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Froissart bound on inelastic cross section without unknown constants
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Assuming that axiomatic local field theory results hold for hadron scattering, André Martin and S. M.
Roy recently obtained absolute bounds on the D wave below threshold for pion-pion scattering and thereby
determined the scale of the logarithm in the Froissart bound on total cross sections in terms of pion mass
only. Previously, Martin proved a rigorous upper bound on the inelastic cross-section oy, Which is one-
fourth of the corresponding upper bound on o, and Wu, Martin, Roy and Singh improved the bound by
adding the constraint of a given o,,. Here we use unitarity and analyticity to determine, without any high-
energy approximation, upper bounds on energy-averaged inelastic cross sections in terms of low-
energy data in the crossed channel. These are Froissart-type bounds without any unknown coefficient or
unknown scale factors and can be tested experimentally. Alternatively, their asymptotic forms, together
with the Martin-Roy absolute bounds on pion-pion D waves below threshold, yield absolute bounds

on energy-averaged inelastic cross sections. For

0.0 00 0,0 + -
Ginel = Ot — (6" " 7% % + 677777 ) we show that for c.m. energy +/s — 00, Gipe(s, )=

s [®ds' 6y (s")/s? < (n/4)(m,) *(In(s/s;) + (1/2) Inln(s/s,) + 1]* where 1/s; = 34x\/2xm;>. This
bound is asymptotically one-fourth of the corresponding Martin-Roy bound on the total cross section, and
the scale factor s; is one-fourth of the scale factor in the total cross section bound. The average over the

example, for 7°z° scattering, defining

T

interval (s,2s) of the inelastic 7°7°
1/S2 = 2/S] .
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I. INTRODUCTION

Recently we [1] have obtained bounds on energy
averages of the total cross section without any unknown
constants such as an overall constant factor or the scale
factor in the logarithm. The purpose of the present work is
to obtain analogous bounds on the energy-averaged inelas-
tic cross section without any unknown constants. The
background and the basic postulates are again summarized
below to make this work self-contained.

The Froissart [2] bound on the total cross section o (s)
for two particles at c.m. energy /s,

Utot(s) S0 C[ln(S/SO)]z’ (1)

(where C, s, are unknown constants) was initially proved
assuming the Mandelstam representation. This assumption
might not be valid, for example, if there are rising Regge
trajectories. Fortunately, [3] it was possible to prove this
bound rigorously in the much more general frame work of
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cross section has a bound of the same form with 1/s, replaced by

PACS numbers: 03.67.-a, 03.65.Ud, 42.50.—p

Wightman’s [4] axiomatic local field theory as applied to
hadrons. Later, the needed analyticity properties, and
polynomial boundedness at fixed momentum transfer
squared 7, were obtained by Epstein, Glaser and Martin
[5] in the even more general framework of the theory of
local observables of Haag, Kastler and Ruelle [6]. It has
nevertheless been questioned [7] if these properties apply to
hadrons made of quarks and gluons. Zimmermann [8] has
shown that local fields can be associated to composite
particles. We decide to believe that this proof applies to the
present situation. We postulate that the analyticity and
polynomial boundedness derived from local field theory
holds for hadrons.

In the proof of the Froissart bound in [3] a crucial role is
played by the use of unitarity to enlarge the Lehmann ellipse
of analyticity [9] for the absorptive part A(s, ¢) to show that
the right extremity #, of the enlarged ellipse in the t-plane
stays nonzero and positive when s — co. For many proc-
esses, forexample for 7z, KK, KK, K, 7N, w A\ scattering it
is known [10] that fy = 4m2, m, being the pion-mass.
(Except when especially necessary to show the dependence
on pion-mass, we shall choose units m, = 1). Using
unitarity and validity of dispersion relations with a finite
number of subtractions for -7 < ¢ < 0, Jin and Martin [11])
proved twice subtracted fixed-¢ dispersion relations for
|f| < ty. From this Lukaszuk and Martin [12] fixed the
constant C in the Froissart bound to obtain
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Gtot(s) Sioo0 Gmax(s)’ (2)

where

=4x/(ty—¢) []n(s/so)]z, (3)

with e an arbitrarily small positive constant. The Froissart-
Martin bounds have inspired much work on high-energy
theorems (see e.g. [13,14]) and on models of high-energy
scattering [15]. Further, Martin proved a bound on the total
inelastic cross section oy, (s) at high energy [16] which is
one-fourth of the above bound 6,,,(s) on the total cross
section, and, Wu, Martin, Roy and Singh [17] obtained a
bound on 6;,y(s) which improves that bound if o,y(s) is
known,

Omax (S)

- 6tot<s)/6max(s))' (4)

The motivation for getting a bound on the inelastic cross
section is the almost general belief [15] that at high energies
hadron total cross sections cannot exceed twice the inelastic
cross section. Hence, gaining a factor of 4 in the inelastic
cross section gains a factor of 2 in the total cross section.

One shortcoming of these bounds from the standpoint of
rigor is that [18] they are deduced by assuming that the
absorptive part A(s,7),0<t <17, is bounded by
Consts?/In(s/sy) for s — co, whereas axiomatic field
theory results only guarantee that

o-inel(s) Ss—>oo Gtot(s)(l

C(t)= /oo dsA(s,1)/s® < oo,

Sth

0<t<ty, (35

where sy, is the s-channel threshold. From the practical
point of view, a more serious shortcoming is that they
involve the unknown scale factor s in the argument of the
logarithm and the unknown arbitrarily small but nonzero
constant €.

In the case of the total cross section, both these short-
comings were removed recently [1]. Bounds on energy
averages of the total cross section were obtained in which
the scale s, is determined in terms of C(z). C(¢) can be
bounded rigorously in terms of pion mass alone for z°7°
scattering. Thus we obtained the absolute bound [1],

Guor(s, 00) < w(m;)~*([In(s/s0) + (1/2) Inln(s/s0) + 1]

+ O(Inln(s/sy)),
sot = 1Tn/n/2m3;?, (6)
where,
(s 0) =5 [ o(s)/5” )

We also obtained somewhat improved bounds by using the
additional phenomenological inputs for the D-wave scat-
tering length [19] for pion-pion scattering.
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We prove here analogous bounds on energy averages of
the inelastic cross section. We choose the same normal-
izations as in Martin-Roy [1]. F(s, f) denotes an ab — ab
scattering amplitude at c.m. energy /s and momentum
transfer squared ¢ normalized for nonidentical partcles a, b
such that the differential cross section do/d€Q(s, 1) is given
by [4F(s,t)/+/s|?, with ¢ being given in terms of the c.m.
momentum k and the scattering angle @ by the relation,

t==2k*(1 —cos®); z=cos@=1+1/(2k*). (8)
Then, for fixed s larger than the physical s-channel
threshold, F(s;cos ) = F(s, ) is analytic in the complex
cos @ -plane inside the Lehmann-Martin ellipse with foci
—1 and +1 and semi-major axis cos@, = 1 + #,/(2k?).
Within the ellipse, in particular, for |7| < 7, F(s, t) has the
convergent partial wave expansion,

_ :L/_kg i(zz + 1)P(2)a(s), ©)
=0

with the unitarity constraint,

Ima;(s) > |a,(s)|*, § > S (10)
Correspondingly, the optical theorem gives, for nonident-
ical partcles a, b,

o(s) = "2 Im(4F(5,0)/V5)

A 00
:—ZZ (21 4 1)Ima(s). (11)
=0

For identical particles, e.g. for 7°z° scattering, or for

pion-pion scattering with isospin I, the partial waves
a;(s) = 2al(s) in the partial wave expansion, i.e.

Fl(s,t) = gi(ﬂ +1)2a!(s)P(z2), (12)
1=0

ol (s i;z 21+ 1)2Imal (s), (13)
=0

and we have the same formula for the differential cross
section in terms of F(s,¢), and the same form of the
unitarity constraint, Imal(s) > |al(s)|?, s > 4, as for non-
identical particles. At threshold, F'(4,0) = a}, the S-wave
scattering length for isospin /.

It will be seen that proofs of the bounds for inelastic
cross sections are considerably more involved than those
for total cross sections, but the basic principles are the
same. We give detailed derivations for the case of
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nonidentical particles a # b and also quote the identical
particle results when needed.

II. CONVEXITY PROPERTIES OF LOWER BOUND
ON ABSORPTIVE PART IN TERMS OF TOTAL
INELASTIC CROSS SECTION

We obtain a lower bound on the absorptive part of F(s, 7)
(for s > 54, and 0 < 1 < () in terms of the inelastic cross
section 6y, (s). Following [20] we prove that the bound
is a convex function of the inelastic cross section. The
absorptive part has the partial wave expansion,

N

Fy(s.0) = A(s.1) = Z (21 4 1)P,(z)Ima(s). (14)

The corresponding expansion of the inelastic cross
section is

dr &
1nel __QZ 2l+ Il’nal ) |al(s)|2)' (15)
=0

Actually we shall vary Ima;(s) subject to the positivity
restrictions (due to unitarity),

Ima,(s) >0, (16)

to minimize A(s, t), given

ot (5) = 2> (21+1)(1ma )~ (ma (5) ). (17
=0

The bound will be seen to be an increasing function of
Ginel,im(s)' Further,

Ginelim(s) > Ginel(s); (18)

therefore, the bound will still hold when we replace
Ginelim(s) by the experimentally accessible oy, (s). We
work at a fixed s; so, unless specially needed, we shall
suppress the s dependence of Ima;(s), ojnerim(s) and
Oine1(5). The Lagrange multiplier method with positivity
constraints on partial waves gives the variational solution
(Ima, ),

(Imay), — % (1 -

(Ima;), = 0,

Pi(z)
P;(2)
[>L, (19)

), ISL;L<A<L+1

where the integer L and the non-negative fraction 4 — L are
to be determined so as to reproduce the given oy, in; here
P,(z) for noninteger 4 and z > 1 is defined by
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P,(z) = l/”(Z + cospV/ 22 — 1)*dep. (20)

T Jo

If Ay(s, t) denotes the absorptive part with partial waves
(Ima;), and A(s,t) that with arbitrary positive partial
waves with the given oyinm(s), we obtain by direct
subtraction,

A(k/\/5)(A(s.1)

L

—Ag(s,1))

=P;(z) ) _(21+1)(Img; — (Ima;),)*+
=0
X 3 ma;)* + Ima Pilz)
i) 3 @) +ma (7151
>0. (21)

The last inequality follows because for z > 1, and 1 > 0,
P;(z) is an increasing function of 1. We then have

- (P 1(z)
4(k/\/5)A ,Z 21+ 1)P)(z <1 PA(Z))
=A(4), (22)
where
Pi(z)\?
mellm ZO 2l+ 1/4 ( <P/1(Z)> >

Z(4). (23)

Note that X;(1) and A(4) are monotonically increasing
continuous functions of A; hence, 4 and A(1) may be
considered functions of %;, and

dA/dx; = ((dA/dA)/(dZ;/dA)) = P;(z).  (24)
which is always positive and also continuous at integer 4,
although (dA/dA) and (dX;/dJ) are discontinuous there.
Hence,

A/} = ((dPy(2)/d2) /(A% /d2) > 0, (25)
which is discontinuous at integer A, but always positive.
This completes the proof that A(A(Z;)) is a convex function

of X;; i.e. at a given s the lower bound on A(s, ) is an
increasing and convex fuction of 6y, ;,, and, hence, of ;.

1. EXPLICIT EVALUATION OF THE BOUND
Explicitly,

% dA %
A = [z = [T . 2o

1
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where 1, L’ corresponds to the value X of 61 imk*/ (47).
When 0 < %) < (1 —z72)/4=5%,(1) we get L' =0 and
the corresponding part of the integral can be evaluated
exactly. Hence,

AG(E)) = (1-2)/2+ / K

(1)

Py(2)ds,.  (27)

In the remaining integral L’ > 1 and we shall prove that for
Z/I > z:’[ ( 1 ) P

(V)? > 4%, (28)

Proof—From the wave

%, (V) =X, we obtain

45, < (L) + (21 + 1) (1 - (25;;)2) (29)

partial expansion for

The integral representation for P,(z) given before yields,
for z > 1,

P (2)\2 / /
(743) > exnt-20r = iz + V2 1)

>1-2(=L)In(z+ Vz* - 1), (30)

where the last inequality uses exp(—x) > 1 — x. At high

energies In(z + vz> — 1) goes to zero, and we assume
moderately high energies (k > 6m,) such that, with
t< 4m,2,,

In(z+Vz2-1) < 1/3. (31)
Then,

4%, < (L')*+ 2L + 1)2(X = L) In(z + V2 = 1)
S - =L)X +L = (2/3)((2L' + 1)))
<(X)?, forL'>1, (32)

which completes the proof.
Since P, (z) is an increasing function of A’, we obtain,

AE) = (1-/2+ [ E(II)P JE @z (33)

Using the integral representation for P,(z) given before and
the analogous representation

(@) =+ A " expl(z cos ¢)di (34)

for the modified Bessel function, and the elementary
inequality
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In((z +cospv/z2 = 1) > (cosp) In((z + V2> = 1),

z>1,

we obtain [20]
Pi(z) 2 Io(AIn((z + V2> = 1)) (35)

> I,(AWW 2= 1/z),

Substituting the above inequalities, the integral over X; in
the expression for the lower bound can be evaluated
exactly, and we have the exact result (without any high-
energy approximation),

z> 1. (36)

4(k//5)A(s.1) 2 A(Z)) > @

+(1/2)(In((z + V2 = D)L (37)

X'=uy’

u=In((z+ V2> = 1))\ Koina/7;

u; =1In((z+ V2 - 1))\/1 - 772, (38)

and the slightly weaker but simpler result,

z 4%, (2 - 1) 4%,(2 - 1)
2(z2-1) z h ( z )

Note that at high energies z — 1 — 0, and the last two terms
give only a small positive contribution,

(1-z7YH 1 (zz— 1)
S ~(z—1)2/4, —1-0.
> 2 T2 (z=1)%/ 4

A(Z)) >

(40)

Hence, at sufficiently high energies, but without any high-
energy approximation, we have the bound given by
Eqgs. (37)-(38) and the slightly weaker but simpler bound,

ks 22

z+1
= —_— 41
Y=0\5a . (41)

IV. BOUND ON ENERGY-AVERAGED INELASTIC
CROSS SECTION

Multiplying by s~ and integrating over s, we obtain a
lower bound on Cy,, () which is the contribution from s,
to s, to C(1),
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§2 ds’
Cis,.0) (1) E/ A(s', 1) )

>/sZ ds' \/(1=4]s))
)y, ()2 16¢
where s, > s, and we used 2k'/\/s' > /(1 —4/s;), and

222/(zy+1)222%/(z+ 1) > 1 for s’ in the interval
(S],Sz), and

—4+2t 21 + 1 tGme]
el S i , \/ (43)
“ -4 2z1

The lower bound on C(sy,s,)(¢) is an average with the
normalized weight function

xali (%), (42)

5152
plst) = 10 (44)
R O
of an integrand which is a convex function of 6y, (s’). The
convexity is readily proved; using (xI,(x)) = xIy(x), and
denoting

1 —4 —4 4t
H = tzl+2 = t(sl )(s1 —; ) <t, (45)
221 (S] —4+2t)

we have

d(xi1,(x})) _h 11Giner(8")
s =2 ()

Since the right-hand side is an increasing function of
Ginel (), wWe get the convexity property,

(1, (x)))

dainel(s/)z 7

Since the average of a convex function is greater than the
convex function of the average [21], we have the bound

> 20 S0 —afs )l (x),  (48)

16[S]Sz

Clsy.,) (1)

where

1, 0; s
X, = lo-mel(sl SZ)’ (49)

T

5-inel(slvs2) E/ dS’[)(S’)O'inel(S/). (50)

S

To get bounds on &, (s, ), and &y (s, 2s), we just
choose the corresponding values for (s;,s,).Thus we
obtain, without any asymptotic approximations in s,

PHYSICAL REVIEW D 91, 076006 (2015)

Coa (1) 2 g T =400 (). (1)

1,0 )
x| = ldmelif-s 00)’ (52)
and
1
Cisas)(t) 2 3915 V (1 =4/s)x21(x), (53)
t,0; ,2
Xy = lamelis S)’ (54)
where

(s=4)(s—4+1)
(s —4 +21)?

A. Asymptotic bounds

Since we want asymptotic upper bounds on the energy-
averaged inelastic cross sections, we can assume without
loss of generality that the arguments x;, x, of the modified
Bessel functions tend to infinity and obtain

1651C 5 00) (1 > (VEexp&)(1+0(1/£)).  (56)
51 — t6inel£:’ 00)’ (57)
and

32stC(s‘2S)(t)\/ﬂ > (\/ZeXp &)(1+0(1/8)), (58)

t5inel (Sv 2S)
7” .

&= (59)

We now use the elementary lemma proved in [20] and [1].
Lemma.—If € > 1, and y > \/Eexp &, then

E<f(y)=Iny—(1/2)In <lny—;lnlny). (60)

With f(y) as defined above, we obtain the asymptotic
bounds,

(f(4s5/50)), (61)

B b4
O-inel(s7 OO) SA—> 7

where
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1
— = 4IC(‘Y’OO)(I)\/2_71',

t=4m2 —e, (62)
So

and

Ginet(5:25) <y = (f(85/50))* (63)

Notice that the coefficients of (Ins)? in these bounds on
the inelastic cross section are one-fourth of those in the
corresponding bounds on the total cross section at high
energies, and the scale factors in the inelastic case are also
one-fourth of those in the corresponding total cross-section
bounds [1],

47

7 (f(s/50))*,
Tirosisr (o)

5tot(s’ OO) SS—»oo
Etot(& 2S) SA‘—»oo

In the case of pion-pion scattering, we may remove the
unknown ¢ in t = 4m2 — ¢ rigorously by using absolute
bounds on the D wave below threshold derived in [1], or
use phenological inputs on the D-wave scattering length
and set € = 0. The main qualitative difference from the case
of nonidentical particles is that only even partial waves
occur in 7°7° scattering, We first show that in spite of this
difference, the bounds of this section at moderate energies
as well as the asymptotic bounds on inelastic cross sections

hold for z°z° scattering.

V. BOUNDS ON PION-PION INELASTIC
CROSS SECTIONS

We shall exploit isospin invariance,

1 2

Fn: 70— 070 — F() F2
3 T3 3
Z(ZZ+ )2a7 =77 (5) Py (2),
l 0,2,
| 1
Fﬂoﬂo—ﬂfrﬂ _ *FO _ *F2
3 3
VS S @4 VAT () (2).
l 0,2,
(65)
Unitarity, then, implies
Ima;roﬂo—m 7° > |aﬂ 0297070 |2 + |aﬂ —ntn |2
= ZIas)P + 2R (66)

Hence, we define the inelastic cross section considering

7°7° — 77~ also as an elastic channel,

PHYSICAL REVIEW D 91, 076006 (2015)

0 0.0

lri)eli = aigtﬂ — 0-7[ b/ —’7[ ﬂ' 6” /8 —>7L'+7[
87 o
=2 > @i+1)
1=0.2,
X l(Ima0 —a%?) += 2 (Ima? — |a?| ))
3 1 1 3 I l .
Note that
Oﬂ(J HOHO
Uﬁlel < Gmel,im
8 [So]
= o7 (2] + 1)
k553
1 0 02y 4 2 2 212
X g(Ima[ — (Ima;) )+§(Imal — (Imaj)?) |.

(67)

As before, we vary the Imaf subject to positivity

constraints and the given o7,
part,

mel .m to minimize the absorptive

A”oﬂo_,”oﬂo(s l)

— VS @)

1=0,2

x P;(2)2 (% (Ima?) + % (Ima%)) ) (68)

Eanl IO

The minimum is reached when

1 P(z2)
Ima? =Ima? == (1 - =L ) I<L;
: : 2( P;(2) a
Ima? = Ima7 = 0, I>1L, L<A<L+2 (69)

The minimum is an increasing and convex function of
6% The lower bound on the absorptive part, therefore,

inel,im*

remains valid if we replace o7, me] .m DY amel Again, defining
A(k//5) A" =75 (s, 1) = AP (), (70)
0.0 k2 00
=217 (4), 71
Oinel Az 1 ( ) ( )

we prove that if In(z +v/z> — 1) < 1/6, which holds at
moderately high energies, Z}fo”o (A) <2?/4 if L>2.
Finally, proceeding as for nonidentical particles, we obtain
a bound without any high-energy approximations,

7[0 ”0 ”0 7[0 2;[0 !
AU 2 (L= 1P + [
1

P\/a(z)dZ}.
(72)
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This yields the exact bound,

4(k/\/5)A"" (s,1)
> (1= 1/P5(2)) + (1/2)a(z) WL ()][NZ0 . (73)

X'=uv’

a(z) =In((z + V2 = 1)),

v = a(2)y/2(1 = Pa(2)7): (74)

a slightly weaker bound is obtained by replacing a(z)
by the smaller quantity vz>—1/z and noting that
(1 =1/Ps(z2)) = (1/2)a(z)~2[x'I, (x)]| s—,, is then positive
at moderately high energies. Thus, we obtain a slightly
weaker but rigorous bound,

ks 72

4t z+1

[+ 1 [tem%(s)
x= 222 7‘2 , (75)

which is identical to the result given earlier for nonidentical
particles. Therefore, the asymptotic bounds of the last
section on energy averages of inelastic cross sections also
hold for z°7z° scattering.

AP (s, 1) >

xI(x),

VI. ABSOLUTE BOUNDS ON 7°z° INELASTIC
CROSS SECTIONS

In [1] we derived absolute bounds on 7z°z° D waves
below threshold and on C () in terms of pion mass alone for
0 < t < 4. In particular,

4—1

fZ(t) <i—d— 120

(34 +6.25(4— 1) + 0(4 —1)2), (76)

and

177
44 -1’

CHm=TR (1) < (77)

where f(s) = %26170”0_)”0”0(5). We now use these rigor-
ous bounds in conjunction with the asymptotic bounds on
inelastic 7°7z° cross sections to remove the unknown € =
4 — ¢t in these bounds. The price to pay for the rigor is that
we cannot choose ¢t =4. For the upper bound on

_”OﬂO . . .
o7 X (s, ), the optimum choice is

(78)

which yields

PHYSICAL REVIEW D 91, 076006 (2015)

_iri)eqo (5,00)
<o (£/4)(m) 2 x (1n(s/51) + (1/2)Inln(s/5,) + 1)
+ O(Inln(s/sy)), (79)

where the scale factor s; is given by

1/s, = 34x\2zm3? (80)

and is one-fourth of that for the total cross section case [1].
For the upper bound on 5{;0;{0 (s,2s), the optimum choice is

e=d4—1=— (81)

which yields

0”0

5ﬁlel (S,ZS) s (”/4)(’"75)_2
x (In(s/s,) + (1/2) Inln(s/s,) + 1)?
+ 0(Inin(s/52)) (%)

where the scale factor s, is given by

1/s, =2/s, = 687V 2xm;>. (83)

These are bounds from first principles on a cross section
fundamental in strong interaction physics. But for phe-
nomenological comparisons, it is more useful to use some
crossed channel low-energy data to get stronger bounds,
particularly on the scale of the logarithm.

VII. PHENOMENOLOGICAL COMPARISONS FOR
PION-PION SCATTERING

(1) First, the basic lower bound (from unitarity alone) on
the absorptive part A(s,?) in terms of the inelastic cross
section, given by Eq. (41), or in terms of the total cross
section (Eq. (21) of [1]) can be compared directly with
phenomenological estimates of the absorptive part at
energies where such estimates are available [22,23]. This
can be done for the amplitudes

0

Fria=nt a0 = 1 /2(F 4 F2)(s, 1),

0 0 1 2
Fno;z 07 (S, t) — §F'Cl + §F2(S, t),

which have positive absorptive parts for s >4, 0 < 1 < 4.
A violation of the bounds will indicate that the input
absorptive part violates unitarity.

(i1) Second, bounds on energy averages of cross sections
in the intervals (s.00) and (s.2s) in terms of phenomeno-
logical inputs for c.m. energies less than /s follow from
unitarity, analyticity and crossing. The crossing relations,
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SF 4 ) (s, ) = 3 (10

5 - F?)(t,s),

) (84)

00

F" 0720 5207 ( s t)
and the Froissart Gribov formula yield

CrLay™ (t=4)

Sr 7t 70— 7t 70
= Emn(ag - a3) - C(4,S) (t=4) (85)

and

Cﬂoﬂoeﬂoﬂo(t — 4)

(s.00)

_ %m”(ag +2d3) - CEE= (1 = 4). (86)
Here, as in [1], we defined the /-wave scattering lengths af
as the ¢ — 0 limits of the phase shifts 6/(g) divided by
g% where ¢ is the c.m. momentum. The Bern group [19]
already has estimates of the D-wave scattering lengths, and
has recently obtained [24] estimates of the absorptive part
integrals up to /s = 1,6 GeV,

+ 0

atnl—satal . _ _ -3 2070 =070,
CrLm=r ™ (1 = 4) = 148 x 1073, '™ (1 = 4)

=2.031 x 1073,

Hence, the bounds on energy-averaged cross sections

a7 (5,2s) and %7 (s,2s), as well as 627 (s, 00) and

ai’gef (s,00) implied by Egs. (51)—(55) can be directly
tested against the corresponding experimental values.

(iii) Third, explicit asymptotic bounds on the averages of
the inelastic cross section in the intervals (s, 00) and (s, 2s)
are given by Egs. (61) and (63), and in terms of the
corresponding averages of the total cross section, in terms
of a scale parameter s ; s is given by Eq. (62) in terms of
C(s.0)> an integral over absorptive parts in the interval
(s, 00). Substituting the values of the D-wave scattering
lengths given by [19],

a9 ~0.00175m;%; a3~ 0.00017m3>, (87)
we have, choosing for s a value up to which absorptive parts
can be reliably estimated,

271 55t = mz?16v27(2.05 x 107 = C7 =" (1 = 4)),
(88)

tal: st =mz*16V27(1.55x 1072 C’ﬁ”;)—’” = (1=4)).
(89)
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These equations give much stronger bounds than
the absolute bounds, e.g., using only positivity of

Cly ”(;_’” = (1 = 4), we get

So > 12m,2,,

which is 800 times the absolute bound s, > .015m2. As the
absorptive part integrals in the D-wave scattering length
sum rules are rapidly convergent, even for the moderate
value of /s = 1,6 GeV, Colangelo er al. [24] obtained a
further big improvement in the values of the scale factor
when phenomenological values of absorptive parts up to
Vs =1,6 GeV are utilized,

7°7°: 5o > 1312m2 ata%: 5o >356m2, (90)
which are not very far from the scale factors used in
phenomenological fits [23]. We should remember that
the phenomenological values may be dependent on the
particular parametrization used to fit experimental cross
sections. The implicit bounds (51)—(55) discussed in (i) and
(ii) are without asymptotic approximations and, therefore,
can be compared directly with experiment.

VIII. CONCLUDING REMARKS

In this paper on inelastic cross sections and the previous
one on total cross sections [1], we believe we have put the
Froissart bound on solid ground by using the notion of
average cross sections which avoids completely the prob-
lem of the scale in the Froissart bound. These averages can
be chosen rather arbitrarily, but once you have chosen one
you must stick to it. The simplest averages that we use are
the ones from s to infinity and from s to 2s. The averaging
interval must be sufficiently large if one wants to preserve
the coefficients appearing in the Lukaszuk-Martin bound.
The only unknown is the value of a certain integral on the
absorptive part for some positive ¢. In the special case of
pion-pion scattering, all unknown constants are eliminated.
The advantage of introducing the bound on the inelastic
cross section is that, asymptotically, it is 4 times smaller
than the one on the total cross section. So if you accept that
the elastic cross section cannot be larger than the inelastic
cross section, the limiting case being an expanding black
disk, you gain a factor 2 on the bound on the total cross
section. However, not everybody agrees with this; for
instance, Troshin and Tyurin [25] believe that at high
energy the scattering amplitude is dominantly elastic. It is
tempting to make a rather daring and nonrigorous sugges-
tion: if the amplitude is essentially elastic (a small inelastic
part is unavoidable according to well-known theorems),
then the effective large Lehmann ellipse has a right
extremity at ¢ = 16m2, and the Froissart bound is divided
by 4.
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In any case, a factor of 2 or 4 is not sufficient to bring the
absolute bounds near the experimental values [26-28]
including the most recent experiments at LHC [29], which
indicate a definite increase of the cross sections compatible
with a (In(s))? behavior. There is little doubt that this trend
will continue when LHC reaches higher energies. Towards
quantitative improvement, we may find unitarity bounds on
the energy averages of the inelastic cross section given the
total cross section as an input, in addition to absorptive part
integrals at positive ¢ [30].

However, as explained in Sec. VII above, if we
are prepared to make phenomenological inputs such as
the D-wave scattering lengths and low-energy absorptive
parts, the situation with respect to experimental compar-
isons improves dramatically [23].

What can we do on the theoretical side? In the case of pion-
pion scattering, Kupsch [31] has constructed an amplitude,
crossing-symmetric = satisfying “inelastic” unitarity and

PHYSICAL REVIEW D 91, 076006 (2015)

saturating the Froissart bound [31], but he does not give
numbers. The result of Gribov [32] shows the importance of
satisfying elastic unitarity in the “elastic strips” [33]. This
might help, but we do not know how, and there is the problem
of finding people interested in working on this.
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