is denoted by S, and the relative orbital angular
momentum between (12) and the third particle is given
by L. θs is polar angle of particle 1 in the pair (12) rest
frame. The rotation rs, which is given by three Euler angles
[33,34], rotates the standard configuration in the (12)3
coupling scheme to the actual one. In the standard
configuration of (12)3 coupling (the rest frame of the
3-particle), the third particle moves along the negative z
axis while particles 1 and 2 move in the xz plane. The
amplitudes in (23)1 and (31)2 coupling schemes (denoted
by t and u channel, respectively) are defined in a similar
way as in (12)3 coupling (denoted by s channel). The
dynamics of the decay process is described by scalar

functions aðs;t;uÞSL , which only depend on the subenergy of
isobar pairs and possess only a unitarity cut in subenergy by
assumption [21–23].
For simplicity, in the following discussion, we consider

the decay of a scalar particle, J ¼ 0, and truncate the partial
waves to include only the S wave: S ¼ L ¼ 0. Masses of
final particles are assumed identical,m1¼m2¼m3¼m, and

subchannels are assumed symmetric: aðsÞ00 ¼aðtÞ00 ¼aðuÞ00 ¼a.

Thus, the decay amplitude is simply given by sum of three
terms,

Tðs; t; uÞ ¼ aðsÞ þ aðtÞ þ aðuÞ: ð3Þ

A. Khuri–Treiman equation and Pasquier
inversion representation

The discontinuity of the decay amplitude crossing the
unitarity cut in a subenergy, such as s, is given by

△Tðs; t; uÞ ¼ Tðsþ iϵ; t; uÞ − Tðs − iϵ; t; uÞ
2i

¼ ρðsÞf�ðsÞ 1
2

Z
1

−1
dzsTðs; t; uÞ; ð4Þ

where ρðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2=s

p
and fðsÞ denotes an S-wave

two-body elastic scattering amplitude and is parametrized
by a phase shift of two-body scattering, f ¼ ðe2iδ − 1Þ=
2iρ. zs ¼ cos θs is given by zs ¼ −ðt − uÞ=ρðsÞkðsÞ, where
kðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s − ðM −mÞ2�½s − ðM þmÞ2�

p
. A diagrammatic

representation of discontinuity relations in Eq. (4) is shown
in Fig. 1.
By assumption, a’s possess only unitarity cuts; thus,

ΔTðs; t; uÞ ¼ ΔaðsÞ, and

ΔaðsÞ ¼ ρðsÞf�ðsÞ
�
aðsÞ þ 2

ρðsÞkðsÞ
Z

tþðsÞ

t−ðsÞ
ðΓÞdtaðtÞ

�
;

ð5Þ

where the factor 2 in front of contour integral takes into
account the contribution for the u channel. As discussed in
Refs. [21–23,25], the angular projection in Eq. (4) is
replaced by a contour integration in the complex plane
according to perturbation theory [7,35]; contour Γ is given
in Fig. 2. The boundaries of the Dalitz plot, t�ðsÞ, are given
by the solutions of ϕðs; t�Þ ¼ 0, where ϕðs; tÞ ¼
stu −m2ðM2 −m2Þ2, and the analytic continuation of
t�ðsÞ in s is specified by Γ; see Fig. 2. The scalar function
a then is determined by the subenergy dispersion relation,

aðsÞ ¼ 1

π

Z
∞

4m2

ds0
1

s0 − s
Δaðs0Þ: ð6Þ

= + +

(12)

(23) (31)

Disc
s

1

2

3
=

3
( ) ( )*

1

2.

T(s,t,u) a(s)

a(t) a(u)

T T(s,t,u)
f(s)

FIG. 1. A diagrammatic representation of discontinuity
relations in Eq. (4).
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As discussed in Ref. [25], usually, it is useful to para-
metrize a as a product of a known function and a reduced
amplitude. For instance, we may choose parametrization,
aðsÞ ¼ fðsÞgðsÞ, and thus the discontinuity relation for the
reduced amplitude g is given by [25]

ΔgðsÞ ¼ −θðsL − sÞ ImfðsÞ
f�ðsÞ gðsÞ

þ θðs − 4m2Þ 2

kðsÞ
Z

t−ðsÞ

tþðsÞ
ðΓÞdtfðtÞgðtÞ; ð7Þ

where sL labels the branch point of the left-hand cut in
fðsÞ, and

gðsÞ ¼ 1

π

Z
∞

−∞
ds0

1

s0 − s
Δgðs0Þ: ð8Þ

By using the Pasquier inversion technique [21–23,25], also
see Appendix A, we may obtain a single integral equation
for g,

gðsÞ ¼ −
1

π

Z
sL

−∞
ds0

1

s0 − s
Imfðs0Þ
f�ðs0Þ gðs0Þ þ gRðsÞ; ð9Þ

where

gRðsÞ ¼
2

π

Z ðM−mÞ2

−∞
dtfðtÞgðtÞ½θðtÞΔðs; tÞ − θð−tÞΣðs; tÞ�:

ð10Þ

The kernel functions Δ and Σ are given by

Δðs; tÞ ¼
Z

sþðtÞ

s−ðtÞ
ðC0Þds0 1

Uðs0Þ
1

s0 − s
; ð11Þ

Σðs; tÞ ¼
Z

sþð∞Þ

sþðtÞ
ðC0Þds0 1

Uðs0Þ
1

s0 − s
; ð12Þ

where the square-root function UðsÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s − ðM −mÞ2�½s − ðM þmÞ2�

p
is defined in the com-

plex-s plane and the phase convention for UðsÞ is chosen
by Uðs� i0Þ ¼ ð∓; i;�ÞjUðsÞj for s ∈ ð½−∞; ðM −mÞ2�,
½ðM−mÞ2; ðMþmÞ2�; ½ðMþmÞ2;∞�Þ. respectively. Thus,
the square root kðsÞ is given by the value of UðsÞ right
below two cuts attached to ðM �mÞ2, kðsÞ ¼ Uðs − i0Þ.
The contour C0 is given in Fig. 3, and s�ðtÞ are specified by
solutions of ϕðs�; tÞ ¼ 0 and contour C0.
The Pasquier inversion representation of gðsÞ in Eqs. (9)

and (10) is initially defined in the range s ∈ ½−∞;
ðM −mÞ2� (on the left and upper sides of contour C0).
As will be made clear in Sec. III, contour C0 in kernel
functions, Δ and Σ, is singular and divides the s plane into
several isolated regions. Therefore, Eqs. (9) and (10) can
only hold for a complex s that stays at the same side of
contour C0 and does not cross contour C0. When s is taken
to cross contour C0 to reach the region on the other side, for
the Pasquier inversion representation of the KT equation to
stay on the physical sheet, C0 has to be deformed, and
an extra piece is picked up as the consequence of the
deformation of the contour. In what follows, we present the
procedure of analytic continuation of the Pasquier inversion
representation of the KT equation into s ∈ ½ðM −mÞ2;∞�
regions.

FIG. 2 (color online). The path of t�ðsÞ in the t complex plane
as s increased from 4m2 to ∞. The black wiggly line represents
right-hand cuts of the gðtÞ function. The points labeled by a − i
correspond to a) t−ð∞Þ ¼ 0, b) t−ððM þmÞ2Þ ¼ mðm −MÞ,
c) t−ððM −mÞ2Þ ¼ mðM þmÞ, d) t−ððM2 −m2Þ=2Þ ¼ 4m2,
e) t�ð4m2Þ ¼ ðM2 −m2Þ=2, f) tþðmðM þmÞÞ ¼ ðM −mÞ2,
g) tþððM −mÞ2Þ ¼ mðM þmÞ, h) tþððM þmÞ2Þ ¼ mðm −MÞ,
and i) tþð∞Þ ¼ −∞, respectively.

FIG. 3. The path of s�ðtÞ in the s complex plane for
t ∈ ½−∞; ðM −mÞ2�. The arrows indicate the directions that
invariants follow along the path of integrations. The black
wiggly lines represent cuts attached to two branch points:
ðM �mÞ2 in the s plane. The points labeled by a − i cor-
respond to a) s−ð0Þ ¼ −∞, b) s−ð4m2Þ ¼ ðM2 − m2Þ=2,
c) s−ððM2 −m2Þ=2Þ ¼ 4m2, d) s�ððM −mÞ2Þ ¼ mðmþMÞ,
e) sþðmðM þmÞÞ ¼ ðM −mÞ2, f) sþð4m2Þ ¼ ðM2 −m2Þ=2,
g) sþð0Þ ¼ ∞, h) sþðmðm − MÞÞ ¼ ðM þ mÞ2, and
i) sþð−∞Þ ¼ ∞, respectively.
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III. ANALYTIC CONTINUATION OF PASQUIER
INVERSION REPRESENTATION

FOR S ∈ ½ðM −mÞ2;∞�
As mentioned previously, gðsÞ given by Eqs. (9) and (10)

is originally defined for s ∈ ½−∞; ðM −mÞ2�. The analytic
continuation of first term on right-hand side of Eq. (9)
shows no difficulty, and therefore we will only focus on the
second term on the right-hand side of Eq. (9), gRðsÞ, in
following discussion. The s dependence of gðsÞ on the
second term, gRðsÞ, is through kernel functions Δ and Σ,
and Δ and Σ on physical sheet for s ∈ ½−∞; ðM −mÞ2� are
given by the value of s running along the black wiggly line
attached to ðM −mÞ2 in Fig. 3. Therefore, the strategy of
analytic continuation is that we start from here and then
increase s continuously until a singularity is encountered.
Unfortunately for gRðsÞ, contour C0 presents a cut in the
complex-s plane, which stops us from naively using
Eqs. (9) and (10) in the nearby region s ∈ ½ðM −mÞ2;
ðM þmÞ2�. To illustrate this point, we first use the
technique presented in Appendix A and rewrite gRðsÞ as

gRðsÞ ¼
2

π

Z
Γ0
dtaðtÞ

Z
∞

sΓ0 ðtÞ
ðC0Þds0 1

s0 − s
1

Uðs0Þ ; ð13Þ

where contour Γ0 is given in Fig. 7 and the location of sΓ0 ðtÞ
on C0 is specified by the location of t on Γ0; see more details
in Appendix A. Exchanging the order of two integrals
leads to

gRðsÞ ¼
2

π

Z
C0
ds0

1

s0 − s
1

Uðs0Þ
Z

tC0 ðs0Þ

0

ðΓ0ÞdtaðtÞ; ð14Þ

where tC0 ðs0Þ is the inverse of sΓ0 ðtÞ and Eq. (14) is similar
to Eq. (A3) but with contours C0 and Γ0 instead. Now, we
can clearly see the cut structure on s generated by contour
C0 in Eq. (14). As s is moved from the left-hand side
of C0 in the region s ∈ ½−∞; ðM −mÞ2� to reach the
s ∈ ½ðM −mÞ2; ðM þmÞ2� region by crossing contour C0
(the motion of s is demonstrated in Fig. 4 by a red dashed
curve), C0 has to be deformed to keep gRðsÞ on the physical
sheet. For example, at a point, sA, in Fig. 4, which sits right
next to the inside circle of C0 in the complex plane, gRðsAÞ
on the physical sheet is given by

gRðsAÞ ¼
2

π

Z
C0
ds0

1

s0 − sA

1

Uðs0Þ
Z

tC0 ðs0Þ

0

ðΓ0ÞdtaðtÞ

þ 4i
UðsAÞ

Z
tC0 ðsAÞ

0

ðΓ0ÞdtaðtÞ: ð15Þ

Next, s is moved away from sA to a point on the real axis in
region s ∈ ½ðM −mÞ2; ðM þmÞ2�, such as sB in Fig. 4, and
thus C0 is further deformed to follow the motion of s. When
s reaches the real axis, C0 in the second term on the right-
hand side of Eq. (15) collapses onto the real axis, and Γ0

opens up accordingly into Γ; thus, for s ∈ ½ðM −mÞ2;
ðM þmÞ2� on the real axis, we obtain

gRðsÞ ¼
2

π

Z ðM−mÞ2

−∞
dtaðtÞ½θðtÞΔðs; tÞ − θð−tÞΣðs; tÞ�

þ 4i
UðsÞ

Z
tþðsÞ

0

ðΓÞdtaðtÞ;

for s ∈ ½ðM −mÞ2; ðM þmÞ2�: ð16Þ

At last, the analytic continuation of gRðsÞ from s ∈
½−∞; ðM −mÞ2� to region s ∈ ½ðM þmÞ2;∞�, where s
runs along the black wiggly line attached to ðM þmÞ2 in
Fig. 3, does not encounter any singularities, and so it does
not require the deformation of contour C0—see the motion
of the red dashed curve in Fig. 4—and therefore gRðsÞ in
Eq. (10) remains unchanged for s ∈ ½ðM þmÞ2;∞�.
On the other hand, we may also perform the analytic

continuation of the Pasquier inversion representation of the
KT equation through a triangle diagram. Using Eq. (6), we
first rewrite Eqs. (9) and (10) as

gðsÞ ¼ −
1

π

Z
sL

−∞
ds0

1

s0 − s
Imfðs0Þ
f�ðs0Þ gðs0Þ

þ 2

π

Z
∞

4m2

dt0Δaðt0ÞGðs; t0Þ;

for s < ðM −mÞ2; ð17Þ

where G is given by

Gðs; t0Þ ¼ 1

π

Z ðM−mÞ2

−∞
dt

1

t0 − t
½θðtÞΔðs; tÞ − θð−tÞΣðs; tÞ�;

for t0 > 4m2; s < ðM −mÞ2: ð18Þ

G is identified as the Pasquier inversion representation of a
triangle diagram in the region t0 > 4m2; s < ðM −mÞ2.

FIG. 4 (color online). Analytic continuation of a function of
type gRðsÞ in Eq. (14) is followed by the motion of s (red dashed
curve). The physical sheet of gRðsÞ is defined in the upper half-
plane that is divided by contour C0. The lower half-plane can be
reached by crossing C0, and when it does, a discontinuity has to
be picked up to keep gRðsÞ on the physical sheet.
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The analytic continuation of G in different representations
is presented in Appendix B, and the Pasquier inversion
representation of G for ðs; t0Þ ∈ ½−∞;∞� is given by
Eq. (B11),

Gðs; t0Þ ¼ 1

π

Z ðM−mÞ2

−∞
dt

1

t0 − t
½θðtÞΔðs; tÞ− θð−tÞΣðs; tÞ�

þ 2iθðs− ðM−mÞ2ÞθððMþmÞ2− sÞ

×

�
1

UðsÞ
Z

tþðsÞ

0

ðΓÞ dt
t0 − t

þ θðt0Þθð4m2− t0Þ 2πi
UðsÞ

�
;

for ðs; t0Þ ∈ ½−∞;∞�:

The s dependence of gðsÞ in the second term in
Eq. (17) is all through triangle diagram G; thus, the
analytic continuation of G completes the analytic
continuation of the Pasquier inversion representation
of gðsÞ. Plugging Eq. (B11) back into Eq. (17), we
once again obtain the Pasquier inversion representation
of gðsÞ for s ∈ ½−∞;∞�,

gðsÞ ¼ − 1

π

Z
sL

−∞
ds0

1

s0 − s
Imfðs0Þ
f�ðs0Þ gðs0Þ

þ 2

π

Z ðM−mÞ2

−∞
dtfðtÞgðtÞ½θðtÞΔðs; tÞ − θð−tÞΣðs; tÞ�

þ 4iθðs − ðM −mÞ2ÞθððM þmÞ2 − sÞ

×
1

UðsÞ
Z

tþðsÞ

0

ðΓÞdtfðtÞgðtÞ;

for s ∈ ½−∞;∞�: ð19Þ

The analytic continuation of the Pasquier inversion
representation of gðsÞ given by Eq. (19) is tested
numerically by using a toy model for fðsÞ, and the
model of fðsÞ is taken from Ref. [25]. The comparison
of gðsÞ’s by solving the Pasquier inversion representa-
tion Eq. (19) and the dispersion representation Eqs. (7)
and (8) is shown in Fig. 5. We also show the results by
solving Eqs. (9) and (10) without proper analytic
continuation compared to the contribution of the extra
term that is picked up by analytic continuation,

4i=UðsÞ R tþðsÞ
0 ðΓÞdtaðtÞ. As demonstrated in Fig. 5,

the solution of analytic continuation of the Pasquier
inversion representation of gðsÞ is consistent with the
dispersion representation of gðsÞ. Without the proper
analytic continuation, the solution of Pasquier inversion
representation of gðsÞ jumps in unphysical region
s ∈ ½ðM −mÞ2; ðM þmÞ2�. In order to keep gðsÞ con-
tinuous and staying on physical sheet, an extra term,

4i=UðsÞ R tþðsÞ
0 ðΓÞdtaðtÞ, is required.

At last, similarly, if we parametrize aðsÞ ¼ GðsÞ=DðsÞ
[25], where DðsÞ ¼ NðsÞ=fðsÞ contains only the unitarity

cut of the scattering amplitude and all other cuts are
absorbed into function NðsÞ [36,37], we thus obtain

GðsÞ ¼ 2

π

Z ðM−mÞ2

−∞
dt

GðtÞ
DðtÞ ½θðtÞΔGðs; tÞ − θð−tÞΣGðs; tÞ�

þ 4iθðs − ðM −mÞ2ÞθððM þmÞ2 − sÞ

×
NðsÞ
UðsÞ

Z
tþðsÞ

0

ðΓÞdt GðtÞ
DðtÞ ;

for s ∈ ½−∞;∞�; ð20Þ

where the kernel functions ΔG and ΣG are given by
Eqs. (A9) and (A10), respectively.
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FIG. 5 (color online). The real (top plot) and imaginary (bottom
plot) parts of gðsÞ by solving both the dispersion representation
Eqs. (7) and (8) (black circles) and Pasquier inversion represen-
tation Eq. (19) (solid red curves). Blue dashed curves are the
solution of gðsÞ from Eqs. (9) and (10) without proper analytic
continuation, and purple dashed curves represent the contribution
from the extra term picked up by analytic continuation in

Eq. (19), 4i=UðsÞ R tþðsÞ
0 ðΓÞdtaðtÞ. The input model of fðsÞ is

taken from Eq. (28) in Ref. [25], with fixed parameters: α ¼ 0.1,
β ¼ 0.2, mR ¼ 0.8 GeV, m ¼ 0.14 GeV, and M ¼ 1.14 GeV.
The left-hand cut of fðsÞ is placed at sL ¼ 0, and gðsÞ is
normalized to gð0Þ ¼ 1.

ANALYTIC CONTINUATION OF THE PASQUIER … PHYSICAL REVIEW D 91, 076012 (2015)

076012-5



IV. SUMMARY

We presented the analytic continuation procedure of the
Pasquier inversion representation of the KT equation, and a
well-defined Pasquier inversion representation of the KT
equation for an arbitrary s on the real axis is given by
Eqs. (19) and (20).
Comparing the Pasquier inversion representation of the

KT equation in Eq. (19) to the dispersion representation of
the KT equation in Eqs. (7) and (8), as has been also
discussed in Ref. [25], the single integral form of the
Pasquier inversion representation in Eq. (19) indeed
presents a significant advantage in numerical computation
in regions s ∈ ½−∞; ðM −mÞ2� and s ∈ ½ðM −mÞ2;∞�.
However, in the unphysical region s ∈ ½ðM −mÞ2;
ðM þmÞ2�, the dispersion representation in Eqs. (7)
and (8) requires no extra effort, but analytic continuation
of the Pasquier inversion representation becomes nontrivial
and needs an extra term to keep solution gðsÞ staying on the
physical sheet. At last, we solved the Pasquier inversion
representation of the KT equation in Eq. (19) numerically
by using a toy model of fðsÞ, and solutions with and
without proper analytic continuation compared to the
solution of the dispersion representation are illustrated
in Fig. 5.
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APPENDIX A: PASQUIER INVERSION
TECHNIQUE

For completeness, we present the Pasquier inversion
technique [23,32] in this section. Considering a double-
integral equation of the type

IðsÞ ¼
Z

∞

4m2

ds0
1

s0 − s
Nðs0Þ
kðs0Þ

Z
tþðs0Þ

t−ðs0Þ
ðΓÞdtaðtÞ; ðA1Þ

where contour Γ followed by t integration is defined to
avoid a unitarity cut in a, see Fig. 2, and the integration path
of s0 is defined on the real axis, the physical value of IðsÞ is
given by s running above the real axis.
As described in Refs. [23,32], we first split the t

integral into two pieces and rewrite the double integrals
in Eq. (A1) as

IðsÞ¼
Z

∞

4m2

ds0
1

s0−s
Nðs0Þ
kðs0Þ

�Z
tþðs0Þ

0

ðΓÞ−
Z

t−ðs0Þ

0

ðΓÞ
�
dtaðtÞ:

ðA2Þ

Then, for first term in brackets in Eq. (A2), the path of s0
integration is shifted to above the real axis, and for the
second term in brackets in Eq. (A2), the path of s0
integration is shifted to below the real axis. Note that
the kinematic function kðs0Þ as a function of s0 has two
branch points: ðM �mÞ2. Two cuts may be attached to
these two points: one runs from −∞ up to ðM −mÞ2, and
another runs from ðM þmÞ2 up to∞; see the black wiggly
lines in Fig. 6. As we have mentioned before, U is defined
as the continuation of kðs0Þ for a complex argument,
and the physical value of kðs0Þ is given by taking the
branch of Uðs0Þ below two cuts attached to ðM �mÞ2,
kðs0Þ ¼ Uðs0 − i0Þ. These two kinematic cuts are placed
above both the real axis and shifted s0 integration paths
described previously (see Fig. 6); therefore, the operation
of shifting s0 integration paths is valid, and s0 integration
paths do not interfere with cuts in U. Thus, we can safely
rewrite the double integrals in Eq. (A2) as

IðsÞ ¼
Z
C
ds0

1

s0 − s
Nðs0Þ
Uðs0Þ

Z
tCðs0Þ

0

ðΓÞdtaðtÞ; ðA3Þ

where the path C of the s0 integral is shown in Fig. 6, and
whether tCðs0Þ is tþðs0Þ or t−ðs0Þ depends on which portion
of path C the invariant s0 is on. tþðt−Þ is assigned to s0 on
the portion of C above (below) the real axis. In Eq. (A3),
the physical value of IðsÞ is given by s running above
contour C. Next, we exchange the order of two integrals so
that Eq. (A3) becomes

FIG. 6 (color online). The path of t�ðsÞ (solid purple curves),
contour C (solid black lines), and γ (solid blue lines). The arrows
indicate the directions that invariants follow in double integra-
tions, Eqs. (A1) and (A4). The blue wiggly line represents the
unitarity cut in the t plane, and the black wiggly lines represent
the cuts in the s plane.
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IðsÞ ¼
Z
Γ
dtaðtÞ

�Z
∞

sΓðtÞ
ðCÞds0 1

s0 − s
Nðs0Þ
Uðs0Þ

�
; ðA4Þ

where t integration on contour Γ runs from 0 to −∞ by
looping around threshold ðM −mÞ2, see Fig. 6, and s0
integration runs from sΓðtÞ up to∞ along path C, and sΓðtÞ
is given by the inverse of tCðs0Þ. By assumption, a has only
the unitarity cut, and using Cauchy’s theorem, we can write
an equation,

aðtÞ ¼ 1

2πi

Z
γ
dt0

aðt0Þ
t0 − t

; ðA5Þ

where contour γ loops around the unitarity cut but avoids
interference with Γ, see in Fig. 6, and the convergence of
integration has been assumed valid so that the circle of
contour γ at infinity can be dropped. Thus, we obtain

IðsÞ ¼ 1

2πi

Z
γ
dt0aðt0Þ

�Z
Γ

dt
t0 − t

Z
∞

sΓðtÞ
ðCÞds0 1

s0 − s
Nðs0Þ
Uðs0Þ

�
:

ðA6Þ
When the N function is replaced by a constant, the function
in brackets in Eq. (A6) may be associated to a triangle
diagram; see Appendix B. The next step is to deform the
contour γ onto the real axis toward −∞ but avoid both the
unitarity cut in a and the singularities from the expression
in brackets in Eq. (A6). By construction of Γ, the unitarity
cut of a sits along the blue wiggly line in Fig. 6, and aðtÞ for
t running above the unitarity cut is defined as physical.
Therefore, as long as the deformation of γ and Γ toward the
negative real axis does not interfere with the unitarity cut of
a, a remains on the physical sheet all the time. Singularities
of the function in brackets in Eq. (A6) have been exten-
sively studied by authors in Refs. [21,23,38–40] from a
perturbation theory perspective, and they are branch points
at t ¼ 0; 4m2 and ðM −mÞ2. One may attach branch cuts to
those branch points running toward the negative real axis
[21,23,38–40]; therefore, the contour γ0 may be chosen to
loop around the threshold ðM −mÞ2 toward the negative
real axis. The deformation of contour γ also drags the
contour Γ going with it back onto the real axis, and the
correspondent contour C must then be opened up accord-
ingly. Simultaneously, for IðsÞ staying on physical sheet,
some s are also dragged by the deformation of C into the
complex plane, and the physical value of IðsÞ is now given
by an s that sits on the same side of C when it opens up
into the complex plane. The only t0-dependent singularities
come from factor 1=ðt0 − tÞ in brackets in Eq. (A6) so
that, when contour γ is collapsed onto the real axis, the
discontinuity of this factor 1=ðt0 − tÞ along the cut from
−∞ to ðM −mÞ2 is picked up. Equivalently, we may
replace

R
γ dt

0=ðt0 − tÞ by 2πi
R ðM−mÞ2−∞ dt0δðt0 − tÞ in

Eq. (A6). Therefore, Eq. (A6) becomes

IðsÞ ¼
Z
Γ0
dtaðtÞ

�Z
∞

sΓ0 ðtÞ
ðC0Þds0 1

s0 − s
Nðs0Þ
Uðs0Þ

�
: ðA7Þ

The contours C0 and Γ0 have to be chosen to avoid the
singularities in integrands. Examining Eq. (A7), we note that
integrands of contour integration over invariant s0 are only
the product of 1=ðs0 − sÞ, the kinematic functionU, and the
left-hand cut function N. As we mentioned earlier, the
kinematic function U as a function of s0 has two branch
points, ðM �mÞ2; two cuts are attached to these two points
with one running toward −∞ and another running toward
∞; see the black wiggly lines in Fig. 7. Therefore, the
contour C0 may be chosen to avoid two cuts attached to
ðM �mÞ2, as plotted in Fig. 7. With this choice, the
function in brackets in Eq. (A7) may be associated with
the discontinuities of the triangle diagram defined in
Eq. (A6) along the cut attached to branch point ðM −mÞ2
in the t plane. Similarly to γ0, the contour Γ0 also loops
around the point ðM −mÞ2 and is placed above the
unitarity cut in a. Whether sΓ0 ðtÞ is sþðtÞ or s−ðtÞ depends
on whether t is above or below the cut attached to ðM −mÞ2
in the t plane; see Fig. 7.
As mentioned earlier, the physical value of IðsÞ was

chosen by s running above contour C in Eq. (A3), when C
is deformed to C0; see Figs. 6 and 7. For IðsÞ to stay on the
physical sheet, s is not allowed to cross the contour, and as
a result, some s are forced to follow the deformation of the
contour into the complex plane. Specifically, 1) for
s ∈ ½−∞; ðM −mÞ2�, the physical value of IðsÞ is given
by s running along the black wiggly line attached to
ðM −mÞ2; 2) for s ∈ ½ðM −mÞ2;∞�, now physical IðsÞ
is trapped into the value of s running along the black wiggly
line attached to ðM þmÞ2 between sections g − h and
h − i on C0; and 3) the form of IðsÞ in Eq. (A7) for
s ∈ ½ðM −mÞ2; ðM þmÞ2� on the real axis is no longer on
the physical sheet, and physical IðsÞ now is given by a
complex s running on the upper side of the arc f − g on C0.

FIG. 7 (color online). The contour Γ0 (solid purple lines), C0
(solid black curves), and γ0 (solid blue lines) in Eq. (A7). The
arrows indicate the directions that invariants follow along the path
of integrations. The purple and black wiggly lines represent the
unitarity cut in the s plane and cuts attached to two branch points,
ðM �mÞ2, in the s plane, respectively.
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To reach physical IðsÞ for s ∈ ½ðM −mÞ2; ðM þmÞ2� on
the real axis, the analytic continuation is required, and the
procedure is described in Sec. III.
At last, by splitting the s0 integration path,

R
Γ0 ¼

½R ðM−mÞ2−
0− −R ðM−mÞ2þ

0þ �þR−∞þ
0þ , in Eq. (A7) [subscript þ=−

of the integration limits denotes the path of integration
lying above or below the cut attached to branch point
ðM −mÞ2 in the t plane; see Fig. 7], we obtain

IðsÞ ¼
Z ðM−mÞ2

−∞
dtaðtÞ½θðtÞΔGðs; tÞ − θð−tÞΣGðs; tÞ�;

ðA8Þ

where

ΔGðs; tÞ ¼
Z

sþðtÞ

s−ðtÞ
ðC0Þds0 1

s0 − s
Nðs0Þ
Uðs0Þ ; ðA9Þ

ΣGðs; tÞ ¼
Z

∞

sþðtÞ
ðC0Þds0 1

s0 − s
Nðs0Þ
Uðs0Þ : ðA10Þ

For s on the real axis, the value of ΔG and ΣG on the
physical sheet is only defined in regions ½−∞; ðM −mÞ2�
and ½ðM þmÞ2;∞�. For s ∈ ½ðM −mÞ2; ðM þmÞ2�, ΔG
and ΣG given by Eqs. (A9) and (A10) without proper
analytic continuation are on the unphysical sheet. For the
case NðsÞ ¼ 1, the corresponding kernels are denoted as Δ
and Σ.
Kernel functions Δ and Σ can be expressed in terms of

elementary functions. For real s and t, the values ofΔ and Σ
given below by Eqs. (A11)–(A14) are simply correspond-
ing to the limits sþ i0 and tþ i0, and again Eqs. (A12) and
(A14) are defined on the unphysical sheet,

Δðs; tÞ ¼ 1

UðsÞ ln
����Rðs; tÞ þUðsÞUðtÞ
Rðs; tÞ −UðsÞUðtÞ

���� − θðϕðs; tÞÞ iπ
UðsÞ ;

for t ∈ ½0; ðM −mÞ2�;
s ∈ ½−∞; ðM −mÞ2�& ½ðM þmÞ2;∞�; ðA11Þ

and

Δðs; tÞ ¼ 1

UðsÞ ln
Rðs; tÞ þ UðsÞUðtÞ
Rðs; tÞ −UðsÞUðtÞ

− θðmðmþMÞ − tÞθðsRðtÞ − sÞ 2iπ
UðsÞ ;

for t ∈ ½0; ðM −mÞ2�; s ∈ ½ðM −mÞ2; ðM þmÞ2�;
ðA12Þ

where Rðs; tÞ ¼ −M4 þ ðs −m2Þðt −m2Þ þM2ðsþ tÞ
and sRðtÞ is given by the solution of RðsR; tÞ ¼ 0,

Σðs; tÞ ¼ 1

UðsÞ ln jLðs; tÞj − θðs − sþðtÞÞ
iπ

UðsÞ ;

for t < 0; s ∈ ½−∞; ðM −mÞ2�& ½ðM þmÞ2;∞�;
ðA13Þ

and

Σðs; tÞ ¼ 1

UðsÞ lnLðs; tÞ − θðImLðs; tÞÞ 2iπ
UðsÞ ;

for t < 0; s ∈ ½ðM −mÞ2; ðM þmÞ2�; ðA14Þ

where

Lðs;tÞ¼ ½sþðtÞ−s�½s−M2−m2þUðsÞ�
½sþðtÞ−s�ðs−M2−m2ÞþU2ðsÞ−UðsÞUðsþðtÞÞ

:

APPENDIX B: DIFFERENT REPRESENTATIONS
OF A TRIANGLE DIAGRAM

From perturbation theory, the Feynman parametrization
of the triangle diagram in Fig. 8 is given by Ref. [7],

Gðs; tÞ ¼ 1

π

Z
1

0

dα1dα2dα3

×
δð1−α1−α2−α3Þ

α1tþð1−α1−α1α2Þm2−α3ðα1M2þα2sÞ− iϵ
;

ðB1Þ

where t denotes the invariant mass square of the pair (23)
propagator. The analytic continuation of the Feynman
parametrization representation of G as a function of
complex arguments ðs; tÞ is carried out by the iϵ
prescription [7].
In what follows, we present the analytic continuation of

both the dispersion representation and the Pasquier inver-
sion representation of G; the strategy is that we start at a
region in which a representation of G is defined on the
physical sheet and consistent with perturbation theory
result Eq. (B1), then, G is continued to other regions by
using the perturbation theory result Eq. (B1) as a reference:
(1) The dispersion representation of a triangle diagram

for t > 4m2 has been discussed in Ref. [7],

FIG. 8. A triangle diagram with a fixed internal mass
ffiffi
t

p
in the

(23) subchannel.
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Gðs; tÞ ¼ 1

π

Z
∞

4m2

ds0
1

s0 − s

�
1

kðs0Þ
Z

tþðs0Þ

t−ðs0Þ
ðΓÞdt0 1

t − t0

�
;

for t > 4m2: ðB2Þ

(2) The Pasquier inversion representation of a triangle
diagram for s < ðM −mÞ2 is given by Ref. [25],

Gðs; tÞ ¼ 1

π

Z ðM−mÞ2

−∞
dt0

t − t0

× ½θðt0ÞΔðs; t0Þ − θð−t0ÞΣðs; t0Þ�;
for s < ðM −mÞ2: ðB3Þ

1. Analytic continuation of the dispersion
representation of the triangle diagram

We first perform analytic continuation of the dispersion
representation of G in Eq. (B2). Note that the overlapping
region for both the dispersion representation and the
Pasquier inversion representation of G on the physical sheet
is t ∈ ½4m2;∞� and s ∈ ½−∞; ðM −mÞ2�. As described in
Appendix A, exchanging the order of double integrals
encounters no extra singularities in this region, so we start
from here and rewrite Eq. (B2) as, see Eqs. (A1)–(A4),

Gðs; tÞ ¼ 1

π

Z
Γ
dt0

1

t − t0

�Z
∞

sΓðt0Þ
ðCÞds0 1

s0 − s
1

Uðs0Þ
�
;

for t > 4m2; s < ðM −mÞ2: ðB4Þ

The cut in t generated by contourΓ is nowexplicitly given byR
Γ dt

0=ðt − t0Þ;we startwith t running along theblackwiggly
line in Fig. 2, where G is defined on the physical sheet. As
longas themotionof t in the complexplanedoesnot interfere
with the contourΓ, G remains on the physical sheet, and thus
Eq. (B2) still holds for t < 0; see the motion of t represented

by the black dashed curve in Fig. 9. However, when t is
moved to cross contourΓ, the contourΓhas tobedeformed to
keepGon thephysical sheet.To reach region t ∈ ½0; 4m2�,we
can first move t to tA, which is a point that sits right inside the
circle of Γ; see Fig. 9. Thus, the deformation of Γ leads to

Gðs; tAÞ ¼
1

π

Z
Γ
dt0

1

tA − t0

�Z
∞

sΓðt0Þ
ðCÞds0 1

s0 − s
1

Uðs0Þ
�

þ 2i
Z

∞

sΓðtAÞ
ðCÞds0 1

s0 − s
1

Uðs0Þ ;

for s < ðM −mÞ2: ðB5Þ
When tA ismoved to tB ∈ ½0; 4m2� on the real axis, contourΓ
in the second piece on the right-hand side of Eq. (B5) is
dragged by the motion of t to collapse onto the real axis (see
in Fig. 7), and accordinglyC has to be opened up toC0. Thus,
we obtain

Gðs; tBÞ ¼
1

π

Z
∞

4m2

ds0
1

s0 − s

�
1

kðs0Þ
Z

tþðs0Þ

t−ðs0Þ
ðΓÞdt0 1

tB − t0

�

þ 2i
Z

∞

s−ðtBÞ
ðC0Þds0 1

s0 − s
1

Uðs0Þ ;

for s < ðM −mÞ2: ðB6Þ
So, continuation in t is complete.Next,we need to continue s
to the region s ∈ ½ðM −mÞ2;∞�; the continuation of first
term on the right-hand side of Eq. (B6) shows no difficulty
andencountersnoextra singularities.However, aswecan see
in Fig. 4, s on the real axis is divided by contourC0 into three
sections, and thus, for s ∈ ½ðM −mÞ2; ðM þmÞ2�, a pole
contribution,−4π=UðsÞ, is picked up by the second term on
the right-hand side of Eq. (B6). In the end, analytic
continuation of the dispersion representation ofG is given by

Gðs; tÞ ¼ 1

π

Z
∞

4m2

ds0
1

s0 − s

�
1

kðs0Þ
Z

tþðs0Þ

t−ðs0Þ
ðΓÞdt0 1

t− t0

�

þ 2iθðtÞθð4m2 − tÞ
�Z

sþð∞Þ

s−ðtÞ
ðC0Þds0 1

s0 − s
1

Uðs0Þ

þ θðs− ðM−mÞ2ÞθððMþmÞ2 − sÞ 2πi
UðsÞ

�
;

for ðs; tÞ ∈ ½−∞;∞�: ðB7Þ

2. Analytic continuation of the Pasquier inversion
representation of the triangle diagram

For the analytic continuation of Eq. (B3), similarly, we
start from region t ∈ ½4m2;∞�; s ∈ ½−∞; ðM −mÞ2�. We
first write Eq. (B3) as, see Eqs. (A7) and (A8),

Gðs; tÞ ¼ 1

π

Z
Γ0

dt0

t − t0

Z
∞

sΓ0 ðtÞ
ðC0Þds0 1

s0 − s
1

Uðs0Þ ;

for t > 4m2; s < ðM −mÞ2: ðB8Þ

FIG. 9 (color online). Analytic continuation of a function in t of
type Gðs; tÞ in Eq. (B4) is followed by the motion of t (black
dashed curve). The physical sheet of Gðs; tÞ in t is defined in the
outside space of Γ. t ∈ ½0; 4m2� inside of the Γ region can be
reached by crossing Γ, and then a discontinuity has to be picked
up to keep Gðs; tÞ on the physical sheet.
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By exchanging the order of two integrals, we obtain

Gðs; tÞ ¼ 1

π

Z
C0
ds0

1

s0 − s
1

Uðs0Þ
Z

tC0 ðs0Þ

0

ðΓ0Þ dt0

t − t0
;

for t > 4m2; s < ðM −mÞ2: ðB9Þ

As we can see in Eq. (B9) and as also described previously in
Sec. III, the s plane is divided by contour C0. Only for the
region s ∈ ½ðM −mÞ2; ðM þmÞ2� does G need to pick up an

extra term 2i=UðsÞ R tCðsÞ
0 ðΓÞdt0=ðt − t0Þ to stay on the physi-

cal sheet, and thus the analytic continuation in s leads to

Gðs; tÞ ¼ 1

π

Z ðM−mÞ2

−∞
dt0

t− t0
½θðt0ÞΔðs; t0Þ− θð−t0ÞΣðs; t0Þ�

þ θðs− ðM−mÞ2ÞθððMþmÞ2− sÞ 2i
UðsÞ

Z
tCðsÞ

0

ðΓÞ dt0

t− t0
;

for t > 4m2; s∈ ½−∞;∞�: ðB10Þ

Next, we continue t to below 4m2; again, the first term on
the right-hand side of Eq. (B10) shows no difficulty of
continuation and remains the same. From Fig. 9, we can
see the t plane is divided by contour Γ, and thus only the
second term on the right-hand side of Eq. (B10) for t ∈
½0; 4m2� needs to pick up a pole contribution, −4π=UðsÞ,
to stay on the physical sheet. In the end, analytic
continuation of the Pasquier inversion representation of
G is given by

Gðs; tÞ ¼ 1

π

Z ðM−mÞ2

−∞
dt0

t − t0
½θðt0ÞΔðs; t0Þ − θð−t0ÞΣðs; t0Þ�

þ 2iθðs − ðM −mÞ2ÞθððM þmÞ2 − sÞ

×

�
1

UðsÞ
Z

tþðsÞ

0

ðΓÞ dt0

t − t0
þ θðtÞθð4m2 − tÞ 2πi

UðsÞ
�
;

for ðs; tÞ ∈ ½−∞;∞�: ðB11Þ
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