
Study of BB̄� and B�B̄� interactions in I ¼ 1 and relationship to the
Zbð10610Þ, Zbð10650Þ states
J. M. Dias,1,2 F. Aceti,1 and E. Oset1

1Departamento de Física Teórica, Universidad de Valencia and IFIC,
Centro Mixto Universidad de Valencia—CSIC, Institutos de Investigación de Paterna,

Apartado 22085, 46071 Valencia, Spain
2Instituto de Física, Universidade de São Paulo, Caixa Postal 66318,

05389-970 São Paulo, São Paulo, Brazil
(Received 19 October 2014; published 6 April 2015)

We use the local hidden gauge approach in order to study the BB̄� and B�B̄� interactions for isospin
I ¼ 1. We show that both interactions via one light meson exchange are not allowed by the Okubo-Zweig-
Iizuka rule and, for that reason, we calculate the contributions due to the exchange of two pions, interacting
and noninteracting among themselves, and also due to the heavy vector mesons. Then, to compare all these
contributions, we use the potential related to the heavy vector exchange as an effective potential corrected
by a factor which takes into account the contribution of the other light meson exchanges. In order to look
for poles, this effective potential is used as the kernel of the Bethe-Salpeter equation. As a result, for the
BB̄� interaction we find a loosely bound state with mass in the range 10587–10601 MeV, very close to the
experimental value of the Zbð10610Þ reported by the Belle Collaboration. For the B�B̄� case, we find a cusp
at 10650 MeV for all spin J ¼ 0; 1; 2 cases.
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I. INTRODUCTION

In 2003 the Belle Collaboration observed the first
new charmoniumlike state called Xð3872Þ in the Bþ →
Xð3872ÞKþ → J=ψπþπ−Kþ process [1]. It was later con-
firmed by the BABAR, CDF and D0 collaborations [2].
After its discovery, many other new states have been found
by these collaborations, with masses situated in the
charmonium mass region. Most of them are above the
meson-meson threshold and, if they were a conventional
charmonium, they would decay into a pair of open charm
mesons. However, this is not seen in the experiment,
instead, what is observed is their decay into J=ψ plus
pions which is an unusual property for a simple cc̄ state.
Furthermore, the predictions from potential models for the
mass and decay channels do not fit with the experimental
results. For all these reasons, a strong experimental and
theoretical effort has been made in order to understand the
quark configuration of these new states as well as their
production mechanisms, decay widths, masses and spin-
parity assignments. In Refs. [3–8] one can find a detailed
discussion about the current status of those states, com-
monly called X, Y and Z.
Since the discovery of the X, Y and Z states, an

enormous bulk of work has been done in an attempt to
accommodate them in an exotic picture. By exotic we mean
a more complex quark structure beyond a quark-antiquark
state, like hybrid, tetraquark, hadrocharmonium and meson
molecule. The exotic state idea is not new, actually is quite
old, but before the discovery of Zþ

c ð3900Þ by the BESIII
and Belle collaborations last year, no exotic structure had

been conclusively identified. It is a challenge to understand
these new charmoniumlike states as exotic since using the
models mentioned above it is relatively simple to reproduce
the masses of those states. This is why it is also important
to evaluate other properties of the states, like the width and
partial decay widths of possible decay channels. It is also
useful to make connections to other cases that bear some
similarity, and in particular to cases where the methods used
have proved reliable. Our work here goes in this second
direction. The same challenges also concern the bottomo-
niumlike states. Among them, the Zbð10650Þ and
Zbð10610Þ are very interesting. They were observed by
the Belle Collaboration in π�hbðnPÞ and π�ϒðmSÞ, with
the n ¼ 1; 2 and m ¼ 1; 2; 3, invariant mass distribution of
the ϒð5SÞ decay channel [9]. As a result of the measure-
ments, Belle reported: MZbð10610Þ ¼ ð10608.4�2.0ÞMeV,
ΓZbð10610Þ ¼ ð15.6 � 2.5Þ MeV and for Zbð10650Þ,
MZbð10650Þ ¼ ð10653.2 � 1.5Þ MeV and ΓZbð10650Þ ¼
ð14.4� 3.2Þ MeV. The quantum numbers are reported as
JP ¼ 1þ and positive G-parity. The neutral partner has also
been observed in theϒð5SÞ → ϒðnSÞππ decay by the Belle
Collaboration [10].
In an attempt to understand the Zbð10610Þ and

Zbð10650Þ configuration, some interpretations were con-
sidered. The authors of [11] treated the states as molecular
states of BB̄� and B�B̄� using heavy quark spin symmetry
(HQSS), but the strength of the interaction was unknown.
The proximity of the masses of these states to the BB̄� and
B�B̄� thresholds prompted the author of [12] to suggest that
these peaks could be a consequence of cusps originated at
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these thresholds. This idea has been made more quantitative
in a recent paper [13]. In [14] the dynamics of a hadro-
quarkonium system was formulated, based on the channel
coupling of a light hadron (h) and heavy quarkonium (QQ̄)
to intermediate open-flavor heavy-light mesons (Qq, Qq).
In [15] the authors used QCD sum rules assuming
tetraquarks or molecules, and in all cases they could obtain
good results, but the errors in the masses were of the order
of 200 to 300 MeV. In the same line, in [16] the states are
also assumed to be tetraquarks. A tetraquark picture was
assumed by the authors of Ref. [17], where using the
framework of QCD sum rules, they calculated the Zb’s
mass, but the masses obtained were lower than those of
the Zb states. In [18,19] the authors consider the states as
molecular states driven by the one pion exchange inter-
action. In [20] heavy quark spin symmetry is used,
analyzing the power counting of the loops, and concluding
that the molecular nature of the states can account for the
observed features. In [21] the authors mention that using
HQSS and the molecular picture, states of 1− should exist
in addition to the reported states of 1þ. In [22] the
molecular option is also supported by sum rules, but again
with about 220 MeV uncertainty in the mass. In [23] a
tetraquark nature is invoked. In [24] BB̄�; B�B̄� (in an
S-wave) are investigated in the framework of chiral quark
models using the Gaussian expansion method. The bound
states of BB̄�; B�B̄� with quantum numbers IðJPÞ ¼ 1ð1þÞ,
which are good candidates for Zbð10610Þ and Zbð10650Þ
respectively, are obtained. Another BB̄� bound state with
IðJPCÞ ¼ 0ð1þþÞ, and another two B�B̄�’s with IðJPCÞ ¼
1ð0þþÞ, IðJPCÞ ¼ 0ð2þþÞ are predicted in that work. In
[16] 1þ tetraquarks are invoked and possible 1þþ, 2þþ
states from charge conjugation are investigated. In [25] the
molecular picture is again pursued and the ϒð5SÞ →
ϒðnSÞπþπ− decays are investigated. In [26] the authors
make arguments of HQSS starting from the X(3872)
extrapolating to the beauty sector, and find a plausible
molecular interpretation for the Zbð10610Þ state. In [27]
once again the molecular structure is supported within
HQSS. A different intepretation is given in [28], where the
initial pion emission mechanism is invoked to reproduce
the ϒð5SÞ → ϒðnSÞππ, with the second π and the reso-
nance produced from the loop diagram involving three B�
states. Again from the molecular point of view in [29],
several decay channels are investigated in order to give
support for the molecular picture. In [30], using phenom-
enological Lagrangians and the hypothesis of molecular
states, the Z → ϒðnSÞπ transition rates are evaluated.
Tetraquarks are again invoked in [31]. Pion exchange is
considered in [32] and limits for the strength to produce
binding are discussed. In [33] a tetraquark is preferred,
since meson exchange binds in I ¼ 0 but not in I ¼ 1.
By using HQSS and assuming the states to be molecular
states, different modes of production are evaluated
in [34].

Using the chiral quark models, the authors of [35]
interpret the states as loosely bound states of BB̄�; B�B̄�.
Tetraquarks are again favoured in sum rules in [36]. In [37]
the authors use HQSS to relate these states, which are
assumed to be molecular, to the X(3872). A molecular
interpretation was again used in Ref. [38], extending the
work of [18,19], in order to explain the states as B�B̄ and
B�B̄� assuming an s- and d-wave mixture.
The amount of theoretical work done is quite large,

offering theoreticians a challenge with observed states that
obviously cannot have a cc̄ nature, which should have
I ¼ 0. Our contribution to the subject lines up with the
molecular interpretation, using a dynamical model that
provides the strength of the interaction. We use for this
purpose the extrapolation of the local hidden gauge
approach to the heavy sector, extending results obtained
for the Zcð3900Þ and Zcð4025Þ using that approach [39,40]
which at the same time was shown to fully respect the rules
of HQSS [41,42].

II. FORMALISM

In order to study BB̄� and B�B̄� states, the extension of
the local hidden gauge approach [43–45] to the heavy
quark sector [46] seems most appropriate. The interaction
is generated by the exchange of a vector meson. If one
exchanges light vectors the heavy quarks act as spectators
and then, the HQSS of QCD is automatically fulfilled [41].
However, following the approach of Refs. [39,40], we can
show that the BB̄� and B�B̄� interactions by means of one
light meson exchange are not allowed by Okubo-Zweig-
Iizuka (OZI) rule for I ¼ 1 states. In Fig. 1, a diagram
illustrating an interaction between a BþB̄�0 is shown. In
order for this interaction to occur a dd̄ state has to be
converted into a uū state, which is OZI forbidden. This
implies a cancellation between the contributions coming
from the ρ and ω meson exchange if equal masses are
taken, which is also observed in [38]. The same argument
holds for the exchange of a pseudoscalar and one finds an
exact cancellation of the π; η; η0 exchange in the limit of
equal masses for these mesons [39,40]. In practice, due to

B+

B̄∗0

b

b̄

u

d̄d̄

u

FIG. 1. Diagram representing the BþB̄�0 → BþB̄�0 process
through the exchange of qq̄, which is not allowed by OZI rule.
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the different masses of the pseudoscalar mesons, the
cancellation is partial at low momentum transfers but is
quite drastic at large momentum transfers of the size of the
mass of the η0. Actually, in [38] one also finds a sizable
decrease in the binding when one goes from the one pion
exchange potential to the one-boson exchange potential
that includes the π, η, ρ, ω, σ exchange.
Because of this cancellation, we shall consider processes

in which the OZI restriction no longer holds. We, thus,
calculate the contributions coming from heavy vector
exchange and also due to the exchange of two pions,
interacting and noninteracting among themselves.

A. BB̄� andB�B̄� interactions via heavy vector exchange

In order to evaluate BB̄� and B�B̄� interactions due to the
exchange of vector mesons, we need the Lagrangians
describing the VPP and VVV vertices, namely

LVPP ¼ −ighVμ½P; ∂μP�i; ð1Þ

LVVV ¼ ighðVμ∂νVμ − ∂νVμVμÞVνi: ð2Þ

The coupling g is given by g ¼ MV=2fπ, with fπ ¼
93 MeV being the pion decay constant, while MV is the
vector meson mass.
In Eqs. (1) and (2), the symbol hi stands for the trace of

SU(4). The vector field Vμ is represented by the SU(4)
matrix, which is parametrized by 16 vector mesons
including the 15-plet and singlet of SU(4),

Vμ ¼

0
BBBBB@

ωffiffi
2

p þ ρ0ffiffi
2

p ρþ K�þ B̄�0

ρ− ωffiffi
2

p − ρ0ffiffi
2

p K�0 B�−

K�− K̄�0 ϕ B�−
s

B�0 B�þ B�þ
s ϒ

1
CCCCCA

μ

; ð3Þ

where the ideal mixing has been taken for ω, ϕ and J=ψ .
On the other hand, P is a matrix containing the 15-plet of
the pseudoscalar mesons written in the physical basis in
which η, η0 mixing is taken into account [47],

P¼

0
BBBBB@

ηffiffi
3

p þ η0ffiffi
6

p þ π0ffiffi
2

p πþ Kþ B̄0

π− ηffiffi
3

p þ η0ffiffi
6

p − π0ffiffi
2

p K0 B−

K− K̄0 − ηffiffi
3

p þ
ffiffi
2
3

q
η0 B−

s

B0 Bþ Bþ
s ηb

1
CCCCCA
:

ð4Þ

The channels we are interested in are those with B ¼ 0,
S ¼ 0 and isospin I ¼ 1. In the B�B̄� case, they are B�B̄�

and ρϒ. In the case of BB̄� we are only interested in the
positive G-parity combination, namely ðBB̄� þ ccÞ= ffiffiffi

2
p

and also ηbρ and πϒ.

1. B�B̄� case

Consider now the reaction B�B̄� → B�B̄�. Here we are
following the same steps as in Ref. [46], in which the
authors were concerned with the D�D̄� case. As in [46] we
also consider that the external vectors have negligible three-
momentum with respect to their masses. In our case, the
most important diagrams are depicted in Fig. 2. As an
example, we shall calculate in detail the amplitude of the
first diagram in Fig. 2. The evaluation of the other ones is
analogous. For this end, we must calculate the three-vector
vertex which is given by the Lagrangian of Eq. (2).
Figures 3(a) and 3(b) illustrate the three-vector vertices
B�þB̄�þρ0 and B�−B̄�−ρ0 with the momenta assignments.
The corresponding vertex functions are

tB�þB�þρ0 ¼
gffiffiffi
2

p ðk1 þ k3Þμϵ1νϵν3ϵð0Þμ ; ð5Þ

tB�−B�−ρ0 ¼
gffiffiffi
2

p ðk2 þ k4Þμϵ2νϵν4ϵð0Þμ : ð6Þ

Once we have determined the vertices, it is possible to
calculate the amplitude for the first diagram of Fig. 2.
Considering all the particles involved in the exchange, we
obtain

FIG. 2. Vector exchange diagrams contributing to the process B�B̄� → B�B̄�.
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tB�þB�−→B�þB�− ¼ −
1

2
g2
�

2

M2
ϒ

−
1

M2
ρ
þ 1

M2
ω

�
ðk1 þ k3Þ

· ðk2 þ k4Þϵ1μϵ2νϵμ3ϵν4; ð7Þ

where Mϒ, Mρ and Mω are the masses of the ϒ, ρ and ω
mesons, respectively.
As we are interested in the B�B̄� interaction in the I ¼ 1

channel, we must rewrite Eq. (7) on the isospin basis.
The isospin states are

jB�B̄�iI¼1 ¼ −
1ffiffiffi
2

p jB�þB̄�−i þ 1ffiffiffi
2

p jB�0B̄�0i;

jB�B̄�iI¼0 ¼ 1ffiffiffi
2

p jB�þB̄�−i − 1ffiffiffi
2

p jB�0B̄�0i: ð8Þ

By taking into account all the three diagrams of Fig. 2,
we get

tI¼1
B�B̄�→B�B̄� ¼ g2

�
2M2

ρM2
ω þM2

ϒð−M2
ω þM2

ρÞ
2M2

ϒM
2
ωM2

ω

�
ðk1 þ k3Þ

· ðk2 þ k4Þϵ1μϵ2νϵμ3ϵν4; ð9Þ

which shows explicitly the cancellation of the ρ and ω
exchange.
In order to rewrite the amplitude given by Eq. (9) in

terms of the spin 0, 1 and 2 states, we use the spin
projectors Pð0Þ, Pð1Þ and Pð2Þ given by [46]

Pð0Þ ¼ 1

3
ϵμϵμϵ

νϵν;

Pð1Þ ¼ 1

2
ðϵμϵνϵμϵν − ϵμϵνϵ

νϵμÞ;

Pð2Þ ¼ 1

2
ðϵμϵνϵμϵν þ ϵμϵνϵ

νϵμÞ − 1

3
ϵμϵμϵ

νϵμ; ð10Þ

where the order of the particles 1, 2, 3 and 4 is implicit. In
terms of those projectors the polarization vector combina-
tion ϵ1μϵ2νϵ

μ
3ϵ

ν
4 appearing in Eq. (9) is equal to

ϵ1μϵ2νϵ
μ
3ϵ

ν
4 ¼ Pð0Þ þ Pð1Þ þ Pð2Þ: ð11Þ

Therefore, substituting Eq. (11) into Eq. (9), projecting it
in s-wave, and including the contact term already evaluated
in Ref. [46], we obtain

tI¼1;S¼0;1;2
B�B̄�→B�B̄� ¼ −g2 þ g2

�
2M2

ρM2
ω þM2

ϒð−M2
ω þM2

ρÞ
4M2

ϒM
2
ωM2

ρ

�

× ð4M2
B� − 3sÞ; ð12Þ

where s stands for the center of mass energy of the B�B̄�
system.
Consider now the other channel, B�B̄� → ρϒ. The most

relevant diagrams are depicted in Fig. 4. The procedure to
get the amplitude for this channel is analogous to what we
have done earlier. Thus, the amplitude in isospin I ¼ 1
basis for the spin S ¼ 0; 2 states in the s-wave, correspond-
ing to all diagrams of Fig. 4 plus the contact term is
given by

tI¼1;S¼0;2
B�B̄�→ρϒ ¼−2g2þg2

�
2M2

B� þM2
ϒþM2

ρ−3s

M2
B�

�
: ð13Þ

The interaction in S ¼ 1 vanishes as a consequence of a
cancellation of terms where the ρ0 and ϒ are interchanged
in the diagrams. The diagonal ρϒ → ρϒ transition is again
OZI forbidden and null in this approach.
Equations (12) and (13) will be used as a kernel of the

Bethe-Salpeter equation as we shall discuss later.

2. BB̄� case

In this case, the Lagrangians defined in Eqs. (1) and (2)
can also be used to provide the vertices of the PV → PV
interaction through exchange of a heavy vector. The
resulting amplitudes were already calculated in the s-wave
in Refs. [48,49]. In particular the authors were concerned
with axial-vector resonances dynamically generated. Yet, in
Ref. [39] the same equation for the amplitude is used in
order to study the DD̄� interaction. Here, we extend these
amplitudes for the BB̄� interaction in the isospin I ¼ 1
channel, with the result

VijðsÞ ¼ −
~ϵ~ϵ0

8f2π
Cij

�
3s − ðM2 þm2 þM02 þm02Þ

−
1

s
ðM2 −m2ÞðM02 −m02Þ

�
; ð14Þ

(a) (b)

FIG. 3. Three-vector vertex associated with B�þB�þρ0.

FIG. 4. Vector exchange diagrams contributing to the B�B̄� →
ρϒ channel.
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where the massesM (M0) andm (m0) in Eq. (14) correspond
to the initial (final) vector meson and pseudoscalar meson,
respectively. The indices i and j represent the initial and
final VP channels ðBB̄� þ ccÞ= ffiffiffi

2
p

, ηbρ and πϒ.
The Cij are elements of a 3 × 3 matrix, which, for the

positive G-parity of the BB̄� combination, is defined as

Cij ¼

0
BB@

−ψ
ffiffiffi
2

p
γ

ffiffiffi
2

p
γffiffiffi

2
p

γ 0 0ffiffiffi
2

p
γ 0 0

1
CCA; ð15Þ

where γ ¼ ðmL
mH
Þ2 and ψ ¼ ðmL

mH0
Þ2. Those factors are defined

in this way in order to take into account the suppression due
to the exchange of a heavy vector meson. Concerning the
parameters mL, mH and mH0, we choose their values in
order to have the same order of magnitude of the light and
heavy vector meson masses: mL ¼ 800, mH ¼ 5000 MeV
and mH0 ¼ 9000 MeV. These masses stand for the ρ or ω,
B� and ϒ respectively. We shall see how the results change
by making some variation in the values of these parameters.

3. The T matrix

The results of the amplitudes discussed earlier provide
the potential or kernel to be used in the Bethe-Salpeter
equation (BSE) in coupled channels,

T ¼ ð1 − VGÞ−1V; ð16Þ
where V is the potential, which in the B�B̄� case is a 2 × 2
matrix whose elements are the amplitudes defined by
Eqs. (12) and (13) respectively associated with the channels
B�B̄� and ρϒ. In the case of BB̄�, V is a 3 × 3matrix and its
elements are the amplitudes given by Eq. (14) with Cij
defined by Eq. (15), associated with the channels BB̄�, ηbρ
and πϒ.
In Eq. (16), G is a diagonal matrix and its elements are

given by the two meson loop function,Gl for each channel l:

Gl ¼ i
Z

d4q
ð2πÞ4

1

q2 −m2þ iϵ
1

ðq−PÞ2 −M2þ iϵ
; ð17Þ

where m is the mass of the pseudoscalar (in the BB̄� case)
or the vector (in the B�B̄� case), while M is the vector
meson mass involved in the loop in the channel l. In
Eq. (17) Pmeans the total four-momentum of the mesons.
The integral of Eq. (17) is logarithmically divergent and it
can be regularized with a cutoff in the momentum space or
dimensional regularization. With the cutoff method

Gl¼
Z

qmax

0

d3q
ð2πÞ3

ω1þω2

2ω1ω2

1

ðP0Þ2−ðω1þω2Þ2þ iϵ
; ð18Þ

where ω1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ~q2

p
and ω2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ~q2

p
and qmax is a

free parameter. In dimensional regularization there is a

scale μ and a subtraction constant αðμÞ acting as a free
parameter, namely,

Gl ¼
1

16π2

�
αl þ log

m2

μ2
þM2 −m2 þ s

2s
log

M2

m2

þ pffiffiffi
s

p
�
log

s −M2 þm2 þ 2p
ffiffiffi
s

p
−sþM2 −m2 þ 2p

ffiffiffi
s

p

þ log
sþM2 −m2 þ 2p

ffiffiffi
s

p
−s −M2 þm2 þ 2p

ffiffiffi
s

p
��

: ð19Þ

with p standing for the three-momentum of the mesons in
the center-of-mass frame.
For the sake of comparison of the different potentials

obtained, it is interesting to recall that Eq. (16) with the
cutoff regularization of Eq. (18) can be obtained from
the Lippmann-Schwinger equation using a potential in
momentum space [50]

Vð~q; ~q0Þ ¼ Vθðqmax − j~qjÞθðqmax − j~q0jÞ: ð20Þ
Hence, assuming ~q ≈ 0 for an external particle, ~q0 can

play the role of momentum transfer in loop diagrams, and
then V as a function of ~q0 remains constant up to qmax,
where it goes to zero.

B. The σ exchange contribution to the BB̄�

and B�B̄� interactions

The potential due to the σ exchange in some cases
provides an important contribution to the interaction. In
Ref. [51] the authors studied the NN system considering
that the σ resonance arises from the interaction of two
pions, providing an important contribution to the binding
energy for the NN system. In Refs. [39,40] the same idea
was applied to the DD̄� and D�D̄� cases. Following the
approach of those references we shall extend the formalism
to the bottom sector, more specifically, to study the BB̄�

and B�B̄� interactions.
Let us consider first the B�B̄� case. The diagrams

contributing to this interaction are illustrated in Fig. 5.
As can be seen from Fig. 5, each diagram has four vertices
containing two pseudoscalars, the π and BðB̄Þ mesons and
one B�ðB̄�Þ vector. Their evaluation is done by means of the
local hidden gauge Lagrangian already defined in Eq. (1).
On the other hand, instead of calculating the vertices and
then the amplitude from the Lagrangian of Eq. (1), we start
from the amplitude obtained in Ref. [40] and substitute the
masses of theD and D� mesons by the masses of the B and
B�, respectively. As a result, we obtain

−itσB�B̄� ¼ −iV2
3

2
tI¼0
ππ→ππ; ð21Þ

where tI¼0
ππ→ππ is the isoscalar amplitude for the ππ inter-

action, namely
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tI¼0
ππ→ππ ¼ −

1

f

s0 − m2
π
2

1þ 1
f2 Gðs0Þðs0 − m2

π
2
Þ
; ð22Þ

with Gðs0Þ the two pion loop function suited to this case
(whose explicit form is given in [40,51]) and with P the
total ππ momentum, with the pions traveling to the right in
the diagrams. Hence, P2 ¼ s0 is actually the variable t for
the B�þB̄�0 system.
In Eq. (21), V is a factor that takes into account the

contributions coming from the triangular loops of the
diagram. The detailed derivation of the V factor can be
found in Ref. [40]. We adopt the Breit frame,

p1 ≡ ðp0
1; ~q=2Þ; p0

1 ≡ ðp00
1 ;−~q=2Þ; p≡ ðp0; ~pÞ; ð23Þ

where ~q is the three-momentum transferred in the process
and p1 and p0

1 the momenta for the two incoming B�. The
equations for V are obtained from [40] with the trivial
changes in the masses of the particles. It also contains the
factor ðMB�=MK� Þ4 replacing the factor ðMD�=MK�Þ4 in
[40] as demanded by HQSS in [41].
Finally, substituting Eq. (22) into Eq. (21) and taking

s ¼ −~q2 since there is no energy exchange, we get the
following expression for the potential:

tσB�B̄� ð~qÞ ¼ V2
3

2

1

f2
~q2 þ m2

π
2

1 −Gð−~q2Þ 1
f2 ð~q2 þ m2

π
2
Þ
; ð24Þ

with
V ¼ ϵμϵ

0
νðagμν þ cp0μ

1 p
ν
1Þ ð25Þ

and a and c also given in [40] with trivial changes in the
masses. Assuming the spatial components of the momenta
p1μ and p0

1ν smaller than the vector masses, which implies
taking ϵ0 ¼ 0, only the term with the a coefficient contrib-
utes to the potential, providing the ϵϵ0 combination. The

other vertex gives the same structure and then we have the
ϵϵ0ϵϵ0 combination. Hence, the potential can be rewritten as

tσB�B̄�ð~qÞ ¼ a2
3

2

�
1

f2
~q2 þ m2

π
2

1 −Gð−~q2Þ 1
f2 ð~q2 þ m2

π
2
Þ

�
ϵ1μϵ

0
2νϵ

μ
3ϵ

0ν
4 ;

ð26Þ
where we have rewritten the polarization vector combina-
tions in order to associate the subindices 1,2,3 and 4 with
1þ 2 → 3þ 4. Therefore, the final form of the potential can
be written in terms of the spin projectors, Eq. (10), providing

tσB�B̄�ð~qÞ ¼ a2
3

2

�
1

f2
~q2 þ m2

π
2

1 − Gð−~q2Þ 1
f2 ð~q2 þ m2

π
2
Þ

�

× ðPð0Þ þ Pð1Þ þ Pð2ÞÞ: ð27Þ
In Fig. 6 we can see the plot of the tσB�B̄� potential, Eq. (27),
as a function of the transferred momentum ~q.
Next, we shall consider the same mechanism, but now

for the BB̄� case. The diagrams for this process are shown

(a) (b) (c) (d)

FIG. 5. Diagrams contributing to the two pion interaction in lowest order in I ¼ 1 for the B�B̄� → B�B̄�. We take the B�þB̄�0þI ¼ 1

combination. In diagram (a) a Bþ meson is exchanged between the charged vectors, and a B̄0 is exchanged between the neutral ones. In
diagram (b) the charged vector mesons exchange a Bþ and the neutral ones a B−. In diagram (c) the charged vectors exchange a B0 and
the neutral ones a B̄0, while in diagram (d) the charged vectors exchange a B0 and neutral ones a B−.
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FIG. 6. Potential tσB�B̄� as a function of the momentum trans-
ferred in the process.
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in Fig. 7. For this case, the potential tσBB̄� has a difference in
comparison with the former case. Now we have two
different triangular loops. This implies two V factors in
Eq. (21), where each factor is associated with each
triangular loop. Hence, the potential tσBB̄� is given by

−itσBB̄� ¼ −iVV̄
3

2
tI¼0
ππ→ππ; ð28Þ

where tI¼0
ππ→ππ is the isoscalar amplitude defined in

Eq. (22) and V̄ is again given by Eq. (29) in [40] with

trivial changes of masses. The potential tσBB̄� is plotted
in Fig. 8.

C. The exchange due to the two uncorrelated pions

In this case, the pions are not interacting, then only the
diagrams (a) and (d) of Figs. 5 and 7 contribute to the B�B̄�

and BB̄� interactions. Details on the evaluation can be
found in [40]. The amplitude tππB�B̄� can be rewritten in terms
of its spin components as

tππB�B̄� ¼ 5

4
g4B

A
15

Z
d3p
ð2πÞ3

�
4~p2 −

~q2

4

�
2

F2
1

ω1 þ ω2

1

2ω1ω2

1

4E2
B

1

p0
1 − ω1 − EB þ iϵ

1

p0
1 − ω2 − EB þ iϵ

×

�
1þ EB þ ω1 þ ω2 − p0

1

p0
1 − ω1 − EB þ iϵ

þ EB þ ω1 þ ω2 − p0
1

p0
1 − ω2 − EB þ iϵ

�
; ð29Þ

where A ¼ 5 is associated with spin J ¼ 0, while A ¼ 2 is
related to the J ¼ 2 case, ω1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~pþ ~q=2Þ2 þm2

π

p
, ω2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð~p − ~q=2Þ2 þm2
π

p
are the energies of the pions and

EBð~pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

B

p
is the energy of the B meson. Fð~qÞ

is a form factor of the type

F ¼ F1

�
~pþ ~q

2

�
F2

�
~p −

~q
2

�

¼ Λ2

Λ2 þ ð~pþ ~q
2
Þ2

Λ2

Λ2 þ ð~p − ~q
2
Þ2
; ð30Þ

with Λ ¼ 700 GeV, which is also used later to help the
convergence. Note that, according to [41], the coupling
g ¼ MV=2fπ used in Sec. II A is now replaced by gB ¼
ðMB�=MK� Þg to account for the requirements of heavy
quark spin symmetry. On the other hand, this correction is
automatically implemented in the extrapolation of the
vector exchange to the heavy sector (Weinberg-Tomozawa

term) because this term is explicitly proportional to the
external B� energies.
In Fig. 9 we can see the amplitude for the two spin cases

as a function of the momentum transfer.

(a) (b) (c) (d)

FIG. 7. Diagrams contributing to the two pion interaction in lowest order in I ¼ 1 for the BB̄� → BB̄�. We take the BþB̄�0I ¼ 1

combination. In diagram (a) a B�þ vector meson is exchanged between the charged mesons, and a B0 is exchanged between the neutral
ones. In diagram (b) the charged mesons exchange a B�þ and the neutral ones a B−. In diagram (c) the charged mesons exchange a B�0

and the neutral ones a B0, while in diagram (d) the charged meson exchange a B�0 and neutral ones a B−.
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FIG. 8. Potential tσBB̄� as a function of the momentum trans-
ferred in the process.
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For the BB̄� case we find

tππBB̄� ¼ −
5

4
g4B

1

2
~ϵ0~ϵ00

Z
d3p
ð2πÞ3 ð~p

2 − ~q2Þ
��

4~p2 −
~q2

4

�
−

1

~q2

�
ð2~p ~qÞ2 − ~q4

4

��
F2

ω1 þ ω2

1

2ω1ω2

×
1

2EB

1

2EV
½ω2

1 þ ω2
2 þ ω1ω2 − ðω1 þ ω2Þð2p0

1 − EB� − EBÞ þ ðp0
1 − EB� Þðp0

1 − EBÞ�

×
1

p0
1 − ω1 − EB� þ iϵ

1

p0
1 − ω1 − EB þ iϵ

1

p0
1 − ω2 − EB� þ iϵ

1

p0
1 − ω2 − EB þ iϵ

; ð31Þ

where EB�ð~pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

B�
p

is the energy of the B� meson. The amplitude tππBB̄� as a function of the momentum transfer is
plotted in Fig. 10.

III. ITERATED EXCHANGE OF TWO LIGHT MESONS

In this section we evaluate the contribution coming from the iterated exchange of two light mesons, shown in Fig. 11 in
the case of the B�B̄� (a) and of the BB̄� (b) interactions.
In the case of B�B̄�, the details of the calculation can be found in Sec. C of Ref. [40] and they lead to the following

expression for the amplitude:

tboxB�B̄� ¼ 1

4
tboxππ þ 1

9
tboxηη þ 1

36
tboxη0η0 −

1

3
tboxπη −

1

6
tboxπη0 þ

1

9
tboxηη0 ; ð32Þ

where

tboxij ¼ g4BSJ

Z
d3p
ð2πÞ3 ~p

4F2
1

mD� þ ω1 − EBð~pÞ � iϵ
1

mB� þ ω2 − EBð~pÞ � iϵ

×
1

ðEBð~pÞÞ2
�

1

2ω1ω2

1

ω1 þ ω2

Num
mB� − ω1 − EBð~pÞ þ iϵ

1

mB� − ω2 − EBð~pÞ þ iϵ

þ 1

EBð~pÞ −mB� þ ω1 þ iϵ
1

EBð~pÞ −mB� þ ω2 þ iϵ
1

2mB� − 2EBð~pÞ þ iϵ

�
; ð33Þ

where ij ¼ π; η; eta0 and ω1 and ω2 are their energies of the
two light mesons exchanged,

SJ ¼
� 4

3
J ¼ 0

8
15

J ¼ 2;
ð34Þ

and

Num ¼ −ðω2
1 þ ω2

2 þ ω1ω2Þ
þ ðmB� − EBð~pÞÞ2: ð35Þ

The former calculation has been done at threshold. The
momentum transfer dependence on ~q can be obtained
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FIG. 10. Potential tππBB̄� for noninteracting pion exchange as a
function of the momentum transferred in the process.
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FIG. 9 (color online). Potential tB
�B̄�

ππ for noninteracting pion
exchange in the case of J ¼ 0 (solid line) and J ¼ 2 (dashed line).
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easily from Eq. (33) by taking for the initial and final states

four-momenta p1 ¼ ðp0
1; ~q=2Þ, p2 ¼ ðp0

2;−~q=2Þ, p3 ¼
ðp0

3;−~q=2Þ and p4 ¼ ðp0
4; ~q=2Þ (p3; p4 momenta of the

two final B�).
In Fig. 12 the amplitude tboxB�B̄� is plotted as a function of

the momentum transferred ~q for the cases J ¼ 0 (dashed
line) and J ¼ 2 (solid line).

With a similar procedure we can obtain the amplitude in
the case of BB̄�, using again the Lagrangian of Eq. (1).
We find

tboxBB̄� ¼ 1

4
~tboxππ þ 1

9
~tboxηη þ 1

36
~tboxη0η0 −

1

3
~tboxπη

−
1

6
~tboxπη0 þ

1

9
~tboxηη0 ; ð36Þ

where

~tboxij ¼ g4B
1

3
~ϵ · ~ϵ0

Z
d3p
ð2πÞ3 ~p

4F2
1

EB� ð~pÞ
1

EBð~pÞ
1

EB� ð~pÞ þ ω1 − EBð~pÞ � iϵ

×
1

EB�ð~pÞ þ ω1 − EBð~pÞ � iϵ
1

EB� ð~pÞ þ ω2 − EBð~pÞ � iϵ

×
�

1

2ω1ω2

1

ω1 þ ω2

1

EBð~pÞ − ω1 − EB� ð~pÞ þ iϵ
Num0

EBð~pÞ − ω2 − EB�ð~pÞ þ iϵ

þ 1

EBð~pÞ þ ω1 − EB� ð~pÞ − iϵ
1

EBð~pÞ þ ω2 − EB� ð~pÞ − iϵ
1

MB − EBð~pÞ þMB� − EB� ð~pÞ þ iϵ

�
; ð37Þ

with i; j ¼ π; η; η0. The numerator Num0 in Eq. (37) is
given by

Num0 ¼ −ðω2
1 þ ω2

2 þ ω1ω2Þ
þ ðω1 þ ω2ÞðMB þ EB −MB� − EB� Þ
× ðMB − EB� ÞðMB� − EBÞ: ð38Þ

EB, EB� , ω1 and ω2 were already defined in Sec. II C.
The potential tboxBB̄� is plotted in Fig. 13 as a function of the

tranferred momentum ~q.

(a) (b)

FIG. 11. Iterated exchange of two light mesons for the B�B̄�

(a) and BB̄� (b) cases.
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FIG. 12 (color online). Amplitude tboxB�B̄� as a function of the
momentum transferred in the process for the cases J ¼ 0 (dashed
line) and J ¼ 2 (solid line).
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FIG. 13 (color online). Amplitude tboxBB̄� as a function of the
momentum transferred in the process.
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IV. RESULTS

We have calculated the amplitude of all the processes
contributing to the B�B̄� and BB̄� interactions. A com-
parison between the different contributions is shown for
each case in Fig. 14–16, respectively. Wewant now to make
a rought estimate of the strength of each potential. This is
done by evaluating the integral

R
d3qVðqÞ in order to take

into account the contributions coming from the exchange of
light mesons and use them to obtain an effective potential
Veff . We will follow a simple strategy to account for the
different potentials. We will get the strength

R
d3qViðqÞ for

all the potentials exchanging light mesons and sum them.
Then we convert the sum into an effective potential of the
type of the vector exchange,

Veffθðqmax − j~qjÞθðqmax − j~q0jÞ: ð39Þ

In Eq. (39), qmax is the maximum momentum used in the
loops in Eq. (18) [see Eq. (20)], such that

R
q<qmax

d3qVeff is

equal to the sum of
R
d3qViðqÞ. While solving the BSE

equation with an ~r dependent potential is feasible, as done
for instance in [38] for the Schrödinger equation, the former
separable form of the potential renders the BSE an
algebraic equation. The stability of the results with relative
large changes in the value of Veff makes the more elaborate
procedure of solving the BSE in the ~r space unnecessary.
Then, we take as potential in our case this effective

potential plus the one coming from vector exchange. Both
are of the type of Eq. (20) and can then be used in the
Bethe-Salpeter equation with the same G function
[Eq. (18)], regularized with the cutoff qmax.
On the other hand, the value of the strength depends on the

value of the upper limit of the integral
R
d3qVðqÞ. For this

reason we calculated the effective potential Veff using values

of this limit for the light meson exchange potential varying
from 700 to 1100 MeV for both B�B̄� and BB̄� interactions.
Changing the upper limit in

R
d3qViðqÞ introduces large

uncertainties in the approach concerning the final potential.
The strength of the final potential, summing Veff and the
vector exchange, can be a factor 2.4–14.5 times the one of
the vector exchange alone for the case of B�B̄� with J ¼ 0,
while for J ¼ 2we find a factor 1.2–5.2. For the case ofBB̄�
the factor varies between 30 and 64.
In the followingwe study the shape of jT11j2 for bothB�B̄�

and BB̄� cases. As we will discuss in detail, both amplitudes
show a clear peak and the large uncertainties on the potential
do not affect drastically its position, which justifies a poste-
riori the approach followed indulging in large uncertainties.

A. BB̄� case

In this case, we are interested in studying the T matrix for
the channels: BB̄�, ηbρ and πϒ. We evaluated the transition
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FIG. 14 (color online). Comparison between the potentials
tB�B̄�→B�B̄� [small dashed line, vector exchange Eq. (12)], tσB�B̄�

[dotted line, Eq. (27)], tππB�B̄� for J ¼ 0 [dotted dashed line,
Eq. (29)] and J ¼ 2 (solid line), tboxB�B̄� for J ¼ 0 [solid thick
line, Eq. (32)] and J ¼ 2 (large dashed line) as functions of the
momentum transferred in the process.
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FIG. 15 (color online). Comparison between the potentials
tBB̄�→BB̄� [solid line, Eq. (14)], tσBB̄� [dashed line, Eq. (28)], tππBB̄�

[dotted line, Eq. (31)], tboxBB̄� [dotted dashed line, Eq. (36)] as
functions of the momentum transferred in the process.
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FIG. 16 (color online). jT11j2 as a function of the
ffiffiffi
s

p
center-of-

mass energy for the case of BB̄�. Each curve is associated with a
value of the integration limit: 700 MeV, 800 MeV, 900 MeV,
1000 MeV, 1100 MeV. The peak moves from right to left as the
integration limit increases.
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matrix T between those channels for values of
ffiffiffi
s

p
around

10600 MeV. In order to do this, we use the dimensional
regularization formula for the loop function G, given by
Eq. (19). To obtain reasonable values of the subtraction
constants in each channel we proceed as follows: we take a
cutoff qmax, then we find a subtraction constant that provides
at threshold the same G function obtained with the cutoff
method. Here we are taking qmax ¼ 700 MeV, for which we
find αBB̄� ¼ −2.79, αηbρ ¼ −3.56 and απϒ ¼ −3.78.
In Refs. [39,40] the changes in the position of the peak of

the T matrix due to the variation of qmax were studied.
However, in the current case, the changes due to this
parameter are smaller than the ones due to the variations of
the upper limit of the integral

R
d3qVðqÞ used to estimate

Veff . In Fig. 16 the shape of jT11j2, the component of the T
matrix that describes the transition BB̄� → BB̄�, for differ-
ent values of the integration limit, is depicted. As can be
seen, even choosing values of the limit between 700 and
1100 MeV, the effect on the binding and the width is small.
As a result, we find that the position of the peak moves
slightly to higher energies for decreasing values of the
upper limit and it is seen in the range of 10587–10601MeV.
These values are very close to what was found by the Belle
Collaboration, MZbð10610Þ ¼ ð10608.4� 2.0Þ MeV.
We have also studied the stability of the results with

respect to variations of themH,mH0 parameters (and related
ψ and γ) in Eq. (15). We change mH in the range (4000–
6000) MeV and mH0 in the range (8000–10000) MeV. The
value of the binding energy from one extreme (4000,8000)
to the other (6000,10000) changes in 1.2 MeV, which is a
smaller change than those seen before.
It is worth noting that both the ηbρ and πϒ channels are

open for decays, and this gives a width between 1.6 and
3 MeV, with bigger widths corresponding to lower values
of the integration limit. The experimental value reported by
the Belle Collaboration is ΓZbð10610Þ ¼ ð15.6� 2.5Þ MeV.
This difference might seem large to make claims of
reproduction of this state. However, one should note that
we do not include channels of the VP type with two light
mesons. These light channels could be reached in our
approach including them as coupled channels, but the large
difference in the masses, together with the weak transition
to these states, which requires the exchange of heavy
vectors, makes them inoperative concerning the mass of the
state found. However, even with very small couplings of the
resonance to these channels, the large phase space available
for the decay can produce a contribution to the width larger
than the one estimated by us with the ηbρ and πϒ channels.
Examples of this can be seen in the study of hidden charm
baryons in [52] and hidden beauty baryons in [53].

B. B�B̄� case

For this case we have two channels: B�B̄� and ρϒ.
Again, we use the dimensional regularization form of the

loop function G, Eq. (19), with μ ¼ 1500 MeV and the
subtraction constants αB�B̄� ¼ −2.79 and αρϒ ¼ −3.56,
corresponding to a cutoff value equal to qmax ¼ 700 MeV.
Figure 17 shows the shape of jT11j2, which means the

component of the T matrix that describes the transition
from B�B̄� to itself, for different values of the integration
limit plotted as a function of the center-of-mass energy,

ffiffiffi
s

p
,

of the system. This peak corresponds to spin J ¼ 0. In
Fig. 18, we show the shape of jT11j2 for the J ¼ 2 case,
again for different values of the integration limit. It is
important to emphasize that, according to Eq. (13), there is
no contribution in the transition matrix T from B�B̄� to the
ρϒ channel for spin J ¼ 1. In this case, B�B̄� stands as a
single channel.
From these figures we can see that the variations of the

integration limit cause no effect to the peak position, as we
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FIG. 17 (color online). jT11j2 as a function of the
ffiffiffi
s

p
center-of-

mass energy for the case of B�B̄� for J ¼ 0. Each curve is
associated with a value of the integration limit: 700 MeV,
800 MeV, 900 MeV, 1000 MeV, 1100 MeV. The peak moves
from bottom to top as the integration limit increases.
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FIG. 18 (color online). jT11j2 as a function of the
ffiffiffi
s

p
center-of-

mass energy for the case of B�B̄� for J ¼ 2. Each curve is
associated with a value of the integration limit: 700 MeV,
800 MeV, 900 MeV, 1000 MeV, 1100 MeV. The peak moves
slightly from bottom to top as the integration limit increases.
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already noted in the BB̄� case. It is interesting to note that,
even with the large uncertainties in the potential admitted,
we always find a structure for the peak of jT11j2 which
corresponds clearly to a cusp. Whether to call this a
resonant state or not is a question of criteria. We should
however note that the a0ð980Þ appears in the experiments
(or in the theories) [54,55] as a cusp and is universally
accepted as a resonance. Our findings, obtained as a cusp
for the jT11j2 amplitude in this case, would come to support
the claims of the former works [12,13].
For the sake of completeness, we repeat the calculation

considering the spin J ¼ 1 case. Here we have a single
channel problem,

T11 ¼
~tB�B̄�→B�B̄�

1 − ~tB�B̄�→B�B̄�GB�B̄�
; ð40Þ

whereGB�B̄� is the loop function defined by Eq. (19) for the
B�B̄� channel, while ~tB�B̄�→B�B̄� is the B�B̄� → B�B̄� vector
exchange potential already defined in Eq. (12), plus the
contribution from Veff due to the exchange of two interact-
ing pion exchanges. In this case, we saw that the non-
interacting pion exchange vanished, and the interacting two
pion exchange was also small (see Fig. 6), smaller than the
vector exchange (see Fig. 14), in all ranges. This is why, in
this case, in order to play with uncertainties we follow the
strategy of Refs. [39,40] and we change the range of the
vector exchange potential, by changing the cutoff qmax to
values from 700 to 1100 MeV.
In Fig. 19 we show the plot for jT11j2 as a function of the

center-of-mass energy of the system. Note that in this case,
we also have a peak of about 10650 MeV, which is just the

threshold mass of the B�B̄� channel. Again, we see
essentially a cusp in the amplitude which does not corre-
spond to a bound state. The situation is similar if we increase
the value of ~tB�B̄�→B�B̄� of a factor 1.5 to account for possible
uncertainties. The value of jT11j2 grows accordingly, but the
cusp remains and its shape is like that in Fig. 19.

V. SUMMARY AND CONCLUSION

Using the local hidden gauge Lagrangians, we have
studied the BB̄� and B�B̄� interactions for isospin I ¼ 1.
We have shown that the exchange of a light meson is not
allowed by OZI rule. For that reason we have investigated
the contributions coming from heavy vector exchange and
also due to the two pion exchange, interacting and non-
interacting among themselves, in which the OZI restriction
no longer holds. Unlike Refs. [39,40], the vector exchange
potential is not the main source of the interactions here. In
view of this, we have considered the vector exchange
potential corrected by a factor that takes into account the
contributions of the others meson exchange cases and, then
we have used it as the kernel of the Bethe-Salpeter equation
in order to solve the transition matrix T. Looking for poles
in the T matrix, we have tried to relate them to the
Zbð10610Þ and Zbð10650Þ states reported by the Belle
Collaboration. From our results, using a cutoff value
qmax ¼ 700 MeV, we have found a bound state of BB̄�

with mass in the range 10587–10601 MeV very close to the
experimental mass of the Zbð10610Þ at 10608 MeV. In the
case of the B�B̄� interaction, we have found a cusp at
10650 MeV for spin J ¼ 0 and J ¼ 2 cases. On the other
hand, the spin J ¼ 1 case can be considered only in the one
channel problem without taking into account the ρϒ
channel. In this case, again a cusp at 10650 MeV appears
in the jT11j2 as can be seen in Fig. 19 and was also pointed
out in Refs. [12,13].
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FIG. 19 (color online). jT11j2 as a function of the
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mass energy when only the B�B̄� channel is considered (the J ¼
1 case). Each curve is related to the cutoff values qmax equal to
700,800,900,1000 and 1100 MeV. The peak moves from bottom
to top as the cutoff increases.
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