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Analytical theory of neutrino oscillations in matter with CP violation
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We develop an exact analytical formulation of neutrino oscillations in matter within the framework of the
standard neutrino model assuming three Dirac neutrinos. Our Hamiltonian formulation, which includes CP
violation, leads to expressions for the partial oscillation probabilities that are linear combinations of
spherical Bessel functions in the eigenvalue differences. The coefficients of these Bessel functions are
polynomials in the neutrino CKM matrix elements, the neutrino mass differences squared, the strength of
the neutrino interaction with matter, and the neutrino mass eigenvalues in matter. We give exact closed-
form expressions for all partial oscillation probabilities in terms of these basic quantities. Adopting the
standard neutrino model, we then examine how the exact expressions for the partial oscillation probabilities
might simplify by expanding in one of the small parameters « and sin 63 of this model. We show explicitly
that for small a and sin 6,3, there are branch points in the analytic structure of the eigenvalues that lead to
singular behavior of expansions near the solar and atmospheric resonances. We present numerical

calculations that indicate how to use the small-parameter expansions in practice.
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I. INTRODUCTION

In this paper, we develop an exact analytical representa-
tion of neutrino oscillations [1] in matter within the
framework of the standard neutrino model (SNM) [2] with
three Dirac neutrinos. The exact closed-form expressions
we give for the time-evolution operator S(¢, ') are obtained
from H, using the Lagrange interpolation formula given in
Ref. [3]. The resulting expressions are easily evaluated
without any approximations.

The paper is divided into two main parts. In the first, we
summarize the main results of our theory. Details under-
lying the derivation are given in Appendixes. We also
retrieve the well-known two-neutrino flavor results as a
special case of our general results.

In the second part we address other analytical formula-
tions found in the literature. The expansion of the neutrino
oscillation probability in one of the small parameters «
and sin® 6,5 of the SNM for H, is of particular interest.
The seminal work along these lines is found in Refs. [4-6].
This work underlies many of the analyses and exploratory
studies of experiments at present and future neutrino
facilities, including our earlier work [7-10].

The present paper was undertaken, and used, for the
purpose of independently confirming the results of
Refs. [7-10]. We find that the accuracy of the expanded
oscillation probability is restricted by the presence of
branch points in the analytic structure of the eigenvalues
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of neutrinos propagating in matter. We also show that the
regions where the expanded results are reliable is different
for expansions in a [4] and sin® 6,5 [5,6]. We then map out
regions where the expanded results are reliable by compar-
ing numerical results to the exact results of our Hamiltonian
formulation.

Another recent study [I1] takes a complementary
approach and finds that the predictions of Refs. [7-10]
can be improved in certain regions using an exact evaluation
of the integral /,, rather than the approximate one found
there. It concludes that within these regions, predictions of
(u, e) oscillations improve for certain values of the exper-
imental parameters.

The dimensionalities of the neutrino Hamiltonian H,
and the parameter space characterizing the mixing of
three neutrino pairs are sources of difficulty for finding
a tractable representation of the oscillation probability. The
Lagrange interpolation formula [3] is enormously helpful,
providing an exact and formally elegant expression for the
exponentiation of an n X n matrix.

The description of two-flavor neutrino oscillations is
elementary by comparison. In that case, H,, is a 2 X 2 matrix,
and the mixing is described by a single real parameter.

II. NEUTRINO DYNAMICS

We will be interested in the dynamics of the three known
neutrinos and their corresponding antineutrinos in matter.

© 2015 American Physical Society
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This dynamics is determined by the time-dependent
Schrodinger equation,

.d
i~ |p(1)) = H, |u(1)), (1)

where the neutrino Hamiltonian,
Hu:HOU+H17 (2)

consists of a piece H, describing neutrinos in the vacuum

and a piece H,; describing their interaction with matter.
The solutions of Eq. (1) may be expressed in terms of

stationary-state solutions of the eigenvalue (EV) equation

Hu|l/mi> :Ei|ymi>? (3)

where the label “m” indicates neutrino mass eigenstates,
as distinguished from their flavor states sometimes denoted
with the label “f.” In operator form, this dynamics may be
expressed in terms of the time-evolution operator S(7', 1),
which describes completely the evolution of states from time
t to ¢ and also satisfies the time-dependent Schrodinger
equation.

We will examine neutrinos propagating in a uniform
medium for interactions constant not only in space but
also time. Because the Hamiltonian is then translationally
invariant, attention may be restricted to states, both in the
vacuum and in matter, characterized by momentum p and,
therefore, having the overall r dependence ¢’77. In this case
expressions may be simplified by suppressing the overall
plane wave, a convention we adopt.

For time-independent interactions, S(7', ),

S(t, 1) = e Hll=1) (4)

depends on time only through the time difference t' — t.
Then, written in terms of the stationary state solutions |v,,;)
of Eq. (1),

S(.1) = 3 lumi) e 0D, (5)

With the momentum dependence factored out, three
basis states |M(i)),i = (1,2,3) are then required to
describe three neutrinos. The basis states correspond to a
specific representation, as in descriptions of a spin-1 object.
The basis should, of course, be orthogonal,

(M(D)|M(j)) = 6. (6)

and complete,

> M) (M(k)| = 1. (7)

k

Once the basis is chosen, wave functions for a neutrino
state are naturally introduced as the components of this
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state in the chosen basis. For example, with the eigenstates
of Eq. (3) expanded in the basis,

) = S_IM(@)m, (8)

the wave functions of |v,,;) would be the set m’,i=
(1,2,3). With the plane wave factored out, the wave
function is just a set of three numbers. Additionally,
introduction of a basis makes it possible to represent
neutrino states and operators such as H, in matrix form,
with each entry in the matrix corresponding to a projection
of the object being described onto the basis.

In this paper we take the Hamiltonian in Eq. (2) to be
expressed in the standard representation, where the mass
basis states |M(i)) are taken as the set of states that
diagonalize the neutrino vacuum Hamiltonian H,,, i.e.,
IM(0)) = |W0,) = [25,).

Ho,|vy,) = EP|vy,)- 9)
In matrix form
Eg 0 0
Hy,=1 0 Eg 0 |, (10)
0 O E?

with the EVs taken to be ordered EY < E9 < EY as in the
normal mass hierarchy. In the literature, the Hamiltonian is
often expressed in a different basis obtained by rotating to
one in which the complete neutrino Hamiltonian is diago-
nal as in Ref. [4].

We assume here that neutrinos and antineutrinos repre-
sented by [9,;) and |29,,), respectively, are the structureless
elementary Dirac fields of the standard neutrino model [2].
For this reason the theory is invariant under CPT, so the
mass of an antineutrino in the vacuum is the same as that for
its corresponding neutrino.

A. Flavor and mass states

Neutrinos are produced and detected in states of good
flavor, |1/fl-). The three flavors, electron (e), muon (u), and
tau (r) correspond, respectively, to the index values
i = (1,2,3). In the vacuum, each flavor state is a specific
linear combination of the three mass eigenstates |M(i)) of
the neutrino vacuum Hamiltonian H),. This linear combi-
nation is expressed in terms of the same set of numbers U;;
for both neutrinos and antineutrinos

W) = U IMG))
) = S U, M(), (11)
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where U;; are the elements of a unitary operator U, the
neutrino analog of the familiar CKM matrix. It is standard
to express U;; in terms of three mixing angles (6, 6,3, 63)
and a phase 6., characterizing CP violation,

_'5
C12€13  S12€13 Syze” %
Uy Uy $23€13 ) (12)
Us, U, €23C13
where
_ iS5,
Uyl = —s12023 — C12593813€"%7

_ iS5,
Uy = ¢12¢23 — S12593513€"%

_ is,,
Uz = s128523 — C12Cp3813€"%

_ i,
Usy = —c12823 — S12623813€"%7. (13)

We use here the standard abbreviation s;, = sin6,,,
C1p = €08 0, etc. The parameters ¢ and 6., are determined
from experiment.

Because U;; — Uj; with 8., —> =6, it follows that the
relationship in Eq. (11) between flavor and mass states for
antineutrinos and neutrinos in the vacuum is equivalent
0 Opp<> — Ocp-

B. Neutrino interacting Hamiltonian

The interaction H, determined by taking the electron
flavor states scattering from the electrons of the medium to
mediate the interaction, is then expressed as an operator in
the standard representation,

Hy =U" U, (14)

o o <
o o o
o o o

with V = +v/2Gpn, and n, the electron number density in
matter. For electrically neutral matter consisting of protons,
neutrons, and electrons, the electron density 7, is the same
as the proton density n,,

n, =

S
]

S

n

, (15)

= |

where n,, is the average total nucleon number density and R
is the average proton-neutron ratio. In the Earth’s mantle,
the dominant constituents of matter are the light elements,
s0 R ~ 1/2; in the surface of a neutron star R < 1. Matrix
elements of H, are, thus,

(M(K)|H,|M(K)) = Uj VU (16)
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C. Dimensionless variables

The results are most naturally expressed in dimension-
less variables. We first take advantage of the global phase
invariance to express all energies relative to the vacuum EV
E(1) of the same momentum. We indicate that a quantity is
expressed relative to E? by placing a bar over it, e.g.,

EY=E) - E. (17)
We follow the same convention for the Hamiltonian,
H,=H,—1E (18)
so the EV equation Eq. (3) becomes
(Hoy + H\)|Vmi) = Eilvmi), (19)
where
Hy, = H,, — 1EY. (20)

Then, to express the theory in dimensionless variables we
divide all energies, including the Hamiltonian, by EY =
EY — EV. The stationary-states |v,,;) are also be determined

from the dimensionless Hamiltonian H,,

2

A

HD:ﬁ0E+H19 (21)
1.e., from the solutions of
Hu|l/mi> = Ei|l/mi>’ (22)

where the “hat” placed over a quantity indicates it is
dimensionless. Thus,

=L
R
2 HO‘U
==, 23
01 Eg) ( )
and A, is obtained from H, by replacing
-V
V-oA=—;. (24)
E3

The quantity A is the same as that defined in Refs. [4,7-11].

The connection of the Hamiltonian H, to the full
Hamiltonian H, = H, + H, is then

H,=1E + E%H,. (25)

D. Neutrino vacuum Hamiltonian H,,

The case of main interest for many situations is the
ultrarelativistic limit, |p|> m?> (we take the speed
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of light ¢ =1). For ultrarelativistic neutrinos in the
laboratory frame, the energy of a neutrino in the vacuum
becomes

m;

EV~ |p ,

(26)
where m; is its mass the vacuum. Similarly, E; appearing in
Eq. (3) may be written
M?
E ~|p|+=—L, 27
1Bl + 55 27)

where M, is its mass in the medium. Thus, in this limit,

2 Mz— 2
A A (28)
m3 — mj
and
0 0 O
Hy,—- |0 a 0 (29)
0 0 1
with
2 2
m; — nmy
=—= . 30
asii (30)

In this limit, the distance L from the source to the
detector corresponding to S(7,7) in Eq. (4) is

L=1-t (31)

The time-evolution operator, Eq. (4), expressed in dimen-
sionless variables is

S(L) — e—iHy(t’—t)

.20 L
— eZzElAL e—21HLAL , (32)

where H,, is given in Eq. (25), and where

L(m3 —m3)
Ay =—72——~, 33
L= (33)
[The similar quantity A; as defined in Ref. [7] is exactly
one-half of that appearing in Eq. (33).]

E. Neutrino mass eigenvalues

The neutrino mass eigenstates in a medium are solutions
to the EV equation for H,, Eq. (22). In many familiar
formulations [4-6] the full solutions, including both the

eigenstates |v;) and EVs E;, are required to find the
neutrino oscillation probabilities.
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1. Diagonalization of neutrino Hamiltonian

The energies E ; are solutions of the cubic equation [12]
E’ +aE + bE;+ ¢ =0, (34)
where

a=—-(1+a+A)
b = a+ Acos?,; + AaCl"

¢ = —Aacos20,,c0s%0, 5. (35)

We have expressed b in terms of a frequently recurring
combination of mixing angles,

Ct) = cos? 0,5 + sin? 0, sin ;5. (36)
Note that the mass eigenstate energies are independent of
0., and 6,3 for both neutrinos and antineutrinos.

The solutions of Eq. (34) are expressed conveniently in
terms of the quantity d,

d=w+\/y>—4y°
y=a>-3b
w=a—27c-3ay. (37)

These solutions are real when
|d'3)? =223y > 0, (38)
which requires
w? <4y, (39)

and, thus, that d be complex. Because having real energies
is required by Hermiticity of the neutrino Hamiltonian,
Egs. (38) and (39) amount to conditions on all parameter
sets in terms of which H,, is defined.

We find
2 a 1
Ei=-3-35m (V3Im[d"/?] + Re[d"/?))
2 a 1
E2 = —g + W (\/glm[dl/3] - Re[d1/3])
R 22/3
Ey = —g + =5 Re[d'”]. (40)

The masses are ordered so that ms > m, > m;. Because
EV do not cross, Ey > E, > E; for all |A|. A simple
constraint among E; is found from the trace of Eq. (21),
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A

TI‘[A{V:EI +Ez+§3

= Trlflov + TrH,

=lt+at+Ad=-a (41)

2. Using neutrino mass eigenvalues in our
Hamiltonian formulation

In our formulation, the entire dependence of the time
evolution operator on the neutrino eigenvalues occurs
through three eigenvalue combinations,

AE, =E, - E,
S0 =Ep+ Ep
= E‘fi;:f’a

I, (42)

with Z > ¢’ (and powers thereof). We denote such quan-
tities using a bracket notation. For example,

AE[] = E; - E,
AE{Z] = 2'3 - El
AEQB)=E, - E,, (43)

in the case of AE. We will generally use this bracket
notation also for other quantities in our formulation that
depend on two indices (7, ¢"), such as X, and I1,..
An expression for X[7],
(¢ = —a—E,, (44)

follows from Eq. (41). An equivalent expression for I1[¢] in
terms of E » 1s found by subtracting Eq (34) for E » and that
for Ef/ and dividing through by AEW We find

0= (fffz + gfi?f’ + Eﬂz) + a(i?f + éf’) +b

= (B, + Ep)* = EjEp + a(E; + Ep) + b, (45)
giving
27 -1[£] + aZ[¢] + b = 0. (46)
Then, using Eq. (44),
N[£] = S,(, +a) + b
=b+ alﬁff + 195,92. (47)

Finally, having observed that powers of the quantities
given in Eq. (42) will appear in various expressions, we
note that IT[#]? and Z[£]? with p >2 and ¢ > 3 involve

linear combinations of eigenvalues E," with powers n > 3.
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Such terms are equivalently represented by a hnear combi-
nation of three terms, one proport10na1 to E ,,ﬂ , Ohe propor-

tional to £ ¢, and one independent of E,f, obtained by using
the equation of motion repeatedly. We later make use of this
fact to simplify various expressions.

III. THE S-MATRIX IN OUR HAMILTONIAN
FORMULATION

The probability P(v, — v;,) for neutrinos to oscillate
from the initial state of flavor a to a final state of flavor b is
found from the time-evolution operator S(#, ) as

Py = vp) = [8(1, 1)
=P ({ —1), (48)
where
S, 1) =[S, ) h,) 2. (49)

We accordingly determine here P4*(¢ — 1) from S(7,1)
defined in Eq. (4).

In this section we review the formulation of neutrino
oscillations based on the Lagrange interpolation formula as
used in Ref. [3]. This formulation leads to exact, closed-
form expressions for the time-evolution operator and the
partial oscillation probabilities that are linear combinations
of spherical Bessel functions in the eigenvalue differences
whose coefficients are polynomials in the neutrino CKM
matrix elements, the neutrino mass differences squared,
the strength of the neutrino interaction with matter, and
the neutrino mass eigenvalues in matter. We are led quite
naturally to such expressions for all the partial oscillation
probabilities in terms of these basic quantities. The numeri-
cal results given later in this paper are based on this
formulation.

A. Time-evolution operator
The overall phase in Eq. (32) does not contribute to
|Seb (¢, 1)|?, so for the purpose of calculating the oscillation
probability, we may take
S(L) — e~ (50)
Then, with neutrinos created and detected in flavor states,

which are coherent linear combinations of the neutrino
vacuum mass eigenstates given in Eq. (9),

= YU m()

we see that the mass eigenstate components of the flavor
states contribute coherently to the time-evolution operator.
Thus,

(51)

[V5a)
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(Wl B0y = (M(b)|Ue AU |M(a)).  (52)

This coherence leads to the oscillation phenomenon.

The elegant formulas for S(L) = e~:41 are obtained
from the Lagrange interpolation formula, Egs. (9) and (11)
of Ref. [3],

Ue Mbiy=1 = ZF,»exp"'éfAL, (53)
7
where T =L =¢ —t and

UH, U - 1E;

= (54)

E,-E,

For three neutrinos, the sum in Eq. (106) runs over three
values of Z and the product in Eq. (54) over two values of j.

Using the convention that 0% written without paren-
theses enclosing ab, denotes the matrix elements of the
operator O,

0 = (M(b)|0|M(a)). (55)

the matrix elements F4” of F, given in Eq. (54) may be
compactly written

Feb — (M(B)WIE)|M (@) (56)
D[]
where [3],
W] = (UH, U = 1E3)(UH, U - 1E)
W[ = (UH,U™" = 1E;)(UH,UT - 1E))
W[3] = (UA, U~ —1E,)(UH,U' - 1E)) (57)
and
D[] = (Es - E)(E, - Ey)
D[2) = (E, - Ey)(Es - Ey)
D3] = (B, - Ex)(E, - Ey). (58)

Equations (57), (58) use the same bracket notation intro-
duced in Eq. (33). The result in Egs. (52), (106), and (54) is
immediately verified to be correct by inserting a complete
set of intermediate eigenstates of H, in Eq. (57).

It follows from the unitarity of U that W[¢] is Hermitian,

Wie]t = WiZ) (59)

and that the two factors in Egs. (57) commute with each
other. We find from Eq. (57) that
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). (60)

O

TrW[¢] =
Equation (59) establishes the reflection symmetry,
Fob* = Fba, (61)

Explicit expressions for ﬁ/[f | are easily found in terms of

H,. The entire dependence of VQV[LP] on &, occurs through
three operators independent of &.,, Wy[£], We([£] and
Wsin [f]’

W[£] = Wol£] + cos 8, W [£]
+ isin 5cp I;_I\/sin [l/ﬂ] ’ (62)

with ﬁ’o €], ﬁ’cos [#] and ﬁ’sin[f] real and independent of
Ocp- Details are given in Appendix A.

B. Total oscillation probability

Expressions for P(v, — v;,) may be obtained directly
from S(L),

Plv, = vp) = 8t 1)
= Re[S°(L)]? + Im[S°(L)]*>.  (63)

Convenient expressions for Re[S?’(L)] and Im[S“*(L)]
defined by Eq. (106) are presented in Appendix A. In
our Hamiltonian formulation, the dependence of S(7T')
on the CP violating phase &, is very simple and follows

from Egs. (106) and (62) noting that F%* = W*’[¢]/D[¢],
Eq. (56). We, thus, find

2 ab
Wy € 2
Re[S (7. 1)] = 50 — 2 Wo ll ok a,
7 D[]

‘;\—Vab / .
—2cos 5CPZELHsin2EfAL
7 D[]

2 ab

. Wsin [f] : 2

+ sin &, E - sin2E,A;, (64)
"7 Dl

and
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where A; is defined in Eq. (33). Approximate expressions
for P(v, = v,) in terms of the parameters of H, were
obtained from S(L) in Refs. [5,6] by an expansion
in sin 63.

C. Partial oscillation probabilities

Using somewhat different techniques, the oscillation
probability may be expressed through a set of functions
that express how P(v, — v,) = P*’ depends on the CP
violating phase 6., [4]. In our Hamiltonian formulation
there are four such terms,

_5(‘1 b)+Pab+Psm6 0096+Pab

cos?

(66)

with P¢. s linear in siné,,, P& s linear in cosé,,, P2,
quadratlc in cos . ,, and Pgb independent of 6. ,. Although
only the overall oscillation probability is a true probability,
guaranteed to be strictly positive everywhere, we find it
convenient to refer to these four terms as “partial oscillation
probabilities.” Approximate expressions for the partial
oscillation probabilities expanded in the small parameter
a of the SNM in Ref. [4].

Obtaining expressions for the partial oscillation proba-
bilities from the time-evolution operator requires additional
analysis, given in Appendix B. In terms of spherical Bessel
functions, we find there

Pub

sin &

(80, 4) = sind, "5 S (=1)/ W [A1jo (A1),

14
(67)

where wé [#] and, therefore, P ; are antisymmetric under

a<>b. The other three partial oscillation probabilities are
individually symmetric under a<>b. We find

. 402

P5(Ar.A) = —cosd,, P 5 £ (=1 wek[)
¢

x AE[£)j%(A[£))
ab A 2 4A% . .,ab
PlogalBaA) = —cost0ey = ) (w14
14

xAﬂﬂvan

4ALZ

P (AL, A) = [f]j%)(&[f])’

(68)

where all sums run over # = 1,2,3, A[/] is defined as

~

Al£] = AE[Z)A,, (69)

with AE[£] defined in Eq. (43), D is defined as

PHYSICAL REVIEW D 91, 076005 (2015)

A

D = AE[1)AE[2)AE[3)],

(70)

and the matrix elements wé’[£] are given in terms of the
mixing angles and A in Appendlx B. Since we order the
energies so that E3 > E2 > El, AE[f] as well as D are all
positive.

We begin our derivation with the expression for the
oscillation probability written in terms of S(7'), Eq. (106),

P(vg = vp) = P = [(M(b)|Ue UM (a))|?
= ZFMexp (Ee—Eq)L (71)
e
Here F%, is defined as
7,
Fab/ — FabFab* = ! (72)
“ DI£|D¢
with D[£] given in Eq. (58), and
wib, = (M(b)|W[£]|M(a))(M(b)|W[£']|M(a))*. (73)

All results needed for determining exact, closed-form
expressions for the partial oscillation probabilities are
found in Appendix B.

As we explain in Appendix B, w¢ f, may be expressed
through four operators,

ab

_ 2
Wil = Wi, + cos ‘Scpwcos ¢ T €OS ‘Scpwcos2ff'

+isind (74)

cp %mff”
found from the decomposition of VQV[K] given in Eq. (62).
The quantities w¢’[¢] appearing in Egs. (67) and (68) are

the same as wf}’ﬂ written in the streamlined notation,

web[1] =wib,  for (£,¢') = (3,2)
web2] =wib, for (£,¢') = (3,1)
web3] =wit,  for (£,¢') = (2.1), (75)
which takes advantage of £ > ¢'.
An analytic expression for w? [£],
wsm[f] K sin 2923AE[1,”] €5 (76)

follows directly from Eq. (62). Here, €, is the antisym-
metric matrix

emn=|-1 0 1 (77)

076005-7



JOHNSON, HENLEY, AND KISSLINGER
and
a(l —a)

8
X 08 03 sin 26, sin 26,5. (78)

K=-

Equation (76) is one of the more striking results. Analytic
formulas for the other w¢?[£] follow from Eq. (56). These
are all given in Appendix B, where they are expressed in
terms of the parameters specifying H, and H, = U~'VU.
These are the same parameters defining SNM.

It follows from Eq. (76) that the coefficients of
AE[]j,(2A[¢]) in Eq. (67) are all proportional, leading
to a simple expression for P,

Al a(l — a)sin s, e

cp sm

sm E(AL’ A)

X €08 05 sin 260, sin 265 sin 26,3
x jo(A[3])jo(A[2])jo(A1]). (79)

Note that P% ; is antisymmetric under a<>b.

Analytic expressions for all other partial oscillation
probabilities follow from Eq (71) using Eq. (72), which
expresses F4 ¢, in terms of w; .- In this fashion, these partial

oscillation probabilities are also expressed in terms of the

parameters of the SNM and the neutrino eigenvalues, Ey.

The usefulness of the partial oscillation probabilities
can be seen as follows. It is a general result that the
exchange of initial and final states in the oscillation
probability or neutrinos (antineutrinos) is equivalent to
letting 6., — —6.,. Thus, the result for the inverse reaction
Py, — z/a) is found by exchanging (a,b) in Eq. (66).
Since P . is antisymmetric under the exchange of (a, b),

and Pgb, P9 - and P°%, - symmetric, it follows that P*“ is
cos® §

given by
Plvy = va) = 8(a,b) + P§" — P& s + Pigs
ab
+ Pcos 25" (80)

In analogy to Eq. (66), we may express the oscillation
probability for antineutrinos as

P<Da_)l7b)zpuh (a b)+Pab+Psm5+Pcosé+Pab

COS

(81)

where the bared probabilities for antineutrinos are obtained
from the unbarred for neutrinos by replacing 6., = =6,
and A —» —A. Because the energies of antineutrinos are
different from those of the neutrinos in matter, we can
expect P4? # P in this situation.

Again applying the rule that exchange of initial and

final states is accomplished by letting 6., — —d.,, the
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oscillation probability P(z, — 7, ) is expressed in terms of
the same four quantities,

P(o), = ,) = 8(a.b) + P§> — Peb s+ Pab o+ P,

COS

(82)

It is worth noting that the entire dependence of the
oscillation probabilities given in Eqs. (67) and (68) on the
neutrino beam energy E, the baseline L, and the medium
properties occurs through the variables A; and A defined in
Egs. (33) and (24), respectively. Since we will be most
interested in how the neutrino oscillation probability
depends on the beam energy, baseline, and medium
properties, the partial oscillation probabilities have been
expressed as functions of A; and A.

Because the vacuum result is also easily obtained by less
sophisticated arguments, the vacuum limit provides an
opportunity to verify our Hamiltonian formulation in a
well-known special case.

D. Special cases

We next examine special cases chosen to highlight
specific aspects of our formulation. Because these cases
are well known in other contexts, they provide useful cross
checks. We first consider two-flavor mixing and then the
vacuum limit.

1. Two flavor mixing

Expressions for two-neutrino oscillations are easily
obtained from the Hamiltonian,

Iflu = IfIOU + U_llfllvUv (83)

where

N A0
Hy, . 85
1 (0 0> (5
The standard mixing matrix U is
< cos @
U= .
—sind

The neutrino Hamiltonian is easily diagonalized to find the
medium-modified two-flavor neutrino eigenvalues,

sin @ ) ' (86)

cos @
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e

y==(14+A+¢)

~

(1+A-9) (87)

1=

ey
N = ] =

where ¢ = /1 + A2 — 24 cos 20.
Expressed in dimensionless variables, the time-evolution
operator S% for the transition @ — b becomes

S = (M(b)|Uexp 25U~ M (a)),  (88)

with A; given in Eq. (33). The two-flavor oscillation
probability P%]%(AL,A) is then

P)i(Ap. A) = | S5
sin® 20

=7
which we will next compare to our Hamiltonian formu-
lation. To find S37 = (M(2)[S[L]|M(1)), it is easy to
overlook that the 2 x 2 matrix H, in Eq. (83) is not

diagonal in the flavor basis.

The oscillation probability in the three neutrino mixing
of our Hamiltonian formulation is matched to the two-
flavor case just discussed by setting two of the mixing

angles in Eq. (12) to zero, say 6,3 — 0 and 6,5 — 0 and
identifying 6 with 6,,. Accordingly, we find

sin? A, @, (89)

cos@ sinf O
U= | —sinf cosf O |. (90)
0 0 1

This is easily recognized as a two-flavor mixing matrix by
noting that one of the three neutrinos does not mix with the
other two. We see that it not only depends on just one
mixing angle 6, but also that the dependence on the CP
violating phase 6 has dropped out.

Natural choices for a 3 x 3 two-flavor neutrino vacuum
Hamiltonian and interaction are

000
Hy=10 1 0], (91)
000
and
A 0O
H=|0 0 0]. (92)
0 0 0

When the 3 x 3 neutrino Hamiltonian ﬁ]b = IfIO,,—I—

U~'H,,U is diagonalized, two of the three medium-
modified neutrino eigenvalues,
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N 1 N
2 1 o
E =0, (93)

are identical to those found above in the two-flavor case.
Note that the eigenvalues have no branch points for A on
the real axis. From these eigenvalues, we find the
differences,

AE[3] = E, - E,
1, .
——(1+A-
S(1+A=¢)
AEQR] = E; - E,

1 .
25(1+A+¢)

S A

AE[l] = E;— E, = ¢. (94)

Finally, consider the oscillation probability in our
Hamiltonian formulation. Because P2 5, P .,
are proportional to sin 20,3 (and 6,3 has been set to 0), these

terms do not contribute for two-flavor mixing. Thus,
P (AL, A) = 8(a,b) + PP (AL, A), (95)

with P& (A;,A) taken from Eq. (68). We find after a
straightforward calculation,

Wil 1] = -w[¢]
w3l 1] = wille]
wile) = -], (96)

where
wi2[£] = wit (Acos?0 — (1 + A)E, + E2).  (97)

Taking ff from Eq. (93), we evaluate

A

Acos?0 — (1 + A)E, + E, (98)

to find
wo (1] = wy*[2] = 0 (99)

and

wh2[3] = A cos? Qwé{zz )

A
= Zcos2 0 sin® 20. (100)
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Thus, for all two-flavor transitions,

(A, A) = 8(a. b) + 422 Wi BIAED)

X JY(AEBIA,). (101)
where D is from Eq. (102),
D = AE[1]AER]AE[3]
= %((1 +A)2 -1 - A%+ 2Acos20)
= Acos?0AE1]. (102)

To compare our result to the well-known two-flavor
oscillation probability given in Eq. (89), we evaluate
Eq. (101) for 1 — 2 transitions, obtaining

sin? 29

PR2(A;,A) = ——sin® A, . (103)

As expected, this is in complete agreement with Eq. (89).

2. Vacuum oscillation probability

In our Hamiltonian formulation, an expression for the
time-evolution operator in the vacuum limit A — 0 is found
from Egs. (52), (53), (56), and (58),

(M(b)|S (¢ 1)|M(a)) = S0 (¢ = 1)
_ Z<M(b)|vgz[[:]]IM(61)> exp AL (104)
4

Here, E¥ and D[£] are the vacuum values of E, and D[],
respectively. In the vacuum, of course, there is no dis-
tinction between the energy differences for neutrinos and
anti-neutrinos. Evaluating Eq. (104) by inserting a com-

plete set of states intermediate states |n)(n| inside ﬁ/[ﬂ, we
arrive at

N 20,20 20
=SS v, (E, = Eci)(En —Ep) U e E-),
0
(105)

The indices (a, b, n) run over all permutations of the three
integers  (1,2,3), from which it follows that

(E) - f?g[f])(ég - }i'fg[f]) = DO [¢], and, consequently,

Z Uhn _lE U;Fm

(M(b)|S°(7.1)|M (a (106)
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This well-known vacuum limit also follows directly from
more elementary considerations, using Egs. (5) and (11),

E UbelEﬂt tU*

The equality of Egs. (106) and (110) verifies our exact
Hamiltonian formulation in the vacuum limit. Finally, we
find that F ;?, appearing Eq. (71) takes a familiar form in the
vacuum. Using Eq. (106), or Eq. (110),

P — 1Y) (ZUME—;E% 1) Ufa>

< 0 |e—1H0Lt —1) (107)

<ZK,UMe =0y, > . (108)
Expressing this in terms of Freund’s J4, [4],
o0 = UpUatUppUppr, (109)
and using Eq. (26),
- - m2 - mzr
E)-E) =—C -~ 110
4 4 2E ’ ( )
we find that Eq. (108) may be written,
PY - 1) =6, — 4ZReJ sin*((EY — E%)L)
i>]
- 2ZImJ sin(2(EY — EY))L), (111)

i>j

Comparing Egs. (111) and (71), it is clear that F“b, - J%Z‘
in the vacuum limit.

IV. THE STANDARD NEUTRINO MODEL

We adopt the standard neutrino model [2] as our
description of neutrino physics. The parameters defining
the model include a (dimensionless) interaction strength A
of neutrinos and antineutrinos with matter, the three
neutrino mass differences, the three mixing angles, and
the CP violating phase. Most of the parameters of the SNM
are consistent with global fits to neutrino oscillation data
with relatively good precision.

The neutrino mass differences of the SNM are taken to
be [7-11]

3 =i = om,
=7.6x 107 eV?
w3 —m? = oni,

=24 x 1073 eV? (112)

corresponding to

2
oms,

=3.17x 1072, (113)
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In Ref. [7-11], 6 = (m3 — m?)/(2E) and A = (m3 —m?3)/
(2E) whereas in Ref. [4], A = (m3 —m?})L/(4E) and
A =m}—m3.

The mixing angle 6,3,

923 = 7[/4, (114)
is the best-fit value from Ref. [13], and 6,,,
912 :71'/5.4, (115)

is consistent with the recent analysis of Ref. [14]. The
mixing angle €5 is known to be small (8|5 < 0.18 at the
95% confidence level) but its precise value is uncertain. A
very recent result from the Daya Bay project [15] is
sinf3 = 0.15, which we adopt to determine our value
for 013,

0,3 =0.151. (116)
The CP violating phase ., is not known at all and will one
of the major interests at future neutrino facilities.

Parametrizing the interaction strength A, Eq. (24), we
find

. z
A = £6.50 x 10‘2NE[GeV}p[gm/cm3}, (117)

with E[GeV] being the neutrino beam energy E (in GeV)
and p[gm/cm?], is the average total density (in gm/cm?) of
matter through which the neutrino beam passes on its way
to the detector (the matter having average proton-neutron
ratio Z/N). For our calculations we are interested in
experiments close to the Earth’s surface, so we take

plgm/cn’] = py

=3, (118)

the approximate mean density of the Earth’s mantle.
In the SNM, A;, defined in Eq. (33), may be para-
metrized in the high-energy limit as

L[Km|

A; ~ 3. 1073 .
LR 305 X107 el

(119)

Here L[Km] is the baseline and E[GeV] is the neutrino
beam energy. Because sin” 6,5 are small, comparable in
size, and rather well determined in the SNM, it will
sometimes be convenient replace sin’ 63 — aR o
where R, = sin?63/a ~ 0.71.

V. EIGENVALUE EXPANSIONS IN THE SNM

The fact that « and sin 65 are naturally small in the SNM
commonly motivates approximation schemes [4-6,16]
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based on first-order Taylor series expansions in one of
these small parameters, &/ (where &’ stands for a or
sin’6,5. For example, in Refs. [5,6] the oscillation prob-
ability is expanded in sin’#,5. Reference [4] makes use of
an expansion in the small parameter o.

Although these expansions may be used effectively to
simplify the theory, they come at a price [4]. This price is
that neither expansion gives accurate representations for all
values of the interaction strength A, including values in
some regions of critical importance.

In our subsequent work, we will consider simplifying the
oscillation probability using the same expansions, but they
will be used somewhat differently, in two stages. In the first
stage, the eigenvalues are expanded, as below. In the
second, the expansions will be used to simplify the
oscillation probability.

In this work, the eigenvalue expansion will, of course be
made before introducing R,. For the expansion of the
oscillation probabilities, R, may be introduced before the
expansion is made because of its simpler analytic structure.

A. Analytic structure of eigenvalues

The key for identifying which of the &/ expansions
might be appropriate over specifics ranges of A is revealed

by the analytic structure of the eigenvalue E,(&). It is
particularly important to identify the locations of its branch
points when &/ = 0. Branch points identify where a series

expansion of E,(£), or a function of it such as (F(H,)),
would not converge. _

We have seen that E,(£) depends on & entirely through
the two functions (U(¢), V()),

Ee() = EAU(2), V(9)), (120)
where
U(¢) =Reld"’]
V(&) = Im[d'/], (121)

with d defined in Eq. (37).
Recalling that 4y> —y? > 0, we conveniently write

1
U(E) =5 v+ irJar —y)”

+ (w —iy/47 =y, (122)
and
1
V(E) = 5 (w +iy/47° —y?)'3
—(y—i\/4r —y?)'. (123)

Branch points &2 clearly occur for parameter values
satisfying
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y?(E8) = 477 (8). (124)

The locations of the branch points &8 of E, (&) are found as
follows for the two small-parameter choices &;.

When &, = a, branch points as a function of the other
parameters of the standard neutrino model are found from
Eq. (124) with w(£8) and y(£8) evaluated in terms of

a(é®) = —(1+4)
b(EB) = Acos?0;;
c(&f) =0,

where &8 = &|,_. The only real solution of Eq. (124) is

(125)

A=0. (126)

When & = sin? 03, branch points as a function of the
other parameters of the SNM are found from Eq. (124) with
w(EB) and y(£8) evaluated in terms of

a(é®)=—-(14+A +a)
b(EP) = a + Aacos O, + A

c(£P) = —Aacos? 0,,, (127)

where &% = &[, . The only real solution of Eq. (124) is

.. -
A=A, a

1 —acos? 6,
~1. (128)

B. The first-order Taylor expansions
Defining éé to be the first two terms of the Taylor series

for E, expanded about ¢ = 0, we find

OE,

ES=E| o+ ,
¢le=o 585 o

(129)

where Ifff and 8?5,5; /O¢ are easily obtained from Egs. (34)
and (35) and their derivatives. The results for & = sin” 65
and £ = « found in this way are given immediately below.

1. g = Sin2013
Applying Eq. (129) we find for & = sin® 6,5 and below
the corresponding branch point,
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PR BN .
Ef:E(A+a—C9)

aRpA A A
+7A(2—A0—G—C9)
2(1-y)Cy
228
2Cy

(2 — 44y + A} — 2a 4 2A,a)

2 1~ A
EQZE(A‘FOH‘Ce)

(130)

where y = A /AO, with 1210 = Ag the location of the branch
point for the sin” #,5 expansion and

Cy= \/A2+a2—22\acos26’12. (131)

Note that ng’ = E:ﬂ@()_,_@o. Above the branch point, y > 1,

Ef and EY exchange roles.

The lack of convergence at the branch point is manifest
here by inspection, i.e., by the appearance of a simple pole
at y = 1. Although Eq. (130) would suggest a pole in all

three eigenvalues, EY is rather accurate for all values of y.

The absence of a singularity in féf can be confirmed by a
simple calculation that shows the coefficient of (1 —y)~!
vanishes at y = 1.

2.E=a
Taking R, = sin?0;3/a, we may write cos® 63 = 1 —
aR, and cos20,3 =1 — 2aR,,. Then, for{ =a and y > 0
(above its corresponding branch point),
EY = acos 62,

-~ 1 ~ ~
Ef=3(1+A-0C,)

sin 63, (1 . 1- A(lA— 2aRp))

+a > e
~ ] .
Ef=7(1+4+C)
in 67 1-A(1 —2aR
L (1_ (A a p)), (132)
2 c,
where
Cu=/(1-A) +4aR A, (133)
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Note that ES = E|¢ ¢ . These expressions are identical
to Egs. (18) and (19) of Freund [4].

In contrast to £ = sin? 6,5, the lack of convergence of the
a expansion is not obvious from a casual examination
of Eq. (132). Numerical comparison to the exact result

confirms that E¥ and ES are poor representations of the
corresponding exact results in the vicinity of the branch
point at y = 0. However, no evidence of the branch point

is apparent in EY, which is rather accurate for all values

of y. Across the branch point at y =0, E:? and E:g
exchange roles.

C. Branch points and resonances

Resonances are heralded by the appearance of minima in
the EV differences. Two well-known neutrino resonances
occur in the SNM. One of these, the solar resonance, is
found for relatively weak interaction strengths A =~ a. The
other, the atmospheric resonance, occurs for stronger
interactions, A ~ cos 20,5. The solar resonance occurs very
close to the branch point identified with the o expansion,
and the atmospheric resonance very close to the branch
point identified with the sin” 8,5 expansion.

Using Eq. (117), the solar resonance appears for neu-
trinos of energy,

E = E*![GeV] ~ 0.325, (134)
for underground experiments in the Earth’s mantle
(plgm/cm?] = py ~ 3). We find, similarly, that for neutri-
nos of energy E, the solar resonance occurs in matter of
density,

p*[gm/cm’] ~ E[GeV]™!, (135)
taking @ = 0.0317 from the SNM.

Likewise, the atmospheric resonance is found for neu-
trinos of energy,

E = E*™[GeV]| ~ 9.79, (136)
also for underground experiments in the Earth’s mantle. At
energy E, it occurs at a density of

pMgm/cm’| ~ 29.4/E[GeV], (137)
taking cos 20,3 = 0.955 from the SNM.

Because of the close correlation between the branch
points and the resonances, there is also a close correlation
between resonances and viable approximation schemes.
Note, however, that the branch point in the o expansion
near the solar resonance affects both neutrino and anti-
neutrino scattering since its actual location is a = 0.
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D. Discussion

We have seen in this section that expansions of the
eigenvalues in a small parameter &;” of the SNM (where &/
stands for @ or sin? #,3) must be made carefully, since the
EV are not analytic everywhere.

Nevertheless, as noted, first-order Taylor series repre-
sentations of the EV are commonly used to simplify the
theory. Because these expansions do not give an accurate
representation the EV for all values of the interaction
strength A, itis important to identify the regions where the
theoretical errors of the expanded EV might be acceptable
and lead to accurate representations. We address this in the
next section.

VL. APPROXIMATING P(v; = vy) WITH
EXPANDED EV

In this section, we begin our assessment of common
procedures used to simplify calculation of the oscillation
probability by expanding it in one of the small parameters
of the SNM. Freund observed [4] that the a-expansion,
although useful, could not be used near the solar resonance
where A = a. However, no understanding of the limitations
of the sin” #,5-expansion appears in the literature.

We have shown above that the applicability of both
expansions is limited by the presence of branch points in
the analytical structure of the eigenvalues. The branch point
responsible for the failure of the a expansion is located at
A =0whena = 0, and the branch point responsible for the
failure of the sin” §,5 expansion is located at A= AO when
sin? 6,5 = 0, where A, is defined in Eq. (128).

We make our assessment numerically, comparing the
oscillation probability calculated from Egs. (68) and (79)
using the exact eigenvalues to that calculated from
Egs. (68) and (79) using eigenvalues expanded in one of
the small parameters of the SNM.

A. Assessing oscillation probabilities expressed in terms
of é-expanded eigenvalues

Theoretical errors characterizing an approximation
scheme may emerge numerically only from an examination
of the dependence of P**(A;,A) on A, and A. In this
section we discuss how we will do this.

It is convenient to discuss the oscillation pattern in terms
of the location of the first maxima of the functions A, j,(A,)
appearing in the expressions for the partial oscillation

probabilities. These peaks occur at A; = A(Lf), with

(138)

closely related to the period P, of j,(A,),
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(139)

Because the exact eigenvalues never cross, the ordering
of Ef is the same as it is in the vacuum, namely E3 >E, >

E,. It can inferred from this that all AE [¢] remain positive,
and, in addition, that

(140)

We see, in general, that for small A, AE [1] > AE [3], and,
for large A, AE[2] > AE[3].

It is also clear that AE[2] is always the largest eigenvalue
difference. Consequently, P, is always the smallest of the
three periods, thus, characterizing the most rapidly varying
Bessel function. The relative sizes of P, are easily worked
out in specific cases. In the vacuum,

Py =2z/(1-a)
P2 =2z
Py =27n/a, (141)

evaluated from differences of the vacuum eigenvalues
appearing in Eq. (29).
In the SNM, we find that

Py>P, forA <A,
P, >P; forA>A,, (142)
where
A, =0.538 (143)
is the value of A at which Py = P, (AE[1] = AE[3)).

With AE[2} the largest eigenvalue difference, P, is
always the smallest of the three periods. Thus, the value

of A, at the first peak of A, jo(A,) is a natural scale.

B. Regions of maximum sensitivity

Sensitivity to the approximation scheme should be most
manifest within regions where all three Bessel functions of
Pe (A, A) are of similar size and interfere. This will
happen once A; becomes comparable to the first peak of
its most slowly varying A; jo(A,), which occurs at either
A = A<L3) or A; = A(Ll). In general, the sensitivity to
approximations increases as the distance A; to the most
distant peak increases.

In the vacuum, the first peak of the most slowly varying
Apjo(A,) is always at A, = A(L3), readily established by
the vacuum eigenvalue differences given in Eq. (29). The
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corresponding baseline is obtained from Egs. (33) and
(138), L®)[Km] ~ 51707E[GeV].

In the SNM, the most slowly varying Bessel function,
established from Egs. (142) and (143), is A, jo(A3) when
A <A, and Apjo(A,) for A > A,.

1. Regions of maximum sensitivity for fixed A

Consider first the variation of P(“?)(A;, A) with A, for a
given value of A in the SNM.

According to Eq. (142), for A > Ay, A;jo(A,) is the
most slowly varying (having the larger period), and the
region of maximum sensitivity is

N

AL > AV = (144)

>

2AE[]
with AE [1] evaluated at A. .

Similarly, for A < A,, A;jo(A3) is the most slowly
varying. According to Eq. (138), its peak occurs where
A; = zn/(2AE[3]). Thus, the region of maximum sensi-
tivity is

N

A > AP = (145)

Iy

2AE[]

with AE 3] again evaluated at A.

2. Regions of maximum sensitivity for fixed A
Consider next the variation of P(@) (A% A) with A for
given A? in the SNM.

Accordlng to Eq. (142), for A > A,, A, jy(A,) is the

most slowly varying. According to Eq. (138), its peak
occurs where AY = z/(2AE[1]). Thus, the region of
maximum sensitivity is

2 V3

AE(] > 55 (146)

with AE[1] evaluated at A.

Similarly, for A < A,, we find from Eq. (144) that
Apjo(As) is the most slowly varying, and the region of
maximum sensitivity is

2 T

AE[3] > 787" (147)

VIL. NUMERICAL STUDY OF P(v, — v,) WITH
EXPANDED EV

Our main interest in the present section is to map out the
regions where each of the small-parameter expansions is
capable of simplifying P (A;,A). We do this by
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comparing three calculations using P(v, — v,,) taken from
our exact Hamiltonian formulation.

One of these is a calculation of the exact oscillation
probability obtained in our Hamiltonian formulation. For
this we use the expressions in Egs. (67) and (68) evaluated
with the exact EV. The other two are calculations of our
£-expanded oscillation probability for each of the small
parameters of the SNM. For these we evaluate Egs. (67) and
(68) using the &-expanded EV. For £ = a, we use the
a-expanded EV given in Eq. (132), and for £ = sin” 0,5 we
use the sin”@,;-expanded EV given in Eq. (130). The
calculation with the &-expanded EV would, of course,
coincide with the exact calculation in the vacuum.
Differences, therefore, reflect medium effects.

The extent to which our oscillation probability evaluated
with one of the £-expanded EV agrees with the exact result
indicates regions in which it may be possible to obtain, at
least in principle, a simple £-expanded expression for the
oscillation probability in good agreement with the exact
result. In a subsequent paper [17], we make a similar
comparison between the exact oscillation probability and
the approximate ones given in Refs. [4,5].

From the numerical results we obtain in Ref. [17] and the
present paper, we will be able to identify regions in which
both (1) the exact oscillation probability and the results of
Refs. [4,5] are in poor agreement; and, (2) the exact
oscillation probability and the &-expanded result are in
excellent agreement. The regions where both of these
conditions are satisfied indicate where it might be possible
to improve the results found in Refs. [4,5] using our
Hamiltonian formulation. We explore this possibility in
yet another paper [18].

Equations (33), (117) provide a means to extrapolate the
results in any figure to a variety of baseline values, medium
properties, and neutrino energies within the particular
regions shown in that figure. In the Earth’s mantel, where
the average Z/N = 1/2, Egs. (117) and (33) become

L[Km] = 1.08 x 104LL3
plgm/cm?]
A
E[GeV] = 30.8 ———. (148)
plgm/cm’]

A. A dependence of P(v, — v,)

We begin our exploration of the extent to which a
particular £ expansion is capable of simplifying the
oscillation probability by examining P (A, A) vs A,
for particular values of A. One value of A is chosen near the
solar resonance and another near the atmospheric reso-

nance. For each choice of & and A, we compare the exact
result to Eq. (129).
We first examine P(v, — v,) below the solar resonance,

at A =0.0102. For this value of A, AE[3]~0.0294,
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Ar

FIG. 1 (color online). P (A, A) in the solar-resonance region
(A = 0.0102) over the interval 15 < A; < 55 for neutrinos in
matter. Parameters are taken from the SNM. Exact result
(solid curve). Our expression for the oscillation probability
evaluated with the a-expanded EV (medium-dashed curve).
Our expression for the oscillation probability evaluated with
the sin” #,5-expanded EV (long-dashed curve).

Eq. (145) specifies that the approximate oscillation proba-
bility becomes sensitive to approximations for A; >
A(L3) ~ 53.

Our calculations for A = 0.0102 are shown in Fig. 1. We
see from this figure that the a-expanded oscillation prob-
ability begins to departs from the exact result at large A;
meaning, as expected, that the @ expansion breaks down in
the vicinity of the solar resonance. The sensitivity to
medium effects shows up already for A; = 20, which is

smaller than Af) ~ 53 estimated using Eq. (145). On the
other hand, Eq. (129) evaluated with eigenvalues expanded
to first order in sin® 0,5 agree well with the exact result at
large A, showing that the sin®#,;-expanded oscillation
probability is capable of providing an excellent approxi-
mation in the vicinity of the solar resonance.

For this small value of A, we find that position of the first
peak of the exact oscillation probability, A; = 1.58, coin-
cides almost exactly with the location of the peak of the
most rapidly varying Bessel function, jy(A,). From
Eq. (148), we note that the oscillation probability at A; =
20 in Fig. 1, where the approximate calculation begins to
break down in the solar resonance region with the
a-expanded EV, would correspond to a measurement of
105 MeV neutrinos propagating in the Earth’s mantel at a
baseline 734 Km.

We next examine P(v, — v,) for A =0.8, a value of A
near the atmospheric resonance. Taking the exact eigen-

value difference AE[1]~0.328 at A =0.8, Eq. (144)
specifies that the desired sensitivity of the oscillation
probability to approximations should become apparent at
A; ~4.8. Our calculations for A = 0.8 are shown in Fig. 2.

The exact result shown in Fig. 2 (solid curve) begins to
differ from the sin 83-expanded result (long-dashed curve)
at A; ~ 2, which occurs a bit before A; ~ 4.8, where all
three Bessel functions fully contribute. Because the long-
dashed curve begins to depart from the solid curve at large
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FIG. 2 (color online). P¢*(A;,A) in the atmospheric resonance

region (12\ = 0.8) over the interval 0 < A; < 35 for neutrinos in
matter. Parameters are taken from the SNM. Exact result (solid
curve). Our expression for the oscillation probability evaluated
with the a-expanded EV (medium-dashed curve).

A,, these results confirm that P**(A;,A) evaluated with
sin? @,5-expanded EV breaks down near the atmospheric
resonance with medium effects included. The failure of the
sin @3 expansion becomes increasingly apparent as A
increases to larger A;.

The fact that the exact result (solid curve) and a-expanded
result (medium-dashed curve) seem to completely
overlap demonstrates that P°*(A;,A) evaluated with the
a-expanded EV is capable of becoming a completely
acceptable approximation near the atmospheric resonance.

For this larger value of A, the first peak of the oscillation
probability, at A; = 1.58, nearly coincides with the peak of
the most rapidly varying Bessel function, jj(A,), at
A; = 1.5. Applying Eq. (148), we see that the oscillation
probability at the value of A; where medium effects begin
to become apparent in Fig. 2 would correspond to neutrinos
of energy E[GeV] = 4.5 propagating in matter of density
similar to the average density of the entire earth,
plgm/cm’] = 5.52 at a baseline of 7830 Km (for com-
parison, the average earth radius is 6370 Km).

B. A dependence of P(v, — v,)

We next compare oscillation probabilities over various
ranges of A.Fora given range of A, whether or not the three
Bessel functions maximally interfere depends on the choice
of A;, which is determined by Egs. (146) and (147)

depending on whether A > A, or A < A,, respectively.

1L.0<A<02

Numerical studies using Eqgs. (146) and (147) show that
for0 <A < 0.2 taking A; = 60 is sufficient to ensure that
the three Bessel functions maximally interfere. In Fig. 3, we
compare the oscillation probabilities in this region. These
results confirm that the expansion in sin” 65 is a reasonably
good approximation within the solar resonance region,
whereas the expansion in « is evidently not.
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FIG. 3 (color online). P (A,,A) for A, = 60 over the interval
0<A< 0.2, for neutrinos in matter. Parameters are taken from
the SNM. Exact result (solid curve). Our expression for the
oscillation probability evaluated with the a-expanded EV
(medium-dashed curve). Our expression for the oscillation
probability evaluated with the sin®#,3-expanded EV (long-
dashed curve).

2.02<A <A,

Numerical studies using Eqs. (146) and (147) show that
for0 <A < Az taking A; = 10 is sufficient to ensure that
the three Bessel functions maximally interfere. In Fig. 4, we
compare the oscillation probabilities in this region. These
results confirm that both the expansion in sin? §,5 and the
expansion in «a are reasonably good approximations here.

Results shown here apply over the same range of
neutrino energy, baselines, and medium properties as those
given in Eqs. (148). The extrapolation applies, of course,
only within the region 0.2 < A < A,.

3A,<A <08

Numerical studies using Eqs. (146) and (147) show that
for Az <A<08 taking A; = 4 is sufficient to ensure that
the three Bessel functions maximally interfere. In Fig. 5,
we compare the oscillation probabilities over this region.

PeH
0.12 —
0.10 —
0.08 —
0.06 —

0.04 |

0.02 F

0.‘25 0}30 OAI35 O,ZtO O.:tS OAISO A
FIG. 4 (color online). P (A,,A) for A; = 10 over the interval
02 <A< 12\2, for neutrinos in matter. Parameters are taken from
the SNM. Exact result (solid curve). Our expression for the
oscillation probability evaluated with the a-expanded EV
(medium-dashed curve). Our expression for the oscillation
probability evaluated with the sin®#,;-expanded EV (long-
dashed curve).
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FIG. 5 (color online). P%(A,,A) for A; = 4 over the interval
A, < A < 0.8, for neutrinos in matter. Parameters are taken from
the SNM. Exact result (solid curve). Our expression for the
oscillation probability evaluated with the a-expanded EV
(medium-dashed curve). Our expression for the oscillation
probability evaluated with the sin? @ ;-expanded EV (long-
dashed curve).

These results confirm that the expansion in « is a reason-
ably good approximation below the atmospheric resonance.
The onset of the failure of the sin® §,;-expanded EV near
the atmospheric resonance begins to become visible for
A > A,. Results shown here apply over the same range of
neutrino energy, baselines, and medium properties as those
given in Egs. (148). The extrapolation applies, of course,
only for Az <A<08.

4 08<A<12

Numerical studies using Eqgs. (146) and (147) show that
for 0.8 < A < 1.2 taking A; = 4 is sufficient to ensure that
the three Bessel functions maximally interfere. In Fig. 6,
we compare the oscillation probabilities over this region.
These results confirm that the expansion in « is a reason-
ably good approximation across the atmospheric reso-
nance. The sin? @ ;-expanded oscillation probability is

PpeH
044
042 —
0.40 —
038 —
036
034 —

032 |

L L L L A
0.9 1.0 1.1 12

FIG. 6 (color online). P (A;,A) for A; = 4 over the interval
08 <A< 1.2, for neutrinos in matter. Parameters are taken from
the SNM. Exact result (solid curve). Our expression for the
oscillation probability evaluated with the a-expanded EV
(medium-dashed curve). Our expression for the oscillation
probability evaluated with the sin®#,3-expanded EV (long-
dashed curve).
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B

FIG. 7 (color online). P (A;,A) vs A for neutrinos in matter
over the interval 1.2 < A < 2.5 taking A; = 4. Parameters are
taken from the SNM. Exact result (solid curve). Our expression
for the oscillation probability evaluated with the a-expanded EV
(medium-dashed curve). Our expression for the oscillation
probability evaluated with the sin® @, ;-expanded EV (long-
dashed curve).

not shown because it fails here. Results shown here apply
over the same range of neutrino energy, baselines, and
medium properties as those given in Eqgs. (148). The

extrapolation applies, of course, only for 0.8 <A < 1.2.

5.12<A <25

Numerical studies using Egs. (146) show that for 1.2 <
A < 2.5 taking A; = 4 is sufficient to ensure that the three
Bessel functions maximally interfere. In Fig. 7, we compare
the oscillation probabilities over this region. These results
show that P**(A;, A) evaluated with the a-expanded EV is
relatively accurate here. The sin® 6,3-expanded oscillation
probability agrees with the exact result reasonably well
for A > 1.6.

From Eq. (148), we see that with the value A; = 4, and
in matter of mean density similar to that of the average
density of the entire earth, p[gm/cm®] =5.52, the

A

—0.4 —0.2 0.2 0.4

FIG. 8 (color online). P (A,,A) for A; = 35 over the interval
—05<A< 0.5, for neutrinos and antineutrinos in matter.
Parameters are taken from the SNM. Exact result (solid curve).
Our expression for the oscillation probability evaluated with the
a-expanded EV (medium-dashed curve). Our expression for the
oscillation probability evaluated with the sin® 6,3-expanded EV
(long-dashed curve).
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breakdown of the sin’ #,5-expanded EV starts to becomes
less visible for A > 1.2, corresponding to neutrinos
of energy E[GeV]|~6.2 and baselines greater than
L[Km] = 23,500 (considerably larger than the diameter
of the Earth).

6. -05<A <05

In Fig. 8, we compare the oscillation probability calcu-
lated with the exact eigenvalues to the oscillation probability
calculated with the expanded eigenvalues for —0.5 < A <
0.5, taking A; = 35. Figure 8 confirms the earlier obser-
vations that the expansion in sin” ;5 is a valid approxima-
tion within the solar resonance region, whereas the
expansion in « is not for both neutrinos and antineutrinos.

C. Intrinsic limitations

It is important to note that when using expanded EV,
the range of validity of the oscillation probability
Pe(A;,A) is limited even when it is evaluated using
the convergent eigenvalue expansion. This arises because
the error in the phase of the trigonometric functions

sin(A, AE‘E[K]) grows with A; . Eventually, with increasing
A;, the error in the phase will lead to an unacceptable error
in P(AL,A).

When spurious effects of this type would show up from a
comparison of the exact partial oscillation probability
evaluated with the exact E, to the exact partial oscillation

probability evaluated with the convergent expansion of Ey.
A divergence between the calculated results of these two
calculations herald the limit of A; beyond which the use of
expanded eigenvalues breaks down for P(A,, A).

It is clear from Fig. 1 that the region of validity for both
the sin” @, expansion and the a expansion extend out as far
as A; = 35.

D. Discussion

The results of this section suggest a natural division of
the full range of A into regions. One significant region,
which we call the solar resonance region, covers the range
0 <A <0.2. The solar-resonance region contains, of
course, the solar resonance at A = a. Another is the
atmospheric resonance region containing the atmospheric
resonance at A & cos 20,5. This region covers the inter-
val A, < A < 2.0.

The region between the solar and atmospheric
regions, 0.2 < A < A,, is a transition region in the sense
that within it the expansion in @ is improving rapidly and
the expansion in sin” 0,5 rapidly deteriorating. Within this
region, the EV expansions in sin’6;; and a are of
comparable accuracy. The asymptotic region covers the
interval A > 2.0, where the EVs are approaching their
asymptotic behavior.
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In future work, we will make a comparison of the our
oscillation probability evaluated with the exact eigenvalues
to the approximate oscillation probability given in
Refs. [4,5]. By comparing those results to our oscillation
probability evaluated with &-expanded EV found in the
present paper, we will be able to identify regions where our
Hamiltonian formulation might lead to more effective
approximations. Based on this information, we will sub-
sequently present any new approximate results we believe
be helpful.

VIII. SUMMARY AND CONCLUSIONS

We have presented exact, closed-form expressions for
the neutrino oscillation probabilities in matter using our
Hamiltonian formulation within the framework of the
standard neutrino model assuming three Dirac neutrinos.
Our goal is to benchmark approximate formulations having
known difficulties arising from expansions commonly used
to model neutrino and antineutrino experiments envisioned
for future neutrino facilities.

We have shown explicitly that for small a and sinf3
there are branch points in the analytic structure of the
eigenvalues that lead to singular behavior of expansions
near the solar and atmospheric resonance. The numerical
calculations presented indicate regions in which the small-
parameter expansions are guaranteed to fail and should be
avoided in practice.

APPENDIX A: TIME EVOLUTION OPERATOR
S(T) IN OUR HAMILTONIAN FORMULATION

Our Hamiltonian formulation was presented in
Sec. IITA. In this appendix, and in accord with the
discussion in Sec. III A, we give explicit analytic formulas
for the time-evolution operator S(L) = e~ A1 in terms of

A

f:‘f and the parameters defining H,.

1. Expression for S(7) in terms of F%

Introducing dimensionless variables, the time-evolution
operator S(7') in Eq. (106) may be written,

Se(L) = ZF;I’ cos2E,A;
7

— iy F¢sin2EA, . (A1)
4

Here F ;b, defined in Eq. (54), may be found by evaluating
Eq. (Al) at L=0 and obeys the normalization
condition

(A2)

Bap = Y _F4.
4
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Using the identity cos2f = 1 — 2sin” f, we write

S(L) = > Fe(1-2sin> E,A,)

4
— iy Fesin2E,A,
4
=S Fe -2 Fesin’ oA,
4 4
— iy F¢ sin2E A, (A3)
4
Now, using the normalization, Eq. (A2),
S(L) = 8,y =2 Fesin’ E A,
4
— iy Fesin2E A, (A4)
4
Thus, for calculating P*’(L) in Eq. (63),
Re[S™ (. 1)] = 6,5 = 2> Re[F&]sin’ E A,
4
+ > Im[Fe]sin2E,A
4
Im[S“ (¢, 1)] = =2 _Im[F%]sin® E, A,
4
— > Re[F]sin2E A, . (A5)
4

2. Analytic expressions for VAVO (7], Winl?], and
Weos|] in terms of H,
In this appendix we give exact, analytic expressions the

S(T) in terms of E, and the parameters defining H,. We
begin with Eq. (57), which expresses F' ;” in terms of an

operator ‘;\_V[Lﬂ] and most easily accomplish our goal by
making the following rearrangement of terms in W[¢],

W[¢] = UH}, Ut — UH,, UTS[¢]
+ UH,, UV + VUH,, U*

+ V2 = VZ[f] + 110[7). (A6)

Here, 2[¢] is the sum, and I1[£] the product, of two EV as
defined in Egs. (42) and (43).
It is useful to recall that X[#] and I1[#], defined in this

fashion, depend on # entirely through IAZ ¢. In particular [19],
from Eq. (44),

2] = —a - E,, (A7)
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and, from Eq. (47),

n[¢] = b+ aE, + E,, (A8)

with a, b given in Eq. (35).

Explicit expressions for W[¢] are easily found in terms of
H, using Eq. (A6), from which it follows that its entire
dependence on &, occurs through three operators, Wy[7],
Wcos [f] and Wsin [KL

W[£] = Wol£] + cos 8e, W [£]

+isinS,, Wa[£], (A9)

with VQVO [€], VcVCOS [#] and Wsin[f] real and independent of
8.p- Additionally, W, [#] antisymmetric, whereas W .s[¢]
and W[#] are symmetric, under exchange of initial and
final states. It follows that TrW . [£] = TrW,[¢] = 0 and,

therefore,

TrW[£] = TrW, 2. (A10)

Then, from Eq. (A10) and the definition of F ;” in Eq. (54),
we find the trace relationship

TrW[¢
Ter, = TV

D]

= 1.

(A1)

a. Analytic expressions for W,[7]
For flavor changing transitions, v; — v;, the matrix
elements of W[¢] are found to have the structure

(M(u)|Wo[£]|M (e)) = Wi [£] = cD[£] cos 0y

(M (2)|Wo[£]|M(e)) = W' [¢] = —c(2)[¢] sin by

o £23
]

ME@OIW[AIMp)) = W] = @[] sin205.  (A12)

We use the convention that a quantity O(“?) written with
parentheses enclosing ab is a number, not a matrix element.
As noted, 0% written without parentheses surrounding ab
is a matrix element. This distinction may be obvious in the
present context, but later on this distinction may not be so
obvious. R R

Note that W [£] and W' [£] are not independent. The
corresponding coefficients ¢()[£] of for flavor preserving

transitions are defined with fE? in Eq. (A8) separated out,

(M(D)|Wo[£]|M(i)) = Wo [£]

=E 4[], (A13)

The matrix for W, [¢] is, thus,
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C(l]) V]
c12)[£] cos 0,5
]

—c(12)[£] sin 0,5

Wolt] = 1x E; +

Writing the dependence of ¢(/)[£] on E, explicitly,
ciN[e) = i + \{VE,, (A15)

and expressing the results in terms of the combinations of
mixing angles,

+ . . .
C(1 ) = c0s? 0, 082 O3 £ sin® O3 sin® 0, sin® 0,3

Cgi) = cos? 6, £ sin” 0, sin” 0,5, (A16)
where Cgi) was defined earlier in Eq. (36), we find the

following exact results. For the flavor-changing transitions,

célz) _ 2 _
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c12[f]cosOy;  —c1D[£]sinb,;

@7 c®[£] sin 26,5 (A14)
¢P[¢] sin 20,3 c3I[e]
c(()l D = acos? 0, cos? 03
A = —cos20,5 —aCl?, (A18)
C(()zz) = a(1 — sin? 3 cos® 0,3 — C(2+>)
+ A(cos? 0,5 cos? Oy + a(CS — cty)
AP = 1 4 cos203sin2 055 —a(1 - CL) — A, (A19)

The coefficients ¢33 follow from ¢(?? by the exchange
sin @,3<> cos 0,3. Consequently, there are only four inde-

pendent matrix elements for VA_VO [7], two diagonal and two
off-diagonal. With the eigenvalues independent of 0,3, it

¢ == gcos 015 sin 26,
o 2 follows that
C(()23) = — 5 (Sin2 912 - C052 9]2 Sin2 913)
A i W5 2] = WE' Tl ingysercosts- (A20)
- 5 (C052 913 — an )) e
0523) — %(cosz 03 — aCé_)), (A17) b. Analytic expressions for VéVsin [¢] and Wcos 7]
The matrices for W,[£] and W_[¢] have the following
and for the flavor-preserving transitions, simple structure
0 —a"[f]sin6y; —a'?[£] cos b,
Wanl€] = | a'?[£]sin 6,5 0 a®[¢] (A21)
a2[£] cos 03 —a®)[7] 0
and
0 al'2)[£] sin 6,3 al'2)[£] cos 0,3
Weosl?) = | a"[¢]sin€y; —a®[¢]sin260,; —a®)[£]cos26,;5 |, (A22)
a'?[f]cos O3 —a®[f]cos20,; a®)[£]sin 204
|
where A
al® = —Tasin 20,, sin 03 — g sin 20,5 sin 05
R 23) A . .
423 ¢] = a(()23) n (123)Et’ a<1 ) = Esm 201, sin 05
a a .
a?[f] = a(()m + glz)Ef. (A23) a(<)12> = —50052912 sin 263
1
al'? = Ssin20)3 - % sin20,, sin 26 5. (A24)

We find the exact results
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c. Interconnections among 13’0 [“], VﬁVsin [¢], and Wcos [7]

Significant simplifications arise from interconnections
among Wy[£], Weu[£], and W, [£]. One of these follows
from Egs. (A21) and (A22), which show that the matrix

elements of VQVCOS [¢] and VA_VSirl [¢] are proportional, namely,
(M(a)|Wnl£]|M (D)) (a)[Weos[£]|M (D)), (A25)

with the constants of proportionality f,;, independent of 7,

:fab<M

0 -1 -1
fah = 1 0 —COS_1 2923 (A26)
1 cos™120,; 0

Another follows from Eqs. (A17) and (A24), from which it
follows that

a(lu)c(()u) B (()12)0512) _ 9K
A9 _ ) _ e (a27)
The quantity K is
a(l —a)
K=-2"%
8
X €08 03 sin 20, sin 260,5. (A28)

3. Expressions for S(T) in terms of 6,

The dependence of S(T') on the CP violating phase 6., is
very simple and follows from Egs. (A5) and (A9), noting

that F% = W*[¢]/D[£), Eq. (56). We, thus, find
Re[S (1, 1)] = b, — ZZ AO sm2 E/A,
Wab [f] R
—2cos SCPZ%sinz E,A;
D|¢

Wab % N
+sind, » inl%] G 2E,A;,

(A29)

and

m[S (7, 1)] =

(A30)
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The dependence of S(L) on f?f and the remaining param-
eters of H, are given analytically through Eqgs. (Al4),
(A21), and (A22).

APPENDIX B: OSCILLATION PROBABILITY
P(v, — v;) IN OUR HAMILTONIAN
FORMULATION

The neutrino oscillation probabilities are obtained
directly from our expression for the time-evolution oper-
ator, Eq. (106). In the high-energy limit, the oscillation

proball)yility in Eq. (71), expressed in terms of Re[F’ %L,} and
Im[FZ7], is
Py, = vp) = 2ZIm F%i, sin ( ZAf?ff/AL)
>t
+2) Re[F¢]cos (2AE,»A,).  (B1)
>t

where 1 <7 < 3, where A; was defined in Eq. (33), and

AE,, in Eq. (43).
Note that Re[F4’] satisfies a normalization condition,

> ReF, =5,
44

(B2)

found by evaluating Eq. (71) at t = ¢ and recognizing that
P(v, — vp) is a real number. Taking Eq. (B2) into account
and using the identity 1 —cos2f = 2sin?, we find an
equivalent expression,

Pvg = vp) =84 +2) _Im[F)]
>t

x sin (2AE pAp)

- 4ZR6F”, sin? AE”/AL)
>t

(B3)

that bears a striking similarity to the familiar vacuum
expression with F42, playing a role analogous to J%2, (as,
for example, in Eq. (1) of Ref. [4]). Equations (B1) and
(B3) make use of the fact that a probability is purely real.

; b
1. Properties of F),

It follows from Eq. (72) and the observation that the
energy of a neutrino or antineutrino in matter is indepen-
dent of 6., that F’ ; , 1s symmetric under the simultaneous
exchange of a,b and 7,7,

ab
Fy, =

Fb,. (B4)
Using in addition the Hermiticity of ﬁ/[f ], Eq. (59), we find

the reflection symmetry,
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ba __ prabx
Fff’ Fff’

Fo, = Fgp'. (BS)
From this, along with Eq. (B4), it follows that ImF%. Yo 1

antisymmetric under the exchange of either (a,b) or
@.7),

ImF4), = —ImF%), = —ImF%%,, (B6)

whereas ReF4?, is symmetric,

ab uh _ ba
ReF®, = ReF®, = ReF%,. (B7)

There are no symmetries connecting the F%, of neu-
trinos to those of antineutrinos because these energies are,
in general, different. This is not the case, however, in the
vacuum for theories invariant under CPT.

2. General expressions for F%,

The quantity F% 9. 1s most easily obtained from w%},,

M(b)|W[£)|M(a))
X (M(b)|W[£]| M (a))".

L”f’
(B8)

Analytic formulas for wy’ b, are easily obtained in terms of

the parameters of H, usmg ﬁ/[f] given in Eq. (A9).
Equation (72) then gives F4 Yy as

ab
ab . Wee

—H—. (B9)
DI£D[¢"]

Because VQV[f] consists of three terms, one proportional
to sin §,.,, one proportional to cos §,.,, and one independent

cps cp
of 8., the dependence of w*[¢,¢'] on 5., can be
expressed a priori through the five operators,
ab __
Wl = Wi s + COS 8y Wee, 1
+ 0828, W +i( sin§,,w
cp cossz’ cpsin £
+ sin g, cos 5. ,w s1n><cosff’>’ (B10)

each of which is uniquely determined by Egs. (A9) and

(B8). Clearly, just as for the VA_Vi [¢], the matrix elements of
w;[£,¢'] are real and independent of &,.,,.
Using the Hermiticity of W[#] and W .[#], and the anti-

Hermiticity of VA_VSin [¢], we then find
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Wgh [f] WO [l’ﬂ,] + Wsm[f] Zl?l[l’ﬂ/]
b

2 ab 2.a ,
Wo [£]Wein[Z']

Woz’ﬂ

w:ii}l e = Wsm 7] WO [Z'] -

»

nggff/ = Wcos [f] WO [Z’ﬂ/] + WO [f] Wcos [f/]

a 2.ab 2.ab
chngﬂ = Wcos [f] Wcos [f/] - Wsin [f] Wsin [I’ﬂ]
a o ab ab £ ab
Wsiln xcoslf Wsin [f} cos [l’ﬂ/] COS [l’ﬂ] ng [f/] ' (Bl 1 )

Note that Egs. (A25) and (A26) require that w, « .os Vanish
identically,

ab _
Wsinxcos — O’

(B12)
so this term need not be considered further. Note also that
the dependence of w? P f, on £ and ¢’ arises entirely from the
elgenvalues Ef and Ef/ as W* [ﬂ depends on ¢ entirely
through E ». Finally, we will find it useful to define w¢’[¢]
in analogy to W[#] in Eq. (57),

wit[1] = wi*[3.2]
wit[2] = wi*[3.1]
wit[3] = wi*[2.1] (B13)

These are the only three w¢’[¢, #'] needed because of the
restriction £ > ¢’ in Eq. (B3).

3. Analytic expressions for w [£.¢']

2 ab 2 ab

From the symmetries of WO [€], Weos[£], and W (7], we
see from Eq. (B11) that ng 4o 1 0dd under the exchange of
either a, b or ¢, ¢'. The term Wsm e therefore, vanishes for
a = b [and for ¢ = ¢'], but again'recall that restrictions on
the sums is such that wg f, contributes only for 2 > ¢

Using the general results in Eqgs. (Al4), (A21), and
(A22), we find w Gnee given in Eq. (BI1) is, as a matrix,

| 0O A -A
Winer = 5sin205| -4 0 B | (Bl4)
A —-B 0
where
A = ~(a[2) D[] = D [£]a2 )
= —(aglz)cém — a(olz)cglz))AIQE”/ (B15)
and
B = 2(a®[A)cP[F] - B[l
= Z(a(123)c(()23) - aé23)c<123))A;5m. (B16)

We see from Eq. (A27) that A = B, so from Eq. (B14) we
find the following simple expression,
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Wein fz,‘” = K'sin 2623AEff’€sm’ (B 17)
and correspondingly

wi[£] = K sin 2923AE[1/”] €L, (B18)

where €, is the antisymmetric matrix

0 -1
en=|-1 0 1 (B19)

I -1 0

4. Analytic expressions for w? @ wc{’,s, and wi

We also see from the symmetrles of W ], we, [¢], and
v‘vg’; [#], that wéb ,, we ., and w b, are even under the

exchange of a, b and/or 2,7’ Slnce the dependence of all

ﬁfﬂ on 7 and ¢’ arises entirely from the eigenvalues E ¢ and
Ef/ it follows that the terms symmetric in £ and ' must be
functions of symmetric combinations of E » and E o

There are only three irreducible symmetrlc functions of
Ef and E,f/ a constant, the sum E s+ Ef/ and the product
EfEf/, just as for W[f] in Eq. (A6). Thus, we antlclpate that
the entire dependence of w§”[#], wé[£], and w? ,[£] on ¢
will occur through Z[f] and H[f] in Egs. (A7) and (A8)
and, hence, through Ef, as for W[f]

In the following discussion, it is important to recall our
convention that a quantity, such as w(®)[£], written with
parentheses enclosing ab is a number, whereas w|¢]

written without parentheses surrounding ab is the element
of a matrix w[¢],

wf] = (M

(D) w[e]|M a)). (B20)

a. Matrix elements of w_,:
Using Eq. (B11) with Egs. (A21) and (A22), the matrix

for w,.e is found to be
0 0 0
Weoer = Sin226045 | O Wg)i) _Wiii) , (B21)
0 —wed wel
where
Wﬁ? o = a®[£1a?[e
— a4 P By + Be) + R
(B22)
Correspondingly,

PHYSICAL REVIEW D 91, 076005 (2015)
w2 = aP? + ol d P 5[e) + P12,

oo (B23)

Note the somewhat subtle notational distinction between
the operator w.,o and the coefficients w( Y )2 in terms of
which it is defined. The latter is indicated by parentheses
that surrounding the superscnpts By contrast, superscripts
without parentheses, as in w , indicate the transition

Vo = U 1. W = (M(B)|w, M (a).

b. Matrix elements of w

We find only three independent, nonvanishing matrix
elements for w.,, one diagonal element and two off-
diagonal elements. As a matrix,

0 (12) (12)

Weos —Weos
Weos = 5102055 | wld  wid  wi) (B24)
—whet wid wiad
The two independent off-diagonal elements,
12 _ 1 (12) (12) 1 p1 (12) (12) o1
Weosgr = E(a [Z]c 2] + 1D [e]altH )
Wioorer = =@ [P + BI[E]a) (') cos 205,
(B25)

follow immediately from the structure of ﬁ’gb[f’] and
V_VCOb [#] given in Eqgs. (A14) and (A22), respectively.

Taking w'?? from Egs. (A14), (A22), and (B11), we
obtain

22
Worr = =a A (ES + )
—(E7 + c®[£)a®) ). (B26)
Similarly, for the diagonal matrix element D,
33 %)
Wore = dPNA(EL + O[)
+ (E,g + B3] a® . (B27)

(11)

The element W s st

2,(11
Wﬁos)[f] =0.

Correspondingly, for the off-diagonal matrix elements
we find

vanishes as a consequence of
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1
WS)%) 1] = aE)u)c(()u) i 5 (agu)cém n aémcgu))
x 2[£] + a{"? " TI[e)

—2c0s 2053 a(()23) 0623)

— cos 2923(a<123)c(()23) + a(()23)c(123>)

x Z[Z]

wi[f] =

—2c0s 20,07 P, (B28)

which simplify somewhat by using Eqs. (A27) and (A28).
For the diagonal matrix elements,

Wg)g) [’f] _ _Za(()23)c(()22) _ (agzs)c(()zz) n a823)0522))
x Z[£] + 2(a(()23) - a§23)c(122))H[ﬂ
—aPzne] - afVz[e)? (B29)
and
W2 = 20 1 (a1 g 3y
x 2[¢] - 2(af” - i eP1le]
+ad™zeme) + P2 (B30)

The matrix elements wCog [f] and wm [f] are not indepen-

dent. The reason is that w§05> [¢] may be found from wéﬁ? [7]

by making the replacement sin 6,3<> cos 6,3 [Eq. (A20)]
and by flipping the overall sign. Recall that under this
replacement, ¢(??)<>¢(33) and that ¢®¥ is independent
of sin 3.

c. Matrix elements of w,

We find four independent, nonvanishing matrix elements
for wy, two diagonal and two off-diagonal elements. As a
matrix,

11 12 13

WD 2,0
W = W(()lz) (()22) W(()za) ' (B31)

I Y

The off-diagonal elements,

(12) _ (12

wore = P [£] [f/] cos” 3
+ a2 [£]a1?)[£'] sin? O3
W(()}f?f)’ = cP2)[£]c! [ '] sin® 0,3
+ a2 [£]a"1?[¢"] cos? 0,5
w((f;{?, = c@[£]cP)[¢] sin? 20,5
+a®[£)a®) [, (B32)

PHYSICAL REVIEW D 91, 076005 (2015)

follow immediately from the structure of W’ [¢'] and W5 [£]
given in Eqs. (A14) and (A21), respectively. The diagonal

elements wg)”") are found from Eqgs. (A14) and (B11),

oo = (E; + ¢ [2)) (Bp + c™[¢).  (B33)

Correspondingly, for the off-diagonal matrix elements,

w<()12) £l = C(()n)2 cos? O3 + aél2)2 sin” 03
+ (c(()]Z)CEIZ) cos? 03 + a(()maglz) sin® 63)Z[¢]
+ (¢} cos? O3 + a'* sin? 03 )11 ¢
W 16] = 2 sin By, + afl? cos 0y
(el s -+ " cor 0
+ (0(112)2 sin® 6,3 + aglz)z cos? 03)I1[7]

w(()23)[f] = (() 32 Sin2 20, +a(() 32

+ (a(()23)a523) + C(<)23)C(123) sin? 2043)Z[¢]

+ (¢ sin2 05 + o112 (B34)
For the diagonal matrix elements,
nn nn)2 nn nn)2
wy ] = e = (2¢5™ — "))
+ Mg 4 M)
+ [7)>. (B35)

As for w,,, the matrix elements W(()zz) [¢] and w(()33) [¢] are

(13

not independent. The same is true for wy )[f] and w(()lz) [7].
In both cases the matrix elements may be found from one
another by making the replacement sin@,3<> cos by
[Eq. (A20)]. Recall that under such a replacement c¢(?2) <>
¢0% and that ¢('? and a(®) are independent of sin 0.

Writing the dependence of the coefficients w!™" [£] on
E, explicitly,

(mn) £

w"™ ] = wie" 4w E, +wih"ES. (B36)

5. Analytic expression for Im[F%,] and Re[F‘}’;,,]

A general form for the real and imaginary parts of F% gp in
terms of the four operators, (Wy, Wgin, Weoss Weos2) 18 found
from Eq. (72) and Eq. (B10). For Im[F;f,] using Eq. (B17),
we find

ab

a in ¢
Im [Ff?/] - nécpw
1 AE,,
= =sind,, sin 26,;Ke?’ _i (B37)
2 D[Z]D[¢"]

Then, using the easily verified result,
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N
e G (B38)
Dl/ID[¢'] D
we find
ca(l -
ImF4, = —siné, e el Lf)a)cos 013

X 8in 20, sin 20,5 sin 20,3. (B39)

For Re[F4,] we find

PHYSICAL REVIEW D 91, 076005 (2015)

Re[F“b,] - % $S M
" DlADI] " DIADIZ]
Wab o
+ cos? 5, sl (B40)
DIAID[¢]

Equations (56) and (B38) show that F ;?, plays a role for
P(v, — v,) similar to the one that F4 plays for S(T).
Using Eq. (B10), it follows from Egs. (B37) and (B40) that

b s b
ImF¢) is odd, and ReFy), even, under 6., = —0).
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