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We develop an exact analytical formulation of neutrino oscillations in matter within the framework of the
standard neutrino model assuming three Dirac neutrinos. Our Hamiltonian formulation, which includes CP
violation, leads to expressions for the partial oscillation probabilities that are linear combinations of
spherical Bessel functions in the eigenvalue differences. The coefficients of these Bessel functions are
polynomials in the neutrino CKM matrix elements, the neutrino mass differences squared, the strength of
the neutrino interaction with matter, and the neutrino mass eigenvalues in matter. We give exact closed-
form expressions for all partial oscillation probabilities in terms of these basic quantities. Adopting the
standard neutrino model, we then examine how the exact expressions for the partial oscillation probabilities
might simplify by expanding in one of the small parameters α and sin θ13 of this model. We show explicitly
that for small α and sin θ13, there are branch points in the analytic structure of the eigenvalues that lead to
singular behavior of expansions near the solar and atmospheric resonances. We present numerical
calculations that indicate how to use the small-parameter expansions in practice.
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I. INTRODUCTION

In this paper, we develop an exact analytical representa-
tion of neutrino oscillations [1] in matter within the
framework of the standard neutrino model (SNM) [2] with
three Dirac neutrinos. The exact closed-form expressions
we give for the time-evolution operator Sðt; t0Þ are obtained
from Hν using the Lagrange interpolation formula given in
Ref. [3]. The resulting expressions are easily evaluated
without any approximations.
The paper is divided into two main parts. In the first, we

summarize the main results of our theory. Details under-
lying the derivation are given in Appendixes. We also
retrieve the well-known two-neutrino flavor results as a
special case of our general results.
In the second part we address other analytical formula-

tions found in the literature. The expansion of the neutrino
oscillation probability in one of the small parameters α
and sin2 θ13 of the SNM for Hν is of particular interest.
The seminal work along these lines is found in Refs. [4–6].
This work underlies many of the analyses and exploratory
studies of experiments at present and future neutrino
facilities, including our earlier work [7–10].
The present paper was undertaken, and used, for the

purpose of independently confirming the results of
Refs. [7–10]. We find that the accuracy of the expanded
oscillation probability is restricted by the presence of
branch points in the analytic structure of the eigenvalues

of neutrinos propagating in matter. We also show that the
regions where the expanded results are reliable is different
for expansions in α [4] and sin2 θ13 [5,6]. We then map out
regions where the expanded results are reliable by compar-
ing numerical results to the exact results of our Hamiltonian
formulation.
Another recent study [11] takes a complementary

approach and finds that the predictions of Refs. [7–10]
can be improved in certain regions using an exact evaluation
of the integral Iα� rather than the approximate one found
there. It concludes that within these regions, predictions of
ðμ; eÞ oscillations improve for certain values of the exper-
imental parameters.
The dimensionalities of the neutrino Hamiltonian Hν

and the parameter space characterizing the mixing of
three neutrino pairs are sources of difficulty for finding
a tractable representation of the oscillation probability. The
Lagrange interpolation formula [3] is enormously helpful,
providing an exact and formally elegant expression for the
exponentiation of an n × n matrix.
The description of two-flavor neutrino oscillations is

elementary by comparison. In that case,Hν is a 2×2matrix,
and the mixing is described by a single real parameter.

II. NEUTRINO DYNAMICS

We will be interested in the dynamics of the three known
neutrinos and their corresponding antineutrinos in matter.
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This dynamics is determined by the time-dependent
Schrödinger equation,

i
d
dt

jνðtÞi ¼ HνjνðtÞi; ð1Þ

where the neutrino Hamiltonian,

Hν ¼ H0v þH1; ð2Þ
consists of a piece H0v describing neutrinos in the vacuum
and a piece H1 describing their interaction with matter.
The solutions of Eq. (1) may be expressed in terms of

stationary-state solutions of the eigenvalue (EV) equation

Hνjνmii ¼ Eijνmii; ð3Þ

where the label “m” indicates neutrino mass eigenstates,
as distinguished from their flavor states sometimes denoted
with the label “f.” In operator form, this dynamics may be
expressed in terms of the time-evolution operator Sðt0; tÞ,
which describes completely the evolution of states from time
t to t0 and also satisfies the time-dependent Schrödinger
equation.
We will examine neutrinos propagating in a uniform

medium for interactions constant not only in space but
also time. Because the Hamiltonian is then translationally
invariant, attention may be restricted to states, both in the
vacuum and in matter, characterized by momentum ~p and,
therefore, having the overall r dependence ei~p·~r. In this case
expressions may be simplified by suppressing the overall
plane wave, a convention we adopt.
For time-independent interactions, Sðt0; tÞ,

Sðt0; tÞ ¼ e−iHνðt0−tÞ; ð4Þ
depends on time only through the time difference t0 − t.
Then, written in terms of the stationary state solutions jνmii
of Eq. (1),

Sðt0; tÞ ¼
X
i

jνmiie−iEiðt0−tÞhνmij: ð5Þ

With the momentum dependence factored out, three
basis states jMðiÞi; i ¼ ð1; 2; 3Þ are then required to
describe three neutrinos. The basis states correspond to a
specific representation, as in descriptions of a spin-1 object.
The basis should, of course, be orthogonal,

hMðiÞjMðjÞi ¼ δij; ð6Þ

and complete,
X
k

jMðkÞihMðkÞj ¼ 1: ð7Þ

Once the basis is chosen, wave functions for a neutrino
state are naturally introduced as the components of this

state in the chosen basis. For example, with the eigenstates
of Eq. (3) expanded in the basis,

jνmji ¼
X
i

jMðiÞimi
j; ð8Þ

the wave functions of jνmji would be the set mi
j; i ¼

ð1; 2; 3Þ. With the plane wave factored out, the wave
function is just a set of three numbers. Additionally,
introduction of a basis makes it possible to represent
neutrino states and operators such as Hν in matrix form,
with each entry in the matrix corresponding to a projection
of the object being described onto the basis.
In this paper we take the Hamiltonian in Eq. (2) to be

expressed in the standard representation, where the mass
basis states jMðiÞi are taken as the set of states that
diagonalize the neutrino vacuum Hamiltonian H0v, i.e.,
jMðiÞi≡ jν0mii ¼ jν̄0mii,

H0vjν0mii ¼ E0
i jν0mii: ð9Þ

In matrix form

H0v ¼

0
B@

E0
3 0 0

0 E0
2 0

0 0 E0
1

1
CA; ð10Þ

with the EVs taken to be ordered E0
1 ≤ E0

2 ≤ E0
3 as in the

normal mass hierarchy. In the literature, the Hamiltonian is
often expressed in a different basis obtained by rotating to
one in which the complete neutrino Hamiltonian is diago-
nal as in Ref. [4].
We assume here that neutrinos and antineutrinos repre-

sented by jν0mii and jν̄0mii, respectively, are the structureless
elementary Dirac fields of the standard neutrino model [2].
For this reason the theory is invariant under CPT, so the
mass of an antineutrino in the vacuum is the same as that for
its corresponding neutrino.

A. Flavor and mass states

Neutrinos are produced and detected in states of good
flavor, jνfii. The three flavors, electron (e), muon (μ), and
tau (τ) correspond, respectively, to the index values
i ¼ ð1; 2; 3Þ. In the vacuum, each flavor state is a specific
linear combination of the three mass eigenstates jMðiÞi of
the neutrino vacuum Hamiltonian H0v. This linear combi-
nation is expressed in terms of the same set of numbers Uij

for both neutrinos and antineutrinos

jν0fii ¼
X
j

U�
ijjMðjÞi

jν̄0fii ¼
X
j

UijjMðjÞi; ð11Þ
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where Uij are the elements of a unitary operator U, the
neutrino analog of the familiar CKM matrix. It is standard
to expressUij in terms of three mixing angles ðθ12; θ13; θ23Þ
and a phase δcp characterizing CP violation,

0
B@

c12c13 s12c13 s13e−iδcp

U21 U22 s23c13
U31 U32 c23c13

1
CA; ð12Þ

where

U21 ¼ −s12c23 − c12s23s13eiδcp

U22 ¼ c12c23 − s12s23s13eiδcp

U31 ¼ s12s23 − c12c23s13eiδcp

U32 ¼ −c12s23 − s12c23s13eiδcp : ð13Þ

We use here the standard abbreviation s12 ≡ sin θ12,
c12 ≡ cos θ12, etc. The parameters θ and δcp are determined
from experiment.
Because Uij → U�

ij with δcp → −δcp it follows that the
relationship in Eq. (11) between flavor and mass states for
antineutrinos and neutrinos in the vacuum is equivalent
to δcp↔ − δcp.

B. Neutrino interacting Hamiltonian

The interaction H1, determined by taking the electron
flavor states scattering from the electrons of the medium to
mediate the interaction, is then expressed as an operator in
the standard representation,

H1 ¼ U−1

0
B@

V 0 0

0 0 0

0 0 0

1
CAU; ð14Þ

with V ¼ � ffiffiffi
2

p
GFne and ne the electron number density in

matter. For electrically neutral matter consisting of protons,
neutrons, and electrons, the electron density ne is the same
as the proton density np,

ne ¼ np

¼ nn
R
; ð15Þ

where nn is the average total nucleon number density and R
is the average proton-neutron ratio. In the Earth’s mantle,
the dominant constituents of matter are the light elements,
so R ≈ 1=2; in the surface of a neutron star R ≪ 1. Matrix
elements of H1 are, thus,

hMðkÞjH1jMðk0Þi ¼ U�
1kVU1k0 : ð16Þ

C. Dimensionless variables

The results are most naturally expressed in dimension-
less variables. We first take advantage of the global phase
invariance to express all energies relative to the vacuum EV
E0
1 of the same momentum. We indicate that a quantity is

expressed relative to E0
1 by placing a bar over it, e.g.,

Ē0
i ≡ E0

i − E0
1: ð17Þ

We follow the same convention for the Hamiltonian,

H̄ν ≡Hν − 1E0
1; ð18Þ

so the EV equation Eq. (3) becomes

ðH̄0v þH1Þjνmii ¼ Ēijνmii; ð19Þ

where

H̄0v ≡H0v − 1E0
1: ð20Þ

Then, to express the theory in dimensionless variables we
divide all energies, including the Hamiltonian, by Ē0

3 ¼
E0
3 − E0

1. The stationary-states jνmii are also be determined

from the dimensionless Hamiltonian ˆ̄Hν,

ˆ̄Hν ¼ ˆ̄H0v þ Ĥ1; ð21Þ
i.e., from the solutions of

ˆ̄Hνjνmii ¼ ˆ̄Eijνmii; ð22Þ
where the “hat” placed over a quantity indicates it is
dimensionless. Thus,

ˆ̄Ei ≡ Ēi

Ē0
3

ˆ̄H0v ≡ H̄0v

Ē0
3

; ð23Þ

and Ĥ1 is obtained from H1 by replacing

V → Â≡ V
Ē0
3

: ð24Þ

The quantity Â is the same as that defined in Refs. [4,7–11].
The connection of the Hamiltonian ˆ̄Hν to the full
Hamiltonian Hν ¼ H0v þH1 is then

Hν ¼ 1E0
1 þ Ē0

3
ˆ̄Hν: ð25Þ

D. Neutrino vacuum Hamiltonian ˆ̄H0v

The case of main interest for many situations is the
ultrarelativistic limit, ~jpj ≫ m2 (we take the speed
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of light c ¼ 1). For ultrarelativistic neutrinos in the
laboratory frame, the energy of a neutrino in the vacuum
becomes

E0
i ≈ j~pj þm2

i

2E
; ð26Þ

where mi is its mass the vacuum. Similarly, Ei appearing in
Eq. (3) may be written

Ei ≈ j~pj þM2
i

2E
; ð27Þ

where Mi is its mass in the medium. Thus, in this limit,

ˆ̄Ei →
M2

i −m2
1

m2
3 −m2

1

ð28Þ

and

ˆ̄H0v →

0
B@

0 0 0

0 α 0

0 0 1

1
CA ð29Þ

with

α≡m2
2 −m2

1

m2
3 −m2

1

: ð30Þ

In this limit, the distance L from the source to the
detector corresponding to Sðt0; tÞ in Eq. (4) is

L ¼ t0 − t: ð31Þ

The time-evolution operator, Eq. (4), expressed in dimen-
sionless variables is

SðLÞ ¼ e−iHνðt0−tÞ

¼ e2i
ˆ̄E0
1ΔLe−2i

ˆ̄HνΔL ; ð32Þ

where ˆ̄Hν is given in Eq. (25), and where

ΔL ≡ Lðm2
3 −m2

1Þ
4E

: ð33Þ

[The similar quantity ΔL as defined in Ref. [7] is exactly
one-half of that appearing in Eq. (33).]

E. Neutrino mass eigenvalues

The neutrino mass eigenstates in a medium are solutions
to the EV equation for ˆ̄Hν, Eq. (22). In many familiar
formulations [4–6] the full solutions, including both the

eigenstates jνii and EVs ˆ̄Ei, are required to find the
neutrino oscillation probabilities.

1. Diagonalization of neutrino Hamiltonian

The energies ˆ̄Ei are solutions of the cubic equation [12]

ˆ̄Ei
3 þ a ˆ̄Ei

2 þ b ˆ̄Ei þ c ¼ 0; ð34Þ

where

a ¼ −ð1þ αþ ÂÞ
b ¼ αþ Âcos2θ13 þ ÂαCðþÞ

2

c ¼ −Âαcos2θ12cos2θ13: ð35Þ

We have expressed b in terms of a frequently recurring
combination of mixing angles,

Cð�Þ
2 ≡ cos2 θ12 � sin2 θ12 sin2 θ13: ð36Þ

Note that the mass eigenstate energies are independent of
δcp and θ23 for both neutrinos and antineutrinos.
The solutions of Eq. (34) are expressed conveniently in

terms of the quantity d,

d ¼ ψ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ψ2 − 4γ3

q

γ ≡ a2 − 3b

ψ ≡ a3 − 27c − 3aγ: ð37Þ

These solutions are real when

jd1=3j2 ¼ 22=3γ > 0; ð38Þ

which requires

ψ2 < 4γ3; ð39Þ

and, thus, that d be complex. Because having real energies
is required by Hermiticity of the neutrino Hamiltonian,
Eqs. (38) and (39) amount to conditions on all parameter
sets in terms of which Hν is defined.
We find

ˆ̄E1 ¼ −
a
3
−

1

3 · 21=3
ð

ffiffiffi
3

p
Im½d1=3� þ Re½d1=3�Þ

ˆ̄E2 ¼ −
a
3
þ 1

3 · 21=3
ð

ffiffiffi
3

p
Im½d1=3� − Re½d1=3�Þ

ˆ̄E3 ¼ −
a
3
þ 22=3

3
Re½d1=3�: ð40Þ

The masses are ordered so that m3 > m2 > m1. Because

EV do not cross, ˆ̄E3 >
ˆ̄E2 >

ˆ̄E1 for all jÂj. A simple

constraint among ˆ̄Ei is found from the trace of Eq. (21),
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Tr ˆ̄Hν ¼ ˆ̄E1 þ ˆ̄E2 þ ˆ̄E3

¼ Tr ˆ̄H0v þ TrĤ1

¼ 1þ αþ Â≡ −a: ð41Þ

2. Using neutrino mass eigenvalues in our
Hamiltonian formulation

In our formulation, the entire dependence of the time
evolution operator on the neutrino eigenvalues occurs
through three eigenvalue combinations,

Δ ˆ̄Ell0 ≡ ˆ̄El − ˆ̄El0

Σll0 ≡ ˆ̄El þ ˆ̄El0

Πll0 ≡ ˆ̄El
ˆ̄El0 ; ð42Þ

with l > l0 (and powers thereof). We denote such quan-
tities using a bracket notation. For example,

Δ ˆ̄E½1� ¼ ˆ̄E3 − ˆ̄E2

Δ ˆ̄E½2� ¼ ˆ̄E3 − ˆ̄E1

Δ ˆ̄E½3� ¼ ˆ̄E2 − ˆ̄E1; ð43Þ

in the case of Δ ˆ̄E. We will generally use this bracket
notation also for other quantities in our formulation that
depend on two indices ðl;l0Þ, such as Σll0 and Πll0 .
An expression for Σ½l�,

Σ½l� ¼ −a − ˆ̄El; ð44Þ

follows from Eq. (41). An equivalent expression for Π½l� in
terms of ˆ̄El is found by subtracting Eq. (34) for

ˆ̄El and that

for ˆ̄El0 and dividing through by Δ ˆ̄Ell0. We find

0 ¼ ð ˆ̄El
2 þ ˆ̄El

ˆ̄El0 þ ˆ̄El0
2Þ þ að ˆ̄El þ ˆ̄El0 Þ þ b

¼ ð ˆ̄El þ ˆ̄El0 Þ2 − ˆ̄El
ˆ̄El0 þ að ˆ̄El þ ˆ̄El0 Þ þ b; ð45Þ

giving

Σ½l�2 − Π½l� þ aΣ½l� þ b ¼ 0: ð46Þ

Then, using Eq. (44),

Π½l� ¼ ΣlðΣl þ aÞ þ b

¼ bþ a ˆ̄El þ ˆ̄El
2: ð47Þ

Finally, having observed that powers of the quantities
given in Eq. (42) will appear in various expressions, we
note that Π½l�p and Σ½l�q with p ≥ 2 and q ≥ 3 involve

linear combinations of eigenvalues ˆ̄El
n with powers n ≥ 3.

Such terms are equivalently represented by a linear combi-

nation of three terms, one proportional to ˆ̄El
2, one propor-

tional to ˆ̄El, and one independent of
ˆ̄El, obtained by using

the equation of motion repeatedly. We later make use of this
fact to simplify various expressions.

III. THE S-MATRIX IN OUR HAMILTONIAN
FORMULATION

The probability Pðνa → νbÞ for neutrinos to oscillate
from the initial state of flavor a to a final state of flavor b is
found from the time-evolution operator Sðt0; tÞ as

Pðνa → νbÞ ¼ jSabðt0; tÞj2
≡ Pabðt0 − tÞ; ð48Þ

where

jSabðt0; tÞj2 ¼ jhν0fbjSðt0; tÞjν0faij2: ð49Þ

We accordingly determine here Pabðt0 − tÞ from Sðt0; tÞ
defined in Eq. (4).
In this section we review the formulation of neutrino

oscillations based on the Lagrange interpolation formula as
used in Ref. [3]. This formulation leads to exact, closed-
form expressions for the time-evolution operator and the
partial oscillation probabilities that are linear combinations
of spherical Bessel functions in the eigenvalue differences
whose coefficients are polynomials in the neutrino CKM
matrix elements, the neutrino mass differences squared,
the strength of the neutrino interaction with matter, and
the neutrino mass eigenvalues in matter. We are led quite
naturally to such expressions for all the partial oscillation
probabilities in terms of these basic quantities. The numeri-
cal results given later in this paper are based on this
formulation.

A. Time-evolution operator

The overall phase in Eq. (32) does not contribute to
jSabðt0; tÞj2, so for the purpose of calculating the oscillation
probability, we may take

SðLÞ → e−i
ˆ̄HνΔL : ð50Þ

Then, with neutrinos created and detected in flavor states,
which are coherent linear combinations of the neutrino
vacuum mass eigenstates given in Eq. (9),

jν0fai ¼
X
j

U�
ajjMðjÞi; ð51Þ

we see that the mass eigenstate components of the flavor
states contribute coherently to the time-evolution operator.
Thus,
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hν0fbje−i
ˆ̄HνΔL jν0fai ¼ hMðbÞjUe−i

ˆ̄HνΔLU†jMðaÞi: ð52Þ

This coherence leads to the oscillation phenomenon.
The elegant formulas for SðLÞ≡ e−i

ˆ̄HνΔL are obtained
from the Lagrange interpolation formula, Eqs. (9) and (11)
of Ref. [3],

Ue−i
ˆ̄HνΔLU−1 ¼

X
l

Flexp−i
ˆ̄ElΔL ; ð53Þ

where T ¼ L ¼ t0 − t and

Fl ≡ Πj≠l
U ˆ̄HνU−1 − 1 ˆ̄Ej

ˆ̄El − ˆ̄Ej

: ð54Þ

For three neutrinos, the sum in Eq. (106) runs over three
values of l and the product in Eq. (54) over two values of j.
Using the convention that Oab, written without paren-

theses enclosing ab, denotes the matrix elements of the
operator O,

Oab ≡ hMðbÞjOjMðaÞi; ð55Þ

the matrix elements Fab
l of Fl given in Eq. (54) may be

compactly written

Fab
l ¼ hMðbÞj ˆ̄W½l�jMðaÞi

ˆ̄D½l�
; ð56Þ

where [3],

ˆ̄W½1�≡ ðU ˆ̄HνU−1 − 1 ˆ̄E3ÞðU ˆ̄HνU−1 − 1 ˆ̄E2Þ
ˆ̄W½2�≡ ðU ˆ̄HνU−1 − 1 ˆ̄E3ÞðU ˆ̄HνU† − 1 ˆ̄E1Þ
ˆ̄W½3�≡ ðU ˆ̄HνU−1 − 1 ˆ̄E2ÞðU ˆ̄HνU† − 1 ˆ̄E1Þ ð57Þ

and

ˆ̄D½1� ¼ ð ˆ̄E3 − ˆ̄E1Þð ˆ̄E2 − ˆ̄E1Þ
ˆ̄D½2� ¼ ð ˆ̄E1 − ˆ̄E2Þð ˆ̄E3 − ˆ̄E2Þ
ˆ̄D½3� ¼ ð ˆ̄E1 − ˆ̄E3Þð ˆ̄E2 − ˆ̄E3Þ: ð58Þ

Equations (57), (58) use the same bracket notation intro-
duced in Eq. (33). The result in Eqs. (52), (106), and (54) is
immediately verified to be correct by inserting a complete
set of intermediate eigenstates of Hν in Eq. (57).
It follows from the unitarity of U that ˆ̄W½l� is Hermitian,

ˆ̄W½l�† ¼ ˆ̄W½l� ð59Þ

and that the two factors in Eqs. (57) commute with each
other. We find from Eq. (57) that

Tr ˆ̄W½l� ¼ ˆ̄D½l�: ð60Þ

Equation (59) establishes the reflection symmetry,

Fab�
l ¼ Fba

l : ð61Þ

Explicit expressions for ˆ̄W½l� are easily found in terms of

Hν. The entire dependence of
ˆ̄W½l� on δcp occurs through

three operators independent of δcp, W0½l�, Wcos½l� and
Wsin½l�,

ˆ̄W½l� ¼ ˆ̄W0½l� þ cos δcp
ˆ̄Wcos½l�

þ i sin δcp
ˆ̄Wsin½l�; ð62Þ

with ˆ̄W0½l�, ˆ̄Wcos½l� and ˆ̄Wsin½l� real and independent of
δcp. Details are given in Appendix A.

B. Total oscillation probability

Expressions for Pðνa → νbÞ may be obtained directly
from SðLÞ,

Pðνa → νbÞ ¼ jSabðt0; tÞj2
¼ Re½SabðLÞ�2 þ Im½SabðLÞ�2: ð63Þ

Convenient expressions for Re½SabðLÞ� and Im½SabðLÞ�
defined by Eq. (106) are presented in Appendix A. In
our Hamiltonian formulation, the dependence of SðTÞ
on the CP violating phase δcp is very simple and follows

from Eqs. (106) and (62) noting that Fab
l ¼ ˆ̄Wab½l�= ˆ̄D½l�,

Eq. (56). We, thus, find

Re½Sabðt0; tÞ� ¼ δab − 2
X
l

ˆ̄Wab
0 ½l�
ˆ̄D½l�

sin2 ˆ̄ElΔL

− 2 cos δcp
X
l

ˆ̄Wab
cos½l�
ˆ̄D½l�

sin2 ˆ̄ElΔL

þ sin δcp
X
l

ˆ̄Wab
sin½l�
ˆ̄D½l�

sin 2 ˆ̄ElΔL; ð64Þ

and

Im½Sabðt0; tÞ� ¼ −2 sin δcp
X
l

ˆ̄Wab
sin½l�
ˆ̄D½l�

sin2 ˆ̄ElΔL

−
X
l

ˆ̄Wab
0 ½l�
ˆ̄D½l�

sin 2 ˆ̄ElΔL

− cos δcp
X
l

ˆ̄Wab
cos½l�
ˆ̄D½l�

sin 2 ˆ̄ElΔL; ð65Þ
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where ΔL is defined in Eq. (33). Approximate expressions
for Pðνa → νbÞ in terms of the parameters of Hν were
obtained from SðLÞ in Refs. [5,6] by an expansion
in sin θ13.

C. Partial oscillation probabilities

Using somewhat different techniques, the oscillation
probability may be expressed through a set of functions
that express how Pðνa → νbÞ≡ Pab depends on the CP
violating phase δcp [4]. In our Hamiltonian formulation
there are four such terms,

Pab ¼ δða; bÞ þ Pab
0 þ Pab

sin δ þ Pab
cos δ þ Pab

cos2 δ; ð66Þ

with Pab
sin δ linear in sin δcp, Pab

cos δ linear in cos δcp, Pab
cos2 δ

quadratic in cos δcp, and Pab
0 independent of δcp. Although

only the overall oscillation probability is a true probability,
guaranteed to be strictly positive everywhere, we find it
convenient to refer to these four terms as “partial oscillation
probabilities.” Approximate expressions for the partial
oscillation probabilities expanded in the small parameter
α of the SNM in Ref. [4].
Obtaining expressions for the partial oscillation proba-

bilities from the time-evolution operator requires additional
analysis, given in Appendix B. In terms of spherical Bessel
functions, we find there

Pab
sin δðΔL; ÂÞ ¼ sin δcp

4ΔL

D̂

X
l

ð−1Þlwab
sin½l�j0ð2Δ̂½l�Þ;

ð67Þ

where wab
sin½l� and, therefore, Pab

sin δ are antisymmetric under
a↔b. The other three partial oscillation probabilities are
individually symmetric under a↔b. We find

Pab
cos δðΔL; ÂÞ ¼ − cos δcp

4Δ2
L

ˆ̄D

X
l

ð−1Þlwab
cos½l�

× Δ ˆ̄E½l�j20ðΔ̂½l�Þ

Pab
cos2δ

ðΔL; ÂÞ ¼ −cos2δcp
4Δ2

L
ˆ̄D

X
l

ð−1Þlwab
cos2

½l�

× Δ ˆ̄E½l�j20ðΔ̂½l�Þ

Pab
0 ðΔL; ÂÞ ¼ −

4Δ2
L

ˆ̄D

X
l

ð−1Þlwab
0 ½l�Δ ˆ̄E½l�j20ðΔ̂½l�Þ;

ð68Þ

where all sums run over l ¼ 1; 2; 3, Δ̂½l� is defined as

Δ̂½l�≡ Δ ˆ̄E½l�ΔL; ð69Þ

with Δ ˆ̄E½l� defined in Eq. (43), ˆ̄D is defined as

ˆ̄D≡ Δ ˆ̄E½1�Δ ˆ̄E½2�Δ ˆ̄E½3�; ð70Þ

and the matrix elements wab
i ½l� are given in terms of the

mixing angles and Â in Appendix B. Since we order the

energies so that ˆ̄E3 >
ˆ̄E2 >

ˆ̄E1, Δ ˆ̄E½l� as well as ˆ̄D are all
positive.
We begin our derivation with the expression for the

oscillation probability written in terms of SðTÞ, Eq. (106),

Pðνa → νbÞ≡ Pab ¼ jhMðbÞjUe−iHνðt0−tÞU†jMðaÞij2
¼

X
ll0

Fab
ll0exp

−iðĒl−Ēl0 ÞL: ð71Þ

Here Fab
ll0 is defined as

Fab
ll0 ≡ Fab

l Fab�
l0 ¼ wab

ll0

ˆ̄D½l� ˆ̄D½l0�
ð72Þ

with ˆ̄D½l� given in Eq. (58), and

wab
ll0 ≡ hMðbÞj ˆ̄W½l�jMðaÞihMðbÞj ˆ̄W½l0�jMðaÞi�: ð73Þ

All results needed for determining exact, closed-form
expressions for the partial oscillation probabilities are
found in Appendix B.
As we explain in Appendix B, wab

ll0 may be expressed
through four operators,

wab
ll0 ¼ wab

0ll0 þ cos δcpwab
cosll0 þ cos2δcpwab

cos2ll0

þ i sin δcpwab
sinll0 ; ð74Þ

found from the decomposition of ˆ̄W½l� given in Eq. (62).
The quantities wab

i ½l� appearing in Eqs. (67) and (68) are
the same as wab

ill0 written in the streamlined notation,

wab
i ½1� ¼ wab

ill0 for ðl;l0Þ ¼ ð3; 2Þ
wab
i ½2� ¼ wab

ill0 for ðl;l0Þ ¼ ð3; 1Þ
wab
i ½3� ¼ wab

ill0 for ðl;l0Þ ¼ ð2; 1Þ; ð75Þ

which takes advantage of l > l0.
An analytic expression for wab

sin½l�,

wab
sin½l� ¼ K sin 2θ23Δ ˆ̄E½l�ϵabsin; ð76Þ

follows directly from Eq. (62). Here, ϵsin is the antisym-
metric matrix

ϵsin ≡
0
B@

0 1 −1
−1 0 1

1 −1 0

1
CA ð77Þ
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and

K ¼ −
αð1 − αÞ

8

× cos θ13 sin 2θ12 sin 2θ13: ð78Þ

Equation (76) is one of the more striking results. Analytic
formulas for the other wab

i ½l� follow from Eq. (56). These
are all given in Appendix B, where they are expressed in

terms of the parameters specifying ˆ̄H0v and Ĥ1 ¼ U−1V̂U.
These are the same parameters defining SNM.
It follows from Eq. (76) that the coefficients of

Δ ˆ̄E½l�j0ð2Δ̂½l�Þ in Eq. (67) are all proportional, leading
to a simple expression for Pab

sin δ,

Pab
sin δðΔL; ÂÞ ¼ Δ3

Lαð1 − αÞ sin δcpϵabsin
× cos θ13 sin 2θ12 sin 2θ13 sin 2θ23

× j0ðΔ̂½3�Þj0ðΔ̂½2�Þj0ðΔ̂½1�Þ: ð79Þ

Note that Pab
sin δ is antisymmetric under a↔b.

Analytic expressions for all other partial oscillation
probabilities follow from Eq. (71) using Eq. (72), which
expresses Fab

ll0 in terms of wab
ll0 . In this fashion, these partial

oscillation probabilities are also expressed in terms of the

parameters of the SNM and the neutrino eigenvalues, ˆ̄El.
The usefulness of the partial oscillation probabilities

can be seen as follows. It is a general result that the
exchange of initial and final states in the oscillation
probability or neutrinos (antineutrinos) is equivalent to
letting δcp → −δcp. Thus, the result for the inverse reaction
Pðνb → νaÞ is found by exchanging ða; bÞ in Eq. (66).
Since Pab

sin δ is antisymmetric under the exchange of ða; bÞ,
and Pab

0 , Pab
cos δ and Pab

cos2 δ symmetric, it follows that Pba is
given by

Pðνb → νaÞ ¼ δða; bÞ þ Pab
0 − Pab

sin δ þ Pab
cos δ

þ Pab
cos2δ

: ð80Þ

In analogy to Eq. (66), we may express the oscillation
probability for antineutrinos as

Pðν̄a→ ν̄bÞ≡ P̄ab¼δða;bÞþ P̄ab
0 þ P̄ab

sinδþ P̄ab
cosδþ P̄ab

cos2 δ
;

ð81Þ

where the bared probabilities for antineutrinos are obtained
from the unbarred for neutrinos by replacing δcp → −δcp
and Â → −Â. Because the energies of antineutrinos are
different from those of the neutrinos in matter, we can
expect Pab ≠ P̄ab in this situation.
Again applying the rule that exchange of initial and

final states is accomplished by letting δcp → −δcp, the

oscillation probability Pðν̄b → ν̄aÞ is expressed in terms of
the same four quantities,

Pðν̄b → ν̄aÞ ¼ δða; bÞ þ P̄ab
0 − P̄ab

sin δ þ P̄ab
cos δ þ P̄ab

cos2 δ:

ð82Þ

It is worth noting that the entire dependence of the
oscillation probabilities given in Eqs. (67) and (68) on the
neutrino beam energy E, the baseline L, and the medium
properties occurs through the variables ΔL and Â defined in
Eqs. (33) and (24), respectively. Since we will be most
interested in how the neutrino oscillation probability
depends on the beam energy, baseline, and medium
properties, the partial oscillation probabilities have been
expressed as functions of ΔL and Â.
Because the vacuum result is also easily obtained by less

sophisticated arguments, the vacuum limit provides an
opportunity to verify our Hamiltonian formulation in a
well-known special case.

D. Special cases

We next examine special cases chosen to highlight
specific aspects of our formulation. Because these cases
are well known in other contexts, they provide useful cross
checks. We first consider two-flavor mixing and then the
vacuum limit.

1. Two flavor mixing

Expressions for two-neutrino oscillations are easily
obtained from the Hamiltonian,

ˆ̄Hν ¼ ˆ̄H0ν þU−1 ˆ̄H1νU; ð83Þ

where

ˆ̄H0ν ≡
�
0 0

0 1

�
; ð84Þ

ˆ̄H1ν ≡
�
Â 0

0 0

�
: ð85Þ

The standard mixing matrix U is

U≡
�

cos θ sin θ

− sin θ cos θ

�
: ð86Þ

The neutrino Hamiltonian is easily diagonalized to find the
medium-modified two-flavor neutrino eigenvalues,
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ˆ̄E2 ¼
1

2
ð1þ Âþ ϕÞ

ˆ̄E1 ¼
1

2
ð1þ Â − ϕÞ; ð87Þ

where ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Â2 − 2Â cos 2θ

p
.

Expressed in dimensionless variables, the time-evolution
operator Sab for the transition a → b becomes

Sab ¼ hMðbÞjUexp−2i
ˆ̄HνΔLU−1jMðaÞi; ð88Þ

with ΔL given in Eq. (33). The two-flavor oscillation
probability P12

2fðΔL; ÂÞ is then

P12
2fðΔL; ÂÞ ¼ jS122fj2

¼ sin2 2θ
ϕ2

sin2 ΔLϕ; ð89Þ

which we will next compare to our Hamiltonian formu-
lation. To find S122f ¼ hMð2ÞjS½L�jMð1Þi, it is easy to
overlook that the 2 × 2 matrix Hν in Eq. (83) is not
diagonal in the flavor basis.
The oscillation probability in the three neutrino mixing

of our Hamiltonian formulation is matched to the two-
flavor case just discussed by setting two of the mixing
angles in Eq. (12) to zero, say θ13 → 0 and θ23 → 0 and
identifying θ with θ12. Accordingly, we find

U≡
0
B@

cos θ sin θ 0

− sin θ cos θ 0

0 0 1

1
CA: ð90Þ

This is easily recognized as a two-flavor mixing matrix by
noting that one of the three neutrinos does not mix with the
other two. We see that it not only depends on just one
mixing angle θ, but also that the dependence on the CP
violating phase δ has dropped out.
Natural choices for a 3 × 3 two-flavor neutrino vacuum

Hamiltonian and interaction are

ˆ̄H0ν ≡
0
B@

0 0 0

0 1 0

0 0 0

1
CA; ð91Þ

and

ˆ̄H1 ≡
0
B@

Â 0 0

0 0 0

0 0 0

1
CA: ð92Þ

When the 3 × 3 neutrino Hamiltonian ˆ̄Hν ¼ ˆ̄H0νþ
U−1 ˆ̄H1νU is diagonalized, two of the three medium-
modified neutrino eigenvalues,

ˆ̄E3 ¼
1

2
ð1þ Âþ ϕÞ

ˆ̄E2 ¼
1

2
ð1þ Â − ϕÞ

ˆ̄E1 ¼ 0; ð93Þ

are identical to those found above in the two-flavor case.
Note that the eigenvalues have no branch points for Â on
the real axis. From these eigenvalues, we find the
differences,

Δ ˆ̄E½3� ¼ ˆ̄E2 − ˆ̄E1

¼ 1

2
ð1þ Â − ϕÞ

Δ ˆ̄E½2� ¼ ˆ̄E3 − ˆ̄E1

¼ 1

2
ð1þ Âþ ϕÞ

Δ ˆ̄E½1� ¼ ˆ̄E3 − ˆ̄E2 ¼ ϕ: ð94Þ

Finally, consider the oscillation probability in our
Hamiltonian formulation. Because Pab

sin δ, P
ab
cos δ, and Pab

cos2 δ
are proportional to sin 2θ23 (and θ23 has been set to 0), these
terms do not contribute for two-flavor mixing. Thus,

PabðΔL; ÂÞ ¼ δða; bÞ þ Pab
0 ðΔL; ÂÞ; ð95Þ

with Pab
0 ðΔL; ÂÞ taken from Eq. (68). We find after a

straightforward calculation,

w11
0 ½l� ¼ −w12½l�

w21
0 ½l� ¼ w12

0 ½l�
w22
0 ½l� ¼ −w12½l�; ð96Þ

where

w12
0 ½l� ¼ wð12Þ

02 ðÂcos2θ − ð1þ ÂÞ ˆ̄El þ ˆ̄E2
lÞ: ð97Þ

Taking ˆ̄El from Eq. (93), we evaluate

Âcos2θ − ð1þ ÂÞ ˆ̄El þ ˆ̄E2
l ð98Þ

to find

w12
0 ½1� ¼ w12

0 ½2� ¼ 0 ð99Þ

and

w12
0 ½3� ¼ Â cos2 θwð12Þ

0;2

¼ Â
4
cos2 θ sin2 2θ: ð100Þ
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Thus, for all two-flavor transitions,

PabðΔL; ÂÞ ¼ δða; bÞ þ 4Δ2
L

D̂
wab
0 ½3�Δ ˆ̄E½3�

× j20ðΔ ˆ̄E½3�ΔLÞ; ð101Þ

where D̂ is from Eq. (102),

D̂≡ Δ ˆ̄E½1�Δ ˆ̄E½2�Δ ˆ̄E½3�

¼ Δ ˆ̄E½1�
4

ðð1þ ÂÞ2 − 1 − Â2 þ 2Â cos 2θÞ

¼ Âcos2θΔ ˆ̄E½1�: ð102Þ

To compare our result to the well-known two-flavor
oscillation probability given in Eq. (89), we evaluate
Eq. (101) for 1 → 2 transitions, obtaining

P12ðΔL; ÂÞ ¼
sin2 2θ
ϕ2

sin2ΔLϕ: ð103Þ

As expected, this is in complete agreement with Eq. (89).

2. Vacuum oscillation probability

In our Hamiltonian formulation, an expression for the
time-evolution operator in the vacuum limit Â → 0 is found
from Eqs. (52), (53), (56), and (58),

hMðbÞjS0ðt0; tÞjMðaÞi≡ S0abðt0 − tÞ

¼
X
l

hMðbÞj ˆ̄W0½l�jMðaÞi
ˆ̄D0½l�

exp−iĒ
0
lΔL ; ð104Þ

Here, Ē0
l and

ˆ̄D0½l� are the vacuum values of Ēl and
ˆ̄D½l�,

respectively. In the vacuum, of course, there is no dis-
tinction between the energy differences for neutrinos and
anti-neutrinos. Evaluating Eq. (104) by inserting a com-

plete set of states intermediate states jnihnj inside ˆ̄W½l�, we
arrive at

hMðbÞjS0ðt0; tÞjMðaÞi

¼
X
l

X
n

Ubn
ð ˆ̄E0

n − ˆ̄E0
aÞð ˆ̄E0

n − ˆ̄E0
bÞ

ˆ̄D0½l�
U�

nae
−iĒ0

lðt0−tÞ;

ð105Þ

The indices ða; b; nÞ run over all permutations of the three
integers (1,2,3), from which it follows that

ð ˆ̄E0
n − ˆ̄E0

a½l�Þð ˆ̄E0
n − ˆ̄E0

b½l�Þ≡ ˆ̄D0½l�, and, consequently,

hMðbÞjS0ðt0; tÞjMðaÞi ¼
X
n

Ubne−iE
0
nðt0−tÞU�

na. ð106Þ

This well-known vacuum limit also follows directly from
more elementary considerations, using Eqs. (5) and (11),

hν0fbje−iH0vðt0−tÞjν0fai ¼
X
n

Ubne−iE
0
nðt0−tÞU�

na: ð107Þ

The equality of Eqs. (106) and (110) verifies our exact
Hamiltonian formulation in the vacuum limit. Finally, we
find that Fab

ll0 appearing Eq. (71) takes a familiar form in the
vacuum. Using Eq. (106), or Eq. (110),

Pðν0a → ν0bÞ ¼
�X

l

Uble
−iĒ0

lðt0−tÞU�
la

�

×

�X
l0
Ubl0e

−iĒ0

l0 ðt
0−tÞU�

l0a

��
: ð108Þ

Expressing this in terms of Freund’s Jabll0 [4],

Jabll0 ≡ U�
blUalU�

al0Ubl0 ; ð109Þ
and using Eq. (26),

Ē0
l − Ē0

l0 ¼ m2
l −m2

l0

2E
; ð110Þ

we find that Eq. (108) may be written,

Pðν0a → ν0bÞ ¼ δab − 4
X
i>j

ReJabij sin
2ððĒ0

l − Ē0
l0 ÞLÞ

− 2
X
i>j

ImJabij sinð2ðĒ0
l − Ē0

l0 ÞLÞ; ð111Þ

Comparing Eqs. (111) and (71), it is clear that Fab
ll0 → Jab�ll0

in the vacuum limit.

IV. THE STANDARD NEUTRINO MODEL

We adopt the standard neutrino model [2] as our
description of neutrino physics. The parameters defining
the model include a (dimensionless) interaction strength Â
of neutrinos and antineutrinos with matter, the three
neutrino mass differences, the three mixing angles, and
the CP violating phase. Most of the parameters of the SNM
are consistent with global fits to neutrino oscillation data
with relatively good precision.
The neutrino mass differences of the SNM are taken to

be [7–11]
m2

2 −m2
1 ≡ δm2

21

¼ 7.6 × 10−5 eV2

m2
3 −m2

1 ≡ δm2
31

¼ 2.4 × 10−3 eV2; ð112Þ
corresponding to

α≡ δm2
21

δm2
31

¼ 3.17 × 10−2: ð113Þ
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In Ref. [7–11], δ≡ ðm2
2 −m2

1Þ=ð2EÞ and Δ ¼ ðm2
3 −m2

1Þ=
ð2EÞ whereas in Ref. [4], Δ̂ ¼ ðm2

3 −m2
1ÞL=ð4EÞ and

Δ ¼ m2
3 −m2

1.
The mixing angle θ23,

θ23 ¼ π=4; ð114Þ

is the best-fit value from Ref. [13], and θ12,

θ12 ¼ π=5.4; ð115Þ

is consistent with the recent analysis of Ref. [14]. The
mixing angle θ13 is known to be small (θ13 < 0.18 at the
95% confidence level) but its precise value is uncertain. A
very recent result from the Daya Bay project [15] is
sin θ13 ≈ 0.15, which we adopt to determine our value
for θ13,

θ13 ¼ 0.151: ð116Þ

The CP violating phase δcp is not known at all and will one
of the major interests at future neutrino facilities.
Parametrizing the interaction strength Â, Eq. (24), we

find

Â ¼ �6.50 × 10−2
Z
N
E½GeV�ρ½gm=cm3�; ð117Þ

with E½GeV� being the neutrino beam energy E (in GeV)
and ρ½gm=cm3�, is the average total density (in gm=cm3) of
matter through which the neutrino beam passes on its way
to the detector (the matter having average proton-neutron
ratio Z=N). For our calculations we are interested in
experiments close to the Earth’s surface, so we take

ρ½gm=cm3� ¼ ρ0

¼ 3; ð118Þ

the approximate mean density of the Earth’s mantle.
In the SNM, ΔL, defined in Eq. (33), may be para-

metrized in the high-energy limit as

ΔL ≈ 3.05 × 10−3
L½Km�
E½GeV� : ð119Þ

Here L½Km� is the baseline and E½GeV� is the neutrino
beam energy. Because sin2 θ13 are small, comparable in
size, and rather well determined in the SNM, it will
sometimes be convenient replace sin2 θ13 → αRp,
where Rp ¼ sin2θ13=α ≈ 0.71.

V. EIGENVALUE EXPANSIONS IN THE SNM

The fact that α and sin θ13 are naturally small in the SNM
commonly motivates approximation schemes [4–6,16]

based on first-order Taylor series expansions in one of
these small parameters, ξi

0 (where ξi
0 stands for α or

sin2θ13. For example, in Refs. [5,6] the oscillation prob-
ability is expanded in sin2θ13. Reference [4] makes use of
an expansion in the small parameter α.
Although these expansions may be used effectively to

simplify the theory, they come at a price [4]. This price is
that neither expansion gives accurate representations for all
values of the interaction strength Â, including values in
some regions of critical importance.
In our subsequent work, we will consider simplifying the

oscillation probability using the same expansions, but they
will be used somewhat differently, in two stages. In the first
stage, the eigenvalues are expanded, as below. In the
second, the expansions will be used to simplify the
oscillation probability.
In this work, the eigenvalue expansion will, of course be

made before introducing Rp. For the expansion of the
oscillation probabilities, Rp may be introduced before the
expansion is made because of its simpler analytic structure.

A. Analytic structure of eigenvalues

The key for identifying which of the ξi
0 expansions

might be appropriate over specifics ranges of Â is revealed

by the analytic structure of the eigenvalue ˆ̄ElðξÞ. It is
particularly important to identify the locations of its branch
points when ξi

0 ¼ 0. Branch points identify where a series

expansion of ˆ̄ElðξÞ, or a function of it such as hFðHνÞi,
would not converge.
We have seen that ˆ̄ElðξÞ depends on ξ entirely through

the two functions ðUðξÞ; VðξÞÞ,
ˆ̄ElðξÞ ¼ ˆ̄ElðUðξÞ; VðξÞÞ; ð120Þ

where

UðξÞ≡ Re½d1=3�
VðξÞ≡ Im½d1=3�; ð121Þ

with d defined in Eq. (37).
Recalling that 4γ3 − ψ2 > 0, we conveniently write

UðξÞ ¼ 1

2
ðψ þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4γ3 − ψ2

q
Þ1=3

þ ðψ − i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4γ3 − ψ2

q
Þ1=3; ð122Þ

and

VðξÞ ¼ 1

2i
ðψ þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4γ3 − ψ2

q
Þ1=3

− ðψ − i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4γ3 − ψ2

q
Þ1=3: ð123Þ

Branch points ξB clearly occur for parameter values
satisfying
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ψ2ðξBÞ ¼ 4γ3ðξBÞ: ð124Þ

The locations of the branch points ξB of ˆ̄ElðξÞ are found as
follows for the two small-parameter choices ξ0i.
When ξ0i ¼ α, branch points as a function of the other

parameters of the standard neutrino model are found from
Eq. (124) with ψðξBÞ and γðξBÞ evaluated in terms of

aðξBÞ ¼ −ð1þ ÂÞ
bðξBÞ ¼ Âcos2θ13

cðξBÞ ¼ 0; ð125Þ
where ξB ¼ ξjα¼0. The only real solution of Eq. (124) is

Â ¼ 0: ð126Þ

When ξ0i ¼ sin2 θ13, branch points as a function of the
other parameters of the SNM are found from Eq. (124) with
ψðξBÞ and γðξBÞ evaluated in terms of

aðξBÞ ¼ −ð1þ Âþ αÞ
bðξBÞ ¼ αþ Âα cos θ12 þ Â

cðξBÞ ¼ −Âα cos2 θ12; ð127Þ

where ξB ¼ ξjθ13¼0. The only real solution of Eq. (124) is

Â ¼ Â0 ≡ 1 − α

1 − α cos2 θ12
≈ 1: ð128Þ

B. The first-order Taylor expansions

Defining ˆ̄Eξ
l to be the first two terms of the Taylor series

for ˆ̄El expanded about ξ ¼ 0, we find

ˆ̄Eξ
l ≡ ˆ̄Eljξ¼0 þ ξ

∂ ˆ̄El

∂ξ
����
ξ¼0

; ð129Þ

where ˆ̄El and ∂ ˆ̄El=∂ξ are easily obtained from Eqs. (34)
and (35) and their derivatives. The results for ξ ¼ sin2 θ13
and ξ ¼ α found in this way are given immediately below.

1. ξ ¼ sin2θ13
Applying Eq. (129) we find for ξ ¼ sin2 θ13 and below

the corresponding branch point,

ˆ̄Eθ
1 ¼

1

2
ðÂþ α − ĈθÞ

þ αRpÂ

2ð1 − yÞĈθ

ð2 − Â0 − α − ĈθÞ

þ yαRp

2Ĉθ

ð2 − 4Â0 þ Â2
0 − 2αþ 2Â0αÞ

ˆ̄Eθ
2 ¼

1

2
ðÂþ αþ ĈθÞ

−
αRpÂ

2ð1 − yÞĈθ

ð2 − Â0 − αþ ĈθÞ

−
yαRp

2Ĉθ

ð2 − 4Â0 þ Â2
0 − 2αþ 2Â0αÞ

ˆ̄Eθ
3 ¼ 1þ αRpÂ

1 − y
; ð130Þ

where y≡ Â=Â0, with Â0 ≡ Âθ
0 the location of the branch

point for the sin2 θ13 expansion and

Ĉθ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Â2 þ α2 − 2Âα cos 2θ12

q
: ð131Þ

Note that ˆ̄Eθ
2 ¼ ˆ̄Eθ

1jĈθ→−Ĉθ
. Above the branch point, y > 1,

ˆ̄Eθ
3 and ˆ̄Eθ

2 exchange roles.
The lack of convergence at the branch point is manifest

here by inspection, i.e., by the appearance of a simple pole
at y ¼ 1. Although Eq. (130) would suggest a pole in all

three eigenvalues, ˆ̄Eθ
1 is rather accurate for all values of y.

The absence of a singularity in ˆ̄Eθ
1 can be confirmed by a

simple calculation that shows the coefficient of ð1 − yÞ−1
vanishes at y ¼ 1.

2. ξ ¼ α

Taking Rp ¼ sin2 θ13=α, we may write cos2 θ13 ¼ 1 −
αRp and cos 2θ13 ¼ 1 − 2αRp. Then, for ξ ¼ α and y > 0

(above its corresponding branch point),

ˆ̄Eα
1 ¼ α cos θ212

ˆ̄Eα
2 ¼

1

2
ð1þ Â − ĈαÞ

þ α
sin θ212

2

�
1þ 1 − Âð1 − 2αRpÞ

Ĉα

�

ˆ̄Eα
3 ¼

1

2
ð1þ Âþ ĈαÞ

þ α
sin θ212

2

�
1 −

1 − Âð1 − 2αRpÞ
Ĉα

�
; ð132Þ

where

Ĉα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ÂÞ2 þ 4αRpÂ

q
: ð133Þ
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Note that ˆ̄Eα
2 ¼ ˆ̄Eα

3jĈα→−Ĉα
. These expressions are identical

to Eqs. (18) and (19) of Freund [4].
In contrast to ξ ¼ sin2 θ13, the lack of convergence of the

α expansion is not obvious from a casual examination
of Eq. (132). Numerical comparison to the exact result

confirms that ˆ̄Eα
1 and ˆ̄Eα

2 are poor representations of the
corresponding exact results in the vicinity of the branch
point at y ¼ 0. However, no evidence of the branch point

is apparent in ˆ̄Eα
3 , which is rather accurate for all values

of y. Across the branch point at y ¼ 0, ˆ̄Eα
1 and ˆ̄Eα

2

exchange roles.

C. Branch points and resonances

Resonances are heralded by the appearance of minima in
the EV differences. Two well-known neutrino resonances
occur in the SNM. One of these, the solar resonance, is
found for relatively weak interaction strengths Â ≈ α. The
other, the atmospheric resonance, occurs for stronger
interactions, Â ≈ cos 2θ13. The solar resonance occurs very
close to the branch point identified with the α expansion,
and the atmospheric resonance very close to the branch
point identified with the sin2 θ13 expansion.
Using Eq. (117), the solar resonance appears for neu-

trinos of energy,

E ¼ Esol½GeV� ≈ 0.325; ð134Þ

for underground experiments in the Earth’s mantle
(ρ½gm=cm3� ¼ ρ0 ≈ 3). We find, similarly, that for neutri-
nos of energy E, the solar resonance occurs in matter of
density,

ρsol½gm=cm3� ≈ E½GeV�−1; ð135Þ

taking α ¼ 0.0317 from the SNM.
Likewise, the atmospheric resonance is found for neu-

trinos of energy,

E ¼ Eatm½GeV� ≈ 9.79; ð136Þ

also for underground experiments in the Earth’s mantle. At
energy E, it occurs at a density of

ρatm½gm=cm3� ≈ 29.4=E½GeV�; ð137Þ

taking cos 2θ13 ¼ 0.955 from the SNM.
Because of the close correlation between the branch

points and the resonances, there is also a close correlation
between resonances and viable approximation schemes.
Note, however, that the branch point in the α expansion
near the solar resonance affects both neutrino and anti-
neutrino scattering since its actual location is α ¼ 0.

D. Discussion

We have seen in this section that expansions of the
eigenvalues in a small parameter ξi0 of the SNM (where ξi0

stands for α or sin2 θ13Þ must be made carefully, since the
EV are not analytic everywhere.
Nevertheless, as noted, first-order Taylor series repre-

sentations of the EV are commonly used to simplify the
theory. Because these expansions do not give an accurate
representation the EV for all values of the interaction
strength Â, it is important to identify the regions where the
theoretical errors of the expanded EV might be acceptable
and lead to accurate representations. We address this in the
next section.

VI. APPROXIMATING Pðνi → νf Þ WITH
EXPANDED EV

In this section, we begin our assessment of common
procedures used to simplify calculation of the oscillation
probability by expanding it in one of the small parameters
of the SNM. Freund observed [4] that the α-expansion,
although useful, could not be used near the solar resonance
where Â ¼ α. However, no understanding of the limitations
of the sin2 θ13-expansion appears in the literature.
We have shown above that the applicability of both

expansions is limited by the presence of branch points in
the analytical structure of the eigenvalues. The branch point
responsible for the failure of the α expansion is located at
Â ¼ 0when α ¼ 0, and the branch point responsible for the
failure of the sin2 θ13 expansion is located at Â ¼ Â0 when
sin2 θ13 ¼ 0, where Â0 is defined in Eq. (128).
We make our assessment numerically, comparing the

oscillation probability calculated from Eqs. (68) and (79)
using the exact eigenvalues to that calculated from
Eqs. (68) and (79) using eigenvalues expanded in one of
the small parameters of the SNM.

A. Assessing oscillation probabilities expressed in terms
of ξ-expanded eigenvalues

Theoretical errors characterizing an approximation
scheme may emerge numerically only from an examination
of the dependence of PeμðΔL; ÂÞ on ΔL and Â. In this
section we discuss how we will do this.
It is convenient to discuss the oscillation pattern in terms

of the location of the first maxima of the functionsΔLj0ðΔ̂lÞ
appearing in the expressions for the partial oscillation

probabilities. These peaks occur at ΔL ¼ ΔðlÞ
L , with

ΔðlÞ
L ¼ π

2Δ ˆ̄E½l�
ð138Þ

closely related to the period Pl of j0ðΔ̂lÞ,
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Pl ≡ 4ΔðlÞ
L ¼ 2π

Δ ˆ̄E½l�
: ð139Þ

Because the exact eigenvalues never cross, the ordering
of ˆ̄El is the same as it is in the vacuum, namely ˆ̄E3 >

ˆ̄E2 >
ˆ̄E1. It can inferred from this that all Δ ˆ̄E½l� remain positive,
and, in addition, that

Δ ˆ̄E½2� > Δ ˆ̄E½3� > 0

Δ ˆ̄E½2� > Δ ˆ̄E½1� > 0: ð140Þ

We see, in general, that for small Â, Δ ˆ̄E½1� > Δ ˆ̄E½3�, and,
for large Â, Δ ˆ̄E½2� > Δ ˆ̄E½3�.
It is also clear that Δ ˆ̄E½2� is always the largest eigenvalue

difference. Consequently, P2 is always the smallest of the
three periods, thus, characterizing the most rapidly varying
Bessel function. The relative sizes of Pl are easily worked
out in specific cases. In the vacuum,

P1 ¼ 2π=ð1 − αÞ
P2 ¼ 2π

P3 ¼ 2π=α; ð141Þ

evaluated from differences of the vacuum eigenvalues
appearing in Eq. (29).
In the SNM, we find that

P3 > P1 for Â < Â2

P1 > P3 for Â > Â2; ð142Þ

where

Â2 ¼ 0.538 ð143Þ

is the value of Â at which P3 ¼ P1 (Δ ˆ̄E½1� ¼ Δ ˆ̄E½3�).
With Δ ˆ̄E½2� the largest eigenvalue difference, P2 is

always the smallest of the three periods. Thus, the value
of ΔL at the first peak of ΔLj0ðΔ̂2Þ is a natural scale.

B. Regions of maximum sensitivity

Sensitivity to the approximation scheme should be most
manifest within regions where all three Bessel functions of
PabðΔL; ÂÞ are of similar size and interfere. This will
happen once ΔL becomes comparable to the first peak of
its most slowly varying ΔLj0ðΔ̂lÞ, which occurs at either

ΔL ¼ Δð3Þ
L or ΔL ¼ Δð1Þ

L . In general, the sensitivity to
approximations increases as the distance ΔL to the most
distant peak increases.
In the vacuum, the first peak of the most slowly varying

ΔLj0ðΔ̂lÞ is always at ΔL ¼ Δð3Þ
L , readily established by

the vacuum eigenvalue differences given in Eq. (29). The

corresponding baseline is obtained from Eqs. (33) and
(138), Lð3Þ½Km� ≈ 5170πE½GeV�.
In the SNM, the most slowly varying Bessel function,

established from Eqs. (142) and (143), is ΔLj0ðΔ̂3Þ when
Â < Â2 and ΔLj0ðΔ̂1Þ for Â > Â2.

1. Regions of maximum sensitivity for fixed Â

Consider first the variation of PðabÞðΔL; ÂÞ with ΔL for a
given value of Â in the SNM.
According to Eq. (142), for Â > Â2, ΔLj0ðΔ̂1Þ is the

most slowly varying (having the larger period), and the
region of maximum sensitivity is

ΔL > Δð1Þ
L ≡ π

2Δ ˆ̄E½1�
ð144Þ

with Δ ˆ̄E½1� evaluated at Â.
Similarly, for Â < Â2, ΔLj0ðΔ̂3Þ is the most slowly

varying. According to Eq. (138), its peak occurs where

ΔL ¼ π=ð2Δ ˆ̄E½3�Þ. Thus, the region of maximum sensi-
tivity is

ΔL > Δð3Þ
L ≡ π

2Δ ˆ̄E½3�
ð145Þ

with Δ ˆ̄E½3� again evaluated at Â.

2. Regions of maximum sensitivity for fixed ΔL

Consider next the variation of PðabÞðΔ0
L; ÂÞ with Â for

given Δ0
L in the SNM.

According to Eq. (142), for Â > Â2, ΔLj0ðΔ̂1Þ is the
most slowly varying. According to Eq. (138), its peak

occurs where Δ0
L ¼ π=ð2Δ ˆ̄E½1�Þ. Thus, the region of

maximum sensitivity is

Δ ˆ̄E½1� > π

2Δ0
L

ð146Þ

with Δ ˆ̄E½1� evaluated at Â.
Similarly, for Â < Â2, we find from Eq. (144) that

ΔLj0ðΔ̂3Þ is the most slowly varying, and the region of
maximum sensitivity is

Δ ˆ̄E½3� > π

2Δ0
L
: ð147Þ

VII. NUMERICAL STUDY OF Pðνe → νμÞ WITH
EXPANDED EV

Our main interest in the present section is to map out the
regions where each of the small-parameter expansions is
capable of simplifying PabðΔL; ÂÞ. We do this by

JOHNSON, HENLEY, AND KISSLINGER PHYSICAL REVIEW D 91, 076005 (2015)

076005-14



comparing three calculations using Pðνe → νμÞ taken from
our exact Hamiltonian formulation.
One of these is a calculation of the exact oscillation

probability obtained in our Hamiltonian formulation. For
this we use the expressions in Eqs. (67) and (68) evaluated
with the exact EV. The other two are calculations of our
ξ-expanded oscillation probability for each of the small
parameters of the SNM. For these we evaluate Eqs. (67) and
(68) using the ξ-expanded EV. For ξ ¼ α, we use the
α-expanded EV given in Eq. (132), and for ξ ¼ sin2 θ13 we
use the sin2 θ13-expanded EV given in Eq. (130). The
calculation with the ξ-expanded EV would, of course,
coincide with the exact calculation in the vacuum.
Differences, therefore, reflect medium effects.
The extent to which our oscillation probability evaluated

with one of the ξ-expanded EVagrees with the exact result
indicates regions in which it may be possible to obtain, at
least in principle, a simple ξ-expanded expression for the
oscillation probability in good agreement with the exact
result. In a subsequent paper [17], we make a similar
comparison between the exact oscillation probability and
the approximate ones given in Refs. [4,5].
From the numerical results we obtain in Ref. [17] and the

present paper, we will be able to identify regions in which
both (1) the exact oscillation probability and the results of
Refs. [4,5] are in poor agreement; and, (2) the exact
oscillation probability and the ξ-expanded result are in
excellent agreement. The regions where both of these
conditions are satisfied indicate where it might be possible
to improve the results found in Refs. [4,5] using our
Hamiltonian formulation. We explore this possibility in
yet another paper [18].
Equations (33), (117) provide a means to extrapolate the

results in any figure to a variety of baseline values, medium
properties, and neutrino energies within the particular
regions shown in that figure. In the Earth’s mantel, where
the average Z=N ¼ 1=2, Eqs. (117) and (33) become

L½Km� ¼ 1.08 × 104
ÂΔL

ρ½gm=cm3�

E½GeV� ¼ 30.8
Â

ρ½gm=cm3� : ð148Þ

A. ΔL dependence of Pðνe → νμÞ
We begin our exploration of the extent to which a

particular ξ expansion is capable of simplifying the
oscillation probability by examining PðeμÞðΔL; ÂÞ vs ΔL

for particular values of Â. One value of Â is chosen near the
solar resonance and another near the atmospheric reso-
nance. For each choice of ξ and Â, we compare the exact
result to Eq. (129).
We first examine Pðνe → νμÞ below the solar resonance,

at Â ¼ 0.0102. For this value of Â, Δ ˆ̄E½3� ≈ 0.0294,

Eq. (145) specifies that the approximate oscillation proba-
bility becomes sensitive to approximations for ΔL >

Δð3Þ
L ≈ 53.
Our calculations for Â ¼ 0.0102 are shown in Fig. 1. We

see from this figure that the α-expanded oscillation prob-
ability begins to departs from the exact result at large ΔL
meaning, as expected, that the α expansion breaks down in
the vicinity of the solar resonance. The sensitivity to
medium effects shows up already for ΔL ≈ 20, which is

smaller than Δð3Þ
L ≈ 53 estimated using Eq. (145). On the

other hand, Eq. (129) evaluated with eigenvalues expanded
to first order in sin2 θ13 agree well with the exact result at
large ΔL showing that the sin2 θ13-expanded oscillation
probability is capable of providing an excellent approxi-
mation in the vicinity of the solar resonance.
For this small value of Â, we find that position of the first

peak of the exact oscillation probability, ΔL ≈ 1.58, coin-
cides almost exactly with the location of the peak of the
most rapidly varying Bessel function, j0ðΔ̂2Þ. From
Eq. (148), we note that the oscillation probability at ΔL ¼
20 in Fig. 1, where the approximate calculation begins to
break down in the solar resonance region with the
α-expanded EV, would correspond to a measurement of
105 MeV neutrinos propagating in the Earth’s mantel at a
baseline 734 Km.
We next examine Pðνe → νμÞ for Â ¼ 0.8, a value of Â

near the atmospheric resonance. Taking the exact eigen-

value difference Δ ˆ̄E½1� ≈ 0.328 at Â ¼ 0.8, Eq. (144)
specifies that the desired sensitivity of the oscillation
probability to approximations should become apparent at
ΔL ≈ 4.8. Our calculations for Â ¼ 0.8 are shown in Fig. 2.
The exact result shown in Fig. 2 (solid curve) begins to

differ from the sin θ13-expanded result (long-dashed curve)
at ΔL ≈ 2, which occurs a bit before ΔL ≈ 4.8, where all
three Bessel functions fully contribute. Because the long-
dashed curve begins to depart from the solid curve at large
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FIG. 1 (color online). PeμðΔL; ÂÞ in the solar-resonance region
(Â ¼ 0.0102) over the interval 15 < ΔL < 55 for neutrinos in
matter. Parameters are taken from the SNM. Exact result
(solid curve). Our expression for the oscillation probability
evaluated with the α-expanded EV (medium-dashed curve).
Our expression for the oscillation probability evaluated with
the sin2 θ13-expanded EV (long-dashed curve).
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ΔL, these results confirm that PeμðΔL; ÂÞ evaluated with
sin2 θ13-expanded EV breaks down near the atmospheric
resonance with medium effects included. The failure of the
sin θ13 expansion becomes increasingly apparent as ΔL
increases to larger ΔL.
The fact that the exact result (solid curve) and α-expanded

result (medium-dashed curve) seem to completely
overlap demonstrates that PeμðΔL; ÂÞ evaluated with the
α-expanded EV is capable of becoming a completely
acceptable approximation near the atmospheric resonance.
For this larger value of Â, the first peak of the oscillation

probability, at ΔL ≈ 1.58, nearly coincides with the peak of
the most rapidly varying Bessel function, j0ðΔ̂2Þ, at
ΔL ≈ 1.5. Applying Eq. (148), we see that the oscillation
probability at the value of ΔL where medium effects begin
to become apparent in Fig. 2 would correspond to neutrinos
of energy E½GeV� ≈ 4.5 propagating in matter of density
similar to the average density of the entire earth,
ρ½gm=cm3� ¼ 5.52 at a baseline of 7830 Km (for com-
parison, the average earth radius is 6370 Km).

B. Â dependence of Pðνe → νμÞ
We next compare oscillation probabilities over various

ranges of Â. For a given range of Â, whether or not the three
Bessel functions maximally interfere depends on the choice
of ΔL, which is determined by Eqs. (146) and (147)
depending on whether Â > Â2 or Â < Â2, respectively.

1. 0 < Â < 0.2

Numerical studies using Eqs. (146) and (147) show that
for 0 < Â < 0.2 taking ΔL ¼ 60 is sufficient to ensure that
the three Bessel functions maximally interfere. In Fig. 3, we
compare the oscillation probabilities in this region. These
results confirm that the expansion in sin2 θ13 is a reasonably
good approximation within the solar resonance region,
whereas the expansion in α is evidently not.

2. 0.2 < Â < Â2

Numerical studies using Eqs. (146) and (147) show that
for 0 < Â < Â2 taking ΔL ¼ 10 is sufficient to ensure that
the three Bessel functions maximally interfere. In Fig. 4, we
compare the oscillation probabilities in this region. These
results confirm that both the expansion in sin2 θ13 and the
expansion in α are reasonably good approximations here.
Results shown here apply over the same range of

neutrino energy, baselines, and medium properties as those
given in Eqs. (148). The extrapolation applies, of course,
only within the region 0.2 < Â < Â2.

3. Â2 < Â < 0.8

Numerical studies using Eqs. (146) and (147) show that
for Â2 < Â < 0.8 taking ΔL ¼ 4 is sufficient to ensure that
the three Bessel functions maximally interfere. In Fig. 5,
we compare the oscillation probabilities over this region.
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FIG. 2 (color online). PeμðΔL; ÂÞ in the atmospheric resonance
region (Â ¼ 0.8) over the interval 0 < ΔL < 35 for neutrinos in
matter. Parameters are taken from the SNM. Exact result (solid
curve). Our expression for the oscillation probability evaluated
with the α-expanded EV (medium-dashed curve).
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FIG. 3 (color online). PeμðΔL; ÂÞ for ΔL ¼ 60 over the interval
0 < Â < 0.2, for neutrinos in matter. Parameters are taken from
the SNM. Exact result (solid curve). Our expression for the
oscillation probability evaluated with the α-expanded EV
(medium-dashed curve). Our expression for the oscillation
probability evaluated with the sin2 θ13-expanded EV (long-
dashed curve).
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FIG. 4 (color online). PeμðΔL; ÂÞ for ΔL ¼ 10 over the interval
0.2 < Â < Â2, for neutrinos in matter. Parameters are taken from
the SNM. Exact result (solid curve). Our expression for the
oscillation probability evaluated with the α-expanded EV
(medium-dashed curve). Our expression for the oscillation
probability evaluated with the sin2 θ13-expanded EV (long-
dashed curve).
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These results confirm that the expansion in α is a reason-
ably good approximation below the atmospheric resonance.
The onset of the failure of the sin2 θ13-expanded EV near
the atmospheric resonance begins to become visible for
Â > Â2. Results shown here apply over the same range of
neutrino energy, baselines, and medium properties as those
given in Eqs. (148). The extrapolation applies, of course,
only for Â2 < Â < 0.8.

4. 0̂:8 < Â < 1.2

Numerical studies using Eqs. (146) and (147) show that
for 0̂:8 < Â < 1.2 taking ΔL ¼ 4 is sufficient to ensure that
the three Bessel functions maximally interfere. In Fig. 6,
we compare the oscillation probabilities over this region.
These results confirm that the expansion in α is a reason-
ably good approximation across the atmospheric reso-
nance. The sin2 θ13-expanded oscillation probability is

not shown because it fails here. Results shown here apply
over the same range of neutrino energy, baselines, and
medium properties as those given in Eqs. (148). The
extrapolation applies, of course, only for 0.8 < Â < 1.2.

5. 1.2 < Â < 2.5

Numerical studies using Eqs. (146) show that for 1.2 <
Â < 2.5 taking ΔL ¼ 4 is sufficient to ensure that the three
Bessel functions maximally interfere. In Fig. 7, we compare
the oscillation probabilities over this region. These results
show that PeμðΔL; ÂÞ evaluated with the α-expanded EV is
relatively accurate here. The sin2 θ13-expanded oscillation
probability agrees with the exact result reasonably well
for Â > 1.6.
From Eq. (148), we see that with the value ΔL ¼ 4, and

in matter of mean density similar to that of the average
density of the entire earth, ρ½gm=cm3� ¼ 5.52, the
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FIG. 5 (color online). PeμðΔL; ÂÞ for ΔL ¼ 4 over the interval
Â2 < Â < 0.8, for neutrinos in matter. Parameters are taken from
the SNM. Exact result (solid curve). Our expression for the
oscillation probability evaluated with the α-expanded EV
(medium-dashed curve). Our expression for the oscillation
probability evaluated with the sin2 θ13-expanded EV (long-
dashed curve).
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FIG. 6 (color online). PeμðΔL; ÂÞ for ΔL ¼ 4 over the interval
0.8 < Â < 1.2, for neutrinos in matter. Parameters are taken from
the SNM. Exact result (solid curve). Our expression for the
oscillation probability evaluated with the α-expanded EV
(medium-dashed curve). Our expression for the oscillation
probability evaluated with the sin2 θ13-expanded EV (long-
dashed curve).
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FIG. 7 (color online). PeμðΔL; ÂÞ vs Â for neutrinos in matter
over the interval 1.2 < Â < 2.5 taking ΔL ¼ 4. Parameters are
taken from the SNM. Exact result (solid curve). Our expression
for the oscillation probability evaluated with the α-expanded EV
(medium-dashed curve). Our expression for the oscillation
probability evaluated with the sin2 θ13-expanded EV (long-
dashed curve).
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FIG. 8 (color online). PeμðΔL; ÂÞ for ΔL ¼ 35 over the interval
−0.5 < Â < 0.5, for neutrinos and antineutrinos in matter.
Parameters are taken from the SNM. Exact result (solid curve).
Our expression for the oscillation probability evaluated with the
α-expanded EV (medium-dashed curve). Our expression for the
oscillation probability evaluated with the sin2 θ13-expanded EV
(long-dashed curve).
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breakdown of the sin2 θ13-expanded EV starts to becomes
less visible for Â > 1.2, corresponding to neutrinos
of energy E½GeV� ≈ 6.2 and baselines greater than
L½Km� ¼ 23; 500 (considerably larger than the diameter
of the Earth).

6. −0.5 < Â < 0.5

In Fig. 8, we compare the oscillation probability calcu-
latedwith the exact eigenvalues to the oscillation probability
calculated with the expanded eigenvalues for −0.5 < Â <
0.5, taking ΔL ¼ 35. Figure 8 confirms the earlier obser-
vations that the expansion in sin2 θ13 is a valid approxima-
tion within the solar resonance region, whereas the
expansion in α is not for both neutrinos and antineutrinos.

C. Intrinsic limitations

It is important to note that when using expanded EV,
the range of validity of the oscillation probability
PabðΔL; ÂÞ is limited even when it is evaluated using
the convergent eigenvalue expansion. This arises because
the error in the phase of the trigonometric functions

sinðΔLΔ ˆ̄Eξ½l�Þ grows with ΔL. Eventually, with increasing
ΔL, the error in the phase will lead to an unacceptable error
in PabðΔL; ÂÞ.
When spurious effects of this type would show up from a

comparison of the exact partial oscillation probability
evaluated with the exact ˆ̄El to the exact partial oscillation

probability evaluated with the convergent expansion of ˆ̄El.
A divergence between the calculated results of these two
calculations herald the limit of ΔL beyond which the use of
expanded eigenvalues breaks down for PabðΔL; ÂÞ.
It is clear from Fig. 1 that the region of validity for both

the sin2 θ13 expansion and the α expansion extend out as far
as ΔL ¼ 35.

D. Discussion

The results of this section suggest a natural division of
the full range of Â into regions. One significant region,
which we call the solar resonance region, covers the range
0 < Â < 0.2. The solar-resonance region contains, of
course, the solar resonance at Â ¼ α. Another is the
atmospheric resonance region containing the atmospheric
resonance at Â ≈ cos 2θ13. This region covers the inter-
val Â2 < Â < 2.0.
The region between the solar and atmospheric

regions, 0.2 < Â < Â2, is a transition region in the sense
that within it the expansion in α is improving rapidly and
the expansion in sin2 θ13 rapidly deteriorating. Within this
region, the EV expansions in sin2 θ13 and α are of
comparable accuracy. The asymptotic region covers the
interval Â > 2.0, where the EVs are approaching their
asymptotic behavior.

In future work, we will make a comparison of the our
oscillation probability evaluated with the exact eigenvalues
to the approximate oscillation probability given in
Refs. [4,5]. By comparing those results to our oscillation
probability evaluated with ξ-expanded EV found in the
present paper, we will be able to identify regions where our
Hamiltonian formulation might lead to more effective
approximations. Based on this information, we will sub-
sequently present any new approximate results we believe
be helpful.

VIII. SUMMARY AND CONCLUSIONS

We have presented exact, closed-form expressions for
the neutrino oscillation probabilities in matter using our
Hamiltonian formulation within the framework of the
standard neutrino model assuming three Dirac neutrinos.
Our goal is to benchmark approximate formulations having
known difficulties arising from expansions commonly used
to model neutrino and antineutrino experiments envisioned
for future neutrino facilities.
We have shown explicitly that for small α and sin θ13

there are branch points in the analytic structure of the
eigenvalues that lead to singular behavior of expansions
near the solar and atmospheric resonance. The numerical
calculations presented indicate regions in which the small-
parameter expansions are guaranteed to fail and should be
avoided in practice.

APPENDIX A: TIME EVOLUTION OPERATOR
SðTÞ IN OUR HAMILTONIAN FORMULATION

Our Hamiltonian formulation was presented in
Sec. III A. In this appendix, and in accord with the
discussion in Sec. III A, we give explicit analytic formulas
for the time-evolution operator SðLÞ ¼ e−i

ˆ̄HνΔL in terms of
ˆ̄El and the parameters defining ˆ̄Hν.

1. Expression for SðTÞ in terms of Fab
l

Introducing dimensionless variables, the time-evolution
operator SðTÞ in Eq. (106) may be written,

SabðLÞ ¼
X
l

Fab
l cos 2 ˆ̄ElΔL

− i
X
l

Fab
l sin 2 ˆ̄ElΔL: ðA1Þ

Here Fab
l , defined in Eq. (54), may be found by evaluating

Eq. (A1) at L ¼ 0 and obeys the normalization
condition

δab ¼
X
l

Fab
l : ðA2Þ
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Using the identity cos 2β≡ 1 − 2 sin2 β, we write

SabðLÞ ¼
X
l

Fab
l ð1 − 2 sin2 ˆ̄ElΔLÞ

− i
X
l

Fab
l sin 2 ˆ̄ElΔL

¼
X
l

Fab
l − 2

X
l

Fab
l sin2 ˆ̄ElΔL

− i
X
l

Fab
l sin 2 ˆ̄ElΔL: ðA3Þ

Now, using the normalization, Eq. (A2),

SabðLÞ ¼ δab − 2
X
l

Fab
l sin2 ˆ̄ElΔL

− i
X
l

Fab
l sin 2 ˆ̄ElΔL: ðA4Þ

Thus, for calculating PabðLÞ in Eq. (63),

Re½Sabðt0; tÞ� ¼ δab − 2
X
l

Re½Fab
l � sin2 ˆ̄ElΔL

þ
X
l

Im½Fab
l � sin 2 ˆ̄ElΔL

Im½Sabðt0; tÞ� ¼ −2
X
l

Im½Fab
l � sin2 ˆ̄ElΔL

−
X
l

Re½Fab
l � sin 2 ˆ̄ElΔL: ðA5Þ

2. Analytic expressions for ˆ̄W0½l�, ˆ̄Wsin½l�, and
ˆ̄Wcos½l� in terms of Hν

In this appendix we give exact, analytic expressions the

SðTÞ in terms of ˆ̄El and the parameters defining ˆ̄Hν. We
begin with Eq. (57), which expresses Fab

l in terms of an

operator ˆ̄W½l� and most easily accomplish our goal by

making the following rearrangement of terms in ˆ̄W½l�,

ˆ̄W½l� ¼ U ˆ̄H2
0vU† −U ˆ̄H0vU†Σ½l�

þ U ˆ̄H0vU†V̂ þ V̂U ˆ̄H0vU†

þ V̂2 − V̂Σ½l� þ 1Π½l�: ðA6Þ

Here, Σ½l� is the sum, and Π½l� the product, of two EV as
defined in Eqs. (42) and (43).
It is useful to recall that Σ½l� and Π½l�, defined in this

fashion, depend on l entirely through ˆ̄El. In particular [19],
from Eq. (44),

Σ½l� ¼ −a − ˆ̄El; ðA7Þ

and, from Eq. (47),

Π½l� ¼ bþ a ˆ̄El þ ˆ̄El
2; ðA8Þ

with a; b given in Eq. (35).

Explicit expressions for ˆ̄W½l� are easily found in terms of
Hν using Eq. (A6), from which it follows that its entire
dependence on δcp occurs through three operators, W0½l�,
Wcos½l� and Wsin½l�,

ˆ̄W½l� ¼ ˆ̄W0½l� þ cos δcp
ˆ̄Wcos½l�

þ i sin δcp
ˆ̄Wsin½l�; ðA9Þ

with ˆ̄W0½l�, ˆ̄Wcos½l� and ˆ̄Wsin½l� real and independent of

δcp. Additionally,
ˆ̄Wsin½l� antisymmetric, whereas ˆ̄Wcos½l�

and ˆ̄W0½l� are symmetric, under exchange of initial and

final states. It follows that Tr ˆ̄Wcos½l� ¼ Tr ˆ̄Wsin½l� ¼ 0 and,
therefore,

Tr ˆ̄W½l� ¼ Tr ˆ̄W0½l�: ðA10Þ
Then, from Eq. (A10) and the definition of Fab

l in Eq. (54),
we find the trace relationship

TrFl ¼ Tr ˆ̄W½l�
ˆ̄D½l�

¼ 1: ðA11Þ

a. Analytic expressions for ˆ̄W0½l�
For flavor changing transitions, νi → νj, the matrix

elements of ˆ̄W0½l� are found to have the structure

hMðμÞj ˆ̄W0½l�jMðeÞi≡ ˆ̄W12
0 ½l� ¼ cð12Þ½l� cos θ23

hMðτÞj ˆ̄W0½l�jMðeÞi≡ ˆ̄W13
0 ½l� ¼ −cð12Þ½l� sin θ23

hMðτÞj ˆ̄W0½l�jMðμÞi≡ ˆ̄W23
0 ½l� ¼ cð23Þ½l� sin 2θ23: ðA12Þ

We use the convention that a quantity OðabÞ written with
parentheses enclosing ab is a number, not a matrix element.
As noted, Oab written without parentheses surrounding ab
is a matrix element. This distinction may be obvious in the
present context, but later on this distinction may not be so
obvious.
Note that ˆ̄Weμ

0 ½l� and ˆ̄Weτ
0 ½l� are not independent. The

corresponding coefficients cðiiÞ½l� of for flavor preserving
transitions are defined with ˆ̄E2

l in Eq. (A8) separated out,

hMðiÞj ˆ̄W0½l�jMðiÞi≡ ˆ̄Wii
0 ½l�

¼ ˆ̄E2
l þ cðiiÞ½l�: ðA13Þ

The matrix for ˆ̄W0½l� is, thus,
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ˆ̄W0½l� ¼ 1 × ˆ̄E2
l þ

0
B@

cð11Þ½l� cð12Þ½l� cos θ23 −cð12Þ½l� sin θ23
cð12Þ½l� cos θ23 cð22Þ½l� cð23Þ½l� sin 2θ23
−cð12Þ½l� sin θ23 cð23Þ½l� sin 2θ23 cð33Þ½l�

1
CA: ðA14Þ

Writing the dependence of cðijÞ½l� on ˆ̄El explicitly,

cðijÞ½l� ¼ cðijÞ0 þ cðijÞ1
ˆ̄El; ðA15Þ

and expressing the results in terms of the combinations of
mixing angles,

Cð�Þ
1 ≡ cos2 θ12 cos2 θ23 � sin2 θ23 sin2 θ12 sin2 θ13

Cð�Þ
2 ≡ cos2 θ12 � sin2 θ12 sin2 θ13; ðA16Þ

where Cð�Þ
2 was defined earlier in Eq. (36), we find the

following exact results. For the flavor-changing transitions,

cð12Þ0 ¼ −cð12Þ1 ¼ −
α

2
cos θ13 sin 2θ12

cð23Þ0 ¼ −
α

2
ðsin2 θ12 − cos2 θ12 sin2 θ13Þ

−
Â
2
ðcos2 θ13 − αCð−Þ

2 Þ

cð23Þ1 ¼ 1

2
ðcos2 θ13 − αCð−Þ

2 Þ; ðA17Þ

and for the flavor-preserving transitions,

cð11Þ0 ¼ α cos2 θ12 cos2 θ13

cð11Þ1 ¼ − cos2 θ13 − αCðþÞ
2 ; ðA18Þ

cð22Þ0 ¼ αð1 − sin2 θ23 cos2 θ13 − CðþÞ
2 Þ

þ Âðcos2 θ13 cos2 θ23 þ αðCðþÞ
2 − CðþÞ

1 ÞÞ
cð22Þ1 ¼ −1þ cos2 θ13 sin2 θ23 − αð1 − CðþÞ

1 Þ − Â: ðA19Þ

The coefficients cð33Þ follow from cð22Þ by the exchange
sin θ23↔ cos θ23. Consequently, there are only four inde-

pendent matrix elements for ˆ̄W0½l�, two diagonal and two
off-diagonal. With the eigenvalues independent of θ23, it
follows that

ˆ̄Wττ
0 ½l� ¼ ˆ̄Wμμ

0 ½l�jsin θ23↔ cos θ23 : ðA20Þ

b. Analytic expressions for ˆ̄Wsin½l� and ˆ̄Wcos½l�
The matrices for ˆ̄Wsin½l� and ˆ̄Wcos½l� have the following

simple structure

ˆ̄Wsin�l� ¼

0
BBB@

0 −að12Þ½l� sin θ23 −að12Þ½l� cos θ23
að12Þ½l� sin θ23 0 að23Þ½l�
að12Þ½l� cos θ23 −að23Þ½l� 0

1
CCCA ðA21Þ

and

ˆ̄Wcos½l� ¼

0
B@

0 að12Þ½l� sin θ23 að12Þ½l� cos θ23
að12Þ½l� sin θ23 −að23Þ½l� sin 2θ23 −að23Þ½l� cos 2θ23
að12Þ½l� cos θ23 −að23Þ½l� cos 2θ23 að23Þ½l� sin 2θ23

1
CA; ðA22Þ

where

að23Þ½l� ¼ að23Þ0 þ að23Þ1
ˆ̄El

að12Þ½l� ¼ að12Þ0 þ að12Þ1
ˆ̄El: ðA23Þ

We find the exact results

að23Þ0 ¼ −
Âα
2
sin 2θ12 sin θ13 −

α

2
sin 2θ12 sin θ13

að23Þ1 ¼ α

2
sin 2θ12 sin θ13

að12Þ0 ¼ −
α

2
cos2θ12 sin 2θ13

að12Þ1 ¼ 1

2
sin 2θ13 −

α

2
sin2θ12 sin 2θ13: ðA24Þ
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c. Interconnections among ˆ̄W0½l�, ˆ̄Wsin½l�, and ˆ̄Wcos½l�
Significant simplifications arise from interconnections

among W0½l�, Wcos½l�, and Wsin½l�. One of these follows
from Eqs. (A21) and (A22), which show that the matrix

elements of ˆ̄Wcos½l� and ˆ̄Wsin½l� are proportional, namely,

hMðaÞj ˆ̄Wsin½l�jMðbÞi ¼ fabhMðaÞj ˆ̄Wcos½l�jMðbÞi; ðA25Þ

with the constants of proportionality fab independent of l,

fab ¼

0
B@

0 −1 −1
1 0 −cos−12θ23
1 cos−12θ23 0

1
CA: ðA26Þ

Another follows from Eqs. (A17) and (A24), from which it
follows that

að12Þ1 cð12Þ0 − að12Þ0 cð12Þ1 ¼ 2K

að23Þ1 cð23Þ0 − að23Þ0 cð23Þ1 ¼ −K: ðA27Þ

The quantity K is

K ¼ −
αð1 − αÞ

8

× cos θ13 sin 2θ12 sin 2θ13: ðA28Þ

3. Expressions for SðTÞ in terms of δcp
The dependence of SðTÞ on the CP violating phase δcp is

very simple and follows from Eqs. (A5) and (A9), noting

that Fab
l ¼ ˆ̄Wab½l�= ˆ̄D½l�, Eq. (56). We, thus, find

Re½Sabðt0; tÞ� ¼ δab − 2
X
l

ˆ̄Wab
0 ½l�
ˆ̄D½l�

sin2 ˆ̄ElΔL

− 2 cos δcp
X
l

ˆ̄Wab
cos½l�
ˆ̄D½l�

sin2 ˆ̄ElΔL

þ sin δcp
X
l

ˆ̄Wab
sin½l�
ˆ̄D½l�

sin 2 ˆ̄ElΔL; ðA29Þ

and

Im½Sabðt0; tÞ� ¼ −2 sin δcp
X
l

ˆ̄Wab
sin½l�
ˆ̄D½l�

sin2 ˆ̄ElΔL

−
X
l

ˆ̄Wab
0 ½l�
ˆ̄D½l�

sin 2 ˆ̄ElΔL

− cos δcp
X
l

ˆ̄Wab
cos½l�
ˆ̄D½l�

sin 2 ˆ̄ElΔL: ðA30Þ

The dependence of SðLÞ on ˆ̄El and the remaining param-
eters of Hν are given analytically through Eqs. (A14),
(A21), and (A22).

APPENDIX B: OSCILLATION PROBABILITY
Pðνa → νbÞ IN OUR HAMILTONIAN

FORMULATION

The neutrino oscillation probabilities are obtained
directly from our expression for the time-evolution oper-
ator, Eq. (106). In the high-energy limit, the oscillation
probability in Eq. (71), expressed in terms of Re½Fab

ll0 � and
Im½Fab

ll0 �, is

Pðνa → νbÞ ¼ 2
X
l>l0

Im½Fab
ll0 � sin ð2Δ ˆ̄Ell0ΔLÞ

þ 2
X
l>l0

Re½Fab
ll0 � cos ð2Δ ˆ̄Ell0ΔLÞ; ðB1Þ

where 1 ≤ l ≤ 3, where ΔL was defined in Eq. (33), and

Δ ˆ̄Ell0 in Eq. (43).
Note that Re½Fab

ll0 � satisfies a normalization condition,

X
ll0

ReFab
ll0 ¼ δab; ðB2Þ

found by evaluating Eq. (71) at t ¼ t0 and recognizing that
Pðνa → νbÞ is a real number. Taking Eq. (B2) into account
and using the identity 1 − cos 2β≡ 2 sin2 β, we find an
equivalent expression,

Pðνa → νbÞ ¼ δab þ 2
X
l>l0

Im½Fab
ll0 �

× sin ð2Δ ˆ̄Ell0ΔLÞ
− 4

X
l>l0

ReFab
ll0 sin

2 ðΔ ˆ̄Ell0ΔLÞ; ðB3Þ

that bears a striking similarity to the familiar vacuum
expression with Fab

ll0 playing a role analogous to Jabll0 (as,
for example, in Eq. (1) of Ref. [4]). Equations (B1) and
(B3) make use of the fact that a probability is purely real.

1. Properties of Fab
ll0

It follows from Eq. (72) and the observation that the
energy of a neutrino or antineutrino in matter is indepen-
dent of δcp that Fab

ll0 is symmetric under the simultaneous
exchange of a; b and l;l0,

Fab
ll0 ¼ Fba

l0l: ðB4Þ

Using in addition the Hermiticity of ˆ̄W½l�, Eq. (59), we find
the reflection symmetry,
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Fba
ll0 ¼ Fab�

ll0

Fab
l0l ¼ Fab�

ll : ðB5Þ

From this, along with Eq. (B4), it follows that ImFab
ll0 is

antisymmetric under the exchange of either ða; bÞ or
ðl;l0Þ,

ImFab
ll0 ¼ −ImFab

l0l ¼ −ImFba
ll0 ; ðB6Þ

whereas ReFab
ll0 is symmetric,

ReFab
ll0 ¼ ReFab

l0l ¼ ReFba
ll0 : ðB7Þ

There are no symmetries connecting the Fab
ll0 of neu-

trinos to those of antineutrinos because these energies are,
in general, different. This is not the case, however, in the
vacuum for theories invariant under CPT.

2. General expressions for Fab
ll0

The quantity Fab
ll0 is most easily obtained from wab

ll0 ,

wab
ll0 ≡ hMðbÞj ˆ̄W½l�jMðaÞi

× hMðbÞj ˆ̄W½l0�jMðaÞi�: ðB8Þ

Analytic formulas for wab
l;l0 are easily obtained in terms of

the parameters of Hν using ˆ̄W½l� given in Eq. (A9).
Equation (72) then gives Fab

ll0 as

Fab
ll0 ¼

wab
ll0

ˆ̄D½l� ˆ̄D½l0�
: ðB9Þ

Because ˆ̄W½l� consists of three terms, one proportional
to sin δcp, one proportional to cos δcp, and one independent
of δcp, the dependence of wab½l;l0� on δcp can be
expressed a priori through the five operators,

wab
ll0 ¼ wab

0ll0 þ cos δcpwab
cosll0

þ cos2δcpwab
cos2ll0 þ i

�
sin δcpwab

sinll0

þ sin δcp cos δcpwab
sin× cosll0

�
; ðB10Þ

each of which is uniquely determined by Eqs. (A9) and

(B8). Clearly, just as for the ˆ̄Wi½l�, the matrix elements of
wi½l;l0� are real and independent of δcp.
Using the Hermiticity of ˆ̄W0½l� and ˆ̄Wcos½l�, and the anti-

Hermiticity of ˆ̄Wsin½l�, we then find

wab
0ll0 ≡ ˆ̄Wab

0 ½l� ˆ̄Wab
0 ½l0� þ ˆ̄Wab

sin½l� ˆ̄Wab
sin½l0�

wab
sinll0 ≡ ˆ̄Wab

sin½l� ˆ̄Wab
0 ½l0� − ˆ̄Wab

0 ½l� ˆ̄Wab
sin½l0�

wab
cosll0 ≡ ˆ̄Wab

cos½l� ˆ̄Wab
0 ½l0� þ ˆ̄Wab

0 ½l� ˆ̄Wab
cos½l0�

wab
cos2ll0 ≡ ˆ̄Wab

cos½l� ˆ̄Wab
cos½l0� − ˆ̄Wab

sin½l� ˆ̄Wab
sin½l0�

wab
sin× cosll0 ≡ ˆ̄Wab

sin½l� ˆ̄Wab
cos½l0� − ˆ̄Wab

cos½l� ˆ̄Wab
sin½l0�: ðB11Þ

Note that Eqs. (A25) and (A26) require that wsin× cos vanish
identically,

wab
sin × cos ¼ 0; ðB12Þ

so this term need not be considered further. Note also that
the dependence of wab

ill0 on l and l0 arises entirely from the

eigenvalues ˆ̄El and ˆ̄El0 , as
ˆ̄Wab½l� depends on l entirely

through ˆ̄El. Finally, we will find it useful to define wab
i ½l�

in analogy to ˆ̄W½l� in Eq. (57),

wab
i ½1�≡ wab

i ½3; 2�
wab
i ½2�≡ wab

i ½3; 1�
wab
i ½3�≡ wab

i ½2; 1�: ðB13Þ

These are the only three wab
i ½l;l0� needed because of the

restriction l > l0 in Eq. (B3).

3. Analytic expressions for wab
sin½l;l0�

From the symmetries of ˆ̄Wab
0 ½l�, ˆ̄Wab

cos½l�, and ˆ̄Wab
sin½l�, we

see from Eq. (B11) that wab
sinll0 is odd under the exchange of

either a; b or l;l0. The term wab
sinl;l0 , therefore, vanishes for

a ¼ b [and for l ¼ l0], but again recall that restrictions on
the sums is such that wab

ll0 contributes only for l > l0.
Using the general results in Eqs. (A14), (A21), and

(A22), we find wab
sinll0 given in Eq. (B11) is, as a matrix,

wsin ll0 ¼
1

2
sin 2θ23

0
B@

0 A −A
−A 0 B

A −B 0

1
CA; ðB14Þ

where

A ¼ −ðað12Þ½l�cð12Þ½l0� − cð12Þ½l�að12Þ½l0�Þ
¼ −ðað12Þ1 cð12Þ0 − að12Þ0 cð12Þ1 ÞΔ ˆ̄Ell0 ðB15Þ

and

B ¼ 2ðað23Þ½l�cð23Þ½l0� − cð23Þ½l�að23Þ½l0�Þ
¼ 2ðað23Þ1 cð23Þ0 − að23Þ0 cð23Þ1 ÞΔ ˆ̄Ell0 : ðB16Þ

We see from Eq. (A27) that A ¼ B, so from Eq. (B14) we
find the following simple expression,
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wab
sinll0 ¼ K sin 2θ23Δ ˆ̄Ell0ϵabsin; ðB17Þ

and correspondingly

wab
sin½l� ¼ K sin 2θ23Δ ˆ̄E½l�ϵabsin; ðB18Þ

where ϵsin is the antisymmetric matrix

ϵsin ≡
0
B@

0 1 −1
−1 0 1

1 −1 0

1
CA: ðB19Þ

4. Analytic expressions for wab
cos2

, wab
cos, and wab

0

We also see from the symmetries of ˆ̄Wab
0 ½l�, ˆ̄Wab

cos½l�, and
ˆ̄Wab
sin½l�, that wab

0ll0 , w
ab
cosll0 , and wab

cos2 ll0 are even under the
exchange of a; b and/or l;l0. Since the dependence of all

wab
ill0 on l and l0 arises entirely from the eigenvalues ˆ̄El and
ˆ̄El0 , it follows that the terms symmetric in l and l0 must be

functions of symmetric combinations of ˆ̄El and
ˆ̄El0 .

There are only three irreducible symmetric functions of
ˆ̄El and ˆ̄El0 : a constant, the sum

ˆ̄El þ ˆ̄El0 , and the product
ˆ̄El

ˆ̄El0 , just as for
ˆ̄W½l� in Eq. (A6). Thus, we anticipate that

the entire dependence of wab
0 ½l�, wab

cos½l�, and wab
cos2

½l� on l
will occur through Σ½l� and Π½l� in Eqs. (A7) and (A8)

and, hence, through ˆ̄El, as for
ˆ̄W½l�.

In the following discussion, it is important to recall our
convention that a quantity, such as wðabÞ½l�, written with
parentheses enclosing ab is a number, whereas wab½l�
written without parentheses surrounding ab is the element
of a matrix w½l�,

wab½l�≡ hMðbÞjw½l�jMðaÞi: ðB20Þ

a. Matrix elements of wcos2

Using Eq. (B11) with Eqs. (A21) and (A22), the matrix
for wcos2 is found to be

wcos2 ¼ sin22θ23

0
BB@

0 0 0

0 wð22Þ
cos2

−wð22Þ
cos2

0 −wð22Þ
cos2

wð22Þ
cos2

1
CCA; ðB21Þ

where

wð22Þ
cos2 ll0 ¼ að23Þ½l�að23Þ½l0�

¼ að23Þ20 þ að23Þ0 að23Þ1 ð ˆ̄El þ ˆ̄El0 Þ þ að23Þ21
ˆ̄El

ˆ̄El0 :

ðB22Þ
Correspondingly,

wð22Þ
cos2 ½l� ¼ að23Þ20 þ að23Þ0 að23Þ1 Σ½l� þ að23Þ21 Π½l�: ðB23Þ

Note the somewhat subtle notational distinction between
the operator wcos2 and the coefficients wðijÞ

cos2
in terms of

which it is defined. The latter is indicated by parentheses
that surrounding the superscripts. By contrast, superscripts
without parentheses, as in wab

i , indicate the transition
νa → νb, i.e., wab

i ≡ hMðbÞjwijMðaÞi.

b. Matrix elements of wcos

We find only three independent, nonvanishing matrix
elements for wcos, one diagonal element and two off-
diagonal elements. As a matrix,

wcos ¼ sin 2θ23

0
BB@

0 wð12Þ
cos −wð12Þ

cos

wð12Þ
cos wð22Þ

cos wð23Þ
cos

−wð12Þ
cos wð23Þ

cos wð33Þ
cos

1
CCA: ðB24Þ

The two independent off-diagonal elements,

wð12Þ
cosll0 ¼

1

2
ðað12Þ½l�cð12Þ½l0� þ cð12Þ½l�að12Þ½l0�Þ

wð23Þ
cosll0 ¼ −ðað23Þ½l�cð23Þ½l0� þ cð23Þ½l�að23Þ½l0�Þ cos 2θ23;

ðB25Þ

follow immediately from the structure of ˆ̄Wab
0 ½l0� and

ˆ̄Wab
cos½l� given in Eqs. (A14) and (A22), respectively.
Taking wð22Þ

cos from Eqs. (A14), (A22), and (B11), we
obtain

wð22Þ
cosll0 ¼ −að23Þ½l�ð ˆ̄E2

l0 þ cð22Þ½l0�Þ
− ð ˆ̄E2

l þ cð22Þ½l�Það23Þ½l0�: ðB26Þ

Similarly, for the diagonal matrix element D,

wð33Þ
cosll0 ¼ að23Þ½l�ð ˆ̄E2

l0 þ cð33Þ½l0�Þ
þ ð ˆ̄E2

l þ cð33Þ½l�Það23Þ½l0�: ðB27Þ

The element wð11Þ
cosll0 vanishes as a consequence of

ˆ̄Wð11Þ
cos ½l� ¼ 0.
Correspondingly, for the off-diagonal matrix elements

we find
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wð12Þ
cos ½l� ¼ að12Þ0 cð12Þ0 þ 1

2
ðað12Þ1 cð12Þ0 þ að12Þ0 cð12Þ1 Þ

× Σ½l� þ að12Þ1 cð12Þ1 Π½l�
wð23Þ
cos ½l� ¼ −2 cos 2θ23a

ð23Þ
0 cð23Þ0

− cos 2θ23ðað23Þ1 cð23Þ0 þ að23Þ0 cð23Þ1 Þ
× Σ½l� − 2 cos 2θ23a

ð23Þ
1 cð23Þ1 Π½l�; ðB28Þ

which simplify somewhat by using Eqs. (A27) and (A28).
For the diagonal matrix elements,

wð22Þ
cos ½l� ¼ −2að23Þ0 cð22Þ0 − ðað23Þ1 cð22Þ0 þ að23Þ0 cð22Þ1 Þ

× Σ½l� þ 2ðað23Þ0 − að23Þ1 cð22Þ1 ÞΠ½l�
− að23Þ1 Σ½l�Π½l� − að23Þ0 Σ½l�2 ðB29Þ

and

wð33Þ
cos ½l� ¼ 2að23Þ0 cð33Þ0 þ ðað23Þ1 cð33Þ0 þ að23Þ0 cð33Þ1 Þ

× Σ½l� − 2ðað23Þ0 − að23Þ1 cð33Þ1 ÞΠ½l�
þ að23Þ1 Σ½l�Π½l� þ að23Þ0 Σ½l�2: ðB30Þ

The matrix elements wð22Þ
cos ½l� and wð33Þ

cos ½l� are not indepen-
dent. The reason is that wð33Þ

cos ½l�may be found from wð22Þ
cos ½l�

by making the replacement sin θ23↔ cos θ23 [Eq. (A20)]
and by flipping the overall sign. Recall that under this
replacement, cð22Þ↔cð33Þ and that að23Þ is independent
of sin θ23.

c. Matrix elements of w0

We find four independent, nonvanishing matrix elements
for w0, two diagonal and two off-diagonal elements. As a
matrix,

w0 ¼

0
BBB@

wð11Þ
0 wð12Þ

0 wð13Þ
0

wð12Þ
0 wð22Þ

0 wð23Þ
0

wð13Þ
0 wð23Þ

0 wð33Þ
0

1
CCCA: ðB31Þ

The off-diagonal elements,

wð12Þ
0ll0 ¼ cð12Þ½l�cð12Þ½l0� cos2 θ23

þ að12Þ½l�að12Þ½l0� sin2 θ23
wð13Þ
0ll0 ¼ cð12Þ½l�cð12Þ½l0� sin2 θ23

þ að12Þ½l�að12Þ½l0� cos2 θ23
wð23Þ
0ll0 ¼ cð23Þ½l�cð23Þ½l0� sin2 2θ23

þ að23Þ½l�að23Þ½l0�; ðB32Þ

follow immediately from the structure of ˆ̄Wab
0 ½l0� and ˆ̄Wab

sin½l�
given in Eqs. (A14) and (A21), respectively. The diagonal

elements wðnnÞ
0 are found from Eqs. (A14) and (B11),

wðnnÞ
0ll0 ¼ ð ˆ̄E2

l þ cðnnÞ½l�Þð ˆ̄E2
l0 þ cðnnÞ½l0�Þ: ðB33Þ

Correspondingly, for the off-diagonal matrix elements,

wð12Þ
0 ½l� ¼ cð12Þ20 cos2 θ23 þ að12Þ20 sin2 θ23

þ ðcð12Þ0 cð12Þ1 cos2 θ23 þ að12Þ0 að12Þ1 sin2 θ23ÞΣ½l�
þ ðcð12Þ21 cos2 θ23 þ að12Þ21 sin2 θ23ÞΠ½l�

wð13Þ
0 ½l� ¼ cð12Þ20 sin2 θ23 þ að12Þ20 cos2 θ23

þ ðcð12Þ0 cð12Þ1 sin2 θ23 þ að12Þ0 að12Þ1 cos2 θ23ÞΣ½l�
þ ðcð12Þ21 sin2 θ23 þ að12Þ21 cos2 θ23ÞΠ½l�

wð23Þ
0 ½l� ¼ cð23Þ20 sin2 2θ23 þ að23Þ20

þ ðað23Þ0 að23Þ1 þ cð23Þ0 cð23Þ1 sin2 2θ23ÞΣ½l�
þ ðcð23Þ21 sin2 θ23 þ að23Þ21 ÞΠ½l�: ðB34Þ

For the diagonal matrix elements,

wðnnÞ
0 ½l� ¼ cðnnÞ20 − ð2cðnnÞ0 − cðnnÞ21 ÞΠ½l�

þ cðnnÞ0 cðnnÞ1 Σ½l� þ cðnnÞ1 Σ½l�Π½l�
þ Π½l�2: ðB35Þ

As for wcos, the matrix elements wð22Þ
0 ½l� and wð33Þ

0 ½l� are
not independent. The same is true for wð13Þ

0 ½l� and wð12Þ
0 ½l�.

In both cases the matrix elements may be found from one
another by making the replacement sin θ23↔ cos θ23
[Eq. (A20)]. Recall that under such a replacement cð22Þ↔
cð33Þ and that cð12Þ and að23Þ are independent of sin θ23.
Writing the dependence of the coefficients wðmnÞ

i ½l� on
ˆ̄El explicitly,

wðmnÞ
i ½l� ¼ wðmnÞ

i;0 þ wðmnÞ
i;1

ˆ̄El þ wðmnÞ
i;2

ˆ̄E2
l: ðB36Þ

5. Analytic expression for Im½Fab
ll0 � and Re½Fab

ll0 �
A general form for the real and imaginary parts of Fab

ll0 in
terms of the four operators, (w0, wsin, wcos, wcos2) is found
from Eq. (72) and Eq. (B10). For Im½Fab

ll0 �, using Eq. (B17),
we find

Im½Fab
ll0 � ¼ sin δcp

wab
sinll0

ˆ̄D½l� ˆ̄D½l0�

¼ 1

2
sin δcp sin 2θ23Kϵabsin

Δ ˆ̄Ell0

ˆ̄D½l� ˆ̄D½l0�
: ðB37Þ

Then, using the easily verified result,
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Δ ˆ̄Ell0

ˆ̄D½l� ˆ̄D½l0�
¼ ϵll

0
sin
ˆ̄D

; ðB38Þ

we find

ImFab
ll0 ¼ − sin δcpϵabsinϵ

ll0
sin

αð1 − αÞ
8 ˆ̄D

cos θ13

× sin 2θ12 sin 2θ13 sin 2θ23: ðB39Þ
For Re½Fab

ll0 � we find

Re½Fab
ll0 � ¼

wab
0ll0

ˆ̄D½l� ˆ̄D½l0�
þ cos δcp

wab
cosll0

ˆ̄D½l� ˆ̄D½l0�

þ cos2 δcp
wab
cos2 ll0

ˆ̄D½l� ˆ̄D½l0�
: ðB40Þ

Equations (56) and (B38) show that Fab
ll0 plays a role for

Pðνa → νbÞ similar to the one that Fab
l plays for SðTÞ.

Using Eq. (B10), it follows from Eqs. (B37) and (B40) that
ImFab

ll0 is odd, and ReFab
ll0 , even, under δcp → −δcp.
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