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We investigate instabilities of classical Yang-Mills fields in a time-dependent spatially homogeneous
color magnetic background field in a nonexpanding geometry for elucidating the earliest stage dynamics
of ultrarelativistic heavy-ion collisions. The background field configuration considered in this article is
spatially homogeneous and temporally periodic and is introduced by Berges-Scheffler-Schlichting-Sexty
(BSSS). We discuss the whole structure of instability bands of fluctuations around the BSSS background
gauge field on the basis of Floquet theory, which enables us to discuss the stability in a systematic way.
We find various instability bands on the ðpz; pTÞ plane. These instability bands are caused by parametric
resonance despite the fact that the momentum dependence of the growth rate for jpj ≤ ffiffiffiffi

B
p

is similar
to a Nielsen-Olesen instability. Moreover, some of the instability bands are found to emerge not only in the
low-momentum but also in the high-momentum region, typically of the order of the saturation momentum
as jpj ∼ ffiffiffiffi

B
p

∼Qs.
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I. INTRODUCTION

Remarkable properties of the quark-gluon plasma (QGP)
have been revealed by the recent ultrarelativistic heavy-ion
experiments at the Relativistic Heavy-Ion Collider at
Brookhaven National Laboratory and the Large Hadron
Collider at CERN. Hydrodynamic models turned out to be
successful in describing the transverse momentum (pT)
spectra and the anisotropic flows (vn) of hadrons
[1–3]. The observation of large elliptic flow parametrized
by v2 suggests two important features of QGP: nearly
perfect fluidity and early thermalization. The initial spatial
eccentricity of the participants seems to be efficiently
converted to the final momentum anisotropy. This is only
possible when the viscosity is small enough and the
pressure is developed in the early stage. Hydrodynamic
phenomenology suggests that shear viscosity of QGP is
η=s ¼ ð1 − 3Þ=4π. Hydrodynamic analyses also require a
short thermalization time, τth ¼ ð0.6–1Þ fm=c, which is
significantly shorter than that evaluated from transport
theories [4,5]. There are no conclusive scenarios found
yet to explain thermalization in the far-from-equilibrium
stage of heavy-ion collisions.
Some of the promising mechanisms for early thermal-

ization are instabilities which cause rapid growth of a
classical Yang-Mills (CYM) field followed by its decay
into particles. The CYM field theory is believed to be a
good starting point for describing the earliest stage of
heavy-ion collisions. In the high-energy limit, nuclear wave
functions are well expressed by the color glass condensate
(CGC) effective field theory [6,7]. In the framework of

CGC, the classical solution gives transversely polarized
color electromagnetic fields whose sources are valence
partons in the large-x region. The contact of two nuclei
converts CGC into the state with longitudinally polarized
color electromagnetic fields called glasma [8]. Classical
fields in glasma show instabilities, and some of classical
gluon fields grow exponentially, show chaoticity and may
decay into particles via field-particle conversions. Thus,
instabilities of classical fields should play important roles in
thermalization in heavy-ion collisions [9–17].
It has been known for a long time that an instability

occurs in electromagnetic plasmas when anisotropy is
present. When the particle momentum distribution is
anisotropic, the particle current and the background mag-
netic field enhance each other. This is called the Weibel
instability [18]. The Weibel instability of the color mag-
netic field is also expected to emerge in glasma and has
been discussed as one of the triggers leading to early
thermalization in heavy-ion collisions [10,11,19,20]. The
system under a homogeneous and static color magnetic
field shows a different instability. Under a homogeneous
color magnetic field, the spin-magnetic field interaction
makes the lowest Landau level negative for the spin one
system. If this is the case, the resultant instability called
the Nielsen-Olesen instability [21], is also expected as a
triggering mechanism of the early thermalization in heavy-
ion collisions [22–24].
This is not the end of the story. Yet another instability

can occur under a homogeneous but time-dependent color
magnetic field. This type of instability is alluded to by
Berges, Scheffler, Schlichting and Sexty (BSSS) [25].
Their analysis based on the classical statistical simulation
suggests that low-momentum modes become unstable*tsutsui@yukawa.kyoto‑u.ac.jp
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under the time-dependent color magnetic field. This insta-
bility is seemingly reminiscent of the Nielsen-Olesen
instability, because it is caused by the homogeneous color
magnetic field and the dominant growth rate has similar
longitudinal momentum dependence to that of the Nielsen-
Olesen instability. They also suggest that there exists a
subdominant instability band in a high-momentum region.
It is caused by the time dependence of the background field,
and thus the underlying nature of the subdominant insta-
bility is thought to be induced by parametric resonance.
The Nielsen-Olesen instability and the parametric-
resonance-induced instability seem to coexist in their study.
However, the analysis on the nature of the instability

has some ambiguous points to be further elucidated. The
Nielsen-Olesen gauge configuration and BSSS gauge
configuration are not connected with each other by any
gauge transformations. Moreover, gauge fluctuations do
not form Landau orbit under the BSSS configuration since
not only the color magnetic field but also the background
gauge field is homogeneous. Consequently, one may
wonder what is the genuine nature of the instability induced
by the homogeneous but time-dependent color magnetic
fields—parametric or Nielsen-Olesen instability? Or does
the one induce the other?
In this article, we perform a systematic investigation of

the instabilities of classical gluon fields under the homo-
geneous but time-dependent background color magnetic
fields in the linear regime. Specifically, we consider
the BSSS initial condition [25] shown in Eq. (3) for the
background field, whose solution is known to be the Jacobi
elliptic function. This setup may not be very realistic but
highly idealized for heavy-ion collisions, where the gauge
configuration is rapidity independent, there are no color
flux tubes, and there is an absence of the longitudinal color
electric fields. But at the same time, the configuration is
similar to the glasma because the resultant color magnetic
field is originated from the non-Abelian nature of QCD.
Therefore, it should provide insight into the realistic
situation by studying the time evolution from the BSSS
initial condition as noted in Ref [25]. We analyze the
stability of fluctuations around the BSSS background
gauge field systematically on the basis of the Floquet
theory, which consists of the basis of the Bloch theory. In
this setup, we can precisely obtain growth rates of the
fluctuations by solving the equations of motion for a given
momentum during one period of the background field and
by evaluating the eigenvalues of a 3ðN2

c − 1Þ × 3ðN2
c − 1Þ

matrix called a monodromy matrix for color SUðNcÞ. As a
result, we get the complete structure of the instability bands
in the whole momentum region not only in the longitudinal
but also in the transverse directions caused by parametric
resonance.
Parametric resonance plays an important role in many

fields of physics. For instance, it would contribute
to preheating in the early universe in cosmic inflation

[26–29]. Parametric resonance also might trigger thermal-
ization in heavy-ion collisions because it can give rise to
rapid particle production. Instability due to parametric
resonance in the O(N) scalar field theory has been analyzed
and an exponential growth of the particle number is
demonstrated in numerical analyses [30–32]. The present
analysis should give a general and lucid mathematical basis
of the parametric resonance or parametric instability
ubiquitous in many fields of physics.
This article is organized as follows. In Sec. II, we explain

our setup and the fluctuations of the CYM field around a
homogeneous time-dependent color magnetic field. We
also give basics of parametric instability and a brief
overview of the Floquet theory, which is applied to analyze
instability bands. In Sec. III, we show numerical results of
instability bands of Yang-Mills fields. Finally, we give a
summary and discuss the relevance of these instabilities to
the thermalization in the early stage of heavy-ion collisions
in Sec. IV.

II. INSTABILITIES UNDER A STRONG
COLOR MAGNETIC FIELD

We discuss instabilities of fluctuations of the CYM field
under the BSSS background field. In Sec. II A, we derive
the linearized equation of motion (EOM) of the fluctuations
and show that the EOM is a special case of a Hill’s
differential equation. It is well known that solutions of a
Hill’s differential equation show instabilities called para-
metric resonance. In Sec. II B, we review basics of para-
metric resonance according to concrete examples. In
Sec. II C, we give a brief overview of the Floquet theory
which is a general mathematical framework to determine
instability bands for a given equation with a periodic
coefficient. The reader already familiar with these topics
can skip to Sec. II D where we apply the Floquet theory to
CYM theory.

A. CYM equation under a homogeneous
color magnetic field

We briefly summarize CYM equations for the back-
ground field and fluctuations under a homogeneous color
magnetic field. Throughout this article, we take the
temporal gauge Aa

0 ¼ 0 with a homogeneous background
color magnetic field in a nonexpanding geometry.
In SUðNÞ pure Yang-Mills theory, color magnetic fields

are defined by

Ba
i ¼ ϵijk

�
∂jAa

k −
1

2
fabcAb

jA
c
k

�
; ð1Þ

where Aa
i is a gauge field and f

abc is the structure constant.
The superscripts a; b;… and the subscripts i; j;… denote
color and Lorentz indices, respectively. The gauge coupling
constant is included in the definition of the gauge fields.
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There are two types of gauge configurations to make
homogeneous color magnetic fields. One is the Abelian
configuration such as

A3
x ¼ −

1

2
By; A3

y ¼
1

2
Bx: ð2Þ

The Nielsen-Olesen instability is induced by the color
magnetic field in the above configuration. Because of the
spatial dependence of the background gauge field, the
transverse motion of gluons is quantized to form
Landau levels. The Nielsen-Olesen instability is caused
by the particles in the lowest Landau level, whose eigen-
frequency becomes complex due to the spin-magnetic field
interaction.
The other configuration is the non-Abelian configuration

given as

Aa
i ¼ ~AðtÞðδa2δix þ δa1δiyÞ; ð3Þ

which depends on time but not on spatial coordinates.
Therefore, both color magnetic and gauge fields are
homogeneous. As a consequence, px and py are good
quantum numbers. This point is completely different from
the former case. Note that there also exist homogeneous
color electric fields E2

x and E1
y, since color electric fields are

defined by Ea
i ¼ _Aa

i in the temporal gauge.
The instability of a few low-momentum modes under the

non-Abelian configuration was first discussed by BSSS
[25]. The classical Yang-Mills equation is given by

Äa
i − ðDjFjiÞa ¼ 0; ð4Þ

which is reduced to

̈~Aþ ~A3 ¼ 0; ð5Þ

by virtue of Eq. (3).
The solution for the background field is given by the

Jacobi elliptic function cnðt; kÞ since it satisfies the follow-
ing equation:

y00 þ ð1 − 2k2Þyþ 2k2y3 ¼ 0: ð6Þ

Note that we use modulus k as the second argument of
cnðt; kÞ [33], which is different from the notation
in Ref [25].
For instance, with the initial condition as ~Aðt ¼ 0Þ ¼ffiffiffiffiffiffi
B0

p
and _~Aðt ¼ 0Þ ¼ 0, the solution of this equation is

given by

~AðtÞ ¼
ffiffiffiffiffiffi
B0

p
cnð

ffiffiffiffiffiffi
B0

p
t; 1=

ffiffiffi
2

p
Þ: ð7Þ

The period of ~A is given by the complete elliptic integral of
the first kind KðkÞ: T ¼ 4Kð1= ffiffiffi

2
p Þ= ffiffiffiffiffiffi

B0

p ≃ 7.42=
ffiffiffiffiffiffi
B0

p
. In

this way, the background gauge field is a periodic function
in time.

By the shift Aa
i → Aa

i þ aai , we get the EOM of the
fluctuations described by aai . Since the background gauge
field is homogeneous, we can work with the EOM for each
Fourier component of fluctuations in the linear regime.
The linearized EOM for aai is given by

äai ¼ −Ω2½ ~AðtÞ�abij abj ; ð8Þ

where Ω2½ ~A�abij is a 9 × 9 matrix as

Ω2½ ~A�abij ¼ ð−DkDkδij þDiDj þ 2iFijÞab ð9Þ

¼ ðp2δij − pipjÞδab
þ i ~Að−2pxδij þ piδjx þ pjδixÞfa2b
þ i ~Að−2pyδij þ piδjy þ pjδiyÞfa1b
− ~A2δijðfa2dfd2b þ fa1dfd1bÞ
þ ~A2ðfa2dδix þ fa1dδiyÞðfd2bδjx þ fd1bδjyÞ
þ 2 ~A2fa3bðδixδjy − δiyδjxÞ: ð10Þ

fabc is the structure constant of SUðNÞ. When the back-
ground field is given by Eq. (3), SU(2) components,
namely, A1

i , A
2
i and A3

i , are decoupled from other compo-
nents. Hereafter, we concentrate on SU(2) Yang-Mills
theory, where the structure constant is given by ϵabc.
Without loss of generality, we can take py ¼ 0 due to the

rotational symmetry in the transverse direction. Then we
can easily find that the coefficient matrix Ω2 is a block
diagonalized matrix as

Ω2 ¼ diagðΩ2
4;Ω2

5Þ; ð11Þ

whereΩ2
4 andΩ2

5 are 4 × 4 and 5 × 5matrices, respectively.
The explicit forms of the matrices are given in Appendix A.
Thus, the linearized EOM for aai is decomposed into two
sectors:

äα ¼ −Ω2
4½ ~AðtÞ�αβaβ; ð12Þ

äA ¼ −Ω2
5½ ~AðtÞ�ABaB: ð13Þ

We use the following notation: α; β;… ¼ ð1y; 2x; 2z; 3yÞ
and A; B;… ¼ ð1x; 1z; 2y; 3x; 3zÞ.
Equation (8) or Eqs. (12) and (13) are second-order

linear ordinary differential equations with a periodic
coefficient matrix. This type of ordinary differential equa-
tion is called a Hill’s equation. In general, a Hill’s equation
has unstable solutions due to the periodicity of the
coefficient matrix [34].
It should be noted that the physical solutions must satisfy

Gauss’s law. The background field, Eq. (3), satisfies
Di

_Aa
i ¼ 0. After shifting Aa

i → Aa
i þ aai and picking up

OðaÞ terms from Gauss’s law, Dið _Ai þ _aiÞa ¼ 0, we find
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ipi _aai þ ϵabc½δb2ð ~A _acx− _~AacxÞþδb1ð ~A _acy− _~AacyÞ� ¼ 0; ð14Þ

which is to be imposed on aai at the initial time.

B. Parametric instability

In this subsection, we give a brief account of general
aspects of the instabilities under a periodic perturbation.
These phenomena are well known as parametric resonances
or parametric instabilities. First, we consider Mathieu’s
equation in order to see how parametric instabilities occur.
Mathieu’s equation is one of the simplest Hill’s equation
which has nontrivial instabilities:

f̈ ¼ −ðλþ 2ϵ cos tÞf: ð15Þ
For simplicity, we assume λ > 0 and ϵ ≪ 1. We can
investigate the stability of the solutions of Eq. (15) in a
perturbative way when the external force term, 2ϵ cos t,
can be regarded as small. When we expand fðtÞ as
f ¼ f0 þ ϵf1 þ…, the lowest-order solution is given by
f0 ¼ A0ei

ffiffi
λ

p
t þ c:c, and f1 follows

f̈1 þ λf1 ¼ −A0ðeið
ffiffi
λ

p þ1Þt þ eið
ffiffi
λ

p
−1ÞtÞ þ c:c: ð16Þ

This is the EOM for a driven oscillator. Its eigenfrequency
is

ffiffiffi
λ

p
and the frequencies of external forces are

ffiffiffi
λ

p � 1.
If λ ¼ 1=4, the oscillator resonates and becomes to be
amplified. In general, such resonance occurs if λ ¼
n2=4ðn ¼ 1; 2;…Þ. Moreover, there are more sophisticated
perturbative techniques to determine instability boundaries
λ ¼ λðϵÞ [35]. For example, the instability boundaries of
Mathieu’s equation passing through the point ðλ; ϵÞ ¼
ð1=4; 0Þ are given by λ ¼ 1=4� ϵ − ϵ2=2þOðϵ3Þ.
For the purpose of analyzing instabilities of CYM fields,

it is instructive to consider Lamé’s equation. Lamé’s
equation is a little more complicated than Mathieu’s
equation, which has the elliptic function as an external
force term instead of cos t:

f̈ ¼ −ðλþ ϵcn2ðt; kÞÞf: ð17Þ

In fact, we will see that Lamé’s equations with ϵ ¼ �1; 3
and k ¼ 1=

ffiffiffi
2

p
are obtained for some momentum modes in

the linearized EOM for fluctuations, Eqs. (12) and (13). In
particular, Lamé’s equation with ϵ ¼ −1 leads to the largest
growth rate of the above three cases, and it also describes
the CYM equation for the fluctuation mode having the
maximum growth rate. We also mention that these equa-
tions have a good property in an analytical point of view.
Lamé’s equations with ϵ ¼ 1; 3 and k ¼ 1=

ffiffiffi
2

p
are exactly

solvable to get closed form solutions [28]. When ϵ ¼ −1,
any closed form solution is not known, but its solution
has been investigated analytically [25]. The perturbative
approach mentioned above is also a general framework and
it can be performed in a parallel way as the analysis for

Mathieu’s equation, but its applicability is still limited.
It is valid only for 0 ≤ ϵ < 1. The details of perturbative
calculations are presented in Appendix B.
Instead of these analytical techniques, we will use a more

general framework to find unstable modes together with
their growth rates utilizing numerical calculations.

C. Floquet theory

We can perform precise stability analyses of the linear-
ized EOMs, Eqs. (12) and (13), by using the Floquet theory,
even though it is difficult to obtain analytic solutions.
In this subsection, we give a brief overview of the

Floquet theory (see also the Appendix of [36]).
Suppose an ordinary differential equation of order n has

a T-periodic coefficient PðtÞ, i.e.
df
dt

¼ PðtÞf ; Pðtþ TÞ ¼ PðtÞ; ð18Þ

where f is an n-dimensional vector and PðtÞ is an n × n
matrix. The fundamental matrix of Eq. (18) is defined by n
independent solutions fϕigi¼1;…;n:

ΦðtÞ ¼ ðϕ1ðtÞ;…;ϕnðtÞÞ: ð19Þ

If ΦðtÞ is a fundamental matrix, Φðtþ TÞ is also a
fundamental matrix due to the periodicity of the coefficient
matrix, PðtÞ. Then, there exists a constant matrix M such
that Φðtþ TÞ ¼ ΦðtÞM. M is called a monodromy matrix.
By construction, ΦðtÞ is a regular matrix, and we can get
the monodromy matrix M as

M ¼ Φð0Þ−1ΦðTÞ: ð20Þ
It should be noted that detM ≠ 0 since Φ is regular.
Specifically, it holds that detM ¼ 1 in the case trP ¼ 0,
which is fulfilled in Hamiltonian systems. This fact follows
from the Liouville’s theorem since detM is equivalent to
the Jacobian of phase space variables at t ¼ 0 and t ¼ T.
The fundamental matrix is represented by the monodromy
matrix as

ΦðtÞ ¼ FðtÞ exp
�
ðlogMÞ t

T

�
; ð21Þ

where FðtÞ is a T-periodic matrix. The specific form of
FðtÞ is not relevant for our discussion. The eigenvalues of
M are called characteristic multipliers and we denote them
as μ1;…; μn. Characteristic multipliers determine the long-
time behavior of the solutions. We can categorize the
stability at t > 0 by using the characteristic multipliers as
follows:
(1) If jμj > 1, the solution exponentially diverges.
(2) If jμj ¼ 1, the solution is (anti)periodic or polyno-

mially diverges.
(3) If jμj < 1, the solution is bounded.
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Thus, when jμj > 1, the solution is unstable and the growth
rate of the unstable solution is given by the exponent
log μ=T according to Eq. (21). This exponent is sometimes
called a characteristic exponent. When jμj ¼ 1, the solution
can be also unstable with a polynomial growth. This is
caused by the degeneracy of M. In Hamiltonian systems,
the maximum multiplier jμjmax is bounded as jμjmax ≥ 1
since detM ¼ 1.
Let us take a single component Hill’s equation,

f̈ ¼ −ω2ðtÞf; ð22Þ

where ω2ðtþ TÞ ¼ ω2ðtÞ. In general, a second-order
equation can be transformed into a first-order equation
with two components. In fact, by putting f ¼ ðf; _fÞ,
we have

df
dt

¼
�

0 1

−ω2ðtÞ 0

�
f : ð23Þ

This equation can be easily analyzed as we will see.
Because of the conservation of the Wronskian,

detΦðtÞ ¼ f1 _f2 − _f1f2, we find detM ¼ μ1μ2 ¼ 1 by
taking the determinant of Eq. (20). Therefore, the eigen-
values of the monodromy matrix follow the characteristic
equation: μ2 − ðtrMÞμþ 1 ¼ 0. Thus, the stability of the
solution of a single component Hill’s equation is governed
by trM as
(1) If jtrMj > 2, the solution exponentially diverges.
(2) If jtrMj ¼ 2, the solution is (anti)periodic or linearly

diverges.
(3) If jtrMj < 2, the solution is bounded.

This fact simplifies the stability analysis of a single
component Hill’s equation because we can discuss the
stability without diagonalizing M.
To see how the general Floquet analysis is performed,

we shall go back to the stability analysis of Lamé’s
equation (17), where the periodic coefficient ω2ðtÞ is
given by the elliptic function. Here, the parameters λ
and ϵ are arbitrary. As we mentioned in the previous
subsection, the linearized CYM equations, Eqs. (12) and
(13), take a form of Lamé’s equation for some momentum
modes. For instance, Eq. (12) becomes block-diagonalized
and is decomposed into two simultaneous equations
for zero transverse momentum modes (px ¼ py ¼ 0) or
zero longitudinal momentum modes (pz ¼ 0). The EOM
for these modes in CYM theory is summarized in
Appendix A.
We here consider the equation for ða1y; a2xÞ of zero

transverse momentum (px ¼ py ¼ 0) shown in Eq. (A7).
We can decompose the EOM Eq. (A7) into two equations
which give Lamé’s equation with ϵ ¼ −1; 3. We also
consider an equation for a2z of zero longitudinal momen-
tum (pz ¼ 0) shown in Eq. (A18). This gives Lamé’s
equation with ϵ ¼ 1,

a00þðθ;pz; pT ¼ 0Þ ¼ −ðp2
z=B0 þ 3cn2ðθÞÞaþ; ð24Þ

a00−ðθ;pz; pT ¼ 0Þ ¼ −ðp2
z=B0 − cn2ðθÞÞa−; ð25Þ

a002zðθ;pz ¼ 0; pTÞ ¼ −ðp2
T=B0 þ cn2ðθÞÞa2z; ð26Þ

where a� ¼ a1y � a2x and θ ¼ ffiffiffiffiffiffi
B0

p
t. Primes denote deriv-

atives with respect to θ. Unless otherwise noted, the
modulus of elliptic function is k ¼ 1=

ffiffiffi
2

p
. We note that

the Floquet analysis can be done by a quite simple
numerical calculation. In addition, there is no constraint
for ϵ to apply Floquet theory to Lamé’s equation.
Figure 1 shows trM of Eqs. (24), (25) or (26) as a

function of p2
z=B0 or p2

T=B0. The instability bands are
specified by jtrMj ≥ 2. In this calculation, we set the initial
fundamental matrix as a unit matrix, i.e. Φðt ¼ 0Þ ¼ 1. All
we have to do is to solve Eqs. (24) and (25) for a period T
numerically at a given momentum. After solving them,
we easily get trM ¼ trΦðTÞ by Eq. (20) as a function of
squared momentum normalized by the initial background
magnetic field.

-3

-2

-1

 0

 1

 2

 3

 0  0.5  1  1.5  2  2.5  3

tr
 M

pz
2/B0

a−
a+

-3

-2

-1

 0

 1

 2

 3

 0  0.5  1  1.5  2  2.5  3

tr
  M

pT
2/B0

a2z

FIG. 1 (color online). Floquet analysis for Eqs. (24), (25) and
(26). The shaded area denotes the instability bands specified by
the pz or pT region with jtrMj ≥ 2. These are the consequence
of parametric resonance. The instability bands of a−
(Lamé’s equation with ϵ ¼ −1) are 0 ≤ p2

z=B0 ≤ 0.41 and
0.91 ≤ p2

z=B0 ≤ 1.42. The instability bands of aþ (Lamé’s
equation with ϵ ¼ 3) is 3=2 ≤ p2

z=B0 ≤
ffiffiffi
3

p
. The instability

bands of a2z (Lamé’s equation with ϵ ¼ 1) is 0 ≤ p2
T=B0 ≤

1=2. Note that exact instability boundaries are known for ϵ ¼ 1; 3
[28]. Our numerical calculation agrees with that.
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The emergence of the first instability band of a−
(0 ≤ p2

z=B0 ≤ 0.41) is easily expected from the form of
Eq. (25). The eigenfrequency of a− become complex for
sufficiently small momentum p2

z ≪ B0 since it is approx-
imately given by ω ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z − BðtÞ

p
. On the other hand, the

instability boundary is modified from the naively expected
one p2

z=B0 ¼ 1 to p2
z=B0 ¼ 0.41 due to time dependence of

the background field. The remarkable feature of this band is
that the unstable modes in this region has quite large growth
rate since trM ≫ 2. The same band structure appears in
Yang-Mills theory, as we will see later.
We also find the instability band of aþ (3=2 ≤ p2

z=B0 ≤ffiffiffi
3

p
), the second band of a− (0.91 ≤ p2

z=B0 ≤ 1.42) and the
instability band of a2z (0 ≤ p2

T=B0 ≤ 1=2). These insta-
bilities are the consequence of parametric resonance and
are not intuitively expected from the forms of Eqs. (24),
(25) and (26).

D. Application to Yang-Mills theory

The Floquet analysis of a multicomponent Hill’s equa-
tion can be done in much the same way as the single-
component analysis. In this subsection, we apply the
Floquet theory to the CYM equation. Equation (8) is also
transformed into the first-order equation by introducing
color electric fields eai ¼ _aai ,

d
dt

�
aai
eai

�
¼
�

0 δabδij

−½Ω2ðtÞ�abij 0

��abj

ebj

�
: ð27Þ

The simplest way to calculate characteristic multipliers is to
set the initial fundamental matrix as a unit matrix as we
have done in the previous subsection. The solutions starting
from the unit matrix initial condition constitute a complete
set, and any solution of the equation of motion Eq. (27) is
represented by a linear combination of these solutions.
For the Yang-Mills field, the situation is somewhat

complicated because the initial condition Φð0Þ ¼ 1 does
not satisfy Gauss’s law (14). As a consequence, we need to
worry about picking up the instabilities of the unphysical
channel. We shall show here how to extract physical
instability bands in the framework of the Floquet theory.
At t ¼ 0, Gauss’s law reads

ieai pi=
ffiffiffiffiffiffi
B0

p
þ ϵabcðδb2ecx þ δb1ecyÞ ¼ 0: ð28Þ

Here we have used ~Aðt ¼ 0Þ ¼ ffiffiffiffiffiffi
B0

p
and ∂t

~Aðt ¼ 0Þ ¼ 0.
To search for physical unstable modes, we must solve the
EOM from a initial condition which is consistent with the
Gauss’s law, Eq. (28). In this case, the physical degrees of
freedom are 9þ 9 − 3 ¼ 15, and the physical fundamental
matrix must be constructed by 15 independent physical
solutions. The time evolution of an arbitrary physical mode
is given by a linear combination of these solutions. So
obtained growth rates do not depend on the choice of the

initial fundamental matrix as long as it consists of physical
independent solutions.
In the following we give an example with px ¼ py ¼ 0.

The generalization to px; py ≠ 0 is straightforward. Then,
Eq. (28) becomes

ie1zpz=
ffiffiffiffiffiffi
B0

p
¼ −e3x; ð29Þ

ie2zpz=
ffiffiffiffiffiffi
B0

p
¼ e3y; ð30Þ

ie3zpz=
ffiffiffiffiffiffi
B0

p
¼ e1x − e2y: ð31Þ

For simplicity, we concentrate on a1z and a3x which satisfy
the following equations of motion:

d2

dt2

�
a1z
a3x

�
¼ −

� ~A2 i ~Apz

−i ~Apz p2
z þ ~A2

��
a1z
a3x

�
: ð32Þ

For pz ≠ 0, one initial condition which satisfies Eq. (29) is
given by

Ψðt ¼ 0Þ ¼

0
BBB@

1 0 0 0

0 1 0 0

0 0 1 i
ffiffiffiffiffiffi
B0

p
=pz

0 0 −ipz=
ffiffiffiffiffiffi
B0

p
1

1
CCCA

≡
�
Φðt ¼ 0Þ �

� 1

�
; ð33Þ

whose basis set is fa1z ; a3x; e1z ; e3xg. The 3 × 3 matrix Φ
consists of three independent modes a1z ; a3x and e1z . After
solving Eqs. (32), we get ΨðTÞ and, hence, ΦðTÞ. This is
the way to construct the monodromy matrix for constraint
systems.
In practice, the fluctuations in the unphysical channels

are found to show no unstable behavior, and we can obtain
the growth rate of the physical modes by using the initial
condition Φð0Þ ¼ 1. We will discuss this point later.

III. INSTABILITY BANDS OF
YANG-MILLS EQUATION

A. Global band structure

We determine the characteristic multipliers of the
classical Yang-Mills equation by numerical calculations.
Due to the axial symmetry along the z direction, the
characteristic multipliers are the function of pz and

pT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ p2

y

q
. We calculate the maximum characteristic

multiplier as a function of momentum ðpz; pTÞ by solving
Eqs. (12) and (13). In Fig. 2, we show the contour map of
the instability bands, where both pz and pT are rescaled by
the initial strength of the background color magnetic field
B0. This contour map is obtained solely on the basis of
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Floquet theory, and thus the underlying nature of these
instabilities is the parametric instability.
From Fig. 2, we find that the instability band in the low-

momentum region around p2=B0 ∼ 0 has an anisotropic
shape and the large growth rate. At ðpz; pTÞ ¼ ð0; 0Þ, the
characteristic multiplier takes the maximum value,
jμjmax ¼ 129. There are also other bands whose peak
multipliers are less than about 5. The broad instability
region in the pT direction extends up to p2

T=B0 ≃ 1.75,
while the instability region in the pz direction extends up to
p2
z=B0 ¼ 0.81. The unstable region with jμjmax > 5 extends

in the longitudinal and transverse momentum range,
p2
z=B0 < 0.37 and p2

T=B0 < 1.19, respectively. It means
that the fluctuations are amplified by a factor 5 after a
period of background field in the region. If the strength of
the background color magnetic field is scaled by the
saturation momentum, the instability boundaries discussed
here lie approximately at p2 ∼ B ∼Q2

s . It is worth empha-
sizing that we find instabilities in both the low-momentum
region p ≪ Qs and high-momentum region p ∼Qs. It
should be noted that jμjmax ≥ 1 is always satisfied as noted
in Sec. II C.

B. Band structure for pT ¼ 0 and pz ¼ 0

Now let us try to understand the origin of the instabilities
present in some other bands semianalytically. For this
purpose, we consider two particular limits, pT ¼ 0 and

pz ¼ 0, of linearized EOMs of fluctuations Eqs. (12) and
(13), then we get simpler equations. For pT ¼ 0, Eqs. (12)
and (13) are decomposed into two equations whose
coefficients are Ω2

B;Ω�2
C and Ω2

A;Ω2
C, respectively.

Similarly, for pz ¼ 0, we can decompose Eqs. (12) and
(13) into two independent equations whose coefficients
are Ω2

E;Ω2
G and Ω2

D;Ω2
F, respectively. See Appendix A for

the explicit forms of these matrices and their relations.
These decomposed equations are easier to treat since their
ranks are at most three so that they give insight into the
whole band structure.
Figure 3 shows the band structure in pT ¼ 0 and pz ¼ 0

regions. Each line shows the maximum value of character-
istic multipliers jμj obtained from the decomposed equation
with the matrix Ω2

I ðI ¼ A;B;…GÞ.
For pT ¼ 0, the fluctuation fields a1x; a2y; a3z ; a1y and a2x

may be unstable and have larger growth rate than other
components. Almost all of these modes are related to B3

z

|μ|max

 0  1  2

pz
2/B0

 0

 1

 2

p T
2 /B

0

100

101

102

FIG. 2 (color online). The contour map of the instability bands
of the classical Yang-Mills equation under oscillating color
magnetic fields. The contour lines (white lines) stand for jμjmax ¼
100; 50; 20; 10; 5; 2; 1.02 from top to bottom. The maximum
characteristic multiplier is calculated as a function of both pz; pT ,

where pT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ p2

y

q
is a transverse momentum. Both pz and

pT are rescaled by the initial strength of the background color
magnetic field B0. The dominant instability band in the low-
momentum region has an anisotropy. Transverse momentum
direction of the dominant band is broader than that of the pz

direction which extends up to p2
T=B0 ¼ 1.75, while the pz

direction extends up to p2
z=B0 ¼ 0.81.
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FIG. 3 (color online). (top) Instability bands for pT ¼ 0. The
lowest instability band of Ω2

A system (red solid line) and Ω2
B

system (blue dashed line) located at 0 ≤ p2
z=B0 ≤ 0.41 have the

largest growth rate. This dominant instability band is consistent
with that found in [25]. (bottom) Instability bands for pz ¼ 0. The
lowest instability band of Ω2

D system (red solid line) and Ω2
E

system (blue dashed line) have the largest growth rate. They have
broader band and reach p2

T=B0 ¼ 1.75 and p2
T=B0 ¼ 0.88,

respectively. The magenta dotted line and the green dot-dashed
line stand for the bands of Ω2

F and Ω2
G.
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and may modify the background color magnetic field. The
dominant instability bands of Ω2

A and Ω2
B systems range

from p2
z=B0 ¼ 0 to p2

z=B0 ¼ 0.81 and to p2
z=B0 ¼ 0.41,

respectively. Their growth rates become larger in the
smaller momentum region. This dominant instability band
is consistent with that found in [25].
The lower panel of Fig. 3 shows the instability bands for

pz ¼ 0. In this case, Ω2
D and Ω2

E systems show the largest
growth rate where the corresponding fluctuation fields are
aax and aay . The ranges of the dominant instability band of
these systems are broader than that of Ω2

A and Ω2
B systems.

The bands of Ω2
D and Ω2

E systems extends up to p2
T=B0 ¼

1.75 and p2
T=B0 ¼ 0.88, respectively. The Ω2

F and Ω2
G

systems also show instability, but with smaller growth rates
and narrower ranges; the first and second instability bands
of the Ω2

F system range from p2
T=B0 ¼ 0 to p2

T=B0 ¼ 0.18
and p2

T=B0 ¼ 0.48 to p2
T=B0 ¼ 0.68. The instability band

of the Ω2
G system is identical to that of Lamé’s equation

with ϵ ¼ 1, Eq. (26).

C. Effective reduction of EOMs

In this subsection, we discuss the mathematical origin of
the band structure. Suppose that eigenvalues of a coefficient
matrix Ω2

I ðI ¼ A;B;…GÞ are given by ω2
I1;…;ω2

Im, and
Ω2

I is diagonalized by a unitary matrix UI ,

U−1
I ðtÞΩ2

I ðtÞUIðtÞ ¼ diagðω2
I1;…;ω2

ImÞ: ð34Þ

In general, UI depends on time because Ω2
I includes the

background gauge field ~AðtÞ. Multiplying an original EOM
of fluctuations by U−1

I ðtÞ from left, we get

U−1
I ðtÞ d

2

dt2
a ¼ −diagðω2

I1;…;ω2
ImÞU−1

I ðtÞa; ð35Þ

where a is a corresponding gauge field. For instance, a ¼
ða1x; a2y; a3zÞ for I ¼ A. Therefore, if and only if UI is
constant, the equation is decomposed into decoupled ones
characterized by the eigenvalues of Ω2

I :

d2

dt2
a0 ¼ −diagðω2

I1;…;ω2
ImÞa0; ð36Þ

a0 ¼ U−1
I a: ð37Þ

Only the Ω2
B system (EOM for a1y and a2x) satisfies the

above condition. In this case, corresponding unitary matrix
is given by UB ¼ 1=

ffiffiffi
2

p ð1
1

1
−1Þ and actually does not depend

on time. Eigenvalues of Ω2
B are given by ω2

B1 ¼ p2
z þ 3 ~A2

and ω2
B2 ¼ p2

z − ~A2. As a result, we find two types of
Lamé’s equations, Eqs. (24) and (25), and hence some parts
of instability bands for pT ¼ 0 are exactly described by
Lamé’s equations. Our numerical calculation confirms this
point and the result is shown in the upper panel of Fig. 4.
The first and second instability bands of Ω2

B system
(red solid line) are found in the momentum range of
0 ≤ p2

z=B0 ¼ 0.41 and 0.91 < p2
z=B0 < 1.42, respectively.
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FIG. 4 (color online). The comparison of instability bands of original EOMs (multicomponent Hill’s equation with Ω2
I ) and single

component Hill’s equations (denoted by ω2
Im). (top) Ω2

A system is effectively reduced to three single component Hill’s equations and one
of them is Lamé’s equation with ϵ ¼ −1. The instability bands of the Lamé’s equation are denoted by a blue dashed line. This result
shows that most bands of the original EOM, including the first band, are well reproduced by Lamé’s equation. The Ω2

B system is exactly
reduced to two types of Lamé’s equations. They also lead to quite unstable behavior in the low-momentum region. For the Ω2

C system,
two Hill’s equations fail to reproduce the original bands. (bottom) The change of instability bands is drastic inΩ2

D;Ω2
E systems. The time

dependence of UI makes instability regions considerably narrower for these equations.
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They are identical to the instability bands of Lamé’s
equation with ϵ ¼ −1, Eq. (25) (blue dashed line). The
third instability band ranges from p2

z=B0 ¼ 3=2 to
p2
z=B0 ¼

ffiffiffi
3

p
, and this is identical to the band of Lamé’s

equation with ϵ ¼ 3, Eq. (24) (magenta dotted line). The
instability bands of Lamé’s equations are also depicted
in Fig. 1.
If UIðtÞ varies slowly in time, the EOM of fluctuations

are effectively reduced to a single component Hill’s
equation: äIm ¼ −ω2

ImaIm. For example, such an effective
reduction seems to occur in the Ω2

A system (EOM for a1x; a2y
and a3z). In fact, the eigenvalues of Ω2

A are given by

ω2
A1 ¼ p2

z − ~A2; ð38Þ

ω2
A� ¼ 1

2

�
p2
z þ 2 ~A2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p4
z þ 6p2

z
~A2 þ ~A4

q �
; ð39Þ

and one of the resultant single component equations has the
form of Lamé’s equation with ϵ ¼ −1. We compare the
instability bands of the original EOM and three Hill’s
equations. The upper panel of Fig. 4 shows that the
instability bands of Ω2

A system (red solid line) is well
described by Lamé’s equation (blue dashed line). The other
two Hill’s equations show a weaker instability than Lamé’s
equation. While three Hill’s equations do not completely
reproduce the band structure of Ω2

A system, the bulk
structure is reproduced and the time dependence of
UAðtÞ is considered to be small.
The dominant instability band in the pT ¼ 0 region is

seemingly reminiscent of the Nielsen-Olesen instability as
discussed in [25]. However, the dominant band is described
by Lamé’s equation with ϵ ¼ −1, Eq. (25), in both ΩA and
ΩB systems. Therefore, we conclude that the Nielsen-
Olesen instability-like behavior actually comes from para-
metric instability.
It should be noted that, in contrast toΩ2

A and Ω2
B systems,

the other EOMs cannot be regarded as a set of single
component Hill’s equations. For the Ω2

C system, the two
Hill’s equations have some instability bands while the
original EOM has no instability band. For pz ¼ 0, there is
a substantial difference in the band structure between the
original EOMand a set of single componentHill’s equations.
Actually, the lower panel of Fig. 4 shows thatHill’s equations
fail to reproduce qualitative behaviors of instability bands of
the original EOMs. In this sense, even for the dominant
instability band, the interpretation of band structure in terms
of Lamé’s equations is valid in very limited cases.

D. Implication to unphysical sector

In our calculation, we have constructed the physical
initial condition which is consistent with the Gauss’s law in
order not to pick up the instabilities of unphysical modes.
We present the construction of the physical initial condition
introduced in Sec. II D. We have also confirmed that the

solution at t ¼ T satisfies Gauss’s law numerically. In
practice, we can start our calculation from the simple initial
conditions which do not necessarily fulfill the Gauss’s law.
We compare two calculations using the physical initial
condition and unit matrix initial condition given by
Φð0Þ ¼ 1. Figure 5 shows that the maximum characteristic
multipliers of the Ω2

A system using two different initial
conditions. In principle, the calculation resulted from the
unit matrix initial condition can contain the contributions
from unphysical modes; however, the two results com-
pletely agree with each other. We have also confirmed that
all unphysical modes only appears as stable modes. These
results mean that the unphysical sector does not contain
unstable modes, so all instabilities we get are physical ones.
This property simplifies the Floquet analysis in a practical
sense because we can set the initial fundamental matrix as a
unit matrix which is simpler than the physical fundamental
matrix. We also find this property for full band structure.

IV. CONCLUSIONS

We have studied the nature of instabilities of the classical
Yang-Mills equation under the time-dependent homo-
geneous color magnetic field in the linear regime. The
background color magnetic field considered in this article is
realized by the Berges-Scheffler-Schlichting-Sexty (BSSS)
[25] gauge configuration which does not have spatial
dependence, and thus a transverse momentum is well
defined. This gauge configuration gives color electric fields
in the x and y directions as well. It is known that there exists
a dominant instability region at p2

z=B0 < 1 under the BSSS
gauge field. It is also suggested that there is a subdominant
instability band at p2

z=B0 > 1. The pz dependence of the
growth rate in the dominant instability region behaves as if
it is caused by the Nielsen-Olesen instability. However, the
growth rate must also depend on pT , and the band structure
in the ðpz; pTÞ plane was not investigated so far. We have
made a linear analysis in order to search for the complete
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FIG. 5 (color online). Comparison of instability bands obtained
with a physical initial condition and a unit matrix initial
condition. The red solid line denotes the instability bands of
Ω2

A system calculated by physical initial condition. The blue
dashed line results from the unit matrix initial condition.
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band structure and to reveal the nature of the instabilities.
The Floquet analysis is best suited to determine instability
boundaries, and we have applied it to the Yang-Mills
theory.
We have found that there is a broad instability band

which has the maximum growth rate around the zero-
momentum region in the ðpz; pTÞ plane.
For pT ¼ 0, the band reaches p2

z=B0 ≃ 0.41 and this
result is consistent with Ref. [25]. We have also found
many other subdominant instability bands. Moreover, we
have rediscovered the Nielsen-Olesen instability-like
behavior of the dominant instability band in the small
pT region. For pz ¼ 0, the instability band which has the
maximal growth rate locates around the zero-momentum
region. The dominant instability band is broader than that
of the pT ¼ 0 case, and it extends up to p2

T=B0 ≃ 1.75.
However, in the system considered in this article, the
background gauge field does not form Landau levels,
and thus the present instability has nothing to do with
the instability of the lowest Landau level, namely the
Nielsen-Olesen instability.
We have investigated the mathematical origin of the

seemingly Nielsen-Olesen-like behavior. As a result, the
dominant instability band which is reminiscent of
Nielsen-Olesen instability is dominated by Lame’s
equation whose dispersion relation is effectively given

by ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z − ~A2ðtÞ

q
, due to the effective reduction of

the original EOMs. The present dominant instability band
in the small pT region shares the common feature as the
Nielsen-Olesen instability in the sense that the negative
eigenvalues of Ω2

A and Ω2
B appear from the combination of

the polarization modes, a1x − a2y and a1y − a2x. This feature
comes from the anomalous Zeeman effect for the spin 1
systems. At the same time, the present instability is not
caused by the instability of the lowest Landau level, but by
bunch of unstable modes with a band structure extending to
continuous transverse momenta, and it is not literally the
Nielsen-Olesen instability. Therefore, we have concluded
that the origin of all these instabilities considered here is
regarded as the result of parametric instability.
It is instructive to consider whether the parametric

instability considered in this article persists or not when
the nonlinear interaction between gluons becomes impor-
tant. When the background field loses its energy and the
amplitude of gauge fluctuation becomes comparable to the
background field

ffiffiffiffiffiffi
B0

p
, the nonlinear effects cannot be

negligible, and thus the instability bands defined in the
linear regime lose their validity. It is expected that the signal
of the resonance bands in the high-momentum region may
be quite weak, since their growth rates are much smaller
than the growth rate around the zero momentum. However,
for pz ¼ 0, the growth rate varies gradually as a function of
pT and the range of the instability band is broad. Even
for p2

T=B0 ∼ 1, the growth rate is not so small. Such a

momentum dependence of the growth rate is unique
to the parametric instability, and the behavior of the
growth rate is expected to be seen in full numerical
calculations. These studies are in progress.
From a phenomenological point of view, it is also

important to consider how the parametric instability is
affected by the longitudinal expansion and inhomogeneity
of the background field. In a longitudinal expanding
geometry, strength of the background color magnetic field
would damp and the growth rates of the unstable modes
become small. Thus, longitudinal expansion would make
the signal of the parametric instability weak. Spatial
inhomogeneity of the background field is also expected
to suppress the parametric instability. If the scale of
inhomogeneity is given by the saturation scale Qs, the
relevant modes of the dynamics have p2 ≳Q2

s ≃ B0.
Indeed, the parametric instability in the region is weaker
than that in the lower-momentum region as p2 ≲Q2

s ≃ B0.
However, as we have mentioned above, the growth rates of
unstable modes around p2 ∼Q2

s ≃ B0 are not so small, and
they may affect the early stage dynamics. The qualitative
discussions on these points are kept for a future work.
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APPENDIX A: CYM EQUATION
ON pT ¼ 0 AND pz ¼ 0

1. Notations

In this appendix, we give the specific form of the
linearized equations for the fluctuation of gauge fields.
The coefficient matrix of EOM for fluctuations aai is
denoted by Ω2 as in Eq. (8). Without loss of generality,
we can take py ¼ 0 due to the rotational symmetry of
transverse direction and the EOM is decomposed into two
independent sectors,
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äα ¼ −½Ω2
4�αβaβ; aα ¼ ða1y; a2x; a2z ; a3yÞ; ðA1Þ

äA ¼ −½Ω2
5�ABaB; aA ¼ ða1x; a1z ; a2y; a3x; a3zÞ; ðA2Þ

where each coefficient matrix is given by

Ω2
4 ¼

0
BBBBB@

p2
x þ p2

z þ ~A2 2 ~A2 0 −2ipx
~A

2 ~A2 p2
z þ ~A2 −pxpz −ipx

~A

0 −pxpz p2
x þ ~A2 −ipz

~A

2ipx
~A ipx

~A ipz
~A p2

x þ p2
z þ ~A2

1
CCCCCA; ðA3Þ

Ω2
5 ¼

0
BBBBBBBB@

p2
z −pxpz − ~A2 0 ipz

~A

−pxpz p2
x þ ~A2 0 ipz

~A −2ipx
~A

− ~A2 0 p2
x þ p2

z −ipx
~A −ipz

~A

0 −ipz
~A ipx

~A p2
z þ ~A2 −pxpz

−ipz
~A 2ipx

~A ipz
~A −pxpz p2

x þ 2 ~A2

1
CCCCCCCCA
: ðA4Þ

When we consider certain limits, the EOM becomes
simplified. For the case pT ¼ 0, the EOM is reduced to
four equations,

d2

dt2

0
B@a1x

a2y

a3z

1
CA ¼ −Ω2

A

0
B@a1x

a2y

a3z

1
CA;

d2

dt2

�
a1y

a2x

�
¼ −Ω2

B

�
a1y

a2x

�
;

d2

dt2

�
a1z
a3x

�
¼ −Ω2

C

�
a1z
a3x

�
;

d2

dt2

�
a2z
a3y

�
¼ −Ω�2

C

�
a2z
a3y

�
;

ðA5Þ

where each of the coefficient matrices Ω2
I are given by

Ω2
A ¼

0
BB@

p2
z − ~A2 i ~Apz

− ~A2 p2
z −i ~Apz

−i ~Apz i ~Apz 2 ~A2

1
CCA; ðA6Þ

Ω2
B ¼

 
p2
z þ ~A2 2 ~A2

2 ~A2 p2
z þ ~A2

!
; ðA7Þ

Ω2
C ¼

� ~A2 i ~Apz

−i ~Apz p2
z þ ~A2

�
: ðA8Þ

Their eigenvalues are given by

ω2
A1 ¼ p2

z − ~A2; ðA9Þ

ω2
A� ¼ 1

2

�
p2
z þ 3 ~A2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p4
z þ 6p2

z
~A2 þ ~A4

q �
; ðA10Þ

ω2
B1 ¼ p2

z þ 3 ~A2; ðA11Þ

ω2
B2 ¼ p2

z − ~A2; ðA12Þ

ω2
C� ¼ 1

2

�
p2
z þ 2 ~A2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p4
z þ 4p2

z
~A2

q �
; ðA13Þ

where ω2
I1;…ω2

Im stand for the eigenvalues of Ω2
I . We use

the explicit form of them in order to calculate the instability
bands of the single-component Hill’s equations. Note that
ω2
A1;ω

2
B1 and ω2

B2 correspond to Lamé’s equations which
are the special case of the Hill’s equation.
For the case py ¼ pz ¼ 0,

d2

dt2

0
B@a1x

a2y

a3x

1
CA¼ −Ω2

D

0
B@a1x

a2y

a3x

1
CA;

d2

dt2

0
B@

a1y

a2x
a3y

1
CA¼ −Ω2

E

0
B@

a1y

a2x
a3y

1
CA;

d2

dt2

 
a1z
a3z

!
¼ −Ω2

F

 
a1z
a3z

!
;

d2

dt2
a2z ¼ −Ω2

Ga
2
z ; ðA14Þ

where each of the coefficient matrices Ω2
I are given by

Ω2
D ¼

0
BB@

0 − ~A2 0

− ~A2 p2
x −i ~Apx

0 i ~Apx
~A2

1
CCA; ðA15Þ

Ω2
E ¼

0
BB@

p2
x þ ~A2 2 ~A2 −2i ~Apx

2 ~A2 ~A2 −i ~Apx

2i ~Apx i ~Apx p2
x þ ~A2

1
CCA; ðA16Þ
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Ω2
F ¼

�
p2
x þ ~A2 −2i ~Apx

2i ~Apx p2
x þ 2 ~A2

�
; ðA17Þ

Ω2
G ¼ ðp2

x þ ~A2Þ: ðA18Þ

Their eigenvalues are given by

ω6
Dm − ð ~A2 þ p2

TÞω4
Dm − ~A4ω2

Dm þ ~A6 ¼ 0; ðA19Þ

ω6
Em − ð3 ~A2 þ 2p2

TÞω4
Em

− ð ~A4 þ ~A2p2
T − p4

TÞω2
Em þ 3 ~A6 − ~A4p2

T ¼ 0; ðA20Þ

ω2
F� ¼ 1

2

�
3 ~A2 þ 2p2

T � ~A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~A2 þ 16p2

T

q �
: ðA21Þ

ω2
Dm;ω

2
Em are given as the solutions of Eqs. (A19) and

(A21), respectively. Of course, we can get the explicit form
of them, but they are quite complicated. Note that the EOM
for a2z decouples from other components to be Lamé’s
equation.
In summary, the coefficient matrices Ω2

I hold the
following relations:

Ω2 ¼ diagðΩ2
4;Ω2

5Þ ðfor allpz; pTÞ; ðA22Þ

Ω2
4 ¼

�
diagðΩ2

B;Ω�2
C Þ ðpT ¼ 0Þ

diagðΩ2
E;Ω2

GÞ ðpz ¼ 0Þ ; ðA23Þ

Ω2
5 ¼

�
diagðΩ2

A;Ω2
CÞ ðpT ¼ 0Þ

diagðΩ2
D;Ω2

FÞ ðpz ¼ 0Þ : ðA24Þ

APPENDIX B: INSTABILITY BOUNDARIES
OF LAMÉ’S EQUATION

1. Multiple-scale analysis

The instability boundaries of Lamé’s equation are
calculable in the perturbative way even when the closed
form solutions are not available. The method discussed here
is called multiple-scale analysis which is a kind of singular
perturbation [35]. We consider the following equation with
dimensionless parameter λ, ϵ:

f̈ þ ðλþ ϵcn2ðt; kÞÞf ¼ 0: ðB1Þ
If ϵ ≪ 1, we can treat the “external force term” as a
perturbation. When k ¼ 0, Lamé’s equation comes
down to Mathieu’s equation. Lamé’s equation with k ¼
1=

ffiffiffi
2

p
appears in scalar ϕ4 theory and Yang-Mills

theory. In this section, we perform the multiple-scale
analysis for arbitrary k. Hereafter, we use abbreviations
as, K ¼ KðkÞ; K0 ¼ Kð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2

p
Þ and E ¼ EðkÞ. KðkÞ and

EðkÞ are complete elliptic integrals of the first kind

and second kind, respectively. Their explicit forms
are given by

KðkÞ ¼
Z

π=2

0

dϕ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − k2 sin2 ϕ
p ; ðB2Þ

EðkÞ ¼
Z

π=2

0

dϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2 sin2 ϕ

q
: ðB3Þ

By substituting the Fourier expansion for the elliptic
function, Eq. (B1) becomes

f̈ þ
�
cþ ϵ

k2
X∞
m¼1

bm cos
mπ

K
t

�
f ¼ 0; ðB4Þ

c ¼ λþ ϵb0
k2

: ðB5Þ

Here we use following formula,

k2cn2u ¼ k2 − 1þ E
K|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

b0

þ
X∞
m¼1

π2

K2

m
sinhmπK0=K|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

bm

cos
mπ

K
u:

ðB6Þ

We can perform a multiple-scale analysis parallel to
Mathieu’s equation using Fourier expansion of the
elliptic function. First, we simply expand f as f ¼
f0 þ ϵf1 þ… in order to search for the starting points
of instability boundaries. The equation of order ϵ
becomes

f̈1 þ cf1 ¼ −A0

X∞
m¼1

bm
2k2

ei
ffiffi
c

p ðeimπt=K þ e−imπt=KÞ þ c:c:

ðB7Þ
If resonance occurs, the solution will be strongly
amplified and unstable. The conditions for the resonance
are given by

c ¼
�
mπ

2K

�
2

m2 ¼ 1; 4; 9;…: ðB8Þ

This condition gives the starting point of the
instability boundaries. Therefore, it is convenient to
expand c as

c ¼
�
mπ

2K

�
2

þ ϵc1 þ… ðB9Þ

and substitute it to Eq. (B4),
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f̈ þ
��

mπ

2K

�
2

þ
�
c1 þ

1

k2
X∞
m¼1

bm cos
mπ

K
t

�
ϵ

	
f ¼ 0:

ðB10Þ

Now we introduce a slow variable τ ¼ ϵt and assume
that f is a function of t and τ. This is the main idea of
multiple-scale analysis. We expand f as

f ¼ f0ðt; τÞ þ ϵf1ðt; τÞ þ � � � : ðB11Þ

In contrast to the naive perturbation theory, the
leading-order solution has τ dependence. f0 ¼
AðτÞ exp ðimπt=2KÞ þ c:c. The equation of OðϵÞ is also
modified as follows:

∂2f1
∂t2 þ

�
mπ

2K

�
2

f1¼−
�
c1Aþ bm

2k2
A� þ i

mπ

K
dA
dτ

�

×exp

�
i
mπ

2K
t

�

−
X
m≠n

bn
2k2

A� exp
�
i
ðn−m=2Þπ

K
t

�

−
X
n

bn
2k2

Aexp

�
i
ðnþm=2Þπ

K
t

�
þc:c:

ðB12Þ

There is secular divergence due to the first term of the right-
hand side of Eq (B12). Thanks to the slow variable
dependence of AðτÞ, we find the “renormalization equa-
tion” so as to remove the secular divergence, namely, AðτÞ
must satisfy the following relation:

c1Aþ bm
2k2

A� þ i
mπ

K
dA
dτ

¼ 0: ðB13Þ

We can solve this equation by putting A ¼ Bþ iC, then
we get

BðτÞ ¼ const × exp

0
B@� K

mπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2m
4k4

− c21

s 1
CAτ: ðB14Þ

Thus, we find that if jc1j < bm=2k2, the solution is
unstable. This gives the instability boundaries in the
accuracy of OðϵÞ,

c ¼
�
mπ

2K

�
2

� π2m
2k2K2 sinhmπK0=K

ϵþ � � � : ðB15Þ

Now it is clear that the instability boundaries are calculable
up to arbitrary order of ϵ in a systematic way. Here we note
the explicit form of instability boundaries up to the order
Oðϵ2Þ for the sake of completeness:

λ� ¼
�
mπ

2K

�
2

ðB16Þ

þ


1

k2
− 1 −

E
k2K

� π2

2k2K2

m
sinhmπK0=K

�
ϵ

þ π2B∓ðmÞ
4k4K2

ϵ2 þOðϵ3Þ;

B∓ðmÞ ¼
X∞

n¼1;ðn≠mÞ

1

sinh nπK0=K

×



1

sinhðn −mÞπK0=K
∓ n
n −m

1

sinh nπK0=K

�
:

ðB17Þ

For the case k ¼ 1=
ffiffiffi
2

p
and m ¼ 1, we get

λþ ≃ 0.72 − 0.21ϵ; ðB18Þ

λ− ≃ 0.72 − 0.71ϵ: ðB19Þ

For the case m ¼ 2,

λþ ≃ 2.87 − 0.44ϵ; ðB20Þ

λ− ≃ 2.87 − 0.48ϵ − 0.04ϵ2: ðB21Þ

2. Accuracy of multiple-scale analysis

In this subsection, we check the accuracy of the multiple-
scale analysis for Lamé’s equation for k ¼ 1=

ffiffiffi
2

p
. Figure 6

tr M

-1  0  1  2  3
ε

 0

 0.5

 1

 1.5

 2

 2.5

 3

λ

100

101

102

||

FIG. 6 (color online). (In)stability boundaries of Lamé’s equa-
tion. The modulus is k ¼ 1=

ffiffiffi
2

p
. Solutions are unstable if

jtrMj ≥ 2. The red dotted lines are determined instability boun-
daries in a basis of Floquet theory which are characterized by
jtrMj ¼ 2. The gray solid lines are given by perturbative
calculation (multiple-scale analysis) which is valid when
0 ≤ ϵ < 1.
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shows the contour map of jtrMj as a function of ϵ; λ where
M is a monodromy matrix of Lamé’s equation. jtrMj > 2
means unstable region. jtrMj is calculated based on Floquet
analysis. Red dotted lines are contour lines characterized by
jtrMj ¼ 2 and give true instability boundaries. The boun-
dary lines given by the multiple-scale analysis are plotted
with gray solid lines.
The results of the multiple-scale analysis are in good

agreement with the numerically determined boundaries
when ϵ is small enough. Let us concentrate on the

ϵ ¼ �1; 3 cases, which are related to Yang-Mills dynamics.
For ϵ ¼ 1, the multiple-scale analysis well reproduces the
true boundaries. For ϵ ¼ 3, the perturbative approach begins
to break down. According to Fig. 1, Lamé’s equation with
ϵ ¼ 3, Eq. (24), has only one continuous unstable band
while the multiple-scale analysis indicates that there is an
unstable band around λ ∼ 0. For ϵ ¼ −1, the extrapolated
boundaries seem to have good accuracy for the subdominant
band (0.91 ≤ λ ≤ 1.42) although the ϵ < 0 region is out of
the validity range of the multiple-scale analysis.
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