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Flavor SU(3) symmetry, including 30% first-order SU(3) breaking, has been shown to describe
adequately a vast amount of data for charmed meson decays to two pseudoscalar mesons and to a vector
and a pseudoscalar meson. We review a recent dramatic progress achieved by applying a high-order
perturbation expansion in flavor SU(3) breaking and treating carefully isospin breaking. We identify a class
of U-spin related D0 decays to pairs involving charged pseudoscalar or vector mesons, for which high-
precision nonlinear amplitude relations are predicted. Symmetry-breaking terms affecting these relations
are fourth-order U-spin breaking and terms which are first order in isospin breaking and second order in
U-spin breaking. The predicted relations are shown to hold within experimental errors at a precision
varying between 10−3 and 10−4, in agreement with estimates of high-order terms. Improved branching ratio
measurements for D0 → Kþρ−; K�þπ− and for decay modes involving three other pairs of charged
pseudoscalar and vector mesons could further sharpen two of these precision tests. We also obtain
amplitude relations for D0 decays to pairs of neutral pseudoscalar mesons, and relations for rate
asymmetries between decays involving K0

S and K0
L, which hold up to second-order U-spin breaking at a

level of several percent.
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I. INTRODUCTION

A useful tool for studying hadronic decay amplitudes of
charmed mesons is approximate flavor SU(3) symmetry.
First-order symmetry-breaking corrections in amplitudes,
due to the light quark mass term in the Standard Model
Lagrangian, are expected to be of order ðms −mu;dÞ=
ΛQCD ∼ fK=fπ − 1 ∼ 0.2–0.3.
In the seventies, shortly after the discovery of charm, SU

(3) group theory has been used to obtain amplitude
relations for charmed meson decays into pairs involving
two pseudoscalar mesons or a pseudoscalar and a vector
meson [1]. This study was extended in the early nineties to
include numerous first-order SU(3) breaking terms one of
which was assumed to dominate over the others [2,3]. A
diagrammatic approach [4], equivalent to SU(3) group
theory, has been developed and applied to fit data for
branching ratios as they have been accumulated [5].
Assumptions made in these studies about SU(3) breaking
were often model-dependent. Other studies of these decay
processes went much beyond SU(3) by assuming factori-
zation of hadronic amplitudes [6]. A recent SU(3) fit to
current data of charmed meson decays to two pseudoscalar
mesons worked reasonably well when including two of the
numerous first-order SU(3) breaking terms (of order 30%)
available in a group theoretical approach [7].
While flavor SU(3), including 30% first-order symmetry

breaking, has been shown to describe adequately a vast
amount of data of hadronic decays of charmed mesons, this
has not provided a precision test. For this matter one would
hope to develop a perturbative expansion in reasonably
small SU(3) breaking parameters, in which only high-order

symmetry-breaking terms survive certain relations among
amplitudes. A small step in this direction was made in
Ref. [8], searching for linear relations among amplitudes
for two-body and quasi two-body charmed meson decays in
which first-order SU(3) breaking terms cancel. Testing
these relations, expected to hold within several percent,
requires in most cases measuring relative strong phases
between amplitudes which is a highly challenging task.
Thepurposeof this paper is to review, expandand improve

new results obtained in recent work published in two short
reports [9,10] applying a high-order perturbation expansion
in flavor SU(3) breaking and treating carefully isospin
breaking. We will identify a class of D0 decays, for which
high-precision nonlinear relations among magnitudes of
amplitudes hold. The lowest-order symmetry-breaking
terms affecting these relations will be shown to be fourth-
order SU(3) breaking terms and termswhich are first order in
isospin breaking and second order in SU(3) breaking [11].
One major motivation for this work is searching for

signals of new physics. Very precise relations as discussed
here, which would fail at some high-order flavor symmetry
breaking, could provide such signatures. For great con-
venience we will use U-spin, an SU(2) subgroup of flavor
SU(3), rather than applying the full SU(3) group structure
combining U-spin and isospin operators. Our U-spin
expansion is, of course, consistent with SU(3) expansions
in Refs. [3,7,8].
In Sec. II we identify sets of four two-particle final states

in D0 decays, each consisting of pairs involving charged
pseudoscalar and vector mesons. In a given set two of these
states and a linear combination of the other two form a
U-spin triplet, playing an important role in D0 − D̄0
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mixing. Our discussion in Secs. III–VII studies in detail one
of these sets denoted by D0 → PþP− consisting of
D0 → πþK−; Kþπ−; KþK−; πþπ−. We derive U-spin sym-
metry relations for these processes in Sec. III and study
first-order and arbitrary-order U-spin breaking corrections
in Secs. IVand V, respectively. In Sec. VI we obtain a high-
precision relation, obeyed up to fourth-order U-spin break-
ing, for ratios of amplitudes of the above four processes.
Section VII investigates first-order isospin-breaking terms
occurring in this relation, showing that they are also
suppressed by factors associated with second-order U-spin
breaking. Sections VIII, IX, and X discuss experimental
tests in D0 → PþP−, D0 → VþP− and D0 → PþV−,
respectively, where V� denote charged vector mesons. In
Sec. XI we study D0 decays into pairs of neutral pseudo-
scalar mesons, deriving amplitude relations and K0

S − K0
L

rate asymmetry relations which hold up to second-order
U-spin breaking. A short conclusion is given in Sec. XII.

II. D0 DECAYS TO TWO-BODY U ¼ 1 STATES

An SU(2) subgroup of flavor SU(3) that is useful for
studying charmed mesons is U-spin [12]. The quark pair
ðd; sÞ behaves like a doublet under this group while the u
quark and the heavier c; b and t quarks are singlets. U-spin
symmetry leads to interesting relations among amplitudes of
hadronic D decays [13,14]. It also implies the vanishing of
D0 − D̄0 mixing up to second-order U-spin breaking [15],
which underlies thevanishing ofD0 − D̄0mixingwithin full
flavor SU(3) [16]. This behavior of D0 − D̄0 mixing under
U-spin has been shown to follow from a cancellation up to
second-order U-spin breaking of mixing contributions from
intermediate U-spin triplet states. The high-order U-spin
breaking perturbation expansion that will be studied in this
paper works well, as we will show, for these two-body or
quasi two-body D0 decays to U ¼ 1 states.
One class of U ¼ 1 two-body states involves pairs of

opposite charge pseudoscalar or vector mesons. Our study
will focus on these final states for which a high-order U-spin
breaking expansion is applicable. Another class of processes
involves decay into pairs of neutral mesons. In this case two-
body final states do not have well-defined values of U-spin.
Instead, linear superpositions of final states have U ¼ 1.
Consequently, in these decays a U-spin expansion works
well for certain linear combinations of decay amplitudes.
We start by classifying single meson states of positive or

negative charge as doublets of U-spin. Since a pair of d and s
quark and their antiquarks form two U-spin doublets, ðd; sÞ
and ðs̄;−d̄Þ, one has two doublets of pseudoscalar mesons

Pþ ¼
�

Kþ

−πþ
�
≡

�
us̄

−ud̄
�
;

P− ¼
�
π−

K−

�
≡

�
dū

sū

�
; ð1Þ

and two doublets of vector mesons

Vþ ¼
�

K�þ

−ρþ
�
; V− ¼

�
ρ−

K�−

�
: ð2Þ

One can then form two-particle states of charge zero in four
different forms, PþP−; VþP−, PþV− and VþV−.
In the next several sections we will study the four

processes D0 → PþP−; PþP− ¼ πþK−; Kþπ−, πþπ−,
KþK−, for which the most precise data exist. This
discussion is also applicable to the other three sets of
processes, D0 → VþP−, PþV− and D0 → VþV−. For
D0 → VþV− one may, in principle, treat separately S, P
and D-wave amplitudes, or amplitudes for longitudinal
polarizations, and for transverse polarizations which are
mutually parallel and perpendicular to each other. We will
not discuss further these latter challenging decay modes for
which no branching ratios have been measured [17].

III. U-SPIN SYMMETRY LIMIT

As a starting point we derive amplitude relations in the
U-spin symmetry limit. The four possible two-particle
states jPþP−i can be written in the form of three U-spin
triplet states and one singlet state:

jKþπ−i ¼ j1; 1i;
jπþK−i ¼ −j1;−1i;

1ffiffiffi
2

p jKþK− − πþπ−i ¼ j1; 0i; ð3Þ

1ffiffiffi
2

p jKþK− þ πþπ−i ¼ j0; 0i: ð4Þ

The charm-changing weak Hamiltonian has a simple
transformation property under U-spin. Its three pieces
responsible for Cabibbo-favored (CF), singly Cabibbo-
suppressed (SCS) and doubly Cabibbo-suppressed (DCS)
decays transform, when normalized suitably, like three
components of a U-spin triplet operator denoted
ðU ¼ 1; U3 ¼ −1; 0;þ1Þ:

HCF
W ¼ GFffiffiffi

2
p cos2θCðs̄cÞðūdÞ ¼ −cos2θCð1;−1Þ;

HSCS
W ¼ GFffiffiffi

2
p cos θC sin θC½ðs̄cÞðūsÞ − ðd̄cÞðūdÞ�

¼
ffiffiffi
2

p
cos θC sin θCð1; 0Þ;

HDCS
W ¼ −

GFffiffiffi
2

p sin2θCðd̄cÞðūsÞ ¼ −sin2θCð1;þ1Þ: ð5Þ

We have suppressed the chiral structure of V-A operators,
using Vud ¼ Vcs ¼ cos θC; Vus ¼ −Vcd ¼ sin θC for
Cabibbo-Kobayashi-Maskawa (CKM) matrix elements.
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Charmed meson decays are dominated by real CKM
matrix elements associated with the first two quark fam-
ilies. For the most part wewill be using a parametrization of
the CKM matrix up to terms which are fourth order in
λ≡ Vus [17]. In Sec. VI we will discuss the effect of
higher-order terms in λ on four ratios of amplitudes studied
in this section.
Virtual b quarks in penguin amplitudes may lead to

tiny direct CP asymmetries in SCS decays of order
ðαsðm2

cÞ=πÞðjVcbVubj=jVcsVusjÞ ∼ 10−4 [18], depending
on the final state. No CP asymmetries of this order are
expected in CF and DCS decays. An order of magnitude
larger asymmetries may occur in SCS decays which are
subject to potential penguin amplitude enhancement [19].
No CP asymmetries at these small levels have been
measured so far. We will seek amplitude relations which
hold at this high precision but not at higher accuracy. Errors
in amplitudes are half the errors measured in decay rates.
Thus we will neglect in our discussion direct CP asym-
metries, assuming that branching ratios for D0 → f are
given by averages measured for decay processes and their
CP conjugates,

BðD0 → fÞ ¼ BðD0 → fÞCPav
≡ 1

2
½BðD0 → fÞ þ BðD̄0 → f̄Þ�: ð6Þ

The D0 is a U-spin singlet. Denoting hadronic matrix
elements in the U-spin symmetry limit by a superscript (0)
and defining a reduced matrix element, A≡ h1; U3j
ð1; U3Þj0; 0i, one obtains from Eqs. (3) and (5)

hπþK−jHCF
W jD0ið0Þ

cos2θC
¼ A; ð7Þ

hKþK− − πþπ−jHSCS
W jD0ið0Þ

cos θC sin θC
¼ 2A; ð8Þ

hKþπ−jHDCS
W jD0ið0Þ

−sin2θC ¼ A: ð9Þ

Equation (4) leads to

hKþK− þ πþπ−jHSCS
W jD0ið0Þ ∝ h0; 0jð1; 0Þj0; 0i ¼ 0:

ð10Þ

Using (8), this implies

hKþK−jHSCS
W jD0ið0Þ

cos θC sin θC
¼ hπþπ−jHSCS

W jD0ið0Þ
− cos θC sin θC

¼ A: ð11Þ

Thus, the four amplitudes in (7), (9), and (11) denoted by
the decay final state, AðfÞ≡ hfjHW jD0i have simple ratios
in the U-spin symmetry limit [1],

Að0ÞðπþK−Þ∶ Að0ÞðKþK−Þ∶ Að0Þðπþπ−Þ∶ Að0ÞðKþπ−Þ
¼ 1∶ tan θC∶ − tan θC∶ − tan2θC: ð12Þ

We note that a derivation of the two ratios,
A0ÞðKþπ−Þ=Að0ÞðπþK−Þ ¼ − tan2 θC and A0Þðπþπ−Þ=
Að0ÞðKþK−Þ ¼ −1, uses only symmetry under d↔s
reflection [14], implying

hπþK−jðs̄cÞðūdÞjD0i ¼ hKþπ−jðd̄cÞðūsÞjD0i;
hKþK−jðs̄cÞðūsÞ − ðd̄cÞðūdÞjD0i ¼ −hπþπ−jðs̄cÞðūsÞ

− ðd̄cÞðūdÞjD0i;
ð13Þ

and does not require full SU(2) U-spin symmetry. This full
symmetry is required for the relation between these two
pairs of processes.

IV. FIRST-ORDER U-SPIN BREAKING

First-order U-spin breaking corrections to the amplitudes
(7), (9), and (11) are obtained by multiplying the weak
Hamiltonian or the final states by an s − d spurion mass
operator, MUbrk ∝ ðs̄sÞ − ðd̄dÞ [2]:

hfjHeff jD0ið1Þ ¼ hfjHeffMUbrkjD0i þ hMUbrkfjHeff jD0i:
ð14Þ

While for CF and DCS decays one has simply

HCF;DCS
eff MUbrk ¼ HCF;DCS

W MUbrk; ð15Þ

the effective Hamiltonian for SCS decays obtains at first
order an additional nonperturbative sþ d penguin term
Psþd due to an s − d mass difference [20]:

HSCS
eff MUbrk ¼ HSCS

W MUbrk þ Psþd: ð16Þ

The U ¼ 0 penguin amplitude in SCS decays interferes
with opposite signs with the U ¼ 1 tree amplitudes in
D0 → KþK− and in D0 → πþπ−. This may potentially
increase the first amplitude and decrease the second. This
effect of the penguin amplitude has been pointed out very
early in Refs. [21–23], and has been studied recently in
Refs. [20,24,25] with its implication on CP asymmetries in
these processes.
Equations (15) and (16) imply different first-order

U-spin breaking corrections in D0 → πþK− and
D0 → Kþπ−, on the one hand, and in D0 → KþK− and
D0 → πþπ−, on the other. We will show now that the
corrections within each of these two pairs of processes have
equal magnitudes and opposite signs when normalized by
the corresponding U-spin symmetric amplitudes. We will
first follow a full SU(2) U-spin argument presented in [9],
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and then derive this result in a simpler manner using d↔s
reflection.
Consider first Eq. (14) for decays to the two U-spin

triplet states, jf1i ¼ jπþK−i ¼ −j1;−1i and
jf2i ¼ jKþπ−i ¼ j1; 1i, to which (15) applies. HCF

W and
HDCS

W transform like ð1;−1Þ and ð1;þ1Þ while the s − d
spurion mass operator MUbrk behaves like (1,0). Since
the D0 is a U-spin singlet only the triplet operators in the
products HDCS;CF

eff MUbrk ∝ ð1;�1Þ ⊗ ð1; 0Þ contribute to
the triplet final states �j1;�1i, and only the triplet states
in MUbrkj1;�1i ∝ ð1; 0Þj1;�1i obtain contributions from
the triplet Hamiltonian operator. Thus the two terms in (14)
involve coupling of the product ð1;�1Þ ⊗ ð1; 0Þ into
ð1;�1Þ, where � signs correspond to Kþπ− and πþK−
final states. Using a property of Clebsch-Gordan
coefficients,

ð1; 1; n; 0j1; 1Þ ¼ ð−1Þnð1;−1; n; 0j1;−1Þ; ð17Þ
we therefore find

hπþK−jHCF
eff jD0ið1Þ

cos2θC
¼ hKþπ−jHDCS

eff jD0ið1Þ
sin2θC

: ð18Þ

That is, first-order U-spin breaking terms contribute equally
but with opposite signs to D0 → πþK− and D0 → Kþπ−,
when normalized by corresponding U-spin symmetric
amplitudes given in Eqs. (7) and (9):

hπþK−jHCF
eff jD0ið1Þ

hπþK−jHCF
W jD0ið0Þ ¼−hKþπ−jHDCS

eff jD0ið1Þ
hKþπ−jHDCS

W jD0ið0Þ≡−ϵ1: ð19Þ

We denote by ϵ1 the U-spin breaking term in D0 → Kþπ−
normalized by its U-spin invariant amplitude.
A simpler and rather immediate derivation of (19) may

be obtained by applying d↔s reflection to Eq. (14) for
f ¼ πþK−. Noting that the s − d spurion mass operator
MUbrk changes sign under this reflection, one has

hπþK−jðs̄cÞðūdÞMUbrkjD0iþhMUbrkðπþK−Þjðs̄cÞðūdÞjD0i
¼−hKþπ−jðd̄cÞðūsÞMUbrkjD0i
−hMUbrkðKþπ−Þjðd̄cÞðūsÞjD0i: ð20Þ

This leads directly to (18) and (19).
This short argument applies also to first-order U-spin

breaking in SCS decays, D0 → KþK− and D0 → πþπ−,
since the penguin operator Psþd in (16) also changes sign
under d↔s reflection. Therefore,

hπþπ−jHSCS
eff jD0ið1Þ

hπþπ−jHSCS
W jD0ið0Þ ¼−hKþK−jHSCS

eff jD0ið1Þ
hKþK−jHSCS

W jD0ið0Þ≡−ϵ2; ð21Þ

where ϵ2 denotes the U-spin breaking term in D0 → KþK−
normalized by its U-spin invariant amplitude. Furthermore,

the change in sign between first-order terms in D0 →
KþK− and D → πþπ− applies separately to contributions
of the two operators on the right-hand side of (16)
representing tree and penguin amplitudes. This leads one
to expect that the U-spin breaking parameter ϵ2, involving
both tree and penguin amplitudes, is larger than ϵ1 which
involves only tree amplitudes [20].
Combining the results (19) and (21) with the zeroth-

order Eqs. (7), (9), and (11), one obtains the following first-
order expressions for decay amplitudes:

AðD0 → πþK−Þ ¼ cos2 θCAð1 − ϵ1Þ;
AðD0 → Kþπ−Þ ¼ − sin2 θCAð1þ ϵ1Þ;
AðD0 → πþπ−Þ ¼ − cos θC sin θCAð1 − ϵ2Þ;
AðD0 → KþK−Þ ¼ cos θC sin θCAð1þ ϵ2Þ: ð22Þ

V. U-SPIN BREAKING OF ARBITRARY ORDER

U-spin breaking of order n in decay amplitudes
hfjHeff jD0i is obtained by introducing in the
Hamiltonian or in the final state a total of n powers of
the s − d spurion mass operator, applying (16) to SCS
decays. Generalizing the argument for a relative negative
sign in first-order breaking, based on a change of sign of
MUbrk and Psþd under d↔s reflection, we conclude that a
negative relative sign applies to odd n and a positive sign to
even n:

hπþK−jHCF
eff jD0iðnÞ

cos2θC
¼ ð−1Þn hK

þπ−jHDCS
eff jD0iðnÞ

−sin2θC : ð23Þ

hKþK−jHSCS
W jD0iðnÞ

cos θC sin θC
¼ ð−1Þn hπ

þπ−jHSCS
W jD0iðnÞ

− cos θC sin θC
: ð24Þ

Thus, we may sum up:

AðD0→πþK−Þ¼cos2θCA½1−ϵ1þa1ϵ21−a01ϵ
3
1þ����;

AðD0→Kþπ−Þ¼−sin2θCA½1þϵ1þa1ϵ21þa01ϵ
3
1þ����;

AðD0→πþπ−Þ¼−cosθCsinθCA½1−ϵ2þa2ϵ22−a02ϵ
3
2þ����;

AðD0→KþK−Þ¼cosθCsinθCA½1þϵ2þa2ϵ22þa02ϵ
3
2þ����:

ð25Þ

While the complex U-spin breaking parameters ϵ1;2 and the
nonperturbative coefficients a1;2; a01;2;…. are not calculable
from first principles, one expects the first two parameters to
be around 0.2–0.3 (ϵ2 being larger in magnitude than ϵ1 for
the above-mentioned argument) and the coefficients to be
of order one, ja1;2j ∼ ja01;2j ∼ 1.
Expanding magnitudes of amplitudes up to and includ-

ing third order, we find
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j1� ϵþ aϵ2 � a0ϵ3j ¼ 1� Reϵþ 1

2
ðImϵÞ2 þ Reðaϵ2Þ

� Reða0ϵ3Þ∓ 1

2
ReϵðImϵÞ2

� ImϵImðaϵ2Þ: ð26Þ

In the next section we will use this expansion for studying
ratios of magnitudes of decay amplitudes, identifying
relations among ratios in which U-spin breaking terms
up to third order cancel, thus being sensitive to tiny fourth-
order U-spin breaking. We will then argue that there is no
need to go beyond third order in (26) for showing that
fourth-order terms do not cancel in these relations.

VI. HIGH-PRECISION RELATION AMONG
RATIOS OF AMPLITUDES

We define four ratios of amplitudes:

R1≡ jAðD0 →Kþπ−Þj
jAðD0 → πþK−Þj tan2 θC

;

R2≡ jAðD0 →KþK−Þj
jAðD0 → πþπ−Þj ;

R3≡ jAðD0 →KþK−Þjþ jAðD0 → πþπ−Þj
jAðD0 → πþK−Þj tanθCþjAðD0 →Kþπ−Þj tan−1 θC

;

R4≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jAðD0 →KþK−ÞjjAðD0 → πþπ−Þj
jAðD0 → πþK−ÞjjAðD0 →Kþπ−Þj

s
: ð27Þ

These four ratios are not mutually independent. They obey
a trivial identity,

R4 ¼ R3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ½ðR2 − 1Þ=ðR2 þ 1Þ�2
1 − ½ðR1 − 1Þ=ðR1 þ 1Þ2

s
: ð28Þ

Wewill prove a nontrivial relation involving R3 and R4 and
another nonlinear function of R1 and R2, that holds up to
maximal fourth-order U-spin breaking.
Using (26) we start by expanding the two ratios R1 and

R2 up to third-order U-spin breaking:

R1 ¼ 1þ 2½Reϵ1 þ ðReϵ1Þ2� þOðϵ31Þ;
R2 ¼ 1þ 2½Reϵ2 þ ðReϵ2Þ2� þOðϵ32Þ: ð29Þ

These two ratios involve first-order corrections given by
2Reϵ1 and 2Reϵ2. Second-order corrections in these ratios
are given by squares of these same real parts with no
dependence on the unknown parameters a1 and a2. Thus
measurements of R1 and R2 provide a way for calculating
Reϵ1 and Reϵ2 up to third-order corrections. Solutions for
Reϵ1 and Reϵ2 using Eqs. (29) should include the U-spin
symmetry limit, requiring Reϵ1 ¼ 0 and Reϵ2 ¼ 0 for R1 ¼
1 and R2 ¼ 1, respectively, rather than Reϵ1 ¼ −1 and
Reϵ2 ¼ −1. This implies

Reϵ1 ¼
1

2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R1 − 1

p − 1Þ þOðϵ31Þ;

Reϵ2 ¼
1

2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R2 − 1

p − 1Þ þOðϵ32Þ: ð30Þ

As we will see immediately, these two first-order U-spin
breaking parameters do not determine only R1 and R2 but
also the difference R3 − R4.
The two ratios R3 and R4, in which first- and third-order

terms cancel [26,27], may be expanded up to fourth order:

R3 ¼ 1þ 1

2
½ðImϵ2Þ2 − ðImϵ1Þ2� þ Re½a2ϵ22 − a1ϵ21�

þOðϵ41; ϵ42Þ;

R4 ¼ 1 − 1

2
Reðϵ22 − ϵ21Þ þ Reða2ϵ22 − a1ϵ21Þ þOðϵ41; ϵ42Þ

¼ 1þ 1

2
½ðImϵ2Þ2 − ðImϵ1Þ2� þ Reða2ϵ22 − a1ϵ21Þ

− 1

2
½ðReϵ2Þ2 − ðReϵ1Þ2� þOðϵ41; ϵ42Þ: ð31Þ

These two ratios are noticed to differ by second-order
U-spin breaking terms depending solely on Reϵ1 and Reϵ2:

R3 − R4 ¼
1

2
½ðReϵ2Þ2 − ðReϵ1Þ2� þOðϵ41; ϵ42Þ: ð32Þ

Using

ðReϵiÞ2 ¼
1

4
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ri − 1

p − 1Þ2 þ 2ReϵiOðϵ3i Þ

¼ 1

4
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ri − 1

p − 1Þ2 þOðϵ4i Þ; i ¼ 1; 2; ð33Þ

one obtains the following nonlinear relation among the four
ratios of amplitudes, which holds up to tiny fourth-order U-
spin breaking terms:

ΔR≡ R3 − R4 þ
1

8
½ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R1 − 1

p − 1Þ2 − ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R2 − 1

p − 1Þ2�
¼ Oðϵ41; ϵ42Þ: ð34Þ

This relation may also be obtained by expanding the
identity (28) to first order in ½ðR1;2 − 1Þ=ðR1;2 þ 1Þ�2 and
applying (29) and (30). Fourth-order terms in ðReϵiÞ2 are
proportional to Reϵi. It can be easily shown that this is not
the case for terms of this order occurring in R3, R4 and in
their difference. Therefore, one concludes that fourth-order
terms do not cancel in ΔR and in any higher-order
expansion of the square root in (28). Thus, in hindsight,
there is no way of obtaining a U-spin breaking relation of
higher order than (34), and one does not need to go beyond
third order in (26).
In our derivation of (34), we have used a parametrization

of the CKM matrix up to terms which are fourth order in
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λ≡ Vus ¼ 0.2253� 0.008 [17]. We now study the effects
of higher-order terms in λ on Ri and on this relation.
Including λ4 and λ5 terms in the CKM matrix, one has [28]

Vud ¼ 1 − 1

2
λ2 − 1

8
λ4;

Vus ¼ λ;

Vcd ¼ −λþ 1

2
A2λ5½1 − 2ðρþ iηÞ�;

Vcs ¼ 1 − 1

2
λ2 − 1

8
λ4 − 1

2
A2λ4; ð35Þ

where A ¼ 0.82� 0.02; ρ ¼ 0.12� 0.02; η ¼ 0.36�
0.02 [17].
We define a small parameter ξ determining the effect of

λ4 and λ5 terms on ratios of amplitudes:

1þ ξ≡ 1 − 1
2
A2λ4j1 − 2ðρþ iηÞj
1 − 1

2
A2λ4

: ð36Þ

Using the above values of λ; A; ρ, and η, we find jξj≲ 10−4,
while R4 is unaffected by ξ, R3, and the two quadratic
terms in (34) obtain corrections suppressed by ξ and by
first-order U-spin breaking. These corrections, respectively,
− 1

2
ξðReϵ1 þ Reϵ2Þ, þ 1

2
ξReϵ1 and þ 1

2
ξReϵ2, cancel each

other. The remaining corrections in (34), suppressed by ξ
and by second-order U-spin breaking, are much below the
level of 10−4 and may be safely neglected relative to tiny
fourth-order U-spin breaking terms of order 10−3 or 10−4.
Taking ϵi ∼ 0.2 as a typical value for first-order U-spin

breaking, the nonlinear relation ΔR ¼ 0 is expected to hold

at a very high precision of order ϵ4i ∼ 10−3. We will confirm
this prediction in Sec. VIII. At this high precision, one
cannot ignore first-order isospin-breaking terms, which one
would generally assume to be around ðmd−muÞΛQCD∼
10−2. We will study these terms in the next section showing
that, in fact, they are suppressed by both isospin-breaking
parameters and by second-order U-spin breaking.

VII. FIRST-ORDER ISOSPIN BREAKING

First-order isospin breaking is introduced by multiplying
the weak Hamiltonian by a d − u spurion mass operator,

MIbrk ∝ ðd̄d − ūuÞ ¼ 1

2
ðd̄dþ s̄sÞ − ūuþ 1

2
ðd̄d − s̄sÞ;

ð37Þ

transforming like a combination of a U-spin singlet and
triplet. Isospin-breaking contributions of the U-spin singlet
operator in the four amplitudes (25) are identical when
normalized by suitable CKM factors, and may be absorbed
into the U-spin symmetric amplitude A. This is true also for
U ¼ 0 isospin-breaking electromagnetic interactions
because the d and s quarks have identical charges.
Contributions of the triplet operator in (37) follow the

signs of first-order U-spin breaking corrections. They are
represented by two distinct first-order isospin-breaking
parameters: δ1 for U-spin triplet states πþK− and Kþπ−
and δ2 for KþK− and πþπ−, the two components of a
U-spin singlet state. Thus

AðD0 → πþK−Þ ¼ cos2θCAð1 − ϵ1 þ a1ϵ21 − a01ϵ
3
1 − δ1 þ � � �Þ;

AðD0 → Kþπ−Þ ¼ −sin2θCAð1þ ϵ1 þ a1ϵ21 þ a01ϵ
3
1 þ δ1 þ � � �Þ;

AðD0 → πþπ−Þ ¼ − cos θC sin θCAð1 − ϵ2 þ a2ϵ22 − a02ϵ
3
2 − δ2 þ � � �Þ;

AðD0 → KþK−Þ ¼ cos θC sin θCAð1þ ϵ2 þ a2ϵ22 þ a02ϵ
3
2 þ δ2 þ � � �Þ: ð38Þ

Instead of (26) we now expand:

j1� ϵþ aϵ2 � a0ϵ3 � δj ¼ 1� Reϵþ 1

2
ðImϵÞ2 þ Reðaϵ2Þ � Reða0ϵ3Þ

∓ 1

2
ReϵðImϵÞ2 � ImϵImðaϵ2Þ � Reδþ ImδImϵ: ð39Þ

This characteristic amplitude expansion includes two new terms, �Reδ and þImδImϵ, the latter involving suppression by
both isospin and U-spin breaking parameters. We will show that terms of this order do not affect the nonlinear relation (34).
The expansion of the four ratios of amplitudes now includes terms which are first order in isospin breaking and other

terms suppressed by both isospin and U-spin breaking:

R1 ¼ 1þ 2½Reϵ1 þ ðReϵ1Þ2� þ 2Reδ1 þ 4Reδ1Reϵ1 þOðϵ31Þ þOðδ1ϵ21Þ;
R2 ¼ 1þ 2½Reϵ2 þ ðReϵ2Þ2� þ 2Reδ2 þ 4Reδ2Reϵ2 þOðϵ32Þ þOðδ2ϵ22Þ; ð40Þ
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R3 ¼ 1þ 1

2
½ðImϵ2Þ2 − ðImϵ1Þ2� þ Reða2ϵ22 − a1ϵ21Þ þ ðImδ2Imϵ2 − Imδ1Imϵ1Þ þOðϵ41;2Þ þOðδ1;2ϵ31;2Þ;

R4 ¼ 1þ 1

2
½ðImϵ2Þ2 − ðImϵ1Þ2� þ Reða2ϵ22 − a1ϵ21Þ þ ðImδ2Imϵ2 − Imδ1Imϵ1Þ

−
1

2
½ðReϵ2Þ2 − ðReϵ1Þ2� − ðReδ2Reϵ2 − Reδ1Reϵ1Þ þOðϵ41;2Þ þOðδ1;2ϵ31;2Þ: ð41Þ

Equations (40) imply for i ¼ 1; 2,

Reϵi ¼
1

2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ri − 1

p − 1Þ − Reδi − 2ReδiReϵi

þOðδiϵiÞ þOðϵ3i Þ; ð42Þ

or

ðReϵiÞ2 ¼
1

4
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ri − 1

p − 1Þ2 − 2ReδiReϵi

þOðδiϵ2i Þ þOðϵ4i Þ: ð43Þ

Equations (41) lead to

R3 −R4 ¼
1

2
½ðReϵ2Þ2 − Reϵ1Þ2� þ ðReδ2Reϵ2 − Reδ1Reϵ1Þ

þOðϵ41;2Þ þOðδ1;2ϵ31;2Þ: ð44Þ

Consequently, isospin-breaking terms of the form
Reδ2Reϵ2 − Reδ1Reϵ1 cancel in ΔR:

ΔR≡ R3 − R4 þ
1

8
½ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R1 − 1

p − 1Þ2 − ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R2 − 1

p − 1Þ2�
¼ Oðϵ41; ϵ42Þ þOðδ1ϵ21; δ2ϵ22Þ: ð45Þ

It is remarkable that isospin breaking modifies the
nonlinear relation (34) by terms which are suppressed by
both first-order isospin-breaking and second-order U-spin
breaking factors. Taking δi ∼ 10−2, ϵi ∼ 0.2–0.3, these
terms are expected to be at most 10−3, similar in magnitude
to fourth-order U-spin breaking terms affecting this
relation.

VIII. EXPERIMENTAL TESTS IN D0 → PþP−

Wewill now apply current experimental data to study the
hierarchy among U-spin breaking terms of increasing order.
Our final goal is testing the predicted amplitude relation
(45). Hadronic decay amplitudes (A) are obtained from

measured branching ratios (B) by eliminating phase
space factors depending on final particles center-of-mass
3-momenta (p), and on the D meson mass and its lifetime
(MD and τD),

jAj ¼ MD

ffiffiffiffiffiffiffiffiffi
8πB
τDp

s
: ð46Þ

In our calculation of amplitudes we will disregard a
common factor MD

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8π=τD

p
which cancels in the four

ratios Ri. Values for measured branching ratios [17], center-
of-mass momenta, and amplitudes defined in this manner
are quoted in Tables I.
Note that all four amplitudes include a factor B1=2

πK
corresponding to the branching fraction of the Cabibbo-
favored decay D0 → πþK−. We have included no error in
the amplitude for this process as the other three branching
ratios (including errors) have been measured relative to
this process [17]. The relative errors in the amplitudes of
these three processes are all below the level of one
percent. We will assume no correlation between these
errors, which have been measured in three independent
analyses for different final states. The high precision
achieved recently by the CDF, LHCb and Belle collab-
orations in measuring the DCS amplitude is remarkable
[29], as it required time-dependent separation between
this highly suppressed decay and D0 − D̄0 mixing
followed by the CF decay.
Using values of amplitudes given in Tables I and

tan θC ¼ 0.23125� 0.00082 [17] we calculate the four
ratios Ri defined in Eq. (27),

R1 ¼ 1.115� 0.012;

R2 ¼ 1.811� 0.020;

R3 ¼ 1.052� 0.008;

R4 ¼ 1.008� 0.007: ð47Þ

TABLE I. Branching fractions and amplitudes for D0 → PþP− decays [17].

Decay mode Branching fraction p (GeV=c) jAj ¼ ffiffiffiffiffiffiffiffiffi
B=p

p ðGeV=cÞ−1=2
D0 → πþK− BπK ¼ ð3.88� 0.05Þ × 10−2 0.861 1.078B1=2

πK
D0 → Kþπ− ð3.56� 0.06Þ × 10−3BπK 0.861 ð0.06430� 0.00054ÞB1=2

πK
D0 → πþπ− ð3.59� 0.06Þ × 10−2BπK 0.922 ð0.1973� 0.0016ÞB1=2

πK
D0 → KþK− ð10.10� 0.16Þ × 10−2BπK 0.791 ð0.3573� 0.0028ÞB1=2

πK
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Errors in the ratios have been obtained by adding in
quadrature errors in the relevant amplitudes.
We have seen that the first two ratios involve first-order

U-spin breaking terms. These terms, depending on two
distinct U-spin breaking parameters ϵ1 and ϵ2, are consid-
erably larger in R2 than in R1. This has been anticipated in
the discussion below Eq. (21). Using (42), in which we
neglect first-order isospin breaking and third-order U-spin
breaking, we calculate reasonably small U-spin breaking
parameters,

Reϵ1 ¼ 0.054� 0.005;

Reϵ2 ¼ 0.310� 0.006: ð48Þ
The other two ratios, R3 and R4, given in (41) in terms of
ϵ1;2 and coefficients a1;2 of order one, deviate from one by
second-order U-spin breaking terms (we neglect terms
suppressed by both isospin and U-spin breaking and
fourth-order terms in U-spin breaking),

R3 − 1 ¼ 1

2
½ðImϵ2Þ2 − ðImϵ1Þ2� þ Reða2ϵ22 − a1ϵ21Þ

¼ 0.052� 0.08;

R4 − 1 ¼ Re

��
a2 − 1

2

�
ϵ22 −

�
a1 − 1

2

�
ϵ21

�
¼ 0.008� 0.007: ð49Þ

The hierarchy between the first-order parameters in (48)
and the second-order terms calculated in (49) confirms and
justifies the perturbative approach we have applied in this
study to U-spin breaking. Without having a method for
calculating the nonperturbative coefficients ai, the almost
exact cancellation of second-order terms in R4 seems to be
accidental. In view of the small value of Reϵ1 and the much
larger value of Reϵ2 this approximate cancellation seems to
imply a2 ≃ 1=2.
Having shown that second-order U-spin breaking terms

are a few percent, one expects fourth-order terms to be of
order 10−3, comparable in magnitude or larger than terms
which are first order in isospin breaking and second order in
U-spin breaking. Let us now check this prediction in the
relation (45) which contains on the right-hand side terms of
these two kinds. Using the definitions of Ri in (27) and
adding in quadrature errors in amplitudes [rather than errors
in Ri given in (47)], we obtain

ΔR ¼ ð−3.2� 0.4Þ × 10−3: ð50Þ
This confirms our prediction.

IX. EXPERIMENTAL TEST IN D0 → VþP−

As mentioned, the discussion in Secs. III–VII applies
also to three other classes of processes involving one or two
charged vector mesons, D0 → VþP−; D0 → PþV−, and
D0 → VþV−. In particular, a nonlinear amplitude relation

similar to (45) holds in each one of these classes with a
precision depending on the size of U-spin breaking. In this
section we summarize concisely the situation relevant to
this question in D0 → VþP−, consisting of the four
processes, D0 → ρþK−; D0 → K�þπ−; D0 → ρþπ−, and
D0 → K�þK−. We denote first-order U-spin breaking
and isospin-breaking parameters in these processes by
ϵ01;2 and δ01;2, respectively, in analogy to ϵ1;2 and δ1;2
in D0 → PþP−.
Defining four ratios of amplitudesR0

i in analogywith (27),

R0
1≡ jAðD0 →K�þπ−Þj

jAðD0 → ρþK−Þjtan2θC
;

R0
2≡ jAðD0 →K�þK−Þj

jAðD0 → ρþπ−Þj ;

R0
3≡ jAðD0 →K�þK−Þjþ jAðD0 → ρþπ−Þj

jAðD0 → ρþK−Þj tanθCþjAðD0 →K�þπ−Þjtan−1θC
;

R0
4≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jAðD0 →K�þK−ÞjjAðD0 → ρþπ−Þj
jAðD0 → ρþK−ÞjjAðD0 →K�þπ−Þj

s
; ð51Þ

one obtains a sum rule analogous to (45):

ΔR0 ≡R0
3 −R0

4 þ
1

8
½ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R0

1 − 1

q
− 1Þ2 − ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R0

2 − 1

q
− 1Þ2�

¼Oðϵ041; ϵ042Þ þOðδ01ϵ02; δ02ϵ022Þ: ð52Þ

Magnitudes of amplitudes for the P-wave decays D0 →
VþP− are obtained from corresponding branching ratios
using

jAj ¼ MD

ffiffiffiffiffiffiffiffiffiffi
8πB
τDp3

s
: ð53Þ

Wewill disregard again the factorMD

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8π=τD

p
since we are

only concerned with ratios of amplitudes. Values for
measured branching ratios [17], center-of-mass momenta,
and amplitudes defined in this manner are quoted in Table II.
Relative errors in CF and SCS amplitudes are reasonably
small, between two and three percent. In contrast, the
relative error in the DCS amplitude jAðD0 → K�þπ−Þj,
obtained by the CLEO and BABAR Collaborations through
Dalitz plot analyses of D0 → KSπ

þπ− [30], is quite large,
þ26%−15% . This large asymmetric error limits considerably the
precision of R0

1; R
0
3 and R0

4. Adding in quadrature errors in
relevant amplitudes, measured independently for different
three-body final states, we calculate

R0
1 ¼ 0.971þ0.257−0.148;

R0
2 ¼ 0.939� 0.029;

R0
3 ¼ 1.061þ0.082−0.140;

R0
4 ¼ 1.061þ0.083−0.142: ð54Þ
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Expansions similar to (40) and (41) apply to these four
ratios in terms of ϵ01;2 and δ

0
1;2. The leading U-spin breaking

corrections in R0
1 and R0

2 are first order, while in R0
3 and R0

4

they are second order. The measured values of the first two
ratios imply

Reϵ01 ¼
1

2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R0

1 − 1

q
− 1Þ ¼ −0.015þ0.118−0.083;

Reϵ02 ¼
1

2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R0

2 − 1

q
− 1Þ ¼ −0.032� 0.016: ð55Þ

We note that the numerical value of Reϵ02 is smaller by
about an order of magnitude than the value of Reϵ2
calculated in (48). That is, first-order U-spin breaking in
SCS D0 → VþP− decays is about an order of magnitude
smaller than in corresponding D0 → PþP− decays. This
seems to imply that an enhancement of the U-spin breaking
penguin amplitude suggested to occur in D0 → PþP− [19]
is not at work in D0 → VþP−. The other U-spin breaking
parameter, Reϵ01, does not involve a penguin amplitude. In
spite of the current large error in this parameter the first of
Eqs. (55) favors strongly jReϵ01j ≤ 0.1, suggesting that a
value close to that measured for jReϵ1j is not unlikely.
These values of Reϵ01;2 imply that typical second-order

U-spin breaking terms in R0
3;4 are around one percent.

Confirming this prediction and obtaining a more precise
value for Reϵ01 requires a substantial improvement in the
measurement of BðD0 → K�þπ−Þ. In the meantime we use
the values measured for jReϵ01;2j to argue that fourth-order
U-spin breaking terms should be around 10−4. This is also
expected to be the magnitude of terms inΔR0 suppressed by
both isospin breaking and by second-order U-spin break-
ing. Thus, due to smaller U-spin breaking parameters in
D0 → VþP− relative to D0 → PþP− one predicts ΔR0 to
be about an order of magnitude smaller than ΔR. Using the
amplitudes in Table II, we calculate

ΔR0 ¼ ð0.2þ3.2−5.5Þ × 10−4; ð56Þ

where the error is dominated by the error in
jAðD0 → K�þπ−Þj. This confirms our prediction. A more
precise test could be achieved by improving the measure-
ment of the branching ratio for this process.

X. EXPERIMENTAL TESTS IN D0 → PþV−

Current branching ratios and amplitudes for
D0 → PþV−, consisting of D0 → πþK�−; Kþρ−,
πþρ−; KþK�− are given in Table III. Reference [17] quotes
no branching ratio measurement for the DCS decay
D0 → Kþρ−. Three-body decays, D0 → Kþπ−π0, involv-
ing Kþρ−; K�þπ− and other intermediate states, have been
observed by Belle [31] and BABAR [32] with branching
ratios ð3.18� 0.29Þ × 10−4 and ð2.97� 0.19Þ × 10−4,
respectively. The D0 → Kþπ−π0 events involve interfer-
ence of DCS decays with D0 − D̄0 mixing followed by CF
decays. Evidence for D0 − D̄0 mixing at 3.2 standard
deviation was presented by BABAR [33], measuring the
fraction of Kþρ− in these events to be ð39.8� 6.5Þ%. (No
interference would have implied BðD0 → Kþρ−Þ∼
1.2 × 10−4.) More work is needed for resolving the effect
ofD0 − D̄0 mixing on these events and for obtaining a solid
measurement of BðD0 → Kþρ−Þ.
We define ratios of amplitudes R00

i in analogy with (27),

R00
1 ≡ jAðD0 →Kþρ−Þj

jAðD0 → πþK�−Þjtan2θC
;

R00
2 ≡ jAðD0 →KþK�−Þj

jAðD0 → πþρ−Þj ;

R00
3 ≡ jAðD0 →KþK�−Þjþ jAðD0 → πþρ−Þj

jAðD0 → πþK�−Þj tanθCþjAðD0 →Kþρ−Þjtan−1θC
;

R00
4 ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jAðD0 →KþK�−ÞjjAðD0 → πþρ−Þj
jAðD0 → πþK�−ÞjjAðD0 →Kþρ−Þj

s
: ð57Þ

TABLE III. Branching fractions and amplitudes for D0 → PþV− decays [17].

Decay mode Branching fraction p (GeV=c) jAj ¼
ffiffiffiffiffiffiffiffiffiffiffi
B=p3

p
ðGeV=cÞ−3=2

D0 → πþK�− ð4.98þ0.45−0.51Þ × 10−2 0.711 0.372þ0.017−0.019
D0 → Kþρ− � � � 0.675 � � �
D0 → πþρ− ð4.96� 0.24Þ × 10−3 0.764 0.1055� 0.0026
D0 → KþK�− ð1.56� 0.12Þ × 10−3 0.610 0.0829� 0.0032

TABLE II. Branching fractions and amplitudes for D0 → VþP− decays [17].

Decay mode Branching fraction p (GeV=c) jAj ¼
ffiffiffiffiffiffiffiffiffiffiffi
B=p3

p
ðGeV=cÞ−3=2

D0 → ρþK− 0.108� 0.007 0.675 0.593� 0.019
D0 → K�þπ− ð3.42þ1.80−1.02Þ × 10−4 0.711 0.0308þ0.0081−0.0046
D0 → ρþπ− ð9.8� 0.4Þ × 10−3 0.764 0.148� 0.003
D0 → K�þK− ð4.38� 0.21Þ × 10−3 0.610 0.1389� 0.0033
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We denote first-order U-spin breaking and isospin-breaking
parameters in these amplitudes by ϵ001;2 and δ001;2,
respectively.
In the absence of a solid measurement of jAðD0 →

Kþρ−Þj one can only calculate R00
2 . Neglecting isospin

breaking and third-order U-spin breaking, one obtains

R00
2 ¼ 1þ 2½Reϵ002 þ ðReϵ002Þ2� ¼ 0.786� 0.036; ð58Þ

which implies

Reϵ002 ¼ −0.122� 0.024: ð59Þ

That is, the magnitude of the U-spin breaking parameter in
SCS D0 → PþV− decays is intermediary between corre-
sponding parameters in D0 → PþP− (Reϵ2 ¼ 0.310�
0.006) and D0 → VþP− (Reϵ02 ¼ −0.032� 0.016).
Namely, no significant U-spin breaking penguin enhance-
ment applies to D0 → PþV−. One expects a similar or
smaller magnitude for Reϵ001.
The two ratios R00

3 and R00
4 deviate from one by second-

order U-spin breaking terms [see Eqs. (31)] which are
expected to be at most a few percent. Using R00

3 ¼ 1� 0.05,
where we include a conservative uncertainty of 5% due to
second-order U-spin breaking corrections, one obtains the
following prediction for BðD0 → Kþρ−Þ [34],

jAðD0 → Kþρ−Þj ¼ 0.0237� 0.0025 ⇒ BðD0 → Kþρ−Þ
¼ ð1.73� 0.36Þ × 10−4: ð60Þ

For comparison, assuming R00
4 ¼ 1� 0.05 implies a very

similar prediction,

jAðD0 → Kþρ−Þj ¼ 0.0235� 0.0028 ⇒ BðD0 → Kþρ−Þ
¼ ð1.70� 0.40Þ × 10−4: ð61Þ

This value of jAðD0 → Kþρ−Þj would imply Reϵ001 ¼
0.08� 0.06, comparable in magnitude to Reϵ002 and in
agreement with expectation.
Taking for jAðD0 → Kþρ−Þj the value in (61), using the

three measured amplitudes quoted in Table III, and assum-
ing no error correlation between the four amplitudes, one
obtains

ΔR00≡R00
3 −R00

4 þ
1

8
½ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R00

1 − 1

q
− 1Þ2− ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R00

2 − 1

q
− 1Þ2�

¼ ð0.8þ2.2−5.6Þ× 10−4: ð62Þ

This value, which is similar to (56), is in agreement with our
prediction that, in view of the above values of Reϵ001;2, fourth-
order U-spin breaking terms and isospin-breaking terms
suppressed by second-order U-spin breaking should be of
order 10−4. The positive error in ΔR00 is dominated
by the uncertainty assumed in the unmeasured DCS

amplitude. One still awaits a solid measurement of BðD0 →
Kþρ−Þ which would test the prediction (61). The larger
negative error in ΔR00, originating in errors on the three
measured amplitudes in Table III, may be reduced by
improving the corresponding branching ratio measurements.

XI. D0 DECAYS TO PAIRS OF NEUTRAL
PSEUDOSCALARS

In theU-spin symmetry limit one obtains simple amplitude
relations for D0 decays to pairs of light neutral pseudoscalar
mesons [35]. We will go through the symmetry argument
first, extending it to includeU-spin breaking at arbitrary order
in CF and DCS decays. We will then demonstrate a few
amplitude relations which hold up to second-order U-spin
breaking. Other relations of this kind have been studied in
Ref. [8] in the framework of flavor SU(3).
In the symmetry limit one neglects η − η0 mixing which is

due to first-orderU-spin breaking represented by the spurion
mass operator MUbrk. Thus, we will write amplitudes for
η ¼ η8 in our discussion of the symmetry limit, while η8will
be used explicitly when introducing U-spin breaking.When
discussing amplitudes, rates and asymmetries for η8 wewill
assume (as has been assumed in Ref. [8]) knowledge of
amplitudes including a relative phase for η and η0 and
favored values of the mixing angle. Taking η ¼ η8≡
ð2ss̄ − uū − dd̄Þ= ffiffiffi

6
p

, the following superpositions of
single neutral particle states belong to a U-spin triplet,

jK0i≡ jds̄i ¼ j1; 1i;
jK̄0i≡ jsd̄i ¼ −j1;−1i;

1

2
ð

ffiffiffi
3

p
jηi − jπ0iÞ≡ jss̄ − dd̄i=

ffiffiffi
2

p
¼ j1; 0i; ð63Þ

while the orthogonal U-spin singlet is

1

2
ðjηi þ

ffiffiffi
3

p
jπ0iÞ≡ jss̄þ dd̄ − 2uūi=

ffiffiffi
6

p
¼ j0; 0i: ð64Þ

Two-particle states in an S-wave are obtained by symmetriz-
ing products of single particle states.
Symmetrized products of twoU ¼ 1 single-particle states

consist ofU ¼ 0 andU ¼ 2 (withU3 ¼ �1; 0) states, while
the product of two U ¼ 0 states is pure U ¼ 0. D0 decay
matrix elements of the U ¼ 1 weak Hamiltonian (5) vanish
for each one of these five states. This implies the following
five U-spin symmetry relations: (For short notation, we
denote amplitudes by their final states.)

ffiffiffi
3

p
Að0ÞðK0ηÞ − Að0ÞðK0π0Þ ¼ 0;ffiffiffi
3

p
Að0ÞðK̄0ηÞ − Að0ÞðK̄0π0Þ ¼ 0;

Að0ÞðK0K̄0Þ ¼ 0;

Að0ÞðηηÞ þ Að0Þðπ0π0Þ ¼ 0;ffiffiffi
3

p
Að0Þðηπ0Þ þ

ffiffiffi
2

p
Að0Þðπ0π0Þ ¼ 0: ð65Þ

MICHAEL GRONAU PHYSICAL REVIEW D 91, 076007 (2015)

076007-10



Hadronic matrix elements for symmetrized products ofU ¼
1; U3 ¼ �1; 0 and U ¼ 0 states are then given by a single
U ¼ 1 amplitude A:ffiffiffi

3
p

Að0ÞðK0ηÞ ¼ Að0ÞðK0π0Þ ¼ − sin2 θCA; ð66Þffiffiffi
3

p
Að0ÞðK̄0ηÞ ¼ Að0ÞðK̄0π0Þ ¼ cos2θCA; ð67Þffiffiffi

3
p

Að0Þðηπ0Þ ¼
ffiffiffi
2

p
Að0ÞðηηÞ ¼ − ffiffiffi

2
p

Að0Þðπ0π0Þ
¼

ffiffiffi
2

p
cos θC sin θCA: ð68Þ

Note that sincewe symmetrized final states also for identical
particles, corresponding amplitudes have been divided byffiffiffi
2

p
in order that their squares give decay rates.

The above amplitude expressions are analogous to the
U-spin symmetry expressions (7), (9) and (11) for decays
into pairs of charged pseudoscalar mesons. Some of these
relations follow merely from d↔s symmetry. Since the
U ¼ 1 and U ¼ 0 superpositions of π0 and η states in (63)
and (64) are, respectively, antisymmetric and symmetric
with respect to d↔s reflection one has

hK̄0ð
ffiffiffi
3

p
η − π0Þjðs̄cÞðūdÞjD0i ¼ −hK0ð

ffiffiffi
3

p
η − π0Þjðd̄cÞðūsÞjD0i;

hK̄0ðηþ
ffiffiffi
3

p
π0Þjðs̄cÞðūdÞjD0i ¼ hK0ðηþ

ffiffiffi
3

p
π0Þjðd̄cÞðūsÞjD0i; ð69Þ

implying ffiffiffi
3

p
Að0ÞðK̄0ηÞ − Að0ÞðK̄0π0Þ

cos2θC
¼

ffiffiffi
3

p
Að0ÞðK0ηÞ − Að0ÞðK0π0Þ

sin2θC
¼ 0;

Að0ÞðK̄0ηÞ þ ffiffiffi
3

p
Að0ÞðK̄0π0Þ

cos2θC
¼ −

Að0ÞðK0ηÞ þ ffiffiffi
3

p
Að0ÞðK0π0Þ

sin2θC
¼ 4ffiffiffi

3
p A: ð70Þ

The right-hand sides follow using (66) and (67) based on the full SU(2) structure of U-spin.
U-spin breaking of order n in CF and DCS amplitudes is introduced by multiplying transition operators or final states by

a total of n powers of the s − d spurion mass operator MUbrk which changes sign under d↔s. Consequently, one hasffiffiffi
3

p
AðnÞðK̄0η8Þ − AðnÞðK̄0π0Þ

cos2 θC
¼ ð−1Þn

ffiffiffi
3

p
AðnÞðK0η8Þ − AðnÞðK0π0Þ

sin2 θC
;

AðnÞðK̄0η8Þ þ
ffiffiffi
3

p
AðnÞðK̄0π0Þ

cos2 θC
¼ ð−1Þn A

ðnÞðK0η8Þ þ
ffiffiffi
3

p
AðnÞðK0π0Þ

− sin2 θC
: ð71Þ

Denoting first-order U-spin breaking parameters in these two pairs of processes by ϵ0 and ϵ00, one may expand the above
four linear combinations of amplitudes to arbitrary order,

ffiffiffi
3

p
AðK̄0η8Þ − AðK̄0π0Þ ¼ cos2θCA½ϵ0 − a0ϵ20 þ � � ��;ffiffiffi
3

p
AðK0η8Þ − AðK0π0Þ ¼ −sin2θCA½ϵ0 þ a0ϵ20 þ � � ��; ð72Þ

ffiffiffi
3

p

4
½AðK̄0η8Þ þ

ffiffiffi
3

p
AðK̄0π0Þ� ¼ cos2θCA½1 − ϵ00 þ a00ϵ

02
0 þ � � ��;ffiffiffi

3
p

4
½AðK0η8Þ þ

ffiffiffi
3

p
AðK0π0Þ� ¼ −sin2θCA½1þ ϵ00 þ a00ϵ

02
0 þ � � ��; ð73Þ

where ja0j∼; ja00j ∼ 1.
Equations (72) imply a linear amplitude relation in which

first-order U-spin breaking terms cancel,

½
ffiffiffi
3

p
AðK̄0η8Þ − AðK̄0π0�tan2θC þ

ffiffiffi
3

p
AðK0η8Þ

− AðK0π0Þ ¼ 0: ð74Þ

This relation has also been obtained using a general
first-order SU(3) breaking expansion [8], in which a dozen
SU(3) breaking parameters contributing to these processes

cancel in this relation. We note that while it follows from
Eqs. (73) that the linear relation

½AðK̄0η8Þ þ
ffiffiffi
3

p
AðK̄0π0Þ� tan2 θC

− ½AðK0η8Þ þ
ffiffiffi
3

p
AðK0π0Þ� ¼ 4ffiffiffi

3
p sin2 θCA ð75Þ

is also free of first-order U-spin breaking, the U-spin
invariant amplitude A on the rignt-hand side is not
necessarily invariant under the full flavor SU(3) group
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when including other states. This is just like the amplitude
A defined above (7) for decays to charged particles.
The four amplitudes for two body decays involving K0

or K̄0 and π0 or η8 have the following first-order expan-
sions:

AðK̄0π0Þ ¼ cos2θCA
�
1 − ϵ00 − 1

4
ϵ0 þOðϵ20; ϵ020Þ

�
;

ffiffiffi
3

p
AðK̄0η8Þ ¼ cos2θCA

�
1 − ϵ00 þ

3

4
ϵ0 þOðϵ20; ϵ020Þ

�
;

AðK0π0Þ ¼ −sin2θCA
�
1þ ϵ00 − 1

4
ϵ0 þOðϵ20; ϵ020Þ

�
;

ffiffiffi
3

p
AðK0η8Þ ¼ −sin2θCA

�
1þ ϵ00 þ

3

4
ϵ0 þOðϵ20; ϵ020Þ

�
:

ð76Þ

This implies that the two ratios of amplitudes in (66) and
(67), which are equal in the U-spin symmetry limit, are also
equal when including first-order U-spin breaking:

ffiffiffi
3

p jAðK0η8j
jAðK0π0Þj ¼

ffiffiffi
3

p jAðK̄0η8Þj
jAðK̄0π0Þj ¼ 1þ Reϵ0 þOðϵ20; ϵ020Þ;

ð77Þ

jAðK0π0Þj
jAðK̄0π0Þj tan2 θC

¼ jAðK0η8Þj
jAðK̄0η8Þj tan2 θC

¼ 1þ 2Reϵ00 þOðϵ20; ϵ020Þ: ð78Þ

Branching ratio measurements of the above two DCS
decay modes are not feasible because a final state neutral
kaon is identified in a KS or a KL state. This involves an
interference between CF and DCS decays. A method for
measuring this interference has been proposed in Ref. [36].
Defining a rate asymmetry between decays involving K0

S
and K0

L,

RðD0;M0Þ≡ ΓðD0 → K0
SM

0Þ − ΓðD0 → K0
LM

0Þ
ΓðD0 → K0

SM
0Þ þ ΓðD0 → K0

LM
0Þ ;

ðM0 ¼ π; η; η0Þ ð79Þ

one obtains, to leading order in the ratio of DCS and CF
amplitudes,

RðD0;M0Þ ¼ − 2Re½AðK̄0M0ÞA�ðK0M0Þ�
jAðK̄0M0Þj2 : ð80Þ

Equations (76) predict equal asymmetries for M0 ¼ π
and M0 ¼ η8 up to second-order U-spin breaking. The two
asymmetries are given by

RðD0; η8Þ ¼ RðD0; π0Þ
¼ 2 tan2 θC½1þ 2Reϵ00 þOðϵ20; ϵ020Þ�: ð81Þ

Comparing Eqs. (78) and (81), we find

jAðK0M0Þj
jAðK̄0M0Þj ¼

1

2
RðD0;M0Þ½1þOðϵ20; ϵ020Þ�;

ðM0 ¼ π0; η8Þ: ð82Þ

That is, although the branching fractions for DCS decays
D0 → K0π0 and D0 → K0η8 cannot be measured directly,
they may be obtained up to second-order U-spin breaking
corrections from corresponding CF branching fractions and
K0

S − K0
L asymmetries:

BðD0 → K0M0Þ ¼ 1

4
½RðD0;M0Þ�2BðD0

→ K̄0M0Þ½1þOðϵ20; ϵ020Þ�;
ðM0 ¼ π; η8Þ: ð83Þ

Table IV summarizes current relevant information on
branching ratios and amplitudes for D0 decays into pairs of
neutral pseudoscalars. We do not include the ηη mode (and
decays involving the η0), as D0 → η8η8 would include
D0 → η0η0 which has zero phase space.
An estimate of U-spin breaking is given by a ratio of SCS

and CF decay amplitudes which equals one in the sym-
metry limit [see (67) (68)],

jAðπ0π0Þj
jAðK̄0π0Þj tan θC

− 1 ¼ −0.21� 0.02; ð84Þ

Another quantity measuring U-spin breaking is

TABLE IV. Branching fractions and amplitudes for D0 decays to pairs of neutral pseudoscalar mesons [17].

Decay mode Branching fraction p (GeV=c) jAj ¼ ffiffiffiffiffiffiffiffiffi
B=p

p ðGeV=cÞ−1=2
D0 → K0

Sπ
0 ð1.19� 0.04Þ × 10−2 0.860 −−

D0 → K0
Lπ

0 ð1.00� 0.07Þ × 10−2 0.860 −−
D0 → K̄0π0 ð2.29� 0.07Þ × 10−2 a 0.860 0.163� 0.002
D0 → K̄0η ð0.890� 0.079Þ × 10−2 0.772 0.107� 0.005
D0 → π0π0 ð8.20� 0.35Þ × 10−4 0.923 0.0298� 0.0006
D0 → ηπ0 ð6.8� 0.7Þ × 10−4 0.846 0.0284� 0.0014

aBranching ratio calculated as twice the average of BðD0 → K0
Sπ

0Þ and BðD0 → K0
Lπ

0Þ.
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ffiffiffi
3

p jAðK̄0ηÞj
jAðK̄0π0Þj − 1 ¼ 0.14� 0.05: ð85Þ

In order to determine Reϵ0 from (77), one would have to
know also jAðK̄0η0Þj and the relative strong phase between
this amplitude and AðK̄0ηÞ, using a favored value for the
η-η0 mixing angle [37]. The other U-spin breaking param-
eter, Reϵ00, is obtained from (81) using a K0

S − K0
L asym-

metry measurement by the CLEO collaboration [38],
RðD0; π0Þ ¼ 0.108� 0.035,

Reϵ00 ¼
RðD0; π0Þ − 2 tan2 θC

4 tan2 θC
¼ 0.00� 0.16: ð86Þ

Arguments favoring small U-spin breaking in the asym-
metries RðD0;M0Þ have been presented in Ref. [39]
adopting a diagrammatic flavor SU(3) approach.
The numerical values of Reϵ00 in (86) and of the above

other two measured U-spin breaking quantities imply that
second-order U-spin breaking terms in Eqs. (77)–(83) are at
most of order several percent. Neglecting these contribu-
tions involves an approximation that is quantitatively
similar to the one used to obtain (80), where terms which
are second order in the ratio of DCS and CF amplitudes
have been neglected.

XII. CONCLUSION

We described a new approach to hadronic D0 decay
amplitudes applying a perturbative expansion in U-spin
breaking parameters and treating isospin breaking

carefully. We have identified a class of two-body and quasi
two-body decays involving charged pseudoscalars (P) and
vector mesons (V), for which in each case adequate
hierarchies have been shown to occur between U-spin
breaking terms of increasing order.
Nonlinear amplitude relations were predicted in each

one of three cases, D0 → PþP−, D0 → VþP− and
D0 → PþV−, which hold up to fourth-order U-spin break-
ing and isospin-breaking terms suppressed also by second-
order U-spin breaking. The three predicted relations have
been shown to hold experimentally at a very high precision
varying between 10−3 and 10−4, in agreement with our
estimates of high-order terms. More precise tests require a
first robust measurement of BðD0 → Kþρ−Þ and improving
branching ratio measurements for D0 decays to
K�þπ−; πþK�−; πþρ− and KþK�−. So far, no unexpected
flavor symmetry breaking down to this very low level has
been found, which would indicate physics beyond the
standard model. This provides useful constraints on new
jΔCj ¼ 1 operators, potentially originating in new physics
at energies much above a TeV [40].
Finally, we also studied decays to two neutral pseudo-

scalar mesons, deriving much less precise amplitude
relations and relations for rate asymmetries between decays
involving K0

S and K0
L, which hold up to second-order

U-spin breaking terms at a level of several percent.

ACKNOWLEDGMENTS

I wish to thank Yuval Grossman and Dean Robinson for
useful communications.

[1] R. L. Kingsley, S. B. Treiman, F. Wilczek, and A. Zee, Phys.
Rev. D 11, 1919 (1975); M. B. Voloshin, V. I. Zakharov, and
L. B. Okun, Pis’ma Zh. Eksp. Teor. Fiz. 21, 403 (1975)
[JETP Lett. 21, 183 (1975)]; L. L. Wang and F. Wilczek,
Phys. Rev. Lett. 43, 816 (1979); C. Quigg, Z. Phys. C 4, 55
(1980).

[2] M. J. Savage, Phys. Lett. B 257, 414 (1991); W. Kwong and
S. P. Rosen, Phys. Lett. B 298, 413 (1993); I. Hinchliffe and
T. A. Kaeding, Phys. Rev. D 54, 914 (1996).

[3] For a recent study including CP asymmetries, see D.
Pirtskhalava and P. Uttayarat, Phys. Lett. B 712, 81 (2012).

[4] L. L. Chau and H. Y. Cheng, Phys. Rev. Lett. 56, 1655
(1986); Phys. Rev. D 36, 137 (1987); Phys. Lett. B 280, 281
(1992); J. L. Rosner, Phys. Rev. D 60, 114026 (1999); M.
Gronau and J. L. Rosner, Phys. Lett. B 500, 247 (2001).

[5] C. W. Chiang, Z. Luo, and J. L. Rosner, Phys. Rev. D 67,
014001 (2003); B. Bhattacharya and J. L. Rosner, Phys.
Rev. D 77, 114020 (2008); 79, 034016 (2009); 81, 099903
(E) (2010); 81, 014026 (2010); H. Y. Cheng and C.W.
Chiang, Phys. Rev. D 86, 014014 (2012).

[6] F. Buccella, M. Forte, G. Miele, and G. Ricciardi, Z. Phys. C
48, 47 (1990); F. Buccella, M. Lusignoli, G. Miele, and A.
Pugliese, Z. Phys. C 55, 243 (1992); F. Buccella, M.
Lusignoli, G. Miele, A. Pugliese, and P. Santorelli, Phys.
Rev. D 51, 3478 (1995); M. Zhong, Y. L. Wu, and W. Y.
Wang, Eur. Phys. J. C 32, s191 (2004); Y. L. Wu, M. Zhong,
and Y. F. Zhou, Eur. Phys. J. C 42, 391 (2005); D. N. Gao,
Phys. Lett. B 645, 59 (2007).

[7] G. Hiller, M. Jung, and S. Schacht, Phys. Rev. D 87, 014024
(2013).

[8] Y. Grossman and D. J. Robinson, J. High Energy Phys. 04
(2013) 067.

[9] M. Gronau, Phys. Lett. B 730, 221 (2014); 735, 282(E) (2014).
[10] M. Gronau, Phys. Rev. D 90, 117901 (2014).
[11] In Ref. [9] it was stated without proof that these isospin-

breaking terms involve an additional first-order SU(3)
breaking.

[12] S. Meshkov, G. A. Snow, and G. B. Yodh, Phys. Rev. Lett.
13, 212 (1964); H. J. Lipkin, Phys. Rev. 174, 2151
(1968).

SU(3) IN D DECAYS: FROM 30% SYMMETRY … PHYSICAL REVIEW D 91, 076007 (2015)

076007-13

http://dx.doi.org/10.1103/PhysRevD.11.1919
http://dx.doi.org/10.1103/PhysRevD.11.1919
http://dx.doi.org/10.1103/PhysRevLett.43.816
http://dx.doi.org/10.1007/BF01477308
http://dx.doi.org/10.1007/BF01477308
http://dx.doi.org/10.1016/0370-2693(91)91917-K
http://dx.doi.org/10.1016/0370-2693(93)91843-C
http://dx.doi.org/10.1103/PhysRevD.54.914
http://dx.doi.org/10.1016/j.physletb.2012.04.039
http://dx.doi.org/10.1103/PhysRevLett.56.1655
http://dx.doi.org/10.1103/PhysRevLett.56.1655
http://dx.doi.org/10.1103/PhysRevD.36.137
http://dx.doi.org/10.1016/0370-2693(92)90067-E
http://dx.doi.org/10.1016/0370-2693(92)90067-E
http://dx.doi.org/10.1103/PhysRevD.60.114026
http://dx.doi.org/10.1016/S0370-2693(01)00080-6
http://dx.doi.org/10.1103/PhysRevD.67.014001
http://dx.doi.org/10.1103/PhysRevD.67.014001
http://dx.doi.org/10.1103/PhysRevD.77.114020
http://dx.doi.org/10.1103/PhysRevD.77.114020
http://dx.doi.org/10.1103/PhysRevD.79.034016
http://dx.doi.org/10.1103/PhysRevD.81.099903
http://dx.doi.org/10.1103/PhysRevD.81.099903
http://dx.doi.org/10.1103/PhysRevD.81.014026
http://dx.doi.org/10.1103/PhysRevD.86.014014
http://dx.doi.org/10.1007/BF01565604
http://dx.doi.org/10.1007/BF01565604
http://dx.doi.org/10.1007/BF01482585
http://dx.doi.org/10.1103/PhysRevD.51.3478
http://dx.doi.org/10.1103/PhysRevD.51.3478
http://dx.doi.org/10.1140/epjcd/s2003-01-017-1
http://dx.doi.org/10.1140/epjc/s2005-02302-2
http://dx.doi.org/10.1016/j.physletb.2006.11.069
http://dx.doi.org/10.1103/PhysRevD.87.014024
http://dx.doi.org/10.1103/PhysRevD.87.014024
http://dx.doi.org/10.1007/JHEP04(2013)067
http://dx.doi.org/10.1007/JHEP04(2013)067
http://dx.doi.org/10.1016/j.physletb.2014.01.035
http://dx.doi.org/10.1016/j.physletb.2014.06.055
http://dx.doi.org/10.1103/PhysRevD.90.117901
http://dx.doi.org/10.1103/PhysRevLett.13.212
http://dx.doi.org/10.1103/PhysRevLett.13.212
http://dx.doi.org/10.1103/PhysRev.174.2151
http://dx.doi.org/10.1103/PhysRev.174.2151


[13] R. L. Kingsley, S. B. Treiman, F. Wilczek, and A. Zee,
Ref. [1].

[14] M. Gronau and J. L. Rosner, Ref. [4].
[15] M.Gronau and J. L. Rosner, Phys. Rev.D 86, 114029 (2012).
[16] A. F. Falk, Y. Grossman, Z. Ligeti, and A. A. Petrov, Phys.

Rev. D 65, 054034 (2002).
[17] K. A. Olive et al. (Particle Data Group Collaboration), Chin.

Phys. C 38, 090001 (2014).
[18] See e. g. J. Brod, A. L. Kagan, and J. Zupan, Phys. Rev. D

86, 014023 (2012).
[19] M. Golden and B. Grinstein, Phys. Lett. B 222, 501 (1989).
[20] B. Bhattacharya, M. Gronau, and J. L. Rosner, Phys. Rev. D

85, 054014 (2012); B. Bhattacharya, M. Gronau, and J. L.
Rosner, Proceedings of the Tenth International Conference
on Flavor Physics and CP Violation—FPCP2012,
May 21–25, 2012, Hefei, SLAC eConf C120521, (SLAC,
Menlo Park, CA 2012).

[21] M. Suzuki, Phys. Rev. Lett. 43, 818 (1979).
[22] L. F. Abbott, P. Sikivie, and M. B. Wise, Phys. Rev. D 21,

768 (1980).
[23] M. J. Savage, Ref. [2].
[24] T. Feldmann, S. Nandi, and A. Soni, J. High Energy Phys.

06 (2012) 007.
[25] J. Brod, Y. Grossman, A. L. Kagan, and J. Zupan, J. High

Energy Phys. 10 (2012) 161.
[26] It was noted in Ref. [8] that first-order U-spin breaking

cancels in R3.
[27] It was shown in Ref. [15] that first-order U-spin breaking

cancels also in jAðD0 → KþK−Þj2 þ jAðD0 → πþπ−Þj2−

2jAðD0 → πþK−ÞjjAðD0 → Kþπ−Þj, contributing to
D0 − D̄0 mixing.

[28] M. Antonelli, D. M. Asner, D. A. Bauer, T. G. Becher, M.
Beneke, A. J. Bevan, M. Blanke, C. Bloise et al., Phys. Rep.
494, 197 (2010).

[29] T. A. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett.
111, 231802 (2013); R. Aaij et al. (LHCb Collaboration),
Phys. Rev. Lett. 111, 251801 (2013); B. R. Ko et al. (Belle
Collaboration), Phys. Rev. Lett. 112, 111801 (2014).

[30] D. M. Asner et al. (CLEO Collaboration), Phys. Rev. D 70,
091101 (2004); B. Aubert et al. (BABAR Collaboration),
Phys. Rev. D 78, 034023 (2008).

[31] X. C. Tian et al. (Belle Collaboration), Phys. Rev. Lett. 95,
231801 (2005).

[32] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 97,
221803 (2006).

[33] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett.
103, 211801 (2009).

[34] A similar prediction assuming R00
3 ¼ 1 with no uncertainty

was obtained in Ref. [8].
[35] See, e.g., C. Quigg in Ref. [1] and Ref. [15].
[36] I. I. Y. Bigi and H. Yamamoto, Phys. Lett. B 349, 363

(1995).
[37] See, e.g., F. G. Cao, Phys. Rev. D 85, 057501 (2012) and

references therein.
[38] Q. He et al. (CLEO Collaboration), Phys. Rev. Lett. 100,

091801 (2008).
[39] J. L. Rosner, Phys. Rev. D 74, 057502 (2006).
[40] M. Gronau, Phys. Lett. B 738, 136 (2014).

MICHAEL GRONAU PHYSICAL REVIEW D 91, 076007 (2015)

076007-14

http://dx.doi.org/10.1103/PhysRevD.86.114029
http://dx.doi.org/10.1103/PhysRevD.65.054034
http://dx.doi.org/10.1103/PhysRevD.65.054034
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1103/PhysRevD.86.014023
http://dx.doi.org/10.1103/PhysRevD.86.014023
http://dx.doi.org/10.1016/0370-2693(89)90353-5
http://dx.doi.org/10.1103/PhysRevD.85.054014
http://dx.doi.org/10.1103/PhysRevD.85.054014
http://dx.doi.org/10.1103/PhysRevLett.43.818
http://dx.doi.org/10.1103/PhysRevD.21.768
http://dx.doi.org/10.1103/PhysRevD.21.768
http://dx.doi.org/10.1007/JHEP06(2012)007
http://dx.doi.org/10.1007/JHEP06(2012)007
http://dx.doi.org/10.1007/JHEP10(2012)161
http://dx.doi.org/10.1007/JHEP10(2012)161
http://dx.doi.org/10.1016/j.physrep.2010.05.003
http://dx.doi.org/10.1016/j.physrep.2010.05.003
http://dx.doi.org/10.1103/PhysRevLett.111.231802
http://dx.doi.org/10.1103/PhysRevLett.111.231802
http://dx.doi.org/10.1103/PhysRevLett.111.251801
http://dx.doi.org/10.1103/PhysRevLett.112.111801
http://dx.doi.org/10.1103/PhysRevD.70.091101
http://dx.doi.org/10.1103/PhysRevD.70.091101
http://dx.doi.org/10.1103/PhysRevD.78.034023
http://dx.doi.org/10.1103/PhysRevLett.95.231801
http://dx.doi.org/10.1103/PhysRevLett.95.231801
http://dx.doi.org/10.1103/PhysRevLett.97.221803
http://dx.doi.org/10.1103/PhysRevLett.97.221803
http://dx.doi.org/10.1103/PhysRevLett.103.211801
http://dx.doi.org/10.1103/PhysRevLett.103.211801
http://dx.doi.org/10.1016/0370-2693(95)00285-S
http://dx.doi.org/10.1016/0370-2693(95)00285-S
http://dx.doi.org/10.1103/PhysRevD.85.057501
http://dx.doi.org/10.1103/PhysRevLett.100.091801
http://dx.doi.org/10.1103/PhysRevLett.100.091801
http://dx.doi.org/10.1103/PhysRevD.74.057502
http://dx.doi.org/10.1016/j.physletb.2014.09.034

