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The transition form factor for electrodisintegration of a two-body bound system is calculated in the
Bethe–Salpeter framework. For the initial (bound) and the final (scattering) states, we use our solutions of
the Bethe–Salpeter equation in Minkowski space which were first obtained recently. The gauge invariance,
which manifests itself in the conservation of the transition electromagnetic current J · q ¼ 0, is studied
numerically. It results from a cancellation between the plane wave and the final state interaction
contributions. This cancellation takes place only if the initial bound state Bethe–Salpeter amplitude, the
final scattering state, and the operator of electromagnetic current are strictly consistent with each other, that
is if they are found in the same dynamical framework. A reliable result for the transition form factor can
be obtained in this case only.
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I. INTRODUCTION

Computing the electromagnetic (EM) form factors in the
Bethe-Salpeter (BS) approach [1] requires the solutions of
the BS equation in Minkowski space.
The main reason is that the Wick rotation [2], which

allows going fromMinkowski to Euclidean space in the BS
equation, cannot be performed in the integral expression of
the EM form factor (see e.g. Ref. [3]). However, in contrast
to the Euclidean case, finding the Minkowski space
solution is complicated by the many singularities in the
integrand of the BS equation and in the amplitude itself. In
the recent years, and using different independent methods,
these difficulties have been overcome, and an important
progress was achieved.
In one of these methods [4], the kernel of the BS

equation is approximately represented in a separable form.
This allows one to considerably advance analytically and
therefore simplifies finding the solution.
In the method developed in Refs. [5,6], the BS amplitude

is represented as an integral over a weight function g—the
so-called Nakanishi transform [7]—which satisfies a non-
singular equation. A modification of this method, based on
the light-front projection of the BS amplitude, was devel-
oped in Refs. [8–12] and used to find the bound state
Minkowski BS amplitude. The elastic EM form factor was
also calculated in Ref. [13]. An equation for the Nakanishi
function for the scattering states was derived [14].
Another method [15,16] is based on the direct solution

in Minkowski space of the BS equation after an appro-
priate treatment of singularities. The scattering problem
was there solved and the off-mass shell scattering
amplitude first computed. It allows one to calculate the
electrodisintegration of the bound system, i.e. the form
factor of the transition bound to scattering state. Once

reduced to the mass shell, this amplitude reproduces the
phase shifts.
An important contribution to this form factor, incorpo-

rating the final state interaction (FSI), is given by the
Feynman graph shown in Fig. 1 (left panel). The right and
left vertices in this graph are just the Minkowski BS
amplitudes for the bound (left) and scattering (right) states.
If both vertices correspond to a bound state (case of the
elastic form factor), the Nakanishi transform allows one to
calculate the four-dimensional (4D) Feynman integral cor-
responding to Fig. 1 (left panel), with an integrand con-
taining three singular propagators, analytically [13]. Then
the nonsingular integral with theweight functions g is safely
calculated numerically. For the scattering state, though the
Nakanishi transform also exists [14], the corresponding
weight function g at positive energies is not yet computed.
Note, however, that very recently g was found in the zero-
energy limit that allowed one to calculate the scattering
length [17]. Without using the Nakanishi representation, the
scattering statevertex can be obtained only numerically [15],
and therefore the singular 4D Feynman integral correspond-
ing to Fig. 1 (left panel) must be computed numerically as
well. This calculation, providing the transition electromag-
netic current and the form factor, requires, however, some
care to take properly into account the pole singularities of
the propagators.
The aim of this paper is to give the detail of the first

results presented in Refs. [18,19] and analyze the con-
servation of the calculated electromagnetic current in the
inelastic transition. We will see that this current is indeed
conserved, as it should be from general principles [20].
However, this conservation is due to a rather delicate
cancellation between the plane wave (PW) contribution
(right panel of Fig. 1) and the final state interaction (left
panel of Fig. 1) which requires a strict consistency between,
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on one hand, the bound and scattering state solutions and,
on the other hand, the electromagnetic current operator.
It thus provides a strong test for all these quantities
simultaneously.
The need for an internal consistency between states,

currents, and the dynamical equation to ensure the gauge
invariance was extensively discussed in Ref. [20] in the
framework of the BS and the Gross spectator equations.
Our numerical results are in agreement with this general
expectation. We will show that, if this consistency and
hence the gauge invariance is violated, a consequence of
that is not only the appearance of a nonconserved part in the
current—which anyway drops out in the cross section—but
that the current as a whole is not valid at all. In other words,
the transition form factors extracted from the conserved
part of the nonconserved current are also deficient.
To illustrate our treatment of the singularities, we will

restrict to the spinless particles. The generalization to the
fermion case is straightforward since the fermion and scalar
propagators have the same singularities.
The paper is organized as follows. In Sec. II we

discuss the decomposition of the transition current in the
form factors without assuming the current conservation.
In Secs. III and IV, the FSI and PW contributions in the
conserved part of the current are calculated. Section V is
devoted to the discussion of the current conservation. In
particular, the FSI and PW contributions of the non-
conserved part of the current have been calculated, and
we have shown that they cancel each other. Some
selected numerical results are presented in Sec. VI.
Section VII contains the concluding remarks. The cum-
bersome details of the calculations are given in the
Appendices A, B, and C.

II. TRANSITION FORM FACTOR

In the case of spinless particles, and without supposing
the current conservation, the general form of the electro-
magnetic current involves two form factors:

Jμ ¼ ðpμ þ p0
μÞF1ðQ2Þ þ ðp0

μ − pμÞF2ðQ2Þ: ð1Þ

The decomposition (1), together with the scalar character
of the constituents, implies that the initial and final states
have total zero angular momenta, i.e. that they are com-
posed of S-waves only.
To study the current conservation, it is convenient to

redefine the form factors by introducing the linear combi-
nations F and F0,

F ¼ F1

F0 ¼ F1 − Q2

Q2
c
F2

⇔
F1 ¼ F

F2 ¼ Q2
c

Q2 ðF − F0Þ;

with

qμ ¼ p0
μ − pμ

Q2 ¼ −q2 ¼ −ðp0 − pÞ2
Q2

c ¼ M02 −M2: ð2Þ

M is the initial bound state mass, and M0 is the invariant
mass of the final scattering state. In terms of them, the
current (1) can be rewritten in the form

Jμ ¼
�
ðpμ þ p0

μÞ þ ðp0
μ − pμÞ

Q2
c

Q2

�
FðQ2Þ

− ðp0
μ − pμÞ

Q2
c

Q2
F0ðQ2Þ: ð3Þ

Since

q · J ¼ Q2
cF0ðQ2Þ; ð4Þ

the current conservation q · J ¼ 0 is equivalent to
F0ðQ2Þ≡ 0.
Notice that in the elastic case the form factor F0 is absent

since the term ∼ðp0
μ − pμÞF0ðQ2Þ in (3) is forbidden by the

symmetry between initial and final states.
Notice also that the form factor F0ðQ2Þ, even if it is

not zero, does not contribute to the electrodisintegration
amplitude A. Indeed, this amplitude is given by

FIG. 1. Left panel: Feynman graph for contribution of FSI to the transition EM form factor. Right panel: PW contribution to the
transition EM form factor.
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A ∼
Jμūðk0ÞγμuðkÞ

Q2
:

It contains the electron spinors uðkÞ and ūðk0Þ.
Substituting here the current (3) and using the Dirac
equation, we see that the term containing F0ðQ2Þ drops
out since

ðp0
μ − pμÞūðk0ÞγμuðkÞ ¼ ūðk0Þðk − k0ÞuðkÞ ¼ 0:

Below we will calculate each of these form factors—F
and F0—as a sum of FSI (left panel in Fig. 1) and PW (right
panel in Fig. 1) contributions, in the form

FinelðQ2Þ ¼ FfsiðQ2Þ þ FpwðQ2Þ
F0
inelðQ2Þ ¼ F0

fsiðQ2Þ þ F0
pwðQ2Þ: ð5Þ

We will check that the full current is conserved; that is, for
any Q2, the contributions to F0

inelðQ2Þ of the FSI and PW
cancel each other,

F0
inelðQ2Þ ¼ F0

fsiðQ2Þ þ F0
pwðQ2Þ ¼ 0; ð6Þ

provided the bound and scattering states are solutions of
the BS equation with the one-boson exchange kernel.
In this case, the EM current corresponding to the interaction
of a photon with a constituent is free. We are, however,
interested in a quantitative measure of the accuracy of this
cancellation in a real calculation. This is the reason for
introducing in (3) the nonconserved part—proportional to
ðp0

μ − pμÞF0ðQ2Þ—and the value of the form factor F0ðQ2Þ
will give us this measure.
We will calculate separately the FSI and PW contribu-

tions to the form factor F0ðQ2Þ and see with what accuracy
they cancel each other in the sum (6).

III. FINAL STATE INTERACTION

We start with the FSI contribution. It is obtained by
applying the Feynman rules to the left panel graph of Fig. 1
and has the form (following the convention of Ref. [21])

Jμ;fsi ¼ i
Z

d4k
ð2πÞ4

ðpμ þ p0
μ − 2kμÞΓið12p − k; pÞΓfð12p0 − k; p0Þ

ðk2 −m2 þ iϵÞ½ðp − kÞ2 −m2 þ iϵ�½ðp0 − kÞ2 −m2 þ iϵ� : ð7Þ

Here Γi is the initial (bound state) vertex, and Γf is the final
vertex (half-off-shell scattering BS amplitude). As men-
tioned, both vertex functions were found numerically by
solving the S-wave BS equation in Ref. [15]. More
precisely the function Γf is related to the scattering wave
solution F0 by Eq. (B29) from Appendix B 4.
The integrals of the type (7) are usually calculated by

applying to the product of propagators the Feynman para-
metrization and then performing the Wick rotation.
However, besides the product of propagators, expression
(7) contains the initial (Γi) and final (Γf) BS amplitudes
which are known numerically. Therefore, the Feynman
parametrization cannot be applied, and we should calculate
this 4D singular integral numerically, though after some
transformations.

It is convenient to carry out this calculations in the
system of reference where p0

0 ¼ p0 (i.e. q0 ¼ 0) and ~p

and ~p0 are collinear; i.e. they either are parallel or
antiparallel to each other, depending on the kinematical
conditions. In the elastic case, it coincides with the Breit

frame ~pþ ~p0 ¼ 0, and one has of course j~pj ¼ j ~p0j,
p0
0 ¼ p0. In the inelastic case, in the frame with p0

0 ¼ p0,

we have j~pj ≠ j ~p0j. Some useful kinematical relations
valid in this reference system are given in Appendix A.
In this reference frame, we take the zero component of

the current (3) and get the relation

J0 ¼ 2p0FðQ2Þ: ð8Þ
That is

FfsiðQ2Þ ¼ i
Z

dk0d3k
ð2πÞ4

ðp0 − k0Þ
p0

Γið12p − k; pÞΓfð12p0 − k; p0Þ
ðk20 − ε2~k

þ iϵÞ½ðp0 − k0Þ2 − ε2
~p−~k

þ iϵ�½ðp0 − k0Þ2 − ε2~p0−~k
þ iϵ� ð9Þ

with ε~q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ~q2

p
and similar expressions for ε~p−~p and

ε ~p0−~k obtained using (A4) and (A5).

As detailed in Appendix B 4, in case of initial and final
S-waves, all kinematical variables as well as the arguments
of the vertex functions Γ appearing in (9) can be expressed

in terms of j~pj, j ~p0j and the integration variables ðk0; z; j~kjÞ
with z ¼ k̂ · p̂. To lighten the writing, we will denote

hereafter abusively p ¼ j~pj, p0 ¼ j ~p0j, and k ¼ j~kj.
After a trivial integration over the azimutal angle, the

integration measure in (9) becomes
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dk0d3k
ð2πÞ4 ¼ dk0dzk2dk

ð2πÞ3 :

Let us introduce the notations, making explicit only the
dependence on the integration variables,

fðk0; z; kÞ ¼
Gðk0; z; kÞ

ðk20 − ε2~k
þ iϵÞ½ðp0 − k0Þ2 − ε2

~p−~k
þ iϵ�½ðp0 − k0Þ2 − ε2~p0−~k

þ iϵ� ; ð10Þ

where

Gðk0; z; kÞ ¼
ðp0 − k0Þ

p0

Γi

�
1

2
p − k; p

�
Γf

�
1

2
p0 − k; p0

�
: ð11Þ

Each pole singularity in (10) is represented as a sum of its principal value and a delta-function, and therefore the function
f takes the form

fðk0; z; kÞ ¼ Gðk0; z; kÞ
�
PV

1

k20 − ε2~k
− iπδðk20 − ε2~k

Þ
��

PV
1

ðp0 − k0Þ2 − ε2
~p−~k

− iπδ

�
ðp0 − k0Þ2 − ε2

~p−~k

��

×

�
PV

1

ðp0 − k0Þ2 − ε2~p0−~k

− iπδ

�
ðp0 − k0Þ2 − ε2~p0−~k

��

≡ f3 þ f2 þ f1; ð12Þ

where f3 is the contribution of the product of three principal values and no delta-functions (one single term), f2 is the
contribution of the product of two principal values and one delta-function (three terms), and f1 is the contribution of the
product of one principal value and two delta-functions (also three terms). The product of three delta-functions does not
contribute since their arguments cannot be zero simultaneously.
These functions fi have the following explicit form:

f3ðk0; z; kÞ ¼ Gðk0; kÞPV
1

k20 − ε2~k
PV

1

ðp0 − k0Þ2 − ε2
~p−~k

PV
1

ðp0 − k0Þ2 − ε2~p0−~k

ð13Þ

f2ðk0; z; kÞ ¼ −iπδðk20 − ε2~k
ÞGðk0; z; kÞPV

1

ðp0 − k0Þ2 − ε2
~p−~k

PV
1

ðp0 − k0Þ2 − ε2~p0−~k

− iπδððp0 − k0Þ2 − ε2
~p−~k

ÞGðk0; z; kÞPV
1

k20 − ε2~k
PV

1

ðp0 − k0Þ2 − ε2~p0−~k

− iπδððp0 − k0Þ2 − ε2~p0−~k
ÞGðk0; z; kÞPV

1

k20 − ε2~k
PV

1

ðp0 − k0Þ2 − ε2
~p−~k

ð14Þ

f1ðk0; z; kÞ ¼ −π2δðk20 − ε2~k
Þδððp0 − k0Þ2 − ε2

~p−~k
ÞGðk0; z; kÞPV

1

ðp0 − k0Þ2 − ε2~p0−~k

− π2δðk20 − ε2~k
Þδððp0 − k0Þ2 − ε2~p0−~k

ÞGðk0; z; kÞPV
1

ðp0 − k0Þ2 − ε2
~p−~k

− π2δððp0 − k0Þ2 − ε2
~p−~k

Þδððp0 − k0Þ2 − ε2~p0−~k
ÞGðk0; z; kÞPV

1

k20 − ε2~k
: ð15Þ

The index of fi (i ¼ 1; 2; 3) denotes the number of the principal value products that involves.
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Our task now is to calculate the 4D integral (9),
rewritten as

FfsiðQ2Þ ¼ i
ð2πÞ3

Z
dk0dzk2dkff3ðk0; z; kÞ þ f2ðk0; z; kÞ

þ f1ðk0; z; kÞg

with fi given by Eqs. (13)–(15). Part of this integration
is calculated analytically, and the remaining part, once
transformed into a nonsingular integrand, is calculated
numerically.
For calculating the singular principal value integrals in

f3, we will use the subtraction technique. That is, we
subtract and add to f3 an appropriately chosen singular
function h3 which in variable k0 has the same poles as f3
and has no any other singularities:

f3 ¼ ðf3 − h3Þ þ h3:

In the difference ðf3 − h3Þ, the pole singularities cancel
each other, and the result is a smooth function, whereas in
the additional term h3 the integral over dk0 is calculated
analytically.
After this calculation, there still remains a singular

expression in variable ~k. It is, however, logarithmic and
can be treated by using standard numerical techniques, like
variable change or by simply increasing the number of
integration points. The details of all these calculations are
given in Appendix B.
In the integrals containing the functions f2 and f1, the

integration over k0 is easily performed analytically by
means of the delta-functions. After that, and a trivial
azimuthal integration, the result is reduced to two- and
one-dimensional numerical integrations, respectively.
The final result for the FSI contribution (9) reads

FfsiðQ2Þ ¼ i
ð2πÞ3

Z
dk0dzk2dkff3ðk0; z; kÞ þ f2ðk0; z; kÞ

þ f1ðk0; z; kÞg
≡ F3ðQ2Þ þ F2ðQ2Þ þ F1ðQ2Þ; ð16Þ

where FiðQ2Þ are defined in Appendix B by Eqs. (B9),
(B13), and (B26).

IV. PLANE WAVE CONTRIBUTION

This contribution is displayed in the right panel in Fig. 1.
According to the Feynman rules, it reads

Jμ;pw ¼ −
Z ðpþ p0 − 2kÞμΓiðp2 − k; pÞ

ðp − kÞ2 −m2 þ iϵ
δð4Þ

×

�
k − ps −

p0

2

�
d4k: ð17Þ

The delta-function follows from the 4-momenta conserva-
tion in Fig. 1, right panel:

δð4Þðk − p1Þ ¼ δð4Þ
�
k − ps −

p0

2

�
:

Wehave introduced the totalp0 and relativeps 4-momentum
of the final (noninteracting) particles

2ps ¼ p1 − p2

p0 ¼ p1 þ p2:

The spatial part of ps in the rest frame of the final

system ~p0 ¼ 0 determines the invariant final state mass
M0 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ~ps

2
p

. One could calculate the integral over
d4k by means of the delta-function. It is, however,
interesting to keep this delta-function and carry out the
integration later, once the S-wave is extracted from the
final state.
Like in the case of FSI, the form factor can be found by

applying Eq. (8) to the J0;pw component of Eq. (17), in the
system of reference where q0 ¼ 0. That is

Fpw ¼ −
Z ðp0 − k0Þ

p0

Γiðp2 − k; pÞ
½ðp − kÞ2 −m2 þ iϵ�

×
Z

dΩp̂s

4π
δð4Þ

�
k − ps −

p0

2

�
d4k: ð18Þ

We have introduced here the additional integration over
dΩp̂s
4π in the rest frame ~p0 ¼ 0 of the final state. We remind
the reader that in the FSI contribution, calculated in the
previous section, we decomposed the final state BS
amplitude Γf in partial waves and took into account the
S-wave only. The delta-function in (18) replaces now the
final BS amplitude Γf. Averaging this delta-function over

the solid angle p̂s in the rest frame ~p0 ¼ 0 allows one to
select the partial S-wave in the plane wave. This is the

meaning of the integral over dΩp̂s
4π in (18).

The integration over dΩp̂s
and part of the integration

over d4k in (18) are done analytically in Appendix C. The
final result reads

Fpw ¼ −
Z

kþ

k−

ðp0 − k0Þ
p0

Γi

�
p
2
− k; p

�

×
1

ðp − kÞ2 −m2 þ iϵ
M0k

2εkpsp0 dk; ð19Þ

where the integration limits k∓ are defined in (B15) and

ps ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M02=4 −m2

p
. In expression (19) one must insert

k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
and in the scalar product k · p ¼ k0p0 −

zkp take the value z ¼ z0 given by Eq. (B14). Variables p0
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and p are the components of the initial 4-momentum.
The value p0 is the spatial part of the total final state
4-momentum in the frame where p0

0 ¼ p0. All these
components are expressed in terms of the momentum
transfer Q2 in Eqs. (A8) and (A9) from Appendix A.
Let us specify the arguments of Γiðp2 − k; pÞ in (19).

They are defined analogously to the case of FSI, Eq. (B27)
in Appendix B 4. Namely, solving the BS equation in the

rest frame ~p ¼ 0, we find Γiðk0; j~kjÞ, where k0 and j~kj are
also defined in the rest frame ~p ¼ 0. We should express
them in the frame where q0 ¼ 0. These expressions are
given in Appendix B 4. That is, we have to insert in (19) the

function Γið~k0; j~~kjÞ with arguments ~k0 and j~~kj given by the
first line of Eq. (B28) from the Appendix B 4,

~k0 ¼
1

2
M −

1

M
ðk0p0 − kpzÞ;

j~~kj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M2
ðk0p0 − kpzÞ2 − k20 þ ~k2

r

with k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
and z0 defined in (B14).

To summarize these last two sections, we would like to
emphasize that (i) the full PW contribution in the current is
given by the simple equation (17), (ii) the expression (19)
corresponds to the S-wave projection of the final plane
wave state, and (iii) the full transition form factor—
including both the FSI and PW contributions—is given
by the sum (5), with Ffsi determined by Eq. (16) and Fpw
by (19).

V. CURRENT CONSERVATION

As follows from Eq. (4), the conservation of the
electromagnetic current q · J ¼ 0 implies F0ðQ2Þ ¼ 0 for
any value of Q2; that is F0ðQ2Þ≡ 0.
To ensure this conservation, all the contributions to the

current, containing the interaction of a photon with a
charged particle, must be taken into account. In other
words, in an interacting system, the true current is, in
general, not the free one.
For example, for the kernel given by the sumof ladder and

cross-ladder, the full EM current should contain, in addition
to the two (free) contributions displayed in Fig. 1, the cross-
ladder FSI contribution shown in Fig. 2 and a similar cross-
ladder contribution for the plane wave (we suppose the
exchanged particle to be neutral). The latter contributions
are not free; they contain the interaction of constituents. The
sum of four contributions—Fig. 1 (left and right panels),
Fig. 2 (cross-ladder with FSI), and the corresponding cross-
ladder PW (not shown)—must be conserved.
In the case of the ladder kernel, the diagrams displayed

in Fig. 1 provide the only contributions to the current.
Therefore, the current determined by these two graphs has
to be conserved if the initial and final BS amplitudes are

also obtained with the ladder kernel. At the same time, the
expressions for the contributions (7) and (17) to the current
in terms of the BS amplitudes are universal—they are the
same for any BS amplitude (found with any kernel). The
conservation of their sum is provided by the particular
properties of the BS amplitudes determined by the ladder
kernel. The current is not conserved, if in Eqs. (7) and (17)
one substitutes other BS amplitudes (not the ladder ones).
Therefore, the current conservation (if any) provides a very
strong test for the solutions themselves. In this section we
will calculate the form factor F0ðQ2Þ, and in the next
section, we will check numerically whether it is identically
zero or not. From (4) it follows that

F0ðQ2Þ ¼ J · q
Q2

c
: ð20Þ

In the expression (7) for Jfsi, after multiplying it by
q=Q2

c, we consider, for a moment, only the factor

1

Q2
c
ðp0 − pÞ · ðpþ p0 − 2kÞ

¼ 1

Q2
c
½M02 −M2 − 2ðp0 − pÞ · k�j

p0
0
¼p0

¼
�
1 − 2

ffiffiffiffiffiffi
Q2

p
zk

Q2
c

�
: ð21Þ

Instead of the functionGðk0; z; kÞ defined in Eq. (11) and
given by Eq. (B27) in Appendix B 4, we introduce the
function

G0ðk0; z; kÞ ¼
�
1 − 2

ffiffiffiffiffiffi
Q2

p
zk

Q2
c

�
Γið~k0; ~kÞΓfð~k00; ~k0Þ ð22Þ

G0ðk0; z; kÞ is obtained from Gðk0; z; kÞ, replacing the
factor ðp0 − k0Þ=p0 in Gðk0; z; kÞ by the factor (21)

ðp0 − k0Þ
p0

→

�
1 − 2

ffiffiffiffiffiffi
Q2

p
zk

Q2
c

�
; ð23Þ

FIG. 2. Cross-ladder contribution to the transition EM
form factor.
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where as always z is the cosine of the angle between the

integration variable ~k and the momentum ~p of the initial
(bound state) system in the reference frame where q0 ¼ 0.
The FSI contribution F0

fsiðQ2Þ to the full form factor

F0ðQ2Þ ¼ F0
fsiðQ2Þ þ F0

pwðQ2Þ ð24Þ
is given by the same formulas as for FfsiðQ2Þ, Eq. (16), with
the replacement Gðk0; z; kÞ → G0ðk0; z; kÞ.
The PW contribution F0

pwðQ2Þ is calculated in a similar
way. Namely F0

pwðQ2Þ is given by Eq. (19) with the
replacement (23). The value k0 is the same used in
Eq. (19), and z0 is defined in Eq. (B14) from Appendix B 2.
To obtain F0ðQ2Þ identically zero, the two contributions

FSI and PW to the full form factor F0ðQ2Þ, Eq. (24), must
cancel each other. Numerically this condition is never
fulfilled exactly. The value of F0ðQ2Þ will be rather
compared to FðQ2Þ, and the current conservation would
manifest itself in the fact that F0ðQ2Þ ≪ FðQ2Þ for any
value of Q2.

VI. NUMERICAL RESULTS

As an example, we have calculated the transition
form factor for the initial (bound) state binding energy
B ¼ 0.01 m (initial state mass M ¼ 1.99 m) and for two
values of the final (scattering) state relative momentum
ps ¼ 0.1 m and ps ¼ 0.5 m with corresponding final
state masses M0 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

s

p
values M0 ≈ 2.00998 m

and M0 ≈ 2.236 m.
In contrast to the elastic scattering, the inelastic transition

form factor is complex. Its real and imaginary parts as a
function of Q2 for ps ¼ 0.1 m are shown in Fig. 3, at
the left and right panels correspondingly. One can see
that at relatively small momentum transfer Q2 < 1 both
contributions—FSI and PW—are important, and they
considerably cancel each other.

The tail of the real part of the form factor for Q2 ≥ 1 and
ps ¼ 0.1 m is shown in Fig. 4. In this momentum region,
FSI dominates, especially when Q2 increases.
This is a natural behavior for the kinematics correspond-

ing to Fig. 4. Indeed, due to small binding energy
(B ¼ 2 m −M ¼ 0.01 m), the constituents in the initial
state have small relative momentum. In the scattering
process, the photon transfers the large Q2 value to one of
the constituents only. However, since their relative energy
in the final state is also small (M0 − 2 m ≈ 0.01 m), both
constituents have also small relative momentum. Therefore
they move practically in the same direction, having both
large momenta. Since the second constituent does not
interact with the photon, it can obtain a large momentum
only due to a strong interaction with the first constituent.
This explains why in this kinematics the final state inter-
action (rescattering) determines the tail of the form factor
and dominates over the plane wave.
The transition EM form factor for larger final relative

momentum ps ¼ 0.5 m, final state mass M0 ¼ 2.336 m,
and the same values of other parameters is shown in Fig. 5.
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FIG. 4 (color online). The same as on the left panel of Fig. 3 for
the tail of form factor 1 ≤ Q2 ≤ 5.
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FIG. 3 (color online). Transition EM form factor FðQ2Þ as a function ofQ2. The initial (bound) state corresponds to the binding energy
B ¼ 0.01 m; the final (scattering) state corresponds to a relative momentum ps ¼ 0.1 m (final state mass M0 ¼ 2.00998 m). The FSI
contribution is shown by the dashed curve, and the PWone is shown by a dotted curve. The full form factor is shown by the solid curve.
The left panel is the real part of form factor, and the right panel is the imaginary part.
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For this larger value of the final state mass, the FSI
contribution is still significant, but it does not dominate
anymore. In the real part, FSI and PW contributions
considerably cancel each other.
As mentioned above, the form factor F0ðQ2Þ—which

vanishes if the current is conserved—is obtained from
FðQ2Þ by the replacement (23) in the integrand. The
corresponding numerical results for ps¼0.1 and ps ¼ 0.5

are shown in Figs. 6 and 7, respectively. We see that, in
comparison with theFðQ2Þ results of Figs. 3–5, the value of
F0ðQ2Þ is indistinguishable from zero. This very small value
is a result of a cancellation between FSI and PW contribu-
tions. We conclude that in the model considered the current
is conserved.
Though the current conservation is natural, the cancel-

lation of FSI and PW contributions is rather delicate and

Q2
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FIG. 7 (color online). Transition EM form factor F0ðQ2Þ as a function ofQ2 for ps ¼ 0.5. Other parameters and notations are the same
as in Fig. 3.
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FIG. 5 (color online). The same as in Fig. 3 for the final relative momentum ps ¼ 0.5 m (final state mass: M0 ¼ 2.236 m).
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provides as a strong test of a calculation. Indeed, both FSI
and PW contributions contain the same initial bound state
BS amplitude. At the same time, the FSI contribution
contains the scattering state BS amplitude, whereas the
PW contribution does not. Their cancellation takes place
provided both BS amplitudes—the bound and the scatter-
ing ones—as well as the current operator are consistent
with each other, i.e. if they are correctly found in the same
dynamics.
To illustrate how a violation of this consistency would

affect the current conservation, we replaced the final BS
amplitude, found for the one-boson exchange kernel, by an
ad hoc function,

Γfðk0; z; kÞ ¼
1

ðk20 þ a2Þðk2 þ b2Þ ; ð25Þ

without changing the initial BS amplitude and the current.
The transition form factor FðQ2Þ calculated with the
function (25) for a2 ¼ 1.5, b2 ¼ 1 is shown in Fig. 8.
Apparently it has a typical behavior, and nothing indicates
that it is a wrong result.
To see that we have displayed in Fig. 9 the transition

form factor F0ðQ2Þ calculated with the same function (25).
We see in this figure that F0 is different from zero and of the

same order as form factor FðQ2Þ. This means that the EM
current calculated with the phenomenological FSI function
(25) is not correct, and therefore the form factor FðQ2Þ
extracted from this current—shown in Fig. 8—is also
incorrect.
The study of the numerical stability as a function of the

number of Gaussian integration points nG shows that the
sumF0

tot ¼ F0
FSI þ F0

PW decreaseswith nG. For nG ¼ 64 it is
2 orders of magnitude smaller than eachF0

FSI andF
0
PW taken

separately and also than the form factor F. This means that
there exists a cancellation between F0

FSI and F
0
PW, hence the

current conservation, with a numerical precision of about
1%. Increasing the value of nG from 64 to 128 does not
improve the result (does not reduce F0

tot). Apparently, the
precision of F0

tot is determined by the accuracy of the
numeric solutions for the initial and final BS amplitudes.
The numerical results for FðQ2Þ and F0ðQ2Þ, calculated

with nG ¼ 64, ps ¼ 0.1, are given in Table I. For Q2 ¼ 1.5
the value of F0

tot is 1 order of magnitude smaller than F and
2 orders of magnitude smaller than F0

FSI and F
0
PW. WhenQ2

increases up to Q2 ¼ 5, the cancellation becomes worse
and almost disappears, though F0

tot is still a few times
smaller than F0

FSI and F0
PW. This is related to the fact that
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FIG. 9 (color online). Transition EM form factor F0ðQ2Þ as a function of Q2 for ps ¼ 0.1 calculated with the phenomenological FSI
function (25). The notations are the same as in Fig. 3.
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the BS amplitudes were computed in a finite domain of
variables k0; kwhich, at large values ofQ2, is not enough to
ensure enough accurate results for the BS solution.

VII. CONCLUSION

We have presented the first results of the transition
electromagnetic form factor for the electrodisintegration of
a two-body bound system described by the Bethe–Salpeter
equation in Minkowski space. Calculations have been
performed in a self-consistent way. The initial (bound
state) and final (scattering state) BS amplitudes were found
by solving the equation with the method developed in our
previous works [15] and an one-boson exchange kernel.
We have shown that, provided the bound and scattering

state Bethe–Salpeter amplitudes as well as the operator of
EM current are consistent with each other, the electromag-
netic current is conserved. If this consistency is destroyed,
the conservation is violated. This violation has two
consequences.
First, the decomposition of the current in form factors

obtains an additional contribution [second term in Eq. (3)]
which does not satisfy the equality J · q ¼ 0. However, the
appearance of this term itself does not make any influence
on observables—it does not contribute in the scattering
amplitude—due to conservation of the electromagnetic
current of the incident electron.
Second, and most important, is the fact that the non-

conservation of the calculated current makes it physically
meaningless. One cannot extract from a deficient current
a reliable transition form factor. It is thus mandatory, in
practical calculations, like e.g. in the deuteron electro-
disintegration, to check the current conservation. If the
form factor, responsible for nonconservation of the cur-
rent, turns out to be comparable with the physical ones,
one can hardly trust the calculated physical form factors,
either.
The widely used recipe, consisting of replacing the

nonconserved current Jμ by the conserved combination
~Jμ ¼ Jμ − qμðJ · qÞ=q2, hides the problem but does not

solve it. This combination ~Jμ satisfies tautologically the
current conservation for any Jμ, not only for the correct one,
and thus offers no any guarantee to the result. With an

incorrect current, one cannot find the correct transition
form factor, neither from Jμ nor from ~Jμ.
The current conservation appears as a numerically subtle

phenomenon since it manifests itself as a cancellation of
large contributions: FSI and PW. To see it unambiguously,
the solution of the BS equation should be found with high
enough precision.
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APPENDIX A: KINEMATICS

As mentioned in Sec. II, it is convenient to carry out
these calculations in the system of reference where
p0
0 ¼ p0, i.e. q0 ¼ 0. In the elastic case, it coincides with

the Breit frame ~pþ ~p0 ¼ 0 and j~pj ¼ j ~p0j, p0
0 ¼ p0.

This system exists in the inelastic case M0 ≠ M, too.
Indeed, one can easily check that in the reaction e þ d →

e0 þ ðnpÞ the momentum transfer q2 ¼ ðp − p0Þ2 ¼
ðp0 − p0

0Þ2 − ð~p − ~p0Þ2 is always negative. In particular,
its maximal value [reached at the minimal value of
s ¼ ðM0 þmeÞ2, withme the electronmass] is still negative:

q2 ≤ −
meðM02 −M2Þ

M0 þme
< 0:

Therefore, one can find a reference frame where this
negative value contains only spatial components, q2 ¼
ðp − p0Þ2 ¼ −ð~p − ~p0Þ2, so that p0

0 ¼ p0. Moving this
frame, without changing the value q0 ¼ 0, one can also

make the vectors ~p and ~p0 collinear, i.e. either parallel or
antiparallel, so thatQ2 ¼ −q2 ¼ ð~p − ~p0Þ2 is equal either to
ðp − p0Þ2 (if ~p and ~p0 are parallel) or ðpþ p0Þ2 (if ~p and ~p0

are antiparallel), depending on the Q2 value. We denote

p ¼ ∣~p∣ and p0 ¼ ∣ ~p0∣. We will specify below when one
should take the plus or minus sign.

TABLE I. The value F0ðQ2Þ for FSI, PW, and tot ¼ FSIþ PW vs Q2 in comparison to FðQ2Þ; ps ¼ 0.1.

Q2 FðQ2Þ F0
FSIðQ2Þ F0

PWðQ2Þ F0
totðQ2Þ

0.01 2.948–03 − 1.571–03 4.703–02þ i1.732–02 −4.648–02 − i1.709–02 5.490–04þ i2.304–04
0.1 1.391–02 − i1.008–02 4.541–02þ i1.641–02 −4.478–02 − i1.633–02 6.268–04þ i8.139–05
0.5 1.047–02 − 7.653–03 3.904–02þ i1.401–02 −3.833–02 − i1.383–02 7.089–04þ i1.848–04
1. 6.640–03 − i4.841–03 3.321–02þ i1.181–02 −3.268–02 − i1.184–02 5.303–04 − i3.634–05
2. 3.573–03 − i2.460–03 2.639–02þ i8.478–03 −2.537–02 − i9.150–03 1.018–03 − i6.726–04
3. 2.362–03 − i1.589–03 2.234–02þ i7.062–03 −2.079–02 − i7.482–02 1.552–03 − i4.204–04
4. 1.718–03 − i1.109–02 1.897–02þ i6.511–03 −1.763–02 − i6.339–02 1.341–03þ i1.721–04
5. 1.446–03 − i8.313–04 1.993–02þ i6.093–03 −1.531–02 − i5.506–02 4.614–03þ i5.873–04
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In case of an elastic collisionM0 ¼ M, in the Breit frame
with q0 ¼ 0 (i.e. p0

0 ¼ p0) and with the initial and final

momenta satisfying ~pþ ~p0 ¼ 0 and j ~p0j ¼ j~pj, the scat-
tered system moves in the opposite direction than the
incoming one, and this is the only possibility to get a
nonzero momentum transfer.
In the inelastic case M0 > M, still in the reference frame

with p0
0 ¼ p0 and with the collinear momenta ~p, ~p0 (now

with j ~p0j ≠ j~pj but j ~p0j < j~pj), there exists a critical
momentum transfer Q2

c. If the momentum transfer Q2 is
smaller than Q2

c, it is not enough to change the direction of
initial momentum ~p into the opposite one. In this kinemat-

ics, the final momentum ~p0 after collision remains parallel
to ~p, though with p0 smaller than p. However, forQ2 > Q2

c

the final momentum ~p0 changes its direction relative to ~p
like in the elastic collision. That is, when Q2 increases,

the final momentum ~p0, being first parallel to ~p, vanishes
and appears again in a direction opposite to ~p. When it

crosses zero ~p0 ¼ 0 (provided p0
0 ¼ p0), the corresponding

momentum transfer is Q2
c ¼ p2. We get in this case

p0
0 ¼ p0 →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p02 þM02

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

q
→ M0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

q
:

From the last equality, we find the critical value Q2
c ¼ p2

for which p0 ¼ 0,

Q2
c ¼ M02 −M2: ðA1Þ

In the frame where we perform the calculations (q0 ¼ 0),
the kinematical relations

ð ~p0 − ~pÞ2 ¼ ðp0 − σpÞ2 ðA2Þ

~k · ~p0 ¼ σkp0z ðA3Þ

ð~p − ~kÞ2 ¼ p2 − 2zpkþ k2 ðA4Þ

ð ~p0 − ~kÞ2 ¼ p02 − 2σzp0kþ k2 ðA5Þ
ffiffiffiffiffiffi
Q2

p
¼ p − σp0 ðA6Þ

hold, where we have introduced the “sign” variable σ
depending on Q2 and Q2

c,

σðQ2; Q2
cÞ ¼

�þ1 if Q2 < Q2
c

−1 if Q2 > Q2
c;

ðA7Þ

and denote hereafter (abusively) k ¼ ∣~k∣.
From the requirement

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M02 þ p02p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p2

p
, we

find the relation between p and p0,

p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −M02 þ p2

q
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M02 −M2 þ p02

q
;

and so

p0 ¼ jQ2
c −Q2j
2

ffiffiffiffiffiffi
Q2

p
p ¼ Q2

c þQ2

2
ffiffiffiffiffiffi
Q2

p ðA8Þ

p0 ¼ p0
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððM0 −MÞ2 þQ2ÞððM0 þMÞ2 þQ2Þ

p
2

ffiffiffiffiffiffi
Q2

p :

ðA9Þ

APPENDIX B: CALCULATING THE FSI
CONTRIBUTION TO THE TRANSITION

FORM FACTOR

The contribution of FSI to the transition form factor is
given in Eq. (16) as a sum of three terms F3;2;1. In their turn,
F3;2;1 are obtained by integrating over dk0d3k the three
functions f3;2;1 defined in (13)–(15). We detail in what
follows the calculation of these three contributions.

1. F3 contribution

Let us first consider the F3 contribution

F3ðQ2Þ ¼ i
ð2πÞ3

Z
∞

0

k2dk
Z þ1

−1
dz

Z þ∞

−∞
dk0f3ðk0; z; kÞ

with f3 given by Eq. (13).
As a function of k0, f3 contains six poles in the

k0-variable at the points

k0 ¼ þε~k

k0 ¼ −ε~k
k0 ¼ p0 þ ε~p−~k

k0 ¼ p0 − ε~p−~k

k0 ¼ p0 þ ε ~p0−~k

k0 ¼ p0 − ε ~p0−~k

and eventually other singularities resulting fromGðk0; z; kÞ.
We subtract and add to f3 a function h3 depending on
the same variables and having poles only in the variable k0.
That is

f3 ¼ f3 − h3 þ h3 ¼ f̄3 þ h3 ðB1Þ
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with

h3ðk0; z; kÞ ¼
g1ðz; kÞ
k0 − ε~k

þ g2ðz; kÞ
k0 þ ε~k

þ g3ðz; kÞ
k0 − p0 − ε~p−~k

þ g4ðz; kÞ
k0 − p0 þ ε~p−~k

þ g5ðz; kÞ
k0 − p0

0 − ε ~p0−~k

þ g6ðz; kÞ
k0 − p0

0 þ ε ~p0−~k
: ðB2Þ

The coefficients gi, independent of k0, are determined by
imposing that the difference

f̄3 ≡ f3 − h3 ðB3Þ

is regular in k0. For instance

lim
k0→εk

ðk0 − εkÞf̄3 ¼ 0⇔ lim
k0→εk

ðk0 − εkÞf3 ¼ g1ðz; kÞ;

and similarly for other poles.

This gives

g1ðz; kÞ ¼ þ Gðþεk; z; kÞ
2εk½ðp0 − εkÞ2 − ϵ2p−k�½ðp0 − εkÞ2 − ϵ2p0−k�

g2ðz; kÞ ¼ −
Gð−εk; z; kÞ

2εk½ðp0 þ εkÞ2 − ϵ2p−k�½ðp0 þ εkÞ2 − ϵ2p0−k�

g3ðz; kÞ ¼ þ Gðp0 þ εp−k; z; kÞ
2εp−k½ðp0 þ εp−kÞ2 − ε2k�ðε2p−k − ε2p0−kÞ

g4ðz; kÞ ¼ −
Gðp0 − εp−k; z; kÞ

2εp−k½ðp0 − εp−kÞ2 − ε2k�ðε2p−k − ε2p0−kÞ

g5ðz; kÞ ¼ −
Gðp0 þ εp0−k; z; kÞ

2εp0−k½ðp0 þ εp0−kÞ2 − ε2k�ðε2p−k − ε2p0−kÞ

g6ðz; kÞ ¼ þ Gðp0 − εp0−k; z; kÞ
2εp0−k½ðp0 − εp0−kÞ2 − ε2k�ðε2p−k − ε2p0−kÞ

;

ðB4Þ

and the function f̄3 obtains the form

f̄3ðk0; z; kÞ ¼
Gðk0; z; kÞ

½k0 − εk�½k0 þ εk�½k0 − p0 − εp−k�½k0 − p0 þ εp−k�½k0 − p0 − εp0−k�½k0 − p0 þ εp0−k�

−
g1ðz; kÞ
k0 − εk

−
g2ðz; kÞ
k0 þ εk

−
g3ðz; kÞ

k0 − p0 − εp−k
−

g4ðz; kÞ
k0 − p0 þ εp−k

−
g5ðz; kÞ

k0 − p0 − εp0−k
−

g6ðz; kÞ
k0 − p0 þ εp0−k

: ðB5Þ

The principal value (PV) integral over k0 of the remaining integrand h3 in (B1) vanish in the full integration domain:

PV
Z

∞

−∞
h3dk0 ¼ 0: ðB6Þ

However, in the numerical solution, we restrict the integration domain to a finite interval k0 ∈ ½−L;þL�. The integral (B6) is
no longer zero, and a finite volume correction must be taken into account. The integral over the finite domain ½−L;þL� of
the function h3 given in (B2) is analytic and reads

f3;fvðz; kÞ≡ PV
Z þL

−L
dk0h3ðk0; k; zÞ ¼ g1ðk; zÞ log

���� L − εk
Lþ εk

����þ g2ðk; zÞ log
����Lþ εk
L − εk

����
þ g3ðk; zÞ log

���� L − p0 − εp−k
Lþ p0 þ εp−k

����þ g4ðk; zÞ log
����L − p0 þ εp−k
Lþ p0 − εp−k

����
þ g5ðk; zÞ log

���� L − p0 − εp0−k

Lþ p0 þ εp0−k

����þ g6ðk; zÞ log
����L − p0 þ εp0−k

Lþ p0 − εp0−k

����: ðB7Þ

For the reasons that will become clear latter, we will include the above finite volume contributions,

F3;fvðQ2Þ ¼ i
ð2πÞ3

Z
∞

0

k2dk
Z

1

−1
dzf3;fvðz; kÞ; ðB8Þ

in the F2 contribution, to be discussed in the next section.
The F3ðQ2Þ will thus be given by the three-dimensional integral

F3ðQ2Þ ¼ i
ð2πÞ3

Z
∞

0

k2dk
Z

1

−1
dz

Z
L

−L
dk0f̄3ðk0; z; kÞ ðB9Þ

with f̄3ðk0; z; kÞ defined in (B5).
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The integrand in (B9) is by construction a smooth
function in k0. Concerning the integration over the varia-
bles k and z, further inspection is needed. ForM0 > 2m the
value p0 − ε~k − ε ~p0−~k ¼ p0

0 − ε~k − ε ~p0−~k in the denominator

of (B5) can vanish. Indeed, a state with mass M0 > 2m can
decay in two particles with masses m, and in the moving
frame, this implies p0

0 ¼ ε~k þ ε ~p0−~k. The g1 and g6 terms in

Eq. (B5) are therefore singular in variable ~k. These two
singularities cancel each other since an expansion of f̄3 in
the variable ε~k near ε~k ¼ p0 − ε ~p0−~k shows that the result is

proportional to ∼Oððε ~p0−~k − p0
0Þ0Þ. As a consequence, the

integrand f̄3 has no additional singularities in k; z and can
be safely integrated numerically by standard methods.

2. F2 contribution

Let us now calculate the contribution

F2ðQ2Þ ¼ i
ð2πÞ3

Z
∞

0

k2dk
Z þ1

−1
dz

Z þ∞

−∞
dk0f2ðk0; z; kÞ

ðB10Þ
with f2 given by Eq. (14).
The integration over the k0-variable can be performed

analytically by means of the delta-functions. The result—
denoted ~f2—is expressed in terms of functions gi defined in
(B4) and reads

~f2ðz; kÞ ¼
Z þ∞

−∞
dk0f2ðk0; z; kÞ ¼ −iπfg1ðz; kÞ − g2ðz; kÞ

þ g3ðz; kÞ − g4ðz; kÞ − g5ðz; kÞ − g6ðz; kÞg:
ðB11Þ

As one can see, ~f2ðz; kÞ has a similar structure and depends
on the same variables as the finite volume corrections
f3;fvðz; kÞ described above in (B7). It is thus natural to
include both contributions in the same integrand,

f̄2ðz; kÞ ¼ ~f2ðz; kÞ þ f3;fvðz; kÞ ¼
X6
i¼1

ciðkÞgiðkÞ;
by introducing the coefficients

c1ðkÞ ¼ −iπ þ log

���� L − εk
Lþ εk

����
c2ðkÞ ¼ þiπ þ log

����Lþ εk
L − εk

����
c3ðkÞ ¼ −iπ þ log

���� L − p0 − εp−k
Lþ p0 þ εp−k

����
c4ðkÞ ¼ þiπ þ log

����L − p0 þ εp−k
Lþ p0 − εp−k

����
c5ðkÞ ¼ þiπ þ log

���� L − p0 − εp0−k

Lþ p0 þ εp0−k

����
c6ðkÞ ¼ þiπ þ log

����L − p0 þ εp0−k

Lþ p0 − εp0−k

����: ðB12Þ

The F2 contribution is then given by the two-dimensional
integral

F2ðQ2Þ ¼ i
ð2πÞ3

Z
∞

0

k2dk
Z þ1

−1
dzf̄2ðz; kÞ: ðB13Þ

The integral (B13) over the z variable requires some care
since both g1 and g6 can have pole singularities in z. In
contrast to the function f̄3, Eq. (B5), these singularities
in f̄2 do not cancel each other. However, they can be
integrated analytically over z, so the pole singularities turn
into the log ones.
Let us first consider the g1 term:

g1ðz; kÞ ¼
Gðþεk; z; kÞ

2εk½ðp0 − εkÞ2 − ϵ2p−k�½ðp0 − εkÞ2 − ϵ2p0−k�
:

The denominator vanishes if

ðp0− εkÞ2− ϵ2p0−k ¼ 0⇔2p0εk−M02 ¼ 2 ~p0 · ~k¼ 2σp0kz

with σ ¼ �1 being the sign function defined in (A7).
A singularity in the z-variable would exist at z ¼ z0
given by

z0ðkÞ ¼ σ
2p0εk −M02

2p0k
ðB14Þ

provided ∣z0∣ ≤ 1, that is for k in the interval k− ≤ k ≤ kþ
with

k∓ ¼ 1

2

����p0∓p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
2m
M0

�
2

s ����: ðB15Þ

Notice, in particular, that this singularity exists only in the
inelastic case since 2m < M0. It is a moving singularity,
depending on the value of the second argument k, as well as
on the momentum transfer Q2 and the parameter Q2

c.
To properly account for this singularity, we split the

k-integration interval in three domains,

½0;þ∞� ¼ ½0; k−�∪½k−; kþ�∪½kþ;þ∞�;

as well as the corresponding integral (B13)

F2ðQ2Þ ¼ I1 þ I2 þ I3

with
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I1 ¼
i

ð2πÞ3
Z

k−

0

k2dk
Z þ1

−1
dzf̄2ðz; kÞ

I2 ¼
i

ð2πÞ3
Z

kþ

k−

k2dk
Z þ1

−1
dzf̄2ðz; kÞ

I3 ¼
i

ð2πÞ3
Z þ∞

kþ
k2dk

Z þ1

−1
dzf̄2ðz; kÞ∶

(i) The integrals over ½0; k−� and ½kþ;þ∞� have a
smooth integrand in both variables, and the contri-
butions I1 and I3 can be computed by standard
methods.

(ii) The integral over ½k−; kþ� has a singularity at z ¼ z0.
The integrand is regularized by using the usual
subtraction procedure

g1ðz; kÞ ¼
�
g1ðz; kÞ −

g01ðkÞ
z − z0

�
þ g01ðkÞ
z − z0

ðB16Þ

with

g01ðkÞ ¼ lim
z→z0

ðz − z0Þg1ðz; kÞ ¼ Res½g1ðz; kÞ�z¼z0 :

To compute this quantity, we take z from

ϵ2p0−k ¼ m2 þ k2 þ p02 − 2σp0kz

¼ ϵ2k þ p2
0 −M02 − 2σp0kz

⇔ z ¼ σ
ϵ2k þ p2

0 −M02 − ϵ2p0−k

2p0k
;

and together with (B14) we have

z − z0 ¼ σ
ϵ2k þ p2

0 − ϵ2p0−k − 2p0εk

2p0k

¼ σ
ðp0 − εkÞ2 − ϵ2p0−k

2p0k
;

and so

ðz − z0Þg1ðz; kÞ ¼ σ
Gðþεk; z; kÞ

4p0kεk½ðp0 − εkÞ2 − ϵ2p−k�
:

We get in this way the residue

g01ðkÞ ¼
σ

4p0kεk

�
Gðεk; z; kÞ

ðp0 − εk þ εp−kÞðp0 − εk − εp−kÞ
	

z¼z0

: ðB17Þ

The g6 term

g6ðz; kÞ ¼
Gðp0 − εp0−k; z; kÞ

2εp0−kðp0 − εp0−k þ εkÞðp0 − εp0−k − εkÞðεp−k þ εp0−kÞðεp−k − εp0−kÞ

has the same singularity at z ¼ z0 as g2 and has been treated in the same way by subtraction,

g6ðz; kÞ ¼
�
g6ðz; kÞ −

g06ðkÞ
z − z0

�
þ g06ðkÞ
z − z0

:

By a similar calculation, we find

g06ðkÞ ¼ −g01ðkÞ:

Finally, once the singular terms g2 and g6 are regularized, the I2 contribution is given by two integrals, corresponding to
the two terms in the subtraction (B16),

I2 ¼ I02 þ I002 ðB18Þ

I02 ¼
i

ð2πÞ3
Z

k2

k1

k2dk
Z þ1

−1
dzf̄02ðz; kÞ ðB19Þ

I004 ¼
i

ð2πÞ3
Z

k2

k1

k2dkc01ðkÞg01ðkÞ log
���� 1 − z0
1þ z0

����; ðB20Þ

where
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f̄02 ¼ f̄2 − c01ðkÞ
g01ðkÞ
z − z0

ðB21Þ

is a regular integrand, g01 the residue (B17), and c01ðkÞ≡
c1ðkÞ − c6ðkÞ with ci given in (B12).

3. F1 contribution

The F1 contribution is given by

F1ðQ2Þ ¼ i
ð2πÞ3

Z
dk0dzk2dkf1ðk0; z; kÞ: ðB22Þ

According to definition (15) of f1, this function contains
three contributions; each of them contains the product of
two delta-functions. It turns out that the nonzero contri-
bution results from the second term only.
We substitute (15) in (B22), integrate this term over k0

analytically, and find

~f1ðz; kÞ ¼
Z

dk0f1

¼ −
π2

4ε~kε ~p0−~k

Gðε~k; z; kÞ
ðε2~p0−~k

− ε2
~p−~k

Þ δðp0 − ε~k − ε ~p0−~kÞ

ðB23Þ

to be integrated then over z and k:

F1ðQ2Þ ¼ i
ð2πÞ3

Z
dzk2dk ~f1ðz; kÞ: ðB24Þ

In general, the denominator ðε2~p0−~k
− ε2

~p−~k
Þ in (B23)

can vanish. However, one can check that if the argument
of the delta function ðp0 − ε~k − ε ~p0−~kÞ is zero—providing a

nonzero contribution—the denominator ðε2~p0−~k
− ε2

~p−~k
Þ is

not zero. Therefore, there is no singularity from this
denominator.
Concerning the first and the third terms in (15), the

arguments of the δ-functions in them vs k0 can also
cross zero. However, in the first term, they cannot be
zero simultaneously. In the third term, the arguments
of the δ-functions can be zero simultaneously. That is,
after integration over k0, we obtain the delta-function
∼δðE2

~p−~k
− E2

~p0−~k
Þ which could contribute. However, a

more careful analysis shows that its contribution is in fact
zero. For this aim we represent the delta-function as

δðxÞ ¼ ϵ

πðx2 þ ϵ2Þ

and integrate over both dz and dk. Taking after that the limit
ϵ → 0, we find a zero result. Care must be taken, however,

to not take this limit too early, i.e. before integration, since
we will get in this way a wrong nonzero contribution.
After integrating analytically over dz in (B24) by means

of the delta-function, we obtain

f̄1ðkÞ ¼
Z

1

−1
~f1dz

¼ π2θð1 − jz0jÞ
1

2p0kε~k

Gðk0 ¼ ε~k; kÞ
ðε2

~p−~k
− ε2~p0−~k

Þ
����
z¼z0

; ðB25Þ

where the value of z0 is given by (B14).
Finally, the integration over k is reduced, due to the

theta-function θð1 − jz0jÞ, to the interval k ∈ ½k−; kþ� with
k∓ given (B15). That is

F1ðQ2Þ ¼ i
ð2πÞ3

Z
kþ

k−

k2dkf̄1ðkÞ: ðB26Þ

As a test, we carry out an independent calculation for
Γi ¼ Γf ¼ 1, using Feynman parametrization for the 4D
integrals. In this way, we find the imaginary part which
coincides with the contribution (B26).

4. About the function Gðk0;z;kÞ
An important quantity used in our formalism, which

contains all the information about the initial and final state
vertex amplitudes, is the function Gðk0; z; kÞ, defined in
Eq. (11):

Gðk0; z; kÞ ¼
ðp0 − k0Þ

p0

Γi

�
p
2
− k; p

�
Γf

�
p0

2
− k; p0

�
:

Some useful relations concerning this function are specified
in what follows.
The initial state amplitude Γiðk0; kÞ—we denote

j~kj ¼ k—is computed in the reference frame where
~p ¼ 0. In an arbitrary frame, Γiðk0; kÞ is written as
Γið~k0; ~kÞ where

~k0 ¼
k · p
M

~k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk · pÞ2
M2

− k2
r

:

The arguments of Γiðp2 − k; pÞ are obtained from these
relations by the shift k → p

2
− k. The same happens for

the final state vertex amplitude Γfðp
0
2
− k; p0Þ. The function

Gðk0; z; kÞ should be therefore understood as

Gðk0; z; kÞ ¼
ðp0 − k0Þ

p0

Γið~k0; ~kÞΓfð~k00; ~k0Þ ðB27Þ

with, after performing the shift k → p
2
− k, the arguments

given by
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~k0 ¼
M
2
−
k · p
M

~k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk · pÞ2
M2

− k2
r

:

Written in more detail,

~k0 ¼
M
2
−
k0p0 − kpz

M

~k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk0p0 − kpzÞ2

M2
− k20 þ ~k2

r

~k00 ¼
M0

2
−
k0p0 − ~k · ~p0

M0

~k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk0p0 − ~k · ~p0Þ2

M02 − k20 þ ~k2

s
: ðB28Þ

We remind the reader that the sign in the scalar product ~k · ~p0
is given by (A3) and the values ofp; p0 andp0 are defined by
Eqs. (A8) and (A9). They all depend on the value of Q2.
The initial (bound state) solution Γi is normalized so that

the elastic EM form factor at Q2 ¼ 0 is 1. There is no any

uncertainty in the normalization of the scattering state
solution Γf determined by the inhomogeneous BS equa-
tion. One should also take into account that the solution
found in Ref. [15] was the partial wave amplitude F0

related to the full amplitude by

Γf ¼ 16π
X∞
l¼0

FlPlðcos θÞ

and that for the S-wave the function Γf in (B27) is related to
our solution F0 obtained in Ref. [15] by

Γf ¼ 16πF0: ðB29Þ

APPENDIX C: CALCULATING THE PW
CONTRIBUTION TO THE TRANSITION

FORM FACTOR

We carry out here the part of the integration over dΩ~ps

and d4k in the form factor (18) that can be done analyti-

cally. Integrating first over dΩ~ps
in the frame ~p0 ¼ 0,

p0
0 ¼ M0 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ~p2

s

p
, we get

Z
δð4Þ

�
k − ps −

p0

2

�
dΩ~ps

4π
¼

Z
δ

�
k0 −

M0

2

�
1

p2
s
δðj~kj − psÞδð2ÞðΩ~k −Ω~ps

Þ dΩ~ps

4π

¼ 1

4πp2
s
δ

�
k0 −

M0

2

�
δðj~kj − j ~psjÞ:

In an arbitrary frame, k0 and j~kj are rewritten as

k0 →
k · p0

M0 ; j~kj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − k2

q
→

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk · p0Þ2
M02 − k2

r
:

Explicitly, in the frame where p0
0 ¼ p0,

k · p0

M0 ¼ k0p0 − σzj~kjp0

M0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk · p0Þ2
M02 − k2

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk0p0 − σzj~kjp0Þ2

M02 − k20 þ j~kj2
s

;

where the sign σ is defined in (A7).
After these transformations, the form factor Eq. (18) obtains the form

Fpw ¼ −
Z ðp0 − k0Þ

p0

Γiðp2 − k; pÞ
½ðp − kÞ2 −m2 þ iϵ� δ

�ðk0p0 − σzkp0

M0 −
M0

2

�
δ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk0p0 − σkp0Þ2

M02 − k20 þ k2
r

− ps

�
dk0k2dkdz

2p2
s

:

ðC1Þ
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Equation (C1) contains two delta-functions and integration
over three variables k0, k, and z. By means of the delta-
functions, we integrate over the variables k0 and z. Denote
the arguments of the first and second delta-functions by
arg1 and arg2 respectively. Then the conditions that the
arguments of both deltas equal to zero give the system of
equations arg1 ¼ 0; arg2 ¼ 0 which we solve relative to k0
and z. We find that k0 ¼ εk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
and z ¼ z0 with

the value of z0 given by (B14). Remember that ∣z0∣ ≤ 1 if
k ∈ ½k−; kþ� with k∓ given by (B15).
Calculating an integral containing the delta-function, one

should divide the result by the derivative, over the inte-
gration variable, of the argument of the delta-function.
Since the integral (C1) contains two delta-functions, we
have to divide the result by the product d1d2 of derivatives
d1 ¼ arg01, d2 ¼ arg02 of the arguments of both delta-
functions. Each derivative depends on the order of

calculation (first over k0, then over z or in the opposite
order), though the final result, which is determined by their
product, is the same. That is

d1d2 ¼ arg01;k0arg
0
2;z ¼ arg01;zarg

0
2;k0

¼ kεkp0

M0ps
;

provided arg1 ¼ arg2 ¼ 0.
Finally, the integral over z is reduced to

Z
1

−1
…δðz − z0Þdzdk ∼

Z
…θð1 − jz0jÞdk ¼

Z
kþ

k−

…dk:

Thus, after integration over k0 and z, we obtain the integral
(19) over k in the limits determined by the condition
jz0j ≤ 1 and given by Eq. (B15).
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