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Gaugino mediation is very attractive since it is free from the serious flavor problem in the
supersymmetric standard model. We show that the observed Higgs boson mass at around 125 GeV
and the anomaly of the muon g − 2 can be easily explained in gaugino mediation models. It should be noted
that no dangerous CP violating phases are generated in our framework. Furthermore, there are large
parameter regions which can be tested not only at the planned International Linear Collider but also at the
coming 13–14 TeV Large Hadron Collider.
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I. INTRODUCTION

The minimal supersymmeric standard model (MSSM) is
an attractive candidate for the physics beyond the standard
model (SM). The gauge coupling unification is beautifully
realized with new particles predicted by supersymmetry
(SUSY). The longstanding anomaly of the muon g − 2 [1]
(see Refs. [2,3] for SM predictions) is resolved if sleptons,
binos, and winos exist at around the weak scale [4,5]. Thus,
low-energy SUSY, containing light SUSY particles, is
especially attractive. However, there is a serious obstacle
in low-energy SUSY models: the SUSY flavor problem.
Without the suppression of flavor-violating soft masses,
sleptons need to be much heavier than the weak scale,
otherwise nonobserved flavor-violating decays, e.g.,
μ → eγ are generated with large branching fractions [6].
Obviously, these heavy sleptons are inconsistent with the
explanation of the muon g − 2 anomaly. Therefore, we need
a SUSY breaking model which largely suppresses flavor-
violating soft masses.
Gaugino mediation [7,8] provides a convincing solution

to the SUSY flavor problem, where soft masses of squarks
and sleptons vanish at a high-energy scale. At low-energy
scales, these soft masses are generated radiatively by
gaugino loops and, hence, they are flavor blind. As a
result, gaugino mediation is free from the serious SUSY
flavor problem.1

In this paper, we show that the observed Higgs boson
mass mh ≃ 125 GeV [10,11] as well as the anomaly of the
muon g − 2 can be easily explained in our framework of
gaugino mediation, although there is a tension between the
muon g − 2 and the observed Higgs boson mass in general.

Here, in our framework, we assume that two Higgs
doublets couple to a SUSY breaking field, allowing
enhancements of a SUSY contribution to the muon
g − 2 with a light Higgsino and radiative corrections to
the Higgs boson mass through a sizable left-right mixing of
the stops. We also discuss the possibility of a large gravitino
mass in comparison with MSSM soft masses, which relaxes
cosmological problems.

II. GAUGINO MEDIATION MODEL

We consider the Kahler potential such that squark and
slepton masses vanish at the tree level. One example is the
so-called sequestering [7], which may be realized in the
brane world [12]. Another example is the SUSY nonlinear
sigma model [13–15] where squarks and sleptons are
assumed to be pseudo-Nambu-Goldstone bosons. Due to
the Nambu-Goldstone nature of squarks and sleptons, soft
masses of them vanish at the tree level. As long as low-
energy phenomenology is concerned, the following dis-
cussion based on the sequestered Kahler potential is
essentially the same as on the Kahler potential in SUSY
nonlinear sigma models.2 Thus, we discuss the sequestered
Kahler potential as an example. We comment on SUSY
nonlinear sigma models if necessary.
The Kahler potential and the superpotential are given by

K ¼ −3M2
P log

�
1 −

fðZ þ Z†Þ þQ†
i Qi þ ΔK

3M2
P

�
;

W ¼ C þ ~μHuHd þWYukawas; ð1Þ

where MP is the reduced Planck scale, Z is a chiral
superfield, f is a real function, Qi are MSSM chiral

1Also, gaugino mediation provides an attractive solution to the
fine-tuning problem of the electroweak symmetry breaking scale:
focus point gaugino mediation [9]. In focus point gaugino
mediation, the electroweak symmetry scale is naturally explained
by the SUSY particle mass scale even for few TeV gaugino
masses.

2There would be differences when one discusses quantum
corrections to soft masses at a high-energy scale. (See the
discussion in Appendix A.)
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superfields, C is a constant, and ~μ is the Dirac mass term of
Higgsinos. ΔK is explained later. For an appropriate choice
of the function f, SUSY is broken by the F term of Z, and
the cosmological constant vanishes at the vacuum without
introducing a linear term of Z in the superpotential [16].
(See Ref. [17] for the case of fðZ þ Z†Þ linear in Z þ Z†.)
A concrete example of f is given in Ref. [18]. In the
following, we assume that SUSY is dominantly broken by
the F term of Z and call Z the SUSY breaking field. We
refer to this type of SUSY breaking as the gravitational
SUSY breaking, following Ref. [16].
In addition to the sequestering, we have assumed the

shift symmetry, Z → Z þ ir with a real constant r, so that
no CP violating phases arise [18].3 Actually, by phase
rotations of MSSM fields and an Uð1ÞR rotation, we can
take ~μ and C as real. Due to the shift symmetry and the
reality of the Kahler potential, all couplings in the Kahler
potential (and gauge kinetic functions, as we will see,) are
real. Thus, physical CP phases vanish in our setup.
We assume that the up- and down-type Higgs couple to

the SUSY breaking field through the Kahler potential,4

ΔK ¼
�
cu

ðZ þ Z†Þ
MP

þ du
ðZ þ Z†Þ2

M2
P

þ � � �
�
H†

uHu

þ
�
cd

ðZ þ Z†Þ
MP

þ dd
ðZ þ Z†Þ2

M2
P

þ � � �
�
H†

dHd; ð2Þ

where cu, cd, du, and dd are real constants and ellipses
denote terms of higher order in Z þ Z†. In the sequestering
scenario based on the brane world, these couplings can be
understood by assuming that Higgs doublets live in bulk.
Hereafter, we shift Z by a constant so that the vacuum

expectation value (VEV) of Z þ Z† vanishes and regard Z
in ΔK as the shifted field. Then chiral fields with canonical
kinetic terms are given by

Qc
i ¼ ð1 − hfi=3M2

PÞ−1=2Qi; ð3Þ

where h� � �i denotes the VEVof � � �. The Higgsino mass is
then given by

μ ¼ ehKi=2M2
Pð1 − hfi=3M2

PÞ ~μ: ð4Þ

For simplicity, we omit hi in the following.
The scalar soft mass squared for Hu and Hd are given by

(see Appendix A)

m2
Hu

¼ 9k2ð1 − f=3M2
PÞ2½−2du þ c2u� ×m2

3=2;

m2
Hd

¼ 9k2ð1 − f=3M2
PÞ2½−2dd þ c2d� ×m2

3=2; ð5Þ
where m3=2 is the gravitino mass. Higgs trilinear couplings
and the Bμ term are

Au ¼ −3kð1 − f=3M2
PÞcu ×m3=2;

Ad ¼ −3kð1 − f=3M2
PÞcd ×m3=2;

Bμ ¼ ðAu þ AdÞμ; ð6Þ
where the constant k is given by

k ¼
�∂f
∂x

�
−1
: ð7Þ

In SUSY nonlinear sigma models, those soft masses, in
general, exist if Higgs doublets are not Nambu-Goldstone
bosons.
Note that the Bμ term is proportional to the sum of

trilinear couplings and vanishes when MSSM Higgses
are also sequestered from the SUSY breaking field
(i.e., cu ¼ du ¼ cd ¼ dd ¼ 0). This is not the case for
generic sequestering scenarios because of the VEV of the
scalar auxiliary component of the supergravity multiplet.
(In the conformal formulation, it is the VEVof the F term
of the compensator.) In the gravitational SUSY breaking,
the VEV vanishes at the vacuum [16] and, hence, the Bμ

term vanishes in the sequestered limit.
Next, we consider gaugino masses. As a model of the

grand unified theory (GUT), we consider the SUð5Þ ×
SUð3ÞH ×Uð1ÞH product group unification (PGU) model
[21,22]. In the PGU model, the doublet-triplet splitting
problem, which is a serious problem in the minimal SUð5Þ
GUT, is solved. The gauge coupling unification is approx-
imately maintained if the gauge coupling of SUð3ÞH ×
Uð1ÞH is sufficiently stronger than that of SUð5Þ.
The relevant part of the Lagrangian is given by

L ⊃
Z

d2θ

��
1

4g25
−
k5Z
MP

�
W5W5

þ
�

1

4g23H
−
k3HZ
MP

�
W3HW3H

þ
�

1

4g21H
−
k1HZ
MP

�
W1HW1H

�
þ H:c: ð8Þ

Here, g5, g3H, and g1H are the gauge coupling constants
of SUð5Þ, SUð3ÞH and Uð1ÞH gauge interactions, respec-
tively. W5, W3H, and W1H are the superfield field strength
of each gauge multiplet. k5, k3H, and k1H are constants,
which are real in order to preserve the shift symmetry of Z.5

3This shift symmetry automatically arises in SUSY nonlinear
sigma models [19,20].

4If the Kahler potential contains a term K ⊃ cHuHd, the
constant c is, in general, complex after taking ~μ real. If c ¼ Oð1Þ,
this term leads to large CP violations. However, c is suppressed
unless the combination HuHd has vanishing charges under any
symmetries.

5The shift symmetry, Z → Z þ ir, has a quantum gauge
anomaly and, hence, the shift symmetry is maintained in a
perturbative limit.
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After SUð5Þ × SUð3ÞH ×Uð1ÞH is broken to SUð3ÞC×
SUð2ÞL ×Uð1ÞY , nonuniversal gaugino masses are gen-
erated at the GUT scale [23],

M1=M2 ¼
k5N þ k1H

k5

g21H
g25 þN g21H

;

M3=M2 ¼
k5 þ k3H

k5

g23H
g25 þ g23H

; ð9Þ

where the real constantN depends on the Uð1ÞH charge of
the GUT breaking field. In the strong coupling limit,
g21H; g

2
3H ≫ 1, the ratios of the gaugino masses are written

in a simple form: M1=M2 ≃ ðk5N þ k1HÞ=ðk5N Þ
and M3=M2 ≃ ðk5 þ k3HÞ=k5.
Together with Eqs. (5) and (6), we have obtained a

gaugino mediation model with nonzero soft masses of the
Higgs sector and nonuniversal gaugino masses.
Before closing this section, we discuss how large

gravitino mass can be naturally taken in comparison with
MSSM soft masses. It is known that the gravitino as well
as the SUSY breaking field cause various cosmological
problems because they are easily produced in the early
Universe while they are long-lived [24–27]. If the gravitino
mass is large, these problems are relaxed because the
gravitino and the SUSY breaking field are shorter-lived
for larger masses. It would be worthwhile to consider the
possibility of a large gravitino mass in comparison with
MSSM soft masses.
In order to evaluate the naturalness of a large gravitino

mass, let us assume that couplings of the SUSY breaking
field Z with Higgs doublets (ΔK), as well as that with
gauginos (k5, k3H and k1H), are also absent and, hence, all
soft masses vanish at the tree level.6 We estimate possible
quantum corrections to soft masses under this assumption
and require that the corrections do not upset our setup.
When MSSM soft masses vanish at the tree level, the

MSSM is a supersymmetric theory, where no soft masses
are generated.7 Thus, quantum corrections to MSSM soft
masses arise only from the so-called anomaly mediation
[12,28–31] or from gravitational interactions [32,33].8

The possible largest quantum correction is the one-
loop correction to scalar soft mass squared from gravita-
tional interactions. One-loop quantum corrections by

gravitational interactions around the cutoff scale are
expected to generate scalar soft mass squared as large as

Δm2
scalar ∼

1

16π2
m2

3=2

�
Λ
MP

�
n
; ð10Þ

where Λ and n are the cutoff of the theory and an integer,
respectively. If Λ ∼MP, the gravitino mass is at most
Oð1Þ TeV for soft masses of Oð100Þ GeV. If Λ ≪ MP,
however, as is assumed in the sequestering based on the
brane world [12], the gravitino mass can be larger.
For some cases, one-loop corrections by gravitational

interactions to scalar soft mass squared vanish [34], as is
shown in Appendix A. (There, we also discuss SUSY
nonlinear sigma models.) In that case, quantum corrections
to scalar soft mass squared start from the two-loop level.
Even if Λ ∼MP, the two-loop corrections are, at most,
comparable to possible one-loop corrections to gaugino
masses, trilinear couplings, and the Bμ term. Thus, the
gravitino mass of Oð10Þ TeV is possible in this case, even
if Λ ∼MP.

III. HIGGS BOSON MASS AND g − 2
OF THE MUON

In the MSSM, the observed Higgs boson mass at around
125 GeV is explained by a large stop mass and/or a large
trilinear coupling of the stops [35]. These soft masses
generate large radiative corrections to the Higgs potential:
Δm2

Hu
∼ ðm2

~t orA
2
t Þ, where m~t and At are the stop mass and

a trilinear coupling, respectively. For m~t, At ∼ 1–4 TeV,
the fine-tuning of parameters in the Higgs potential is
required to explain the electroweak symmetry breaking
(EWSB) scale. From EWSB conditions, Z boson mass mZ
is written as

m2
Z

2
≃ −ðm2

Hu
ðMGUTÞ þ Δm2

Hu
þ μ2Þ

þ ðm2
Hd
ðMGUTÞ þ Δm2

Hd
−m2

Hu
ðMGUTÞ

− Δm2
Hu
Þ=tan2β þ � � � ; ð11Þ

where … indicates terms suppressed by 1=tannβ ðn ≥ 4Þ.
Here, mHu

ðMGUTÞ and mHd
ðMGUTÞ denote the soft masses

of the up- and down-type Higgs at the GUT scale,
respectively, and Δm2

Hu
and Δm2

Hd
are the radiative cor-

rections to m2
Hu

and m2
Hd
. To explain mZ ≃ 91.2 GeV,

Δm2
Hu

∼ ðm2
~t orA

2
t Þ needs to be canceled by either

m2
Hu
ðMGUTÞ or μ2.9 Consequently, there arise two distinct

regions: a small μ region and a large μ region. If the Higgs

6Note that the Bμ term also vanishes in this limit in the
gravitational SUSY breaking, as we have discussed. Thus, there
is no so-called Bμ problem even in the sequestering limit.

7This argument can be invalidated by couplings between
regulator fields and the SUSY breaking field Z. See the comment
in Appendix A.

8The anomaly mediation proportional to the VEVof the scalar
auxiliary component of the supergravity multiplet is determined
by the superdiffeomorphism [31] and, hence, cannot be elimi-
nated. In our setup, the VEV vanishes at the tree level and, hence,
that anomaly mediation is suppressed [16].

9There is an exception where no large cancellation between
m2

Hu
ðMGUTÞ, Δm2

Hu
and μ2 is required. For instance, in focus

point gaugino mediation models [9], Δm2
Hu

is small and the fine-
tuning is significantly relaxed.
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potential is tuned by the SUSY breaking parameter,
m2

Hu
ðMGUTÞ, it is likely that μ is of the order of mZ. In

contrast, if the EWSB scale is explained by the tuning
of the SUSY invariant mass μ, μ needs to be as large
as μ ∼m~t.

A. Small μ case

When the Higgsino is light (μ is small), the SUSY
contributions to the muon g − 2 are dominated by the wino-
Higgsino-(muon-sneutrino) loop. In this case, the dominant
SUSY contribution is given by [5]

ðaμÞ ~W− ~H−~νL ≃
α2
4π

m2
μðM2μÞ
m4

~ν

tan β · FC

�
M2

2

m2
~ν

;
μ2

m2
~ν

�
; ð12Þ

where FC is a loop function (e.g., FCð1; 1Þ ¼ 1=2). It is
larger than the contribution from loops involving the bino
and smuons [see Eq. (14)]. Therefore, the small μ allows
relatively heavier electroweakinos and sleptons to explain
the muon g − 2 than the large μ.
In Fig. 1, contours of the Higgs boson mass and the

region consistent with the muon g − 2 are shown. The
mass of the CP-even Higgs boson is calculated by using

FIG. 1 (color online). The SUSY contribution to the muon g − 2 and the Higgs boson mass (red solid line) in the small μ case. In the
orange (yellow) region, the muon g − 2 is explained at 1(2) σ level. In the top panels (the bottom panel), μ ¼ 200 GeV (150 GeV) and
tan β ¼ 20 (35). Here, αSðmZÞ ¼ 0.1184 and mt ¼ 173.3 GeV.
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FEYNHIGGS2.10.2 [36] with the option resumming large
logs. The SUSY contributions to the muon g − 2, Δaμ, are
also evaluated by FEYNHIGGS. The SUSYmass spectrum is
evaluated by using the SUSPECT package [37] with modi-
fication suitable for our purpose. In the top panels (the
bottom panel), B, m2

Hu
, and m2

Hd
at the GUT scale are taken

such that tan β ¼ 25 (35), μ ¼ 200 GeV (150 GeV), and
the physical mass of the CP-odd Higgs boson,
mA ¼ 2000 GeV, are reproduced. The trilinear couplings
are taken as Au ¼ −1500 GeV, Ad ¼ Ae ¼ ðBμ=μÞ − Au

[see Eq. (6)]. The negative sign of Au at the GUT scale is
taken so that contributions from gaugino loops are added to
Au constructively. We discard the gray region, since the stau
becomes the lightest SUSY particle (LSP) or the stop is
lighter than 600 GeV [38] 10; in the region of smallM1, the
stau becomes light because of a small positive radiative
correction from M1. The region consistent with the muon
g − 2 at 1σ (2σ) level is shown in orange (yellow). Here, the
deviation of the muon g − 2 is evaluated as

ðaμÞEXP − ðaμÞSM ¼ ð26.1� 8.1Þ · 10−10; ð13Þ

using the SM prediction in Ref. [2].
One can see that the observed Higgs boson mass and

muon g − 2 are explained simultaneously for the physical
gluino mass at around 2.5–3.0 TeV and M2ðMGUTÞ ¼
400–800 GeV (corresponding to M2ðmSUSYÞ ≃
290–620 GeV) (see also Table I). Since squark masses
are smaller than the physical gluino mass, the region
consistent with the observed Higgs boson mass and the
muon g − 2 can be tested at the 14 TeV Large Hadron
Collider (LHC), through productions of the gluino and
squarks [39,40]. Note that the abundance of the lightest
neutralino, which is mainly composed of the Higgsino with
a mixture of the wino, is much smaller than the observed
value,ΩDMh2 ≃ 0.12 [41,42], and hence, another candidate
for dark matter is required.11

In the region consistent with the muon g − 2, the wino
has a small mass and hence the constraint from charino/
neutralino searches at the LHC should be considered. The
charged and neutral winos produced by the electroweak
interactions decay into Higgsinos þ (W, Z, h), since left-
handed sleptons are heavier than the wino. This process can
be examined by the chargino/neutralino searches in the
final state with two or three leptons and missing transverse
momentum [44,45]. So far, the constraint is not very severe,
and it is difficult to give a bound on the wino mass for

μ > 150 GeV; the region consistent with the muon g − 2 is
safe. At the 14 TeV LHC, the wino mass up to around
800 GeV can be excluded (discovered) for an integrated
luminosity of 300ð3000Þ fb−1 [40]; therefore, it is expected

TABLE I. The mass spectra with the small μ. Here,
ΔBrðb → sγÞ ¼ Brðb → sγÞMSSM − Brðb → sγÞSM.
P1

M1ðMGUTÞ 2200 GeV
M2ðMGUTÞ 400 GeV
M3ðMGUTÞ 1100 GeV
AuðMGUTÞ −1300 GeV
tan β 20
μ 200 GeV
mA 2 TeV
mgluino 2.4 TeV

m ~q 2.1 TeV

m~t1;2 1.4, 1.8 TeV

m~eLðm ~μLÞ 450 GeV

m~eRðm ~μRÞ 836 GeV

m~τ1 361 GeV

mχ0
1
, mχ0

2
179, 210 GeV

mχ0
3
, mχ0

4
342, 935 GeV

mχ�
1
, mχ�

2
184, 343 GeV

mh 124.5 GeV
Δaμ 2.20 × 10−9

ΔBrðb → sγÞ −2.9 × 10−5

P2

M1ðMGUTÞ 1900 GeV
M2ðMGUTÞ 740 GeV
M3ðMGUTÞ 1400 GeV
AuðMGUTÞ −1300 GeV
tan β 35
μ 150 GeV
mA 2 TeV
mgluino 3.0 TeV

m ~q 2.6 TeV

m~t1;2 1.8, 2.2 TeV

m~eLðm ~μLÞ 573 GeV

m~eRðm ~μRÞ 721 GeV

m~τ1 174 GeV

mχ0
1
, mχ0

2
145, 159 GeV

mχ0
3
, mχ0

4
602, 806 GeV

mχ�
1
, mχ�

2
151, 602 GeV

mh 125.3 GeV
Δaμ 1.97 × 10−9

ΔBrðb → sγÞ −2.5 × 10−5
10In this region with the light stop, the constraint from the

inclusive b → sγ decay is more stringent than the LHC stop
searches.

11Since the spin-independent scattering cross section of this
Higgsino-wino neutralino is large as a few × 10−9 pb, the present
model is excluded [43], if the neutralino is a dominant component
of dark matter.
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that the region consistent with the muon g − 2 at 1σ level is
tested at the 14 TeV LHC.

B. Large μ case

If the Higgsino is heavy, the bino-(L-smuon)-(R-smuon)
loop dominates the SUSY contributions to the muon g − 2.
The contribution from this loop is given by [5]

ðaμÞ ~B− ~μL−~μR
≃ 3

5

α1
4π

m2
μμ

M3
1

tan β · FN

�
m2

~μR

M2
1

;
m2

~μL

M2
1

�
; ð14Þ

where FN is a loop function (e.g., FNð1; 1Þ ¼ 1=6). In this
region, a small bino mass is required to enhance
ðaμÞ ~B− ~μL−~μR

. As a result, the stau tends to be tachyonic
in a gaugino mediation model. This tachyonic stau is
avoided by the positive contribution from ðm2

Hd
−m2

Hu
Þ

through the renormalization group evolution. Indeed, the
one-loop renormalization group equation for the right
handed slepton is given by

dm2
Ec

dt
∋ 1

16π2

�
−
6

5
g21ðm2

Hd
−m2

Hu
Þ
�
: ð15Þ
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FIG. 2 (color online). The SUSY contribution to the muon g − 2 and the Higgs boson mass in the large μ case. The different values of
M3,M3 ¼ 1300 GeV (top panels) and 3000 GeV (bottom panel) are taken. In the orange (yellow) region, the muon g − 2 is explained at
1ð2Þσ level. In the top-left panel, mHu

¼ 0, while in the other panels, mHd
¼ 0).
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This contribution vanishes if m2
Hu

¼ m2
Hd
. However, it is

sizable when m2
Hd

≫ m2
Hu
. In our gaugino mediation

model, Hu and Hd couple to the SUSY breaking field
Z; therefore, ðm2

Hd
−m2

Hu
Þ can be positive at the high-

energy scale resulting in the positive mass squared of
the stau.
In Fig. 2, we show Δaμ and the contours of mh in

the large μ cases. In the top-left panel, m2
Hd
ðMGUTÞ > 0

and m2
Hu

¼ 0 are taken, and in other two panels,
m2

Hd
ðMGUTÞ ¼ 0 and m2

Hu
ðMGUTÞ < 0 are taken. The tri-

linear coupling Au is Au ¼ −1500 GeV in the top-left
panel, and Au ¼ −2000 GeV in the other two panels.
Other trilinear couplings satisfy the condition in Eq. (6),
Ad ¼ Ae ¼ ðBμ=μÞ − Au. The gray region is exclude since
the stau becomes the lightest SUSY particle. On the edge of
the stau LSP region, i.e., for mχ0

1
∼m~τ1, the relic abundance

of the neturalino is consistent with the observed value,
ΩDMh2 ≃ 0.12 [41,42]. This is because the coannihilation
[46] with the lighter stau reduces the relic abundance of the
lightest neutralino efficiently.
It is shown that the muon g − 2 is explained at 1σ level

for M2ðmSUSYÞ < 500ð600Þ GeV and the gluino mass of
2.8 (6.1) TeV. The calculated Higgs boson mass can be
consistent with the observed mass at around 125 GeV by
taking into account the uncertainties from the top pole mass
and theoretical calculation of the Higgs boson mass.
However, as shown below, this region is rather severely
constrained from the chargino/neuralino searches at the
LHC. Here, M3 ¼ ð1300; 3000Þ GeV corresponds to
mgluino ¼ ð2.8; 6.1Þ TeV and msquark ¼ ð2.4; 5.2Þ TeV,
where mgluino and msquark are the physical gluino mass
and squark mass, respectively.
In contrast to the small μ case, the region consistent with

the muon g − 2 in the large μ case is rather severely
constrained by chargino/neutralino searches at the LHC.
This is because the left-handed sleptons are lighter than the
wino in this region, and hence the wino can decay into an
on-shell slepton and a lepton, with the slepton decaying
into a neutralino and a lepton. As a result, this region is
severely constrained by searches for the electroweak
production of the chargino and neutralino in a final state
with three leptons and missing transverse momentum
[45,47]. From these searches, the wino mass is constrained
to be larger than 600–700 GeV, depending on the slepton
mass. Considering this constraint, the muon g − 2 is
explained at 1.5–2σ (1–1.5σ) level for M3 ¼
1300ð3000Þ GeV (see also Table II). For larger M3, e.g.,
M3 ¼ 5200 GeV, the muon g − 2 is explain at 1σ level
with a chargino mass larger than 700 GeV (see P6 in
Table II). Note that a large gluino mass indirectly enhances
ðaμÞ ~B− ~μL−~μR

for fixed tan β, bino, and smuon masses. Large
M3 generates large jm2

Hu
j through radiative corrections at

the two-loop level. With this large jm2
Hu
j, μ is determined to

TABLE II. The mass spectra with the large μ. Here, μ≃mχ�
2
.

P3

M1ðMGUTÞ 300 GeV
M2ðMGUTÞ 760 GeV
M3ðMGUTÞ 1300 GeV
AuðMGUTÞ −2000 GeV
tan β 15

m2
Hu
ðMGUTÞ −6 · 105 GeV2

m2
Hd
ðMGUTÞ 0

mgluino 2.8 TeV

m ~q 2.5 TeV

m~t1;2 1.9, 2.2 TeV

m~eLðm ~μLÞ 471 GeV

m~eRðm ~μRÞ 212 GeV

m~τ1 120 GeV

mχ0
1
, mχ0

2
118, 609 GeV

mχ�
1
, mχ�

2
609, 2006 GeV

mh 124.3 GeV
Δaμ 1.40 × 10−9

P4

M1ðMGUTÞ 300 GeV
M2ðMGUTÞ 780 GeV
M3ðMGUTÞ 3000 GeV
AuðMGUTÞ −2000 GeV
tan β 10

m2
Hu
ðMGUTÞ −7.6 · 105 GeV2

m2
Hd
ðMGUTÞ 0

mgluino 6.1 TeV

m ~q 5.2 TeV

m~t1;2 4.4, 4.9 TeV

m~eLðm ~μLÞ 423 GeV

m~eRðm ~μRÞ 218 GeV

m~τ1 118 GeV

mχ0
1
, mχ0

2
107, 606 GeV

mχ�
1
, mχ�

2
606, 3671 GeV

mh 125.2 GeV
Δaμ 1.88 × 10−9

P5

M1ðMGUTÞ 300 GeV
M2ðMGUTÞ 900 GeV
M3ðMGUTÞ 3000 GeV
AuðMGUTÞ −2000 GeV
tan β 10

m2
Hu
ðMGUTÞ 0

(Table continued)
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be large from the EWSB condition in Eq. (11).
Consequently, ðaμÞ ~B−~μL−~μR

proportional to μ is enhanced.12

This is the reason why favored gluino masses are relatively
larger than those in the small μ case.
Finally, some mass spectra for small μ and large μ

are shown in Table I and II. In small μ cases, the
branching ratio of the inclusive b → sγ decay is enhanced
for large At; we calculate ΔBrðb → sγÞ ¼ Brðb →
sγÞMSSM − Brðb → sγÞSM in P1–P2 by using SUPERISO
package [49], and demand that −3.6 · 10−5 <

ΔBrðb → sγÞ < 9.2 · 10−5. Here, the required range of
ΔBrðb → sγÞ is given by the difference between the
experimental value of Brðb → sγÞ [50] and SM prediction
[51] with an inclusion of 2σ error.

IV. CONCLUSION AND DISCUSSION

We have shown that the observed Higgs boson mass at
around 125 GeV and the anomaly of the muon g − 2 are
explained simultaneously in our gaugino mediation mod-
els. There is no SUSY CP problem thanks to the shift
symmetry of the SUSY breaking field Z, and the gravita-
tional SUSY breaking mechanism. The Higgs doublets are
assumed to couple to Z, giving nonzero soft masses of the
Higgs doublets and the trilinear coupling of the stops. With
this trilinear coupling, the Higgs boson mass of 125 GeV is
explained relatively easily: colored SUSY particles can be
lighter than 3 TeV, and they are expected to be produced at
the 14 TeV LHC. Thanks to the nonzero soft masses of the
Higgs doublets, the μ parameter can be small if the Higgs
potential is tuned by these soft masses. In this case, the
muon g − 2 is explained at 1σ level avoiding the constraints
from the chargino/neutralino searches. With the small μ,
light Higgsinos as well as sleptons are targets of searches at
lepton colliders such as the International Linear Collider
experiments.
The muon g − 2 is consistent with the large μ case as

well. In the large μ case, the Higgs potential is tuned by
this μ parameter rather than the soft masses of the Higgs
doublets. Compared to the small μ case, a relatively heavy
gluino is favored for the muon g − 2, and the gluino and
squarks are too heavy to be tested even at the 14 TeV LHC.
However, this region can be easily covered through the
chargino/slepton searches at the LHC [18].
Let us comment on possible problems concerning

cosmological aspects: the gravitino problem and the
Polonyi problem. By allowing small couplings between
Z and Higgs doublets, the gravitino mass can be larger
than Oð10Þ TeV. In this case, the cosmological gravitino
problem is significantly relaxed, compared to the case with
the gravitino mass of Oð1Þ TeV. The Polony problem
caused by Z can be solved by the adiabatic solution
provided that Z strongly couples to an inflaton [52,53].
Or maybe the Polonyi problem is simply absent due to an
anthropic reason; note that the constraint from the big
bang nucleosynthesis, which would not be avoided by an
anthropic reason, is avoided for a sufficiently large mass of
Z, mZ > Oð10Þ TeV because Z decays before the big bang
nucleosynthesis starts.
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TABLE II. (Continued)

P5

m2
Hd
ðMGUTÞ 6 · 105 GeV2

mgluino 6.1 TeV

m ~q 5.2 TeV

m~t1;2 4.4, 4.9 TeV

m~eLðm ~μLÞ 515 GeV

m~eRðm ~μRÞ 203 GeV

m~τ1 113 GeV

mχ0
1
, mχ0

2
107, 707 GeV

mχ�
1
, mχ�

2
707, 3602 GeV

mh 125.7 GeV
Δaμ 1.41 × 10−9

P6

M1ðMGUTÞ 300 GeV
M2ðMGUTÞ 940 GeV
M3ðMGUTÞ 5200 GeV
AuðMGUTÞ −2000 GeV
tan β 7

m2
Hu
ðMGUTÞ −1.2 · 106 GeV2

m2
Hd
ðMGUTÞ 0

mgluino 10.3 TeV

m ~q 8.7 TeV

m~t1;2 7.4, 8.1 TeV

m~eLðm ~μLÞ 419 GeV

m~eRðm ~μRÞ 231 GeV

m~τ1 104 GeV

mχ0
1
, mχ0

2
92, 708 GeV

mχ�
1
, mχ�

2
708, 5828 GeV

mh 124.8 GeV
Δaμ 1.86 × 10−9

12Large μ tan β generates to a charge breaking minimum in the
Higgs-stau potential, which can be deeper than the EWSB
minimum. Therefore, the size of μ tan β is constrained from
above by the stability of the EWSB minimum [48].
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APPENDIX: SOFT SCALAR MASSES

In this appendix, we calculate the soft scalar masses of
the MSSM particles shown in Sec. II. For simplicity, we put
MP ¼ 1 in this appendix.

1. Tree-level soft scalar masses

In general, the scalar potential is given by the Kahler
potential KðXI; X†J̄Þ and the superpotential WðXIÞ as13

V ¼ eK½KIJ̄ðWI þ KIWÞðWJ þ KJWÞ† − 3jWj2�: ðA1Þ

Here, I; J;… and Ī; J̄;… indicate chiral and antichiral
fields, respectively. Lower indices denote derivatives with
respect to the corresponding field. KIJ̄ is the inverse of the
matrix KIJ̄.
Let us first consider the following Kahler potential and

the superpotential,

K ¼ gðZ þ Z†Þ þ hiðZ þ Z†ÞQ†
i Qi; ðA2Þ

W ¼ C þ ~yQ1Q2Q3 þ ~μQ4Q5; ðA3Þ

where Qiði ¼ 1–5Þ, ~y and ~μ are matter chiral fields, the
Yukawa coupling, and the mass term, respectively. g and hi

are real functions. Note that fields Qi are not canonically
normalized. Canonically normalized fields are given by

Qc
i ¼ h1=2i Qi: ðA4Þ

Then the Yukawa coupling and the mass term for the
canonically normalized fields are

y ¼ eg=2ðh1h2h3Þ−1=2 ~y; μ ¼ eg=2ðh4h5Þ−1=2 ~μ: ðA5Þ

The potential of Z is given by

VðZ; Z†Þ ¼ egjCj2½g00−1g02 − 3�: ðA6Þ

Vanishing of the cosmological constant requires that

g02 ¼ 3g00 ðA7Þ

at the vacuum.
Scalar soft masses are given by

Vsoft ¼ m2
i jQc

i j2 þ ½yAQc
1Q

c
2Q

c
3 þ BμQc

4Q
c
5 þ H:c:�;

m2
i ¼ ½1 − 9ðg0Þ−2ðln hiÞ00� ×m2

3=2;

A ¼
X

i¼1;2;3

�
1 −

3

g0
ðln hiÞ0

�
×m3=2;

Bμ=μ ¼
X
i¼4;5

�
1 −

3

g0
ðln hiÞ0

�
×m3=2; ðA8Þ

where primes denote the derivative with respect to Z þ Z†.
Here, we have used eK=2C� ¼ m3=2 and Eq. (A7).
The Kahler potential discussed in Sec. II corresponds to

the case with

g ¼ −3 ln ð1 − f=3Þ;

hi ¼

8>><
>>:

ð1 − f=3Þ−1ð1þ cuðZ þ Z†Þ þ duðZ þ Z†Þ2Þ for Qi ¼ Hu;

ð1 − f=3Þ−1ð1þ cdðZ þ Z†Þ þ ddðZ þ Z†Þ2Þ for Qi ¼ Hd;

ð1 − f=3Þ−1 for others:

ðA9Þ

From Eqs. (A8) and (A9), we obtain the soft masses shown
in Eqs. (5) and (6). Scalar soft mass squared of squarks and
sleptons vanish.

2. Quantum corrections to soft scalar mass squared

We are interested in the case where the gravitino mass is
far larger than the soft masses of MSSM because the

gravitino problem and the Polonyi problem are relaxed in
this case. Let us assume vanishing soft masses at the
tree level [in the sequestering discussed in the main text,
ΔK ¼ 0 in Eq. (2) and k5 ¼ k3H ¼ k1H ¼ 0 in Eq. (8)] and
discuss how large quantum corrections to soft masses are
expected.
As we have discussed in the main text, when MSSM soft

masses vanish at the tree level, renormalizable interactions
in MSSM do not generate soft masses. Then quantum
corrections to MSSM soft masses originate only from the

13We omit the D-potential, which is irrelevant for our
discussion.
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anomaly mediation or from higher-dimensional inter-
actions such as gravitational interactions. Possibly the
largest correction is the one-loop correction to scalar soft
mass squared from higher-dimensional interactions, which
we investigate here.
The MSSM field couples to the SUSY breaking field

and the gravitino through higher-dimensional interactions.
These interactions are expected to generate MSSM soft
masses through quantum corrections. We treat the quantum
corrections by introducing a cutoff Λ to the theory and
regard the action with vanishing MSSM soft masses as a
Wilsonian action at the cutoff scale. Then quantum cor-
rections to the scalar soft mass squared are given by the
following form,

Δm2
scalar ∼

1

ð16π2Þm m2
3=2

�
Λ
M�

�
n
; ðA10Þ

where M� is the suppression scale of higher-dimensional
interactions such as the Planck scale, m is the number of
loops, and n is an integer.
In the following, we show that one-loop corrections to

the soft mass squared are absent when the tree-level Kahler
potential is either of the following forms:

K ¼ KðZ þ Z† þQ†
i QiÞ; ðA11Þ

K ¼ Kðln ð1þQ†
i QiÞ þ Z þ Z†Þ: ðA12Þ

The former is the case with the sequestered form in Eq. (1)
with fðZ þ Z†Þ linear in Z þ Z†, the so-called no-scale
structure.14 The latter is the case with the SUSY CPN ≃
SUðN þ 1Þ=SUðNÞ ×Uð1Þ nonlinear sigma model, where
N is the number of chiral superfields Qi. The proof is
parallel to the one given in Ref. [34].
In the limit of vanishing Yukawa couplings and gauge

couplings, the action is invariant under the following
transformation of superfields,

δQi ¼ ϵi; δZ ¼ ϵ�i Qi∶ for Eq: ðA11Þ; ðA13Þ

δQi ¼ −
i
2
θi1ð1 −Q2

i Þ þ
1

2
θi2ð1þQ2

i Þ − iθi3Qi;

δZ ¼ −
i
2
θi1Qi −

1

2
θi2Qi þ

i
2
θi3∶ for Eq: ðA12Þ;

ðA14Þ

where ϵi and θi are complex and real infinitesimal param-
eters of transformations. The latter transformation is
nothing but SUð2Þ subgroups of SUðN þ 1Þ.

In both cases, quantum corrections without Yukawa
or gauge coupling constants can modify the Kahler
potential only to the following form consistent with the
symmetries,

K ¼ FðZ þ Z† þQ†
i QiÞ þ � � � ; ðA15Þ

where F is some real function and � � � denote terms higher
order in Qi.
Then, scalar soft mass squared appear in the scalar

potential only through the following combination consis-
tent with the symmetries,

VðZ þ Z† þQ†
i QiÞ; ðA16Þ

which give the potential of Z for Qi ¼ 0. The scalar soft
mass squared of Qi is given by

∂
∂Q†

i

∂
∂Qi

VðZ þ Z† þQ†
i QiÞjQi¼0

¼ V 0ðZ þ Z†Þ; ðA17Þ

which vanishes at the vacuum.
We have shown that the scalar soft mass squared is not

generated from quantum corrections without Yukawa or
gauge coupling constants. Also, as we have discussed,
neither the renormalizable Yukawa or gauge interactions
alone generate soft masses. Thus, the scalar soft mass
squared is generated only by corrections involving both the
Yukawa/gauge coupling constants and higher-dimensional
interactions. Such corrections are absent at the one-loop
level and are possible only from the two-loop level. Thus,
quantum corrections to scalar soft mass squared are at most
as large as

Δm2
scalar ∼

λ2

ð16π2Þ2m
2
3=2

�
Λ
M�

�
n
; ðA18Þ

where λ is the Yukawa or gauge coupling constants.
Finally, we comment on how the above discussion may

be invalidated by the regularization of quantum corrections.
We have argued that when MSSM soft masses vanish at the
tree level, renormalizable interactions in MSSM do not
generate soft masses. This argument may be invalidated by
the regularization. Consider, for example, the Pauli-Villars
regularization. If Pauli-Villars fields have tree-level soft
masses, loop corrections from Pauli-Villars fields generate
MSSM soft masses at the one-loop level [54,55]. For the
above discussion to be valid, tree-level soft masses of the
Pauli-Villars fields must also be absent. In the sequestering
based on the brane world, this assumption holds if the
Pauli-Villars fields also live on the brane of the visible
sector.

14For the no-scale case, the tree-level potential of Z also
vanishes. The potential is given by one-loop corrections and
hence the scalar component of Z is lighter than the gravitino.
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