
Bayesian model comparison of Higgs couplings

Johannes Bergström*

Departament d’Estructura i Constituents de la Matèria and Institut de Ciencies del Cosmos,
Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Spain

Stella Riad†

Department of Theoretical Physics, School of Engineering Sciences,
KTH Royal Institute of Technology-AlbaNova University Center, Roslagstullsbacken 21,

106 91 Stockholm, Sweden
(Received 18 December 2014; published 14 April 2015)

We investigate the possibility of contributions from physics beyond the Standard Model (SM) to the
Higgs couplings, in the light of the LHC data. The work is performed within an interim framework where
the magnitude of the Higgs production and decay rates are rescaled through Higgs coupling scale factors.
We perform Bayesian parameter inference on these scale factors, concluding that there is good
compatibility with the SM. Furthermore, we carry out a Bayesian model comparison on all models
where any combination of scale factors can differ from their SM values and find that typically models with
fewer free couplings are strongly favored. We consider the evidence that each coupling individually equals
the SM value, making the minimal assumptions on the other couplings. Finally, we make a comparison of
the SM against a single “not-SM” model and find that there is moderate to strong evidence for the SM.
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I. INTRODUCTION

The discovery of a boson with a mass of approximately
125.5 GeV was announced in July 2012 by the ATLAS and
CMS experiments at the Large Hadron Collider (LHC) at
CERN [1,2]. This discovery is compatible with previous
data from proton-antiproton collisions at

ffiffiffi
s

p ¼ 1.96 TeV
at the Tevatron [3]. Using all of the available data, with a
total luminosity of 25 fb−1 from the proton-proton colli-
sions with energies of

ffiffiffi
s

p ¼ 7 and 8 TeV runs at the LHC,
properties of the Higgs boson properties, such as spin,
parity, mass, and the couplings to other Standard Model
(SM) particles, has been further investigated [4–7]. So far,
however, there are no indications of major deviations from
the properties of the SM Higgs boson, and the boson does
in fact seem to be a CP-even scalar [8–10]. The discovery
of the Higgs boson marks an important milestone in the
history of particle physics, especially for our understanding
of electroweak symmetry breaking and the generation of
particle masses [11–14].
The Higgs boson was discovered through its decays into

gauge bosons, i.e., WW, ZZ, and γγ pairs. However, using
the full set of data from the LHC, there is now also evidence
for decays into fermions, bb̄ and τþτ− [15,16].
Even though the properties of the new boson so far are

compatible with those of the SM Higgs, the possibility for
new physics in the Higgs sector should be investigated. New
physics can manifest itself in different ways, some of which

can be detected since they would give rise to a rescaling of
themagnitude, or change in the structure, of theHiggs boson
couplings. Hence, a natural step forward in experimental
Higgs physics is precisionmeasurements of theHiggs boson
couplings to fermions and gauge bosons. Fromexisting data,
there are bounds on the couplings of the boson. However,
hadron colliders are in general not ideal for Higgs precision
measurements, and thus, in order to determine the couplings
with significantly greater precision, the upgrade of the LHC
to 14 TeV will not suffice, and instead lepton colliders, such
as a Higgs factory, are needed [17].
The status of the Higgs couplings as measured by the

LHC can be studied by means of so-called Higgs coupling
scale factors, introduced by the LHC Higgs cross section
working group as an interim treatment of the Higgs
couplings [18]. Coupling scale factors are introduced in
order to rescale the magnitudes of the Higgs production and
decay rates, which is especially useful since the exper-
imental data from the collaborations are presented in terms
of so-called global signal strengths. Since the analysis of
the data indicate that a CP-even scalar is preferred to a
CP-odd one, we assume a single underlying CP-even
scalar boson at a mass of about 125 GeV, and furthermore
we assume a simplifying zero-width approximation. This
so-called interim framework has been used by the ATLAS
and CMS collaborations as well as in several phenomeno-
logical studies [4,7,19–29]. In this work, we use the
software HIGGSSIGNALS 1.2.0 for the implementation of
the LHC data in the form of a χ2-function [30–32].
In the present work, we apply Bayesian inference within

the framework of coupling scale factors. We shall use
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Bayesian parameter inference to get a rough idea of how the
parameters are constrained. However, since the most
important question is rather that of which model best
describes the data, we will focus on model comparison
—in particular of different models in which any combi-
nation of couplings differ from their SM values. This
framework makes it possible to compare many models to
each other at once, but the main advantage is that it is
possible to obtain evidence in favor of simpler models—in
the present case for models where the couplings are given
by their SM values.
The paper is organized as follows. In Sec. II, we give an

introduction to Higgs physics and the concept of coupling
scale factors. In Sec. III, we discuss the Bayesian method
used in the present work, especially model comparison in
the context of Higgs couplings. In addition, we discuss the
models used in the present work as well as the priors used.
In Sec. IV, we discuss the results of parameter estimation
and the results concerning the different questions addressed
using model comparison. Finally, in Sec. V, we give a short
summary and give our conclusions.

II. HIGGS PHYSICS

Whether the discovered particle at 125.5 GeVactually is
the SM Higgs boson, or only a part of some bigger picture,
is an important question which needs to be investigated. In
general, additional degrees of freedom in the Higgs sector
will influence the Higgs couplings to the SM particles as
well as the loop-induced production and decay modes.
One common way to investigate the possibility of new

physics in the Higgs sector is to study and compare specific
renormalizable models for beyond the SM physics, such as
two-Higgs-doublet models [33–35], composite Higgs mod-
els [36,37], a dilaton model [21], and supersymmetric
models [38,39]. However, in these cases, the comparisons
are only made between these specific models and the SM,
and obviously lack in generality. Another way is to
consider the SM extended with effective operators, result-
ing from new physics above the TeV scale. Since this new
physics is heavy by assumption, it will give rise to
modifications of the couplings, which are suppressed by
the scale of new physics. These modifications are, however,
not necessarily small in magnitude if the scale of new
physics is low [40,41]. In both of the frameworks discussed
above, some or all of the Higgs boson couplings will be
altered, both the magnitude and in principle also the tensor
structure of the couplings, even though these modifications
are often heavily suppressed. Another approach is simply to
not consider a physical and realistic model, but instead
make a statistical analysis based on the “naive” rescaling of
the magnitude of the Higgs couplings. In such a framework,
it is only possible to investigate whether there are any
significant deviations of the couplings from their SM
values, without attempting to interpret the underlying
physics. Thus, the relevant result of the analysis is whether

the couplings deviate from their SM value or not, rather
than the exact value of the couplings. This treatment with
coupling scale factors shall be considered here.

A. Production modes

Four production modes of the Higgs boson in the SM are
significant at the LHC. The predominant production mode
is the loop-induced gluon fusion gg → H, with heavy
quarks running in a triangular loop, with the main con-
tribution coming from the top quark. Since this process is
loop induced, it is of particular interest in searches for new
physics. The subdominant processes are vector boson
fusion, qq0 → qq0H; associated production with a vector
boson, qq̄ → WH=ZH; and the associated production with
a top-quark pair, qq̄=gg → tt̄H. We will use the notation
where l ¼ e; μ and q stands for any quark.

B. Decay modes

The Higgs boson can decay either to a fermion-anti-
fermion pair or two gauge bosons. At present, the Higgs
boson have been detected in five decay channels at the
LHC, namely the γγ, ZZð�Þ (in turn followed by a decay to
4l; 2l2ν; 2l2q; 2l2τ), WWð�Þ (followed by decays to lνlν,
lνqq), bb̄, and τþτ−, which then decay leptonically and
hadronically. Since the Higgs’s coupling to fermions is
proportional to the fermion mass, the heaviest fermion
mode, which is kinematically accessible, will have the
largest partial decay width in the SM. Of the detected decay
modes only H → γγ is loop induced, which is of particular
interest for searches beyond the SM. In addition to the
observed decay modes, the H → μþμ− and H → Zγ
channels have been investigated at the LHC. However,
the Higgs boson has not been detected in either of them,
and there are therefore only (rather loose) upper bounds in
these channels at present [42].

C. Definition of coupling scale factors

The LHC Higgs results are commonly presented in terms
of global signal strengths, defined as

μ ¼ σðXÞ · BRðH → YÞ
σðXÞSM · BRðH → YÞSM

; ð1Þ

where σðXÞ is the cross section for the production mode X
and BRðH → YÞSM is the branching ratio of the decay
mode Y. In the case of a SM process, the value of μ is
naturally 1. In the SM, the Higgs boson couples to the other
particles with couplings ySMi , where i ∈ ft; b; τ; μ;W; Zg.
The couplings to the fermions are the Yukawa couplings

ySMf ¼ mf

v
; ð2Þ

where mf is the mass of the fermion, f ∈ fb; t; τ; μg, and v
is the Higgs vacuum expectation value. The upper
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perturbative limit for these couplings is around 4π. For the
gauge couplings, we have

ySMW ¼ 2m2
W

v
; ySMZ ¼ m2

Z

v
; ð3Þ

where mW and mZ are the W and Z masses, respectively.
Note that these couplings are dimensionful.
A simple extension of the SM can be made by rescaling

the magnitude of the SM decay and production rates, which
effectively leads to a rescaling of the Higgs couplings by
so-called coupling scale factors, κi. For the processes which
exist at tree level in the SM, the couplings are rescaled as

yi ¼ κi · ySMi : ð4Þ

Naturally, the SM is recovered for κi ¼ 1. In addition,
coupling scale factors can be introduced for the loop-
induced processes. We introduce κg and κγ for the gg → H
and H → γγ, respectively. In principle, a scale factor, κZγ ,
could be introduced for a third loop-induced process
H → Zγ. However, since the sensitivity is nowhere close
to the region of the SM prediction and since the inference
for the other parameters will not be affected, we will not
include this as a free parameter. The cross section of the
process ii → H → ff is then given by

ðσ · BRÞðii → H → ffÞ

¼ σSMðii → HÞ · BRSMðH → ffÞ · κ
2
i κ

2
f

κ2H
; ð5Þ

where κi and κf corresponds to the initial and final states,
respectively, and κH is the scale factor for the total Higgs
decay width.
The coupling scale factors κg and κγ can be considered

either as functions of the other coupling scale factors or free
parameters of the fit if new physics is allowed to participate
in the loops. In the SM, these scale factors have the values
κg ¼ κγ ¼ 1. However, in the case when only the tree-level
scale factors are varied, the scale factors of the loop-
induced processes will vary depending on the other scale
factors. The effects of the rescaled tree-level couplings
would have to be cancelled by some new physics, if these
parameters were fixed to their SM values. If the scale
couplings are free, new physics is allowed to propagate in
the loop.
Furthermore, the factor κg can be defined in two different

ways, either in terms of partial cross sections or decay
widths. In the present case, we define the coupling scale
factor κgðκt; κbÞ using the cross sections, since gluon fusion
is the more important process. Thus, the scale factor is
given by

κ2gðκb; κtÞ ¼
κ2t · σttggH þ κ2b · σ

bb
ggH þ κtκb · σtbggH

σttggH þ σbbggH þ σtbggH
: ð6Þ

In terms of the other κ’s, κγ is given by

κ2γðκb; κt; κτ; κWÞ ¼
P

ijκiκj · Γ
ij
γγP

i;jΓ
ij
γγ

; ð7Þ

where Γij
γγ are the partial decay widths and the pairs ði; jÞ

are given by bb; tt, ττ;WW; bt, bτ; bW; tτ; tW; τW [18].
In addition, the total Higgs width scales with a coupling

scale factor, which is defined in terms of the other coupling
scale factors as

κ2H ¼
X
X

κ2X · BRSMðH → XÞ; ð8Þ

where the summation runs over all possible decay modes in
the SM. This parametrization requires that the resonance
width is small, and therefore the zero-width approximation
is assumed. In principle, new physics could contribute to
the total Higgs width, which occurs if, for instance, the
Higgs can decay to dark matter particles. In this case, κH
should be a free parameter; see for example Ref. [43]. For
an extensive description of the concept of coupling scale
factors, see Ref. [18].
In the present work, we shall focus on the coupling scale

factors in two settings. First, the scale factors correspond-
ing to the SM tree-level couplings (and which are currently
constrained by LHC data), i.e., the Higgs couplings to bb̄,
tt̄, τþτ−, μþμ−, WW, and ZZ, have the possibility to be
varied. In the second case, the loop-induced processes have
the potential to be scaled as well, through the variation of κg
and κγ . We shall not consider the total decay width to be a
free parameter in the present case. Again, the information
on effective scale couplings from LHC data were imple-
mented using the HIGGSSIGNALS 1.2.0 software.
Note that the new particle is assumed to “resemble” the

SM Higgs boson in a certain way. In principle, however,
new physics will not only change the magnitude of the
couplings but also their tensor structure. These new
couplings usually are referred to as anomalous couplings,
and the general statistical method of analysis, to be
presented in the next chapter, would be applicable in that
case as well.

III. STATISTICAL APPROACH

In this work, we will make use of Bayesian probability
theory, in which each proposition is associated with a
probability or plausibility, defined to lie between 0 and 1.
This is the only consistent extension of boolean logic
incorporating uncertainty [44–46].
In Bayesian inference, the laws of probability are used to

infer which underlying hypotheses, assumption, or data
model [47] is preferred by some given set of data. Of
interest is Bayes’s theorem, which can be used to reverse
the order of the conditioning, denoted by “j”,
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PrðAjBÞ ¼ PrðBjAÞ PrðAÞ
PrðBÞ : ð9Þ

Thus, two different hypotheses or models can be compared
using the data D, through calculation of the posterior odds,
given by

PrðMijDÞ
PrðMjjDÞ

¼ PrðDjMiÞ
PrðDjMjÞ

PrðMiÞ
PrðMjÞ

: ð10Þ

The prior odds PrðMiÞ=PrðMjÞ quantify how much more
plausible one model is than the other a priori. This ratio is
typically taken equal to unity, which, however, must be
considered more carefully in some cases. The evidence
Zi ¼ PrðDjMiÞ is the likelihood of the model, a measure of
how well the model describes, or rather predicted, the data.
The Bayes factor Bi

j ¼ Zi=Zj is the ratio of the evidences
of the two models and quantifies how much better Mi
describes the data than Mj.
Given that the model M contains the free parameters Θ,

the evidence is given by

Z ¼ PrðDjMÞ ¼
Z

PrðD;ΘjMÞdNΘ

¼
Z

PrðDjΘ;MÞ PrðΘjMÞdNΘ

¼
Z

LðΘÞπðΘÞdNΘ; ð11Þ

where LðΘÞ≡ PrðDjΘ;MÞ is the likelihood function. The
prior probability density of the parameters is given by
πðΘÞ≡ PrðΘjMÞ, and should always be normalized, i.e., it
should integrate to unity. The assignment of priors are
probably the most discussed and controversial part of
Bayesian inference. This is often far from trivial, but
nevertheless this assignment is an important, even essential,
part of any Bayesian analysis.
The Bayes factors, or rather the posterior odds, are

interpreted or “translated” into ordinary language using the
so-called Jeffreys scale, given in Table I as used in, e.g.,
Refs. [48,49] (“log” denotes the natural logarithm). Even
though the Bayes factor in general will favor the correct

model once “enough” data have been obtained, the evi-
dence is often highly dependent on the choice of prior.
Under the assumption that a model M is true, complete

inference of its parameters is given by the posterior
distribution,

PrðΘjD;MÞ¼PrðDjΘ;MÞPrðΘjMÞ
PrðDjMÞ ¼LðΘÞπðΘÞ

Z
: ð12Þ

In this case, the evidence is only a normalization factor,
since it is independent of the values of the parameters Θ,
and it is therefore often disregarded in parameter estima-
tion. However, the actual values of the parameter within a
prespecified model are often not of the greatest interest.
Instead, the primary question is usually which model, or set
of models, is preferred by the data.
After model comparison, there might still be a significant

amount of uncertainty regarding which model actually is
the best, and this uncertainty should not be ignored when
making inference on parameters. Model uncertainty can be
taken into account by calculating the model-averaged
posterior distribution [50,51]

PrðηjDÞ ¼
X
i

PrðηjHi;DÞ PrðHijDÞ; ð13Þ

which is the average of the individual distributions over the
full space of the models considered, weighted by the
posterior model probabilities. Averaging over models can
be done for both prior and posterior distributions; however,
the parameters η, which could be derived, obviously need to
be well defined in all of the models. The posterior in
Eq. (12) is obtained by setting all prior model probabilities,
except one, equal to zero. For applications in physics and
cosmology, see Refs. [51–53].
The main result of Bayesian parameter inference is the

posterior and its marginalized versions (usually in one or
two dimensions). Commonly, point estimates such as the
posterior mean or median are given together with credible
intervals (regions), which are defined as intervals (regions)
containing a certain amount of posterior probability. These
regions are not unique, without further restrictions, sim-
ilarly to classical confidence intervals, and in general they
do not describe all the information contained in the
posterior. We use MULTINEST [54–56] for the evaluation
of all evidences and posterior distributions in this work.

A. Model comparison and Higgs couplings

We want to determine whether there is any evidence in
the LHC data for deviations from the SM values of the
couplings, i.e., if κi ≠ κSMi , or if κi ¼ κSMi is sufficient to
describe the data. In other words, we are interested in if
there is a deviation from the SM couplings, and not
precisely how large it is, given that it is nonzero. For each
coupling, this gives two distinct cases, and in order to

TABLE I. The Jeffreys scale, which is used for interpretation of
Bayes factors, odds, and model probabilities. The posterior model
probabilities for the preferred model are calculated assuming only
two competing hypotheses and equal prior probabilities. Note
that log denotes natural logarithm.

j logðoddsÞj odds PrðM1jDÞ Strength of evidence

< 1.0 ≲3∶1 ≲0.75 Inconclusive
1.0 ≃3∶1 ≃0.75 Weak evidence
2.5 ≃12∶1 ≃0.92 Moderate evidence
5.0 ≃150∶1 ≃0.993 Strong evidence
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differentiate between them, we want to perform Bayesian
model comparison. Note that, from a statistical viewpoint, a
model with κi ¼ κSMi can also be interpreted as a model
where there is some nonzero, but negligible (given current
data) deviation from the SM value; see Ref. [50] for further
discussion. Beforehand, it is not specified whether the other
couplings, i.e., the couplings with indices j ≠ i, should be
fixed to their SM value or not, which gives rise to a
complication. In principle, there is an important distinction
since, without making the assumption of a particular
model, any combination of the couplings can deviate from
the SM values.
Thus, we can consider the models Hα, with α ¼ ðα1;

α2;…; αnÞ, where each αi ¼ 0 if κi ¼ κSMi and αi ¼ 1 if
κi ≠ κSMi . In total, there are 2nmodels,wheren is the number
of free parameters. In fact, we can consider α as a discrete
parameter, for which the posterior odds are given by

PrðαjDÞ
PrðβjDÞ ¼

PrðDjαÞ
PrðDjβÞ

PrðαÞ
PrðβÞ ¼

Zα

Zβ

πα
πβ

; ð14Þ

where the calculable Bayes factor Bα
β ¼ Zα=Zβ quantifies

how much better α describes the data than β. The natural
baseline model is SM ¼ 0̄ ¼ ð0; 0;…; 0Þ, and all theBα

β can
be obtained from the Bayes factors with respect to the SM,
Bα
SM, as B

α
β ¼ Bα

SM=B
β
SM. If also finite prior probabilities are

assigned to the full set of models, finite posteriors PrðαjDÞ
can be calculated, even thoughwewill typically refrain from
doing this. Calculating the Bayes factor does, however,
require assignment of priors on the couplings in all the
models, which is nontrivial and will be discussed in detail in
Sec. III D.
A different, but equivalent, approach is to instead

consider a single model with a prior which is a mixture
of the continuous prior and a point mass at the SM value,

πðκiÞ ¼ ð1 − piÞfiðκiÞ þ piδðκi − κSMi Þ; ð15Þ

for each coupling [57]. Here the continuous part of the
prior, given by fi (which is normalized to unity), corre-
sponds to the prior assuming αi ¼ 1 and is assigned a total
probability 1 − pi, while the SM value of the coupling is
assigned a probability pi. Note that α is a function of κ and
hence that the priors and posteriors of α can be calculated
from the distributions obtained using (15). In addition, the
Bayes factors (which are independent of the prior on α) can
be calculated using (14) by factoring out the prior odds.

B. Inclusion of individual couplings

In the previous section, we discussed the comparison of
2n models, with different numbers of Higgs scale couplings
kept free. However, when n grows in size, comparing this
large number of models to each other rapidly becomes less
transparent.

One can test if a particular variable should be included by
comparing the cases κi ¼ κSMi and κi ≠ κSMi and hence
calculating the Bayes factors

Bi ¼
PrðDjαi ¼ 0Þ
PrðDjαi ¼ 1Þ : ð16Þ

Again, however, one has to decide what to do with the other
couplings, i.e., which priors to assign them. Possibilities
could be:

(i) fixed to the SM value ðSÞ,
(ii) free and different from the SM value ðF Þ, or
(iii) either of the above, i.e., an average ðAÞ.
The evidences are given by the likelihoods integrated not
only over the prior on κi but also over the prior on all other
couplings. In particular,

PrðDjαiÞ ¼
X
α�i

PrðDjαi; α�i Þπðα�i Þ; ð17Þ

which depends on the prior on α�i ¼ ðα1;…; αi−1;
αiþ1;…;αnÞ. The evidences in Eq. (17) are simply the
evidences discussed in Sec. III A. The three cases then
correspond to pk ¼ πðαk ¼ 0Þ being equal to either pk ¼
1; 0 or some intermediate values, most naturally 0.5 (see
Ref. [50] for detailed discussion). The results are only
expected to be independent of this choice in the case where
the constraints on one parameter are independent of the
values of the others.

C. Single comparison with SM

In physics, there is often a theoretically a priori moti-
vated “baseline” model which all extended models are
usually compared to. In the present case, the obvious choice
for such a reference model is the SM. Furthermore, the
Bayesian model comparison treats all models on equal
footing, which enables quantification of how much the
SM is favored with respect to extended models. Again, this
could be done in the context of specific renormalizable
high-energy models, but here we will focus on the effective
case only considering the rescaled couplings.
We want to compare the SM with a model “not-SM,” or

SM. The question is how this model for comparison should
be defined. For example, one could compare the SM with a
model with only a single coupling free, which is just one of
the cases discussed in the previous chapter. However, this is
obviously not satisfactory since there are many such
models [58], and at the same time, we are completely
neglecting models with two or more couplings free [59].
Alternatively, one could compare with the most general
model in which all couplings are free. However, the issue is
the same, still neglecting the possibility that there could be
significant deviations in more than one coupling, but not in
all at once. The most general model could be punished for
the inclusion of the couplings for which the SM value is
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preferred. Therefore, the most appropriate comparison
appears to be the one between the SM and a model in
which each coupling either takes the SM values or differs
from it.
Indeed, probability theory again yields

PrðDjSMÞ ¼
X
α

PrðDjαÞπðαjSMÞ; ð18Þ

and all the above cases are just cases for a specific choice of
prior πðαjSMÞ. Due to lack of further information, we take
πðαijSMÞ ¼ 1=2, which means that in the SM model it is
equally probable that each coupling deviates (significantly)
from the SM value, as it is that there is no (or negligible)
deviation. In this case, however, the couplings of the model
SM equal the SM couplings with prior probability 1=2n.
This part of SM, i.e., the part that is statistically equivalent
to the SM, can of course then just be excluded in the
analysis, and this will be our default choice. In principle,
however, one could also motivate its inclusion by saying
there could still be a deviation from the SM values, but a
negligible one. Note that adding any additional couplings,
which are unconstrained by data, does not affect the
comparison of SM and SM.

D. Choice of prior

As discussed in Sec. II, we will consider the two cases:
(i) all tree-level couplings are allowed to vary, with the
loop-induced couplings calculated assuming no additional
contribution from new physics; (ii) all couplings, including
the loop-induced ones, are allowed to vary, which implies
that new physics is allowed to participate in the loop
processes. In the first case, there are six free parameters
ðκt; κb; κτ; κW; κZ; κμÞ, whereas there are eight free param-
eters in the second case, adding (κγ; κg). Note that the
default “SM” values of these couplings are those calculated
in Eqs. (6) and (7) assuming no new particles, which do not
necessarily correspond to the actual exact SM value (equal
to 1). In addition, the value of the scale factor for the total
Higgs width, κH, will depend on the other ones according to
Eq. (8). We shall, however, not consider this as a free
parameter in either case.
To calculate the evidence of the models in which the

couplings differ from the SM value, a prior for each
coupling κi is needed. The assignment of prior is an
important task since not only the posteriors within each
model depend on it but perhaps more importantly so does
the evidence. It is therefore important to take care to include
as much known information into the prior without making
any assumptions based on the data under consideration.

1. Default: Uniform

A common choice is to take a uniform prior on each of
the couplings in order to implement a priori “ignorance,”
usually unbounded or with “wide enough” limits. However,

such a uniform prior cannot quantify ignorance in a
parameter, if not only because a uniform prior in one
parameter will not be uniform in a parameter given by a
nonlinear transformation of the first one. Second, an
unbounded (improper) prior often gives meaningless
answers for the evidence, and so do many priors in the
limit when their widths go to infinity. However, this does
not necessarily imply that the uniform prior as such is
useless or in general should be avoided. As any prior, it can
be used when it is motivated, and we shall use it in Sec. IV
A to get a rough idea of what the parameter constraints on
the different couplings are.

2. Couplings: Uniform

In the case where only the tree-level couplings are free,
one can consider the actual couplings appearing in the
Lagrangian as the free parameters. In the Higgs sector,
there are Yukawa couplings for the Higgs coupling to
fermions as well as the Higgs coupling to the gauge bosons.
In principle, one could argue that a priori all couplings
should be of order 1. Hence, a roughly uniform prior on
each of the couplings, with an effective upper limit of some
constant of order 1 would seem appropriate [60]. However,
if the measured couplings have a small (absolute) errors
compared to 1, this will lead to a very strong “Occam
effect” which will strongly disfavor modifications of the
couplings and give strong preference to the SM values. This
is indeed the case, with the possible exception of the top
Yukawa, and the masses of the SM particles differ by many
order of magnitudes, a discrepancy commonly known as
the “flavor puzzle” [61]. Hence, all models with additional
couplings will be severely disfavored if this prior is taken,
and so we will not perform a detailed analysis of this case,
even though these conclusions are worth bearing in mind.

3. Logarithmic

Dropping the assumption that the couplings should be of
order 1, it might seem more appropriate that instead the
order of magnitude of the couplings are a priori unknown.
Thus, the choice is instead a logarithmically uniform prior
on yi between some lower limit and the perturbative upper
limit, taken as 4π. The lower limit must be chosen by hand;
we will use 10−7 as the default choice. However, it turns out
that the results are insensitive to changing this lower limit
by at least a few orders of magnitude. Furthermore, for
simplicity, we will always assume positive couplings. In
most cases, the sensitivity to the sign of the couplings is
small, with the exception of the case when κW and κt have
different signs, which can enhance the rate of the H → γγ
[4,7]. However, there is no clear sign of this enhancement
in the data, which implies that the total mass of the mode in
that region will not be much larger than in the region with
positive couplings, and therefore the effect on the evidences
will be very small.
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4. Gaussian

Instead of assuming, as in the previous cases, that the
couplings are a priori unrelated to the SM ones, one can
consider that many SM extensions, such as the ones
mentioned in Sec. II, will all lead to modifications of
roughly the same size as the SM couplings. Without
considering a specific model, we cannot determine the
sizes of these contributions nor if they should be positive or
negative. Hence, all we can do is say that we a priori expect
hκii ¼ κSMi , and a typical deviation of σðκiÞ ¼ si ¼ Oð1Þ.
Out of all the (prior) distributions on the real numbers with
these constraints, there is a unique one which has maximal
entropy (or equivalently “minimal information”), namely
the Gaussian distribution [44,62]. We will consider values
si ¼ s in the range 1–4 as appropriate, with a default value
of s ¼ 2.
Finally, we mention that one in principle could consider

the SM augmented with additional higher-dimensional
effective operators. These modify the SM couplings by
an amount proportional to v2=Λ2, where Λ is the scale of
new physics [41,63–66]. These operators could be imple-
mented in a Bayesian analysis such as in Refs. [66,67], but
one could also utilize the expected sizes of the additional
contributions in the present analysis by using a prior on Λ
and from this obtain priors on the κi’s. If one expects
that Λ could be of any order of magnitude, much of the
prior would be piled up close to the SM values, which
would imply that it would be possible to obtain significant
evidence against the couplings taking those values, but not
in favor. However, if the scale of new physics is assumed to
be close to the electroweak scale as in Ref. [66], the typical
modification would be of order 1, in which case one will get
a result similar to the one for the Gaussian prior above.
To summarize, in the present work, we shall consider the

following models and priors. In the case with only the tree-
level couplings free, we shall make the analysis both using
a logarithmic prior, which is placed directly on the actual
couplings, and a Gaussian prior, which instead is placed on
the coupling scale factors, κi. In the second case, where
both tree- and loop-level couplings are free, we shall only
make an analysis using the Gaussian prior placed on the
scale factors. In this case, it should be noted that the
expectation value of the now free parameters κg and κγ are
the values given from the other scale factors, i.e., the values
given by Eqs. (6) and (7), and not the SM value of these
scale factors (which is 1).

IV. RESULTS

A. Default parameter constraints

In this section, we obtain the “default” parameter
constraints on the coupling scale factors by calculating
the likelihood using HIGGSSIGNALS 1.2.0 and imposing a
uniform prior on the κ’s with zero as the lower limit and a
“large enough” upper limit. Although this prior does not

impose a priori ignorance, and it cannot be used for model
comparison, the derived parameter constraints will be valid
as long as the uniform prior is reasonable in the region of
parameter space which is not completely ruled out by the
data. A fixed Higgs boson mass of mH ¼ 125.5 GeV was
used and will be used throughout this work.
Similar to the model comparison performed later, we first

simultaneously estimate only the scale factors present at
tree level and then additionally also the loop-induced scale
factors. In addition to these two cases, we shall consider the
special case where new physics only contribute to the loop-
induced processes and thus only the scale factors corre-
sponding to these processes, i.e., κg and κγ , are free.
In Fig. 1, we present the results in terms of one- and two-

dimensional posterior distributions. In the two-dimensional
plots, the blue shading denotes the natural logarithm of the
posteriors, and the black contours denote the 1σ and 3σ
credible regions, [68] while the one-dimensional posteriors
are also black in the plots on the diagonal. Superimposed
on these, in red, are the 1σ and 3σ contours as well as the
one-dimensional posteriors for the case when only the tree-
level scale factors are free. As previously discussed, κg and
κγ are given as functions of the free scale factors. Finally,
the same quantities are presented in green (in the bottom
right) for the case when the tree-level couplings remain
fixed at their SM values but new physics is allowed to
participate in the loop-induced processes. The SM values
are marked with stars and vertical lines.
In all three fits, all the SM values are inside (or extremely

close to) the 1σ regions, which is in fact rather unlikely. As
expected, adding κg and κγ to the set of free parameters will
relax constraints on the six free tree-level couplings. The
main effects should be seen in the scale factors correspond-
ing to the particles which give the main contribution to the
loop processes. Thus, the largest effect will be for the top
quark which gives the absolutely dominating effect to the
loop in the gluon fusion process, while a smaller effect
should also be seen in the bottom quark coupling. Apart
from the top quark, this is also the only particle that
participates in both the gluon fusion andH → γγ processes.
The modifications to the other couplings are marginal. In a
similar manner, the constraints on the loop-induced cou-
plings are weaker in the eight-dimensional fit than in the
two-dimensional one.
Finally, from the plots in Fig. 1 we can conclude that

there is quite strong support for the couplings having non-
zero values, with the exception of κμ, κt, and to some extent
κb, in the eight-parameter fit.

B. Model comparison: All models

Although the previous results were interesting, they were
all derived under the assumption that the scale factors
actually differed from those of the SM. Following Sec. III,
we would instead like to perform model comparison. We
will use the priors discussed in Sec. III D and aim to
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evaluate how much the results depend on these different
prior choices.
In this section, we follow Sec. III A and compare models

with any combination of free parameters. In particular, we
use MULTINESTwith the priors in (15) and pi ¼ p0 chosen
so that the posterior over the space of models becomes as
uniform as possible, and so all values of α will be sampled
adequately [69]. There are in total 2n models, with n ¼ 6
when the tree-level couplings are free and n ¼ 8 when also
loop-processes are included.
In the left panel of Fig. 2, we present the logarithms of

Bayes factors for all of the 26 ¼ 64 models, compared to
the SM and using the logarithmic prior (on ½10−7; 4π�) for
the tree-level couplings, i.e., the Yukawa couplings and

gauge boson couplings. The models are divided into
unicolored groups depending on the number of couplings
which are free. In the model to the far left in the figure, all
couplings are free, the models in the next group have five
parameters free, etc., until the model to the far right, which
is the SM (and has no visible bar since logB ¼ 0). The blue
stars are the values calculated by extrapolating the com-
parison of the SM with the models with a single coupling
free and then assuming that adding an additional parameter
has the same effect on logB regardless of the assumptions
on the other parameters. This would be exact if the shape of
the likelihood as a function of each parameter did not
depend on the values of the other parameters. Although not
exact, it seems that treating all of the parameters as

FIG. 1 (color online). Results of (default) parameter estimation. Two-dimensional log-posterior distribution (blue shading), 1σ and 3σ
Bayesian credible regions, and one-dimensional posteriors (both black) of the eight-parameter fit. 1σ and 3σ credible regions and one-
dimensional posteriors of the tree-level six-parameter fit (red) and the two-parameter fit (green). The SM values of unity are marked with
vertical lines and stars, respectively.
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independent gives a reasonable approximation for the
model comparison.
As expected, there is a clear trend. The larger the number

of free couplings, the smaller the values of logB, i.e., the
stronger the evidence against that model. Hence, the
evidence against the model with all couplings free is very
strong. Adding any of the parameters makes the model
worse with about the same amount, with the exception of
κμ, which only decreases the evidence with a small amount
(roughly one log-unit). Letting κW free, corresponding to
the most heavily constrained coupling, will have the largest
effect on the evidence of the model.
Furthermore, one should remember that the log-odds

only equals logB when the priors are equal. In this case,
one might argue that the SM should have a larger prior than
any of the other models, perhaps the same as all the other
models together, which (assuming that prior is uniformly
distributed) would lead to the log-odds being log 26 ≃ 4
smaller than the logB’s in the plot. Again, we note that the
dependence on the prior limits is very weak. For example,
decreasing the lower limit to 10−15 would lead to a decrease
of logB smaller than 0.7 for the addition of each coupling.
In the right panel of Fig. 2, we present logB for the same

models, but with Gaussian priors on the coupling scale
factors. The bars are obtained using a standard deviation of
s ¼ 4, and the solid black line is obtained using s ¼ 1.
Naturally, the choice of priors affects the exact values of the
evidences, but the general trend is the same in all cases.
Adding a parameter with a Gaussian prior is not as
influential as adding one with a logarithmic prior, and
the difference between the two Gaussian priors is only
about one log-unit per parameter.
Next, we consider the case when also the loop-induced

couplings are allowed to differ from the SM values, or
rather those calculated in Eqs. (6) and (7), giving a total of

28 ¼ 256 combinations of free couplings. The same
Gaussian priors as in the right panel of Fig. 2 have been
used, but with the expectation values of κg and κγ given by
Eqs. (6) and (7), since this is the expectation without any
contribution from new physics. The trend is similar to the
previous case with tree-level couplings in that models with
few free couplings are preferred to models with more free
couplings. However, when approaching the models with
most free parameters, there seems to be a “leveling off” in
the sense that adding more parameters is less damaging.
This makes sense because, if the parameter constraints
deteriorates when more free parameters are added, the
evidence will tend to be larger than what would otherwise
be expected. Finally, in a similar way to the previous case,
on one might consider the SM not on equal footing with
each of the other models, making the posterior odds smaller
than the Bayes factor (now with log 28 ≃ 5.5 log-units).

C. Inclusion of individual couplings

In the previous section, we studied how all the different
combinations of free couplings compared to each other.
Although some conclusions could be drawn, the result was
not completely transparent. In this section, we instead
follow Sec. III B and evaluate the evidence for or against
the inclusion of each individual coupling.
In Fig. 4, we give the logarithms of the Bayes factors in

Eq. (16), i.e., against the inclusion of each of the couplings,
both for the case of the six tree-level couplings with
logarithmic priors and for the Gaussian priors on the scale
factors. Here we use the value s ¼ 2 for the standard
deviation, although the difference from s ¼ 4 and s ¼ 1 as
used previously is expected to be quite small. As in
Eq. (17), the other (nuisance) couplings are either fixed
to their SM values (S), allowed to vary with the same priors
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FIG. 2 (color online). Left: logarithms of Bayes factors (with respect to the SM) with the logarithmic prior on tree-level couplings.
Each unicolored block of bars have the same number of free parameters, from the right: 0 (the SM), 1, etc., to the most general model
with all couplings free to the far left. The blue stars are the values obtained by extrapolating the values of the single-coupling models,
assuming independence. Right: same as the left plot but with Gaussian priors. The bars correspond to a standard deviation of s ¼ 4, and
the solid black line corresponds to s ¼ 1.
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as the coupling of interest (F ), or averaged over these two
cases (A). However, in Eq. (17), the size of each con-
tribution is proportional to the evidence of that particular
model, and since typically the evidences are much larger
when the other couplings equal their SM values [70], the
average is dominated by these components. Hence, the
result for A equals that of S to a very good approximation.
Note that these Bayes factors are evaluated separately using
dedicated MULTINEST runs. Hence, these number might
differ somewhat from those which can be read from Figs. 2
and 3. The Bayes factors in the table have significantly
smaller numerical errors of about 0.1.
Some general conclusions which can be drawn are that

the logarithmic prior yields a stronger preference for the
SM couplings than the Gaussian (as in previous chapter),
and S stronger than F (which is reasonable since the
constraints are relaxed).
The Higgs decay to μþμ− is rather weakly constrained,

and the results for this coupling are quantitatively different
to the other tree-level couplings. For the logarithmic priors,
there is barely weak evidence in favor of the SM, while for
the Gaussian case, there is not even that. Moving on to the
other tree-level couplings, for the log prior, there is weak to
moderate evidence for all the couplings, with F giving
about 1–2 log-units weaker preference than S and A. For
the Gaussian prior, the evidence is also weak to moderate,
but typically weaker than the logarithmic case. For the
Gaussian prior for the tree-level couplings, there is no
significant difference between the cases where the loop-
induced couplings are free or not.
The loop-induced couplings enter only in two cases, both

with a Gaussian prior. When the tree-level coupling scale
factors are fixed, there is just moderate evidence in favor of

the SM values for both κg and κγ, while in the case when the
other couplings are free, this preference essentially dis-
appears completely.
However, as discussed in Sec. III B, making the weakest

assumption on the tree-level couplings, Bayesian proba-
bility theory tells us that one really ought to use the model-
averaged results (the cases with “S” in Fig. 4). Hence, we
conclude that the couplings moderately prefer the SM
values for bb̄, tt̄, WW, ZZ, and τþτ− for both logarithmic
and Gaussian priors. For gg and γγ the preference is barely
moderate, and for the coupling to μþμ−, the evidence is
barely weak or none at all.

D. SM vs SM

We consider the SM model as discussed in Sec. III C,
with the most appropriate assumption is that all the
couplings can either take their SM value, or differ from
it, with a prior probability of 0.5 for each. The special case
where all couplings simultaneously take on their SM values
would typically be excluded from, but could also be
included in, the SM.
In Table II, we present the comparison of SM with the

above model for these two cases and for the different
continuous priors. When the SM part is excluded, the
evidence for the SM is actually just about strong for the
logarithmic and Gaussian (with s ¼ 2) priors on all
couplings and moderate for the case of tree couplings.
In the present case, the evidence of the SM is dominated
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FIG. 3 (color online). Logarithms of Bayes factors (with respect
to the SM) for models with up to eight free parameters, with a
Gaussian prior with standard deviations s ¼ 4 (bars) and s ¼ 1
(black line).

FIG. 4 (color online). Logarithms of Bayes factors against
inclusion of couplings for the eight coupling scale factors. Values
larger than 0 means the SM value of the coupling is preferred.
The other couplings are either fixed to their SM values (S) or
allowed to vary with the same prior as the coupling of interest (F )
or averaged over these two cases (A). Since typically the
evidences are much larger when the other couplings equal their
SM values, the average is dominated by these components, and
hence A yields essentially the same result as S.
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by the contribution from models with a single coupling
free, weighted by their priors within the SM.
In the second case, there is also a contribution from the

part equivalent with the SM, which can be relatively large
(and even dominating in the logarithmic case). Still, the
conclusions do not change significantly, although the 1.1
log-units difference for the logarithmic prior takes the
evidence for the SM from just about strong to moderate.

V. SUMMARY AND CONCLUSIONS

We have performed a Bayesian analysis of the LHC
Higgs data and used an interim framework where the
magnitude of the Higgs couplings is rescaled by coupling
scale factors, whereas the tensor structure of the couplings
is unaltered with respect to the SM. In the present work, we
have limited our discussion to the couplings which are
constrained by the LHC, in total six tree-level couplings
and two loop-induced couplings.
We have performed Bayesian parameter inference on

these coupling scale factors in the following three cases:
either the tree-level couplings, the loop-level couplings, or
both simultaneously, were free. In each case, the SM values

were well within the 1σ-region. However, when all cou-
plings were free, neither κt nor κμ were well constrained
and could in principle be zero.
Since the most important question is rather that of which

model best describes the data, we have instead focused on
the Bayesian model comparison, considering models with
either only the tree-level couplings in the Lagrangian or all
couplings, allowed to vary. In the first case, we used both a
logarithmic prior, which was imposed directly on the tree-
level couplings, and a Gaussian prior, imposed on the
coupling scale factors. In the second case, when the loop-
induced couplings were also treated as free parameters, the
analysis was made with a Gaussian prior imposed on the
coupling scale factors. In each case, we performed model
comparison between models with one, several, or all of the
couplings free. The larger the number of free parameters,
the more disfavored the model was.
We have considered a single coupling at a time in the

cases where the other couplings could either be fixed to
the SM values or allowed to vary with the same prior as the
coupling of interest. The favored models are those with the
couplings fixed to the SM value, although the evidence is
virtually nonexistent for the coupling to μþμ−. All this was
performed with the combinations of free parameters and
priors discussed above. Finally, we discussed the definition
of the model SM and compared this single model to the
SM, finding that the SM is moderately to strongly favored.
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