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We study the impact of an additional Uð1Þ0 gauge symmetry with flavor-dependent charges for quarks
and leptons on the LHC flavor anomalies observed in B → K�μþμ−, RðKÞ ¼ B → Kμþμ−=B → Keþe−,
and h → μτ. In its minimal version with two scalar doublets, the resulting model naturally explains the
deviations from the Standard Model observed in B → K�μþμ− and RðKÞ. The CMS access in h → μτ
can be explained by introducing a third scalar doublet, which gives rise to a prediction for τ → 3μ.
We investigate constraints from flavor observables and direct LHC searches for pp → Z0 → μþμ−. Our
model successfully generates the measured fermion-mixing matrices and does not require vectorlike
fermions, unlike previous attempts to explain these anomalies.
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I. INTRODUCTION

The discovery of a scalar particle at the LHC [1,2] with
properties close to its theoretical prediction within the
Standard Model (SM) marks its completion as a description
of particle physics. While direct searches for physics
beyond the SM were negative at the first LHC run, there
are some interesting indirect hints for new physics effects in
the flavor sector, namely in the decays of B mesons–B →
K�μþμ− and RðKÞ¼B→Kμþμ−=B→Keþe−–and in the
decay of the Brout–Englert–Higgs boson h → μτ.
Specifically, the deviations from the SM found by LHCb

[3] in the decay B → K�μþμ− arise mainly in an angular
observable called P0

5 [4], with a significance of 2–3σ
depending on the assumptions for the hadronic uncertain-
ties [5–7]. This effect can be explained in a model-
independent effective-field-theory approach by a fairly
large contribution of the operator Cμμ

9 ðs̄γαPLbÞðμ̄γαμÞ
[8–10].1 LHCb further observed lepton nonuniversality
in the B-meson decays [12]

RðKÞ ¼ B → Kμþμ−

B → Keþe−
¼ 0.745þ0.090

−0.074 � 0.036; ð1Þ

which deviates from the SM prediction RSM
K ¼ 1.0003�

0.0001 [13] by 2.6σ. A possible explanation comes again in
the form of a nonzero new-physics contribution to Cμμ

9 —of
the same magnitude as the one required by B → K�μþμ−

[6,14]—as long as the analogous contribution to the corre-
sponding operator with electrons, Cee

9 , is small [15–18].
CMS recently presented the results of a search for a

lepton-flavor violating (LFV) decay mode of the 125 GeV
scalar h → μτ, with a preferred value [19]

Br½h → μτ� ¼ ð0.84þ0.39
−0.37Þ%; ð2Þ

updating an earlier preliminary result [20]. Since this decay
is forbidden in the SM, it corresponds to a 2.4σ deviation.
This is particularly exciting because it hints at lepton-flavor
violation in the charged-lepton sector, whereas we have so
far only observed lepton-flavor violation in the neutrino
sector through oscillations. Seeing as the simplest SM
extensions that can account for neutrino masses and mixing
would not lead to observable h → μτ rates, the confirma-
tion of this decay would have a huge impact on our
understanding of lepton flavor. In particular, it would imply
potentially measurable rates for LFV processes such as τ →
3μ or τ → μγ [21–29]. Models aiming to accommodate or
explain Eq. (2) rely on an extended scalar sector [30–35] or
nonrenormalizable effective operators [34,36,37].
An explanation for h → μτ typically requires additional

scalars, while an explanation for B → K�μþμ− requires
additional Z0 vector bosons (or leptoquarks [16,38,39]) to
generate the current–current interaction ðs̄γαPLbÞðμ̄γαμÞ
[40–43]. If the Z0 couples nonuniversally to leptons, it
can also account for RðKÞ ¼ B → Kμþμ−=B → Keþe−
[44]. In Ref. [33] we presented a model that can resolve
all three anomalies, by combining the model of Ref. [44]
[with gaugedUð1ÞLμ−Lτ

and effective Z0 couplings to quarks
generated by heavy vector-quarks] with the one of Ref. [32]
[with gauged Uð1ÞLμ−Lτ

broken by a second scalar doublet].
The combined resolution of the three flavor anomalies gave
in particular rise to a prediction for the rate of τ → 3μ.
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1According to Ref. [11], also underestimated charm effects
could explain the deviations from the SM.
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In this article we want to study the possibility that the
same effect employed in Refs. [32,33] in the lepton sector
might also be responsible for flavor violation in the quark
sector. Therefore, also the quarks must be charged under
the new Uð1Þ gauge group, leading to a model with flavor-
dependent B and L charges [45–49]. In this way, the
introduction of vectorlike quarks—which are somewhat
“artificially” charged under Lμ − Lτ—can be avoided.
Furthermore, the model can explain the smallness of
the Vub and Vcb elements of the Cabibbo–Kobayashi–
Maskawa (CKM) mixing matrix. Since the flavor diagonal
couplings to quarks are not arbitrary anymore, interesting
correlations with LHC searches arise.
The outline of the article is as follows. In the next

section, we will consider the possible charge assignments
and the symmetry breaking in the quark sector. Section III
is devoted to a phenomenological analysis of the effects in
quark flavor physics and direct LHC searches. Section IV
extends the symmetry breaking to the lepton sector,
allowing for a simultaneous explanation of h → μτ.
Finally we conclude in Sec. V. In Appendix we briefly
discuss related horizontal gauge symmetries.

II. MINIMAL MODEL WITH TWO
SCALAR DOUBLETS

Here, we study the minimal model with flavor-dependent
Uð1Þ0 charges which can give rise to the desired effects in
B → K�μþμ− and RðKÞ. To generate the masses and CKM
angles, at least two scalar doublets are necessary.

A. Charge assignment

Concerning leptons, we are drawn to the Abelian
symmetry Uð1ÞLμ−Lτ

. It is an anomaly-free global sym-
metry within the SM [50–52] and also a good zeroth-order
approximation for neutrino mixing with a quasidegenerate
mass spectrum, predicting a maximal atmospheric but
a vanishing reactor neutrino mixing angle [53–55].
Furthermore, since the Z0 boson does not couple to
electrons, i.e., Cee

9 ¼ 0, one naturally obtains an effect of
the appropriate size in RðKÞ once Cμμ

9 acquires its preferred
value from B → K�μμ. Therefore, we choose the following
assignment for the charges Q0 of the new Uð1Þ0 gauge
group for the lepton generations:

Q0ðLÞ ¼ ð0; 1;−1Þ: ð3Þ
Breaking Lμ − Lτ is mandatory for a realistic neutrino
sector, and such a breaking can also induce charged LFV
processes [56], such as h → μτ and τ → 3μ [32,33,57].
However, we postpone the discussion of the symmetry
breaking in the charged lepton sector to Sec. IV.
Concerning the quark sector, the first two generations

should have the same charges in order to avoid very large
effects in K–K̄ or D–D̄ mixing, generated otherwise

unavoidably due to the breaking of the symmetry necessary
to generate the Cabibbo angle of the CKM matrix.
Furthermore, the first two generations mix much more
strongly among themselves than with the third generation,
so the latter seems to be somewhat special. If we require
in addition the absence of anomalies, we arrive at the
following charge assignment for baryons:

Q0ðBÞ ¼ ð−a;−a; 2aÞ: ð4Þ

We will later study the phenomenological implications
of different values of a. To reiterate, the Uð1Þ0 gauge
symmetry we consider is generated by2

Q0 ¼ ðLμ − LτÞ − aðB1 þ B2 − 2B3Þ; ð5Þ
so the charges are

Q0 ¼ −
a
3

for u; d; c; s; ð6Þ

Q0 ¼ 2a
3

for t; b; ð7Þ

Q0 ¼ 0 for e; νe; ð8Þ

Q0 ¼ 1 for μ; νμ; and ð9Þ

Q0 ¼ −1 for τ; ντ: ð10Þ
Note that the relative coupling strength to quarks and
leptons (parametrized by a) is a free parameter because
Lμ − Lτ and B1 þ B2 − 2B3 are independently anomaly
free. a ∈ Q is nevertheless necessary to avoid massless
Goldstone bosons (see below). Although not required by
anomaly cancellation, we also introduce three right-handed
neutrinos νR with charges Q0ðνRÞ ¼ ð0; 1;−1Þ to employ a
seesaw mechanism for neutrino masses. Other horizontal
gauge symmetries can be considered following the above
reasoning but prove less useful in explaining the LHCb
anomalies (see Appendix).

B. Scalar sector

Two SUð2ÞL scalar doubletsΨ1 andΨ2 are introduced to
generate viable fermion masses and quark mixing incorpo-
rated in the CKM matrix. They carry the Uð1Þ0 charges

Q0ðΨ1Þ ¼ −a and Q0ðΨ2Þ ¼ 0; ð11Þ
respectively. Ψ2, being uncharged under the Uð1Þ0 sym-
metry, will generate the diagonal entries of the fermion

2Gauge symmetries that couple to B1 þ B2 − 2B3 have also
been discussed in Ref. [58] with a focus on effects in the up-quark
sector and coupled in the lepton sector not to Lμ − Lτ but to the
lepton charge Le þ Lμ − 2Lτ (which is not a good symmetry in
the lepton sector).
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mass matrices as well as the Cabibbo angle. The vacuum
expectation value (VEV) hΨ1i will generate the mixing
between the third and first two quark generations necessary
for a viable CKM matrix.
In addition (at least) two SM singlet scalars Φ1 and Φ2

with charges

Q0ðΦ1Þ ¼ 1; Q0ðΦ2Þ ¼ −a ð12Þ
have to be introduced to break the Uð1Þ0 gauge symmetry
above the electroweak scale and generate the coupling
Ψ†

1Ψ2 necessary for the mixing of the doublets. The VEV
hΦ1i will break the Lμ − Lτ symmetry in the right-handed
neutrino mass matrix relevant for the seesaw mechanism,
which leads to a valid neutrino mixing matrix [32,59]. Φ2

generates the term hΦ2iΨ†
1Ψ2 in the scalar potential that

leads to the Ψ1 VEV as well as mixing among Ψ2 and Ψ1.
For a general a ∈ R, the above particle content leads to a

Lagrangian with conserved Uð1ÞLμ−Lτ
× Uð1ÞB1þB2−2B3

symmetry. Both the Lμ − Lτ symmetries and the B1 þ B2 −
2B3 are anomaly free and could be gauged, giving rise to
two additional neutral gauge bosons Z0 and Z00 which can
mix with the SM Z boson [60]. However, we only want to
promote the linear combination of Eq. (5) to a gauge
symmetry in order to end up with a single Z0 that couples to
quarks and leptons simultaneously. To remove the orthogo-
nal global Uð1Þ00 symmetry, generated by Q00 ¼ aðLμ−
LτÞ þ ðB1 þ B2 − 2B3Þ, we have to introduce couplings
that connect e.g., Φ1 and Φ2 nontrivially. This is only
possible for a ∈ Q and in general requires the introduction
of additional mediator fields. Let us sketch the simplest
examples for a, using the fact that the phenomenologically
interesting region will be 0 < a < 1.

(i) For a ¼ 1=2, the potential already allows for a term
Φ2

2Φ1 that breaks the orthogonal globalUð1Þ00, so the
particle content from above is sufficient to avoid
Goldstone modes; a VEV for Φ2 will induce a VEV
for Φ1.

(ii) For a ¼ 1=3, it is the coupling Φ3Φ1 that breaks the
accidental global Uð1Þ00 symmetry explicitly.

(iii) For a ¼ 1=4, no dimension-4 operators can bewritten
down with the given scalars that would break the
global Uð1Þ00. Therefore, one has to introduce a third
singlet Φ3 with Q0ðΦ3Þ ¼ 1=2, which couples via
Φ2

3Φ̄1 and Φ2
2Φ3. A Φ2 VEV will induce a VEV for

Φ3, which will induce a VEV for Φ1.
(iv) For a ¼ 1=6, we need Φ3 with Q0ðΦ3Þ ¼ 1=3 to

couple Φ3
3Φ̄1 and Φ2

2Φ3 similar to a ¼ 1=4.
The above considerations show that one can easily con-
struct models for various values of a ∈ Q. However, the
details of this procedure will hardly make a difference in
our discussion of the phenomenological effects of the
doublet scalars and the Z0 in the following. Hence, we
treat a ∈ Q as a free parameter but use a ¼ 1=2 and a ¼
1=3 as benchmark values.

Similar to Refs. [32,33], we consider the limit of small
mixing between the heavy singlet scalars Φj and the two
lighter doublets

Ψj ≡
� ψþ

j

ðvj þ ψ0;R
j − iψ0;I

j Þ= ffiffiffi
2

p
�
; j ¼ 1; 2: ð13Þ

Here, ψ0;R
1;2 and ψ0;I

1;2 correspond to the CP-even and the
CP-odd components, respectively. For heavy unmixed
singlet scalars, we end up with a restricted two-Higgs-
doublet model (2HDM) potential of the form

V ≃m2
1jΨ1j2 þ

λ1
2
jΨ1j4 þm2

2jΨ2j2 þ
λ2
2
jΨ2j4

þ λ12jΨ1j2jΨ2j2 þ ~λ12jΨ†
1Ψ2j2

þ ðm2
12Ψ

†
2Ψ1 þ H:c:Þ; ð14Þ

wherem2
12 ∝ μhΦ2i is generated by the coupling μΦ2Ψ

†
1Ψ2,

which induces a small vacuum expectation value for Ψ1

[32]. We define v≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

p ≃ 246 GeV and tan β ¼
v2=v1, which is medium to large in the region of interest.
The neutral CP-even components ψ0;R

1 and ψ0;R
2 mix with

an angle α in the usual 2HDM notation to give the mass
eigenstates

h ¼ cos αψR;0
2 − sin αψR;0

1 ; ð15Þ

H ¼ sin αψR;0
2 þ cos αψR;0

1 ; ð16Þ

while the CP-odd components as well as the charged ones
mix with β,

A ¼ cos βψ0;I
2 − sin βψ0;I

1 ; ð17Þ

H− ¼ cos βψ−
2 − sin βψ−

1 : ð18Þ

Note that in the general 2HDM −π=2 < α < π=2 [61].
We will always assume that h corresponds to the 125 GeV
scalar discovered at the LHC [1,2]. Gauge bosons and
leptons have standard type-I 2HDM couplings to the scalars
(see for example Ref. [61]).

C. Quark masses and couplings

The Uð1Þ0-neutral scalar doublet Ψ2 gives flavor diago-
nal mass terms for quarks and leptons, while Ψ1 couples
only off diagonally to quarks:

LYq
¼ −Q̄fðξufi ~Ψ1 þ Yu

fi
~Ψ2Þui ð19Þ

− Q̄fðξdfiΨ1 þ Yd
fiΨ2Þdi þ H:c: ð20Þ

Here, Q is the left-handed quark doublet, u is the right-
handed up quark, and d the right-handed down quark, while
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i and f label the three generations. We also define the
doublets ~Ψj ≡ iσ2Ψ�

j . The Yukawa couplings Y
u and Yd of

Ψ2 are forced by our charge assignment to have the form

Yq ¼

0
B@

Yq
11 Yq

12 0

Yq
21 Yq

22 0

0 0 Yq
33

1
CA ð21Þ

(with q ¼ u; d) and hence allow for the generation of the
Cabibbo mixing connecting the first two generations, while
the third generation is decoupled. The couplings ξq are
given by

ξu ¼

0
B@

0 0 0

0 0 0

ξtu ξtc 0

1
CA; ξd ¼

0
B@

0 0 ξdb

0 0 ξsb

0 0 0

1
CA ð22Þ

and lead to the small mixing of the first two generations
with the top and bottom quarks after electroweak symmetry

breaking. The quark-mass matrices in the interaction
eigenbasis are then given by

mEW
u ¼ vffiffiffi

2
p ðsin βYu þ cos βξuÞ≡ULmD

u U
†
R; ð23Þ

mEW
d ¼ vffiffiffi

2
p ðsin βYd þ cos βξdÞ≡DLmD

d D
†
R; ð24Þ

related to the diagonal mass matrices in the physical basis

mD
u ¼ diagðmu;mc;mtÞ; ð25Þ

mD
d ¼ diagðmd;ms;mbÞ ð26Þ

by the unitary matrices UL;R and DL;R. The CKM matrix is
then given by the misalignment of the left-handed up and
down quark rotations as

V ≡U†
LDL: ð27Þ

The Lagrangian describing the couplings of quarks to the
physical scalar fields is given by

L ⊃ −ū
�
cos α
v sin β

mD
u −

cosðα − βÞffiffiffi
2

p
sin β

~ξu
�
PRuh − d̄

�
cos α
v sin β

mD
d −

cosðα − βÞffiffiffi
2

p
sin β

~ξd
�
PRdh

− ū

�
sin α
v sin β

mD
u −

sinðα − βÞffiffiffi
2

p
sin β

~ξu
�
PRuH − d̄

�
sin α
v sin β

mD
d −

sinðα − βÞffiffiffi
2

p
sin β

~ξd
�
PRdH

− iū

�
mD

u

v tan β
−

1ffiffiffi
2

p
sin β

~ξu
�
PRuAþ id̄

�
mD

d

v tan β
−

1ffiffiffi
2

p
sin β

~ξd
�
PRdA

− ū

�� ffiffiffi
2

p

v tan β
mD

u V −
1

sin β
ð~ξuÞ†V

�
PL þ

� ffiffiffi
2

p

v tan β
VmD

d −
1

sin β
V ~ξd

�
PR

�
dHþ; ð28Þ

where we omitted the Hermitian conjugated terms and
flavor indices. In addition we defined the nondiagonal
coupling matrices

~ξu ¼ U†
Lξ

uUR; ~ξd ¼ D†
Lξ

dDR: ð29Þ
The terms proportional to mD

q correspond to the usual type-
I 2HDM-like couplings, while the terms involving ~ξq

induce flavor violation and will be regarded as small
perturbations with respect to the type-I structure.
Since ξu31 and ξu32 correspond to right-handed rotations,

the CKM matrix is (to a good approximation) given by
V ≃DL, while the mixing angles in DR generated by ξd13
and ξd23 are suppressed to those in DL by md;s=mb, and so
DR ≃ I. A perturbative diagonalization of the quark mass
matrices gives

ξdb ≃
ffiffiffi
2

p

cos β
mb

v
Vub;

ξsb ≃
ffiffiffi
2

p

cos β
mb

v
Vcb; ð30Þ

in particular ξdb=ξsb ≪ 1. For medium to large values of
tan β, our model explains why Vub and Vcb are much
smaller than the Cabibbo angle as the contributions of ξsb
and ξdb to the mass matrix are suppressed by tan β.3

The nondiagonal matrix relevant for all the scalar couplings
is then given by

~ξd ≃ V†ξd ≃
ffiffiffi
2

p

cos β
mb

v

0
B@

0 0 −V�
tdVtb

0 0 −V�
tsVtb

0 0 1 − jVtbj2

1
CA: ð31Þ

The dominant flavor off-diagonal coupling is that to sb,
while that to db is suppressed by Vtd=Vts ≃ 0.2. Note that
the flavor-violating couplings are entirely given in terms of
the CKMmatrix elements. Therefore, flavor violation in the
down-quark sector induced by the scalars only involves the
free parameters tan β, α and the scalar masses, making our
model highly predictive.

3Demanding perturbatively small values for ξdb;sb yields a mild
upper bound tan β < Oð103Þ due to the smallness of Vub;cb.
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While the couplings ξd23 and ξd13 are fixed by the
requirement that the measured CKM matrix is generated,
the couplings ξu31 and ξu32 are free parameters generating
top-quark flavor-changing effects not under investigation
in this analysis. We therefore neglect their effect in the
following and set ξu ¼ 0. One should keep in mind that
these couplings can in principle induce decays such as
t → hc and t → hu. However, as we will see, the scalar-
mixing angle α must be very small in order not to violate
bounds from Bs–B̄s mixing, rendering the h–q–q couplings
nearly SM-like. Therefore, also the effect in t → hc and
t → hu is suppressed.
The Z0 couplings to up quarks are vectorlike in the limit

ξu ¼ 0 we consider in this paper,

g0ūγμdiagð−a=3;−a=3; 2a=3ÞuZ0
μ: ð32Þ

Due to the rotation DL ≃ V, the Z0 couplings to down
quarks are chiral and given by

g0ðd̄iγμPLdjZ0
μΓdL

ij þ d̄iγμPRdjZ0
μΓdR

ij Þ; ð33Þ

with coupling matrices

ΓdL ≃ a

0
B@

jVtdj2 − 1
3

VtsV�
td VtbV�

td

VtdV�
ts jVtsj2 − 1

3
VtbV�

ts

VtdV�
tb VtsV�

tb jVtbj2 − 1
3

1
CA; ð34Þ

ΓdR ≃ a

0
B@

−1=3 0 0

0 −1=3 0

0 0 2=3

1
CA: ð35Þ

Note that this reduces to diagð−a=3;−a=3; 2a=3Þ also for
the left-handed couplings in the limit in which the CKM
matrix is the unit matrix. As the right-handed couplings are
to a good approximation flavor diagonal, this will ulti-
mately lead to the desired hierarchy jC0

9j ≪ jC9j hinted at
by global fits [6,8,62]. Note that an opposite Uð1Þ0 charge
forΨ1 would require the CKMmatrix to be generated in the
up sector, while right-handed down-quark Z0 couplings
would be free parameters, rendering the left-handed down-
quark Z0 couplings flavor conserving. As we will see in the
next section, one cannot explain RðKÞ and B → K�μμ in
such a setup. Also note that the coupling matrix ΓdL is
Hermitian with complex off-diagonal entries. This will in
principle lead to quark-dipole moments [63], which are,
however, proportional to ΓL

ijΓR
ij (with i ≠ j) and hence

vanishingly small in our scenario with diagonal ΓR.
It is important to reiterate that our model has, by

construction, suppressed flavor violation between the first
two generations, which drastically softens constraints.
Furthermore, the “detached” third quark generation is
motivated by the observed smaller mixing angles.

D. Lepton masses and couplings

Since we only consider jaj < 1 in order to avoid
stringent constraints from ΔF ¼ 2 processes, it is not
possible to couple the scalar doublet Ψ1 with Uð1Þ0 charge
a to leptons. The Dirac mass matrices for the leptons are
hence generated by Ψ2 only and are diagonal in flavor
space due to the charge assignment of our Uð1Þ0 symmetry.
There is hence no charged-lepton flavor violation in this
simple 2HDM. However, extending the model by a third
doublet with jQ0j ¼ 2 (Sec. IV) can again lead to LFV
and in particular give rise to the decay h → μτ, as pointed
out in Refs. [32,33]. For now, we consider the 2HDM with
charged-lepton flavor conservation.
Neutrino masses arise via the seesaw mechanism [64] as

mν ≃ −mDm−1
R mT

D with diagonal Dirac mass matrix mD ∝
hΨ2i and the right-handed Majorana neutrino mass matrix
given by [59]

mR ¼

0
B@

M1 a12hΦ1i a13hΦ1i
a12hΦ1i 0 M2

a13hΦ1i M2 0

1
CA: ð36Þ

As a consequence of our minimal singlet sector, two texture
zeros in mR remain and propagate to mν as two vanishing
minors [59]: ðm−1

ν Þ22 ¼ 0 ¼ ðm−1
ν Þ33. These zeros lead to

relations among the neutrino mixing parameters that allow
us to predict the unknown phases and masses given the
measured neutrino mixing angles and the mass-squared
differences [65,66]. In our case we predict normal ordering,
typically with quasidegenerate masses. Delicate cancella-
tions can, however, occur which lead to a normal hierarchy
(see Fig. 1). With the best-fit values for Δm2

ij and θij from
the global fit of Ref. [67], we predict the lightest neutrino
mass to be m1 ¼ 0.076 eV, and hence

P
jmj ¼ 0.24 eV,

as well as j sin δCPj ¼ 0.96, and mββ ≡ jðmνÞeej ¼
0.065 eV. Note that this prediction for δCP agrees well
with the preferred region from the global fit, δCP= ∘ ¼
306þ39

−70 [67]. Using the 3σ ranges for mixing angles and
Δm2

ij, we obtain lower bounds on the neutrino mass
observables X

j

mj ≳ 0.095 eV;

mββ ≳ 9.5 meV: ð37Þ
The sum of neutrino masses

P
jmj is large enough to have

a cosmological impact [68]; in fact, Planck already con-
strains

P
m < 0.23 eV at 95% C.L. [69,70], which,

however, depends strongly on the combination of data
sets. The effective neutrino mass mββ relevant for neutrino-
less double-beta decay is also in the reach of future
experiments (see Ref. [71] for a recent review). There is
a strong correlation between the CP phase and the
atmospheric mixing angle, approximately given by
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δCP ≃
�
90°þ 360°ðsin2θ23 − 1=2Þ; or

270°–360°ðsin2θ23 − 1=2Þ: ð38Þ

For a more extensive discussion of this neutrino structure,
we refer to Refs. [65,66]. Despite the lack of charged
lepton-flavor violation, our simple 2HDM is hence testable
in the lepton sector as well.
Let us come to the scalar–lepton interactions. Since Ψ1

has no couplings to leptons, the couplings of h, H, A, and
Hþ are given simply by those of a type-I 2HDM, i.e.,

L ⊃ − ē
�
cos α
v sin β

mD
e

�
eh − ē

�
sin α
v sin β

mD
e

�
eH

− iē

�
mD

e

v tan β

�
γ5eA

−
�
ν̄

� ffiffiffi
2

p

v tan β
U†mD

e

�
PReHþ þ H:c:

�
; ð39Þ

with the Pontecorvo–Maki–Nakagawa–Sakata mixing
matrix U and mD

e ≡ diagðme;mμ; mτÞ. Here, we ignored
the couplings to the right-handed neutrinos, assuming them
to be very heavy. For the charged-lepton couplings to Z0,
we have the usual vectorial Lμ − Lτ couplings

g0ðēiγμPLejZ0
μΓeL

ij þ ēiγμPRejZ0
μΓeR

ij Þ; ð40Þ

with

ΓeL
fi ¼ ΓeR

fi ¼

0
B@

0 0 0

0 1 0

0 0 −1

1
CA; ð41Þ

which are flavor-conserving in this minimal 2HDM (lepton-
flavor violation will arise in the 3HDM of Sec. IV).

E. Gauge boson sector

The Z0 mass in case of just two singlet scalars [see
Eq. (12)] is given in the limit of interest hΦji ≫ hΨii by

m2
Z0 ≃ 2g02ðhΦ1i2 þ a2hΦ2i2Þ: ð42Þ

Ignoring kinetic mixing between Uð1Þ0 and hypercharge
Uð1ÞY , a Z–Z0 mixing angle θZZ0 [73] is nevertheless
induced by the VEV of Ψ1 [32],

g0θZZ0 ≃ −
ag1v2cos2β
2m2

Z0=g02

≃ −2 × 10−4a

�
10

tan β

�
2
�

TeV
mZ0=g0

�
2

: ð43Þ

The gauge eigenstates Z and Z0 can then be expressed in
terms of the mass eigenstates Z1 and Z2 as

Z≃ Z1 − θZZ0Z2; ð44Þ

Z0 ≃ Z2 þ θZZ0Z1; ð45Þ
which couple to

−L ⊃ ðg1j1;μ þ g0θZZ0j0μÞZμ
1 þ ðg0j0μ − g1θZZ0j1;μÞZμ

2; ð46Þ
where g1 ≡ g=cW ¼ e=sWcW (with sW ¼ sin θW , etc., for
the weak mixing angle θW) and the SM neutral current [73]

jμ1 ¼
X
f

f̄ γμ½ðt3ðfÞ − s2WQðfÞÞPL − s2WQðfÞPR�f: ð47Þ

The Uð1Þ0 current j0μ is given in Eqs. (32), (33), and (40).
In the lepton sector, this Z–Z0 mixing leads to small

vector-coupling shifts of the light Z1 (i.e., the SM Z studied
at LEP) to muons and taus,

disfavored by 0

di
sf

av
or

ed
by

co
sm

ol
og

y

0.001 0.01 0.1
10 4

0.001

0.01

0.1

1

mlightest eV

m
eV

1 sin2
23

disfavored by cosmology

0.00 0.05 0.10 0.15 0.20 0.25 0.30

m eV

0.40

0.45

0.50

0.55

0.60

0.65

si
n2

23

FIG. 1 (color online). Left:mββ vs lightest neutrino mass (in blue) as predicted by the two vanishing minors ðm−1
ν Þ22 ¼ 0 ¼ ðm−1

ν Þ33 in
combination with the 3σ values for θij and Δm2

ij from Ref. [67]. The diamond marks the best-fit point. The dotted black lines show the
standard allowed 3σ range for normal ordering. The red regions are disfavored by GERDA [72] (conservative limit) and Planck [69,70].
Right: Correlation of sin2 θ23 withmββ due to the two vanishing minors. The yellow region denotes the 1σ range for θ23, and the diamond
marks the best-fit point.
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gZVðμμ; ττÞ≃ −1=2þ 2s2W � g0θZZ0=g1; ð48Þ

and thus ultimately to lepton-flavor nonuniversality in the
Z couplings [56]. Simply demanding that the additional
contribution does not exceed three times the 1σ error
(gZVðττÞ ¼ −0.0366� 0.0010) gives

jg0θZZ0 j≲ g10.003≃ 2 × 10−3; ð49Þ

easily satisfied for the parameters under investigation
[see Eq. (43)].
The Z also inherits the Z0 quark couplings and thus

contributes to flavor violation in the quark sector. Its
contribution will be enhanced by its smaller mass but
suppressed by θZZ0. For TeV scale Z0, the mass enhance-
ment cannot overcome the Z–Z0 mixing suppression, so we
ignore the flavor-changing Z couplings in the following.
Since the Z–Z0 mixing angle is small, we will continue to

denote the new gauge boson by Z0 in the following. As we
assume the three right-handed neutrinos to be heavier than
the Z0, the invisible branching ratio is set by the active
neutrinos,

Br½Z0 → inv� ¼
P

νΓ½Z0 → νν�P
fΓ½Z0 → ff�≃

1

3þ 4a2
; ð50Þ

assuming mt ≪ mZ0 < 2mνR . In the same limit, we have

Br½Z0 → μμ�≃ Br½Z0 → ττ�≃ 1

3þ 4a2
; ð51Þ

while the branching ratio into two up quarks (same for
d, s, c) is a2=3 times the above, that into top quarks (same
for bottom) is 4a2=3 times the above.

III. FLAVOR OBSERVABLES AND LHC
CONSTRAINTS

We will now investigate the relevant bounds on our
model, i.e., B-meson decays, ΔF ¼ 2 processes, neutrino
trident production, and direct LHC searches. We will not go
into details about the standard phenomenology of 2HDMs
of type I (see Refs. [74,75] for a recent evaluation) but
rather discuss constraints arising from the deviations from
the type-I structure due to the additional flavor violation.

A. B → K�μþμ− and B → Kμþμ−=B → Keþe−

Concerning leptonic B decays, both B → K�μþμ− and

RðKÞ are sensitive to the Wilson coefficients Cð0Þμμ
9 and

Cð0Þμμ
10 incorporated in the effective Hamiltonian,

Heff ¼ −
4GFffiffiffi

2
p VtbV�

ts

� X
j¼9;10

Cll
j Oll

j þ C0ll
j O0ll

j

�
þ H:c:;

ð52Þ

with

Oll
9 ¼ αEM

4π
½s̄γμPLb�½l̄γμl�;

O0ll
9 ¼ αEM

4π
½s̄γμPRb�½l̄γμl�;

Oll
10 ¼ αEM

4π
½s̄γμPLb�½l̄γμγ5l�;

O0ll
10 ¼ αEM

4π
½s̄γμPRb�½l̄γμγ5l�; ð53Þ

with l ∈ fe; μ; τg. In our model we generate the two
coefficients Cμμ

9 ¼ −Cττ
9 with

Cμμ
9 ≃ −g02ffiffiffi

2
p

m2
Z0

π

αEM

1

GF
a≃ −

�
a
1=3

��
3 TeV
mZ0=g0

�
2

; ð54Þ

while

Cee
9 ¼ C0ll

9 ¼ Cll
10 ¼ C0ll

10 ¼ 0: ð55Þ

Note that Cμμ
9 is real in our model but could have either sign

depending on a. As already noted in Refs. [8,62], Cμμ
9 < 0

and C0μμ
9 ¼ 0 gives a good fit to data. Using the global fit of

Ref. [6], we see that at (1σ) 2σ level

−0.60ð−0.95Þ ≥ Cμμ
9 ≥ ð−1.65Þ − 2.00; ð56Þ

with a best-fit value Cμμ
9 ≃ −1.3. Interestingly, the regions

for Cμμ
9 required by RðKÞ and B → K�μþμ− lie approx-

imately in the same region. A Z0 explanation of RðKÞ and
B → K�μþμ− has also been considered in Ref. [6] as an
effective model, with similar constraints as presented here.
Putting everything together, we find the 2σ preferred

region for our model from RðKÞ and B → K�μþμ− ,

2.3
m2

Z0

ð10 TeVÞ2 ≤ ag02 ≤ 7.7
m2

Z0

ð10 TeVÞ2 ; ð57Þ

with best-fit value mZ0=
ffiffiffi
a

p
g0 ¼ 4.5 TeV. In the following

we discuss additional constraints on a, g0, and mZ0 that are
of relevance to our resolution of the LHCb anomalies.

B. ΔF ¼ 2 processes

The Z0 and scalars have flavor-nondiagonal couplings,
generating tree-level contributions to ΔF ¼ 2 processes.
Considering for definiteness Bs–B̄s mixing (Bd–B̄d and
K–K̄ follow by simple replacements of indices), the
relevant effective Hamiltonian is conventionally written
as (see for example Refs. [76,77])

HΔF¼2
eff ¼

X5
j¼1

CjOj þ
X3
j¼1

C0
jO

0
j þ H:c:; ð58Þ
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with

O1 ¼ ½s̄αγμPLbα�½s̄βγμPLbβ�;
O2 ¼ ½s̄αPLbα�½s̄βPLbβ�;
O3 ¼ ½s̄αPLbβ�½s̄βPLbα�;
O4 ¼ ½s̄αPLbα�½s̄βPRbβ�;
O5 ¼ ½s̄αPLbβ�½s̄βPRbα�: ð59Þ

Here, α and β are color indices, and the primed operators
are obtained by the exchange L↔R.
In our model we find the contributions (using the

expression for C0
2 given in Ref. [77])

C1 ¼
g02

2m2
Z0
ðΓdL

sb Þ2; C0
2 ¼

X
η¼h;H;A

−1
2m2

η
ðΓη

sbÞ2; ð60Þ

while all other Wilson coefficients are zero. It is important
to note that the Z0 contribution to the ΔF ¼ 2 processes
scales like a2g02=m2

Z0 , while the contribution to leptonic
decays, such as B → Kμμ, are proportional to ag02=m2

Z0 .
This makes it possible to evade ΔF ¼ 2 constraints by
choosing a ≪ 1, while still accommodating the LHCb
anomalies. As we will see below, a ≲ 1 is actually already
sufficient for this purpose.
The Wilson coefficients Cj enter physical observables,

i.e., mass differences and CP asymmetries, via the calcu-
lation of matrix elements involving decay constants and
bag factors calculated with lattice QCD (see for example
Ref. [78] for a review of recent lattice values). In addition,
the QCD renormalization group effects must be taken into
account. For this we use the next-to-leading-order equa-
tions calculated in Refs. [76,79].
On the experimental side, the central values of ΔmBs

and
ΔmBd

are slightly above the SM prediction, and the same is
true for εK extracted from K–K̄ mixing. This is interesting
since our model predicts necessarily constructive interfer-
ence of the Z0 contribution with the SM in all three
observables. For our numerical values, we use the 95%
C.L. results of the UTfit collaboration [80–82]:

0.76 < RBd
¼ ΔmBd

=ΔmSM
Bd

< 1.43; ð61Þ

0.90 < RBs
¼ ΔmBs

=ΔmSM
Bs

< 1.23; ð62Þ

0.77 < RεK ¼ εK=εSMK < 1.41: ð63Þ

Similar results are obtained by the CKMfitter collabora-
tion [83].
The strongest constraints come from Bs mixing, as can

be seen in Fig. 2, but can easily be evaded for a < 1 even
for the large jCμμ

9 j ∼ 1 required to explain the B-meson
anomalies. Similar but weaker bounds hold for the other

ΔF ¼ 2 processes. From Bs–B̄s mixing we get the approxi-
mate 95% C.L. bound

a2g02 ≤ 2.6
m2

Z0

ð10 TeVÞ2 : ð64Þ

Note that this bound is obtained for mZ0 ¼ 10 TeV and
only scales approximately like m2

Z0 due to the additional
logarithmic dependence on the mass from the renormali-
zation group.
The flavor-changing neutral scalar couplings also affect

ΔmBs
(and also ΔmBq

and ΔmK). Here, the H;A contri-
butions decouple as 1=m2

H;A, while the h contributions
vanishes for α − β ¼ π=2. For large values of tan β and
small α, we have approximately

Δmh;H;A
Bs

ΔmSM
Bs

≃ 0.12cos2ðα − βÞtan2β

þ 0.19tan2β

�ð200 GeVÞ2
m2

H
−
ð200 GeVÞ2

m2
A

�
:

ð65Þ
The allowed regions in the tan β − α plane are shown in
the right plot of Fig. 3 assuming that the Z0 generates the
central value of Cμμ

9 for a ¼ 1=3. One can see that the
bounds are weaker if mA < mH and stronger for mA > mH
due to the negative A contribution in Eq. (65).

C. Neutrino trident production

The most stringent bound on flavor-diagonal Z0 cou-
plings to muons only (i.e., no quark or electron couplings)
arises from neutrino trident production (NTP) νμN →
νμNμþμ− [44,85]:

Bs Bs

K

Bd Bd

C9

C9

a 1a 1 2a 1 3

a 1 4

2.0 1.5 1.0 0.5 0.0
1.0

1.1

1.2

1.3

1.4

1.5

C 9

R
B

q
1

R
K

1
1.

46

FIG. 2 (color online). RBq
and RεK as a function of Cμμ

9 for
different values of a taking into account the Z0 contribution only.
The horizontal gray regions are excluded by ΔmBq

and εK , while
the vertical ones are excluded by B → K�μþμ− and RðKÞ. We
used mZ0 ¼ 3 TeV for the renormalization group for the ΔF ¼ 2
processes. Note that the dependence on mZ0 is therefore only
logarithmic.
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σNTP
σSMNTP

≃
1þ ð1þ 4s2W þ 8 g02

m2

Z0

m2
W
g2
2

Þ2

1þ ð1þ 4s2WÞ2
: ð66Þ

Taking only the CCFR data [86], we find roughlymZ0=g0 ≳
550 GeV at 95% C.L. for a heavy Z0. This cuts slightly into
the parameter space allowed by Bs mixing and C9 but is
only relevant for a ≪ 1 (see Fig. 5).

D. Direct LHC searches

Since (unlike in Refs. [33,44]) we have (potentially
sizable) Z0 couplings to the first-generation quarks, our
model is constrained by LHC searches for pp → Z0 → μμ.
With vectorial Z0 couplings, universal in the first four quark
generations, our model is closely related to Uð1ÞB−L
models [87], for which dedicated analyses exist.
Working in the narrow-width approximation, the relevant
quantity for collider searches is the Drell–Yan production
cross section times branching ratio into muons,

σðpp → Z0ÞBR½Z0 → μμ�
σðpp → ZB−L

0ÞBR½ZB−L
0 → μμ�≃

a2g02

g2B−L

1=ð3þ 4a2Þ
2=13

;

ð67Þ

valid for mt ≪ mZ0 < 2mνR. One can therefore simply
rescale the B − L limits of ATLAS’s

ffiffiffi
s

p ¼ 8 TeV analysis
of dimuon resonance searches (see auxiliary figures of
Ref. [88]), resulting in Fig. 4. Contrary to low-energy
observables—which only depend on the ratio g02=m2

Z0—
the LHC probes on-shell Z0. This leads to a complicated
dependence on mZ0 , since the production cross section
involves parton-density functions. As a result, the production
cross section, and therefore the sensitivity, decreases strongly
once mZ0 approaches the maximal available energy.

For a ≪ 1 (i.e., the leptophilic case), the Drell–Yan
production becomes negligible, and our model again
resembles the standard Lμ − Lτ models. In this case, the
Z0 production at colliders goes through pp → μμZ0 → 4μ
(or 3μ plus missing energy), where the Z0 is radiated off a
final state lepton [89]. For mZ0 > mZ, the LHC constraints
are currently weaker than NTP [44] but will become
competitive with higher luminosities [90–92].
Finally, for Z0 masses above the on-shell threshold, one

can obtain limits from searches for contact interactions, in
our case

L ⊃
a
3

g02

m2
Z0
q̄γαqμ̄γαμ; with q ∈ fu; d; s; cg: ð68Þ

For positive a, the strongest limit from ATLAS is on the
operator q̄γαPLqμ̄γαPRμ, providing a 95% C.L. limit
of [93]

mZ0=g0 > 1.4 TeV
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a=ð1=3Þ

p
; ð69Þ

which is weaker than the bounds from C9 [Eq. (57)].

E. Discussion

The relevant low-energy constraints are collected in
Fig. 5. If we want to explain B → K�μþμ− and B →
Kμþμ−=B → Keþe− within 2σ (1σ), we need a < 1.13
(0.71) to avoid stringent Bs–B̄s mixing constraints (taking
into account the Z0 contribution only). Due to the stronger
dependence on a, the Bs-mixing constraints are, however,
unproblematic for smaller values of a, and actually in
agreement with the whole 2σ range for C9 for a ≤ 1=3.
Values like a ¼ 1=2 or a ¼ 1=3 and mZ0=g0 ≃ 2–4 TeV

5 10 15
2

4

0

tan( )

FIG. 3 (color online). Allowed regions in the tan β–α plane
assuming that Cμμ

9 is reproduced by the Z0 contribution within 2σ
for a ¼ 1=3 for mH ¼ 300 GeV and mA ¼ 350 GeV (yellow),
mA ¼ 300 GeV (red), and mA ¼ 250 GeV (blue). The gray
region is excluded by b → sγ [84]. Dashed lines indicate
cosðα − βÞ ¼ �0.4 for reference.

solid: a 1 2
dashed: a 1 3

ATLAS 95 CL

C9
2C 9

2
& Bs mixing
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0.8

1.0

1.2

1.4
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g'

FIG. 4 (color online). Limits on qq̄ → Z0 → μμ̄ from ATLAS
[88] (black, allowed region down right) and the 2σ limits on Cμμ

9

to accommodate B → K�μþμ− and B → Kμþμ−=B → Keþe−
(red, allowed regions inside the cone). Solid (dashed) lines are for
a ¼ 1=2 (a ¼ 1=3). For a ¼ 1=2, the green shaded region is
allowed (similar for a ¼ 1=3 using the dashed bounds).
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can therefore easily lead to the required C9 contribution
necessary to explain B → K�μþμ− and RðKÞ (Fig. 5). Note
that for these statements we assumed mA ¼ mH, i.e., only
took the Z0 contribution to Bs–B̄s mixing into account.
However, for mA < mH the bounds get weakened, while
they become stronger for mA > mH due to the (destructive)
constructive interference of the H (A) contribution with the
Z0 and the SM one.
For a ≤ 1=3 andmZ0=g0 ¼ OðTeVÞ, direct searches at the

LHC cut into the mZ0 − g0 parameter space that is uncon-
strained by low-energy processes. We then need mZ0 ≳
2.55 TeV (2.46 TeV) for a ¼ 1=2 (1=3) if we want to
explain B → K�μþμ− and B → Kμþμ−=B → Keþe−
within 2σ (Fig. 4).4 This also implies a lower limit on the
gauge coupling g0 ≳ 0.55 (0.65) for a ¼ 1=2 (1=3), resulting
in a Uð1Þ0 Landau pole below 1015 GeV (3 × 1012 GeV).
We remark that the dominant flavor violation in the b–s

sector also induces the decay h → bs, with branching ratio
of order 10−3cos2ðα − βÞtan2β. While generically unob-
servably small due to the Bs-mixing constraints in Eq. (65),
it can be large if the A contribution to ΔmBs

takes just the
right value.

IV. EXTENSION TO THREE SCALAR DOUBLETS

Above we considered a 2HDM with a horizontal Uð1Þ0
gauge symmetry that leads to flavor-violating couplings
of h and Z0 to quarks and can successfully explain the
anomalies in B → K�μþμ− and RðKÞ. In this section we
will additionally aim at explaining the tantalizing hint
for h → μτ from CMS [19] [see Eq. (2)], which violates

Lμ − Lτ by two units. The signal can be accommodated in
gaugedUð1ÞLμ−Lτ

models by breaking the symmetry with a
scalar doublet Ψ3 carrying jQ0j ¼ 2 [32,33]. Since we
cannot set jaj ¼ 2 in our 2HDM from above if we want to
explain the LHCb anomalies (see Fig. 5), we have to
introduce a third doublet that carries jQ0j ¼ 2. Thus, in total
three scalar doublets,

Ψj ≡
� ψþ

j

ðvj þ ψ0;R
j − iψ0;I

j Þ= ffiffiffi
2

p
�
; j ¼ 1; 2; 3; ð70Þ

with v≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22 þ v23

p ≃ 246 GeV, are introduced to
generate viable fermion masses and mixing, as well as the
desired lepton-flavor violation in h → μτ. They have the
Uð1Þ0 charges

Q0ðΨ1Þ ¼ −a; Q0ðΨ2Þ ¼ 0; Q0ðΨ3Þ ¼ −2; ð71Þ

respectively. We need again (at least) two singlet scalars to
break theUð1Þ0 spontaneously above the electroweak scale.
The same arguments from above apply regarding the need
for more scalars if a < 1=3 is taken.
For simplicity we will again assume a negligible mixing

of the doubletsΨ and singlets Φ, as in Sec. II, which makes
sense in the limit hΦji; mΦj

≫ hΨii; mΨi
. In this case, we

effectively end up with a restricted 3HDM at low energies
with a scalar potential

V ≃ X
j¼1;2;3

�
m2

j jΨjj2 þ
λj
2
jΨjj4

�

þ λ12jΨ1j2jΨ2j2 þ λ13jΨ1j2jΨ3j2 þ λ23jΨ2j2jΨ3j2
þ ~λ12jΨ†

1Ψ2j2 þ ~λ13jΨ†
1Ψ3j2 þ ~λ23jΨ†

2Ψ3j2
þ ðm2

12Ψ
†
1Ψ2 þm2

23Ψ
†
2Ψ3 þ H:c:Þ: ð72Þ

The mass terms m2
ij of the last line are of particular

importance and are generated by the singlet VEVs hΦji;
note the absence of a term m2

13Ψ
†
1Ψ3 and quartic terms like

Ψ†
2Ψ1Ψ

†
3Ψ3. Even though it may look complicated, the

above potential (with 16 real parameters) is already much
simpler than the general 3HDM (with 54 parameters) due
to our imposed (and essentially softly broken) Uð1Þ0
symmetry.
Compared to the 2HDM from Sec. II, we now need two

angles β to parametrize the ratios hΨ2i=hΨ1;3i and three
angles α to describe the mixing of the three CP-even fields
h, H1;2. In addition, also the CP-odd fields A1;2 and the
charged fields Hþ

1;2 mix among each other.
Assuming a CP-conserving potential, i.e., real m2

12;23,
the minimization conditions give

ex
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FIG. 5 (color online). Limits on mZ0=g0 vs a from NTP (gray),
Bs–B̄s mixing (red), and Cμμ

9 (green). The horizontal lines
indicate some values of interest: a ¼ 1, 1=2, and 1=3. Not shown
are LHC limits (see Fig. 4).

4Note that the ATLAS constraints can also be evaded for
mZ0 ≪ TeV with much smaller g0 (Fig. 4). For a ¼ 1=2 (1=3),
this would require mZ0 < 300 GeV (400 GeV) and g0 < 0.06
(0.1), not necessarily compatible with the approximations used
above, so we omit a discussion for now.
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m2
2 ≃ −

λ2v22
2

; m2
12 ≃ −

2m2
1v1
v2

; m2
23 ≃ −

2m2
3v3
v2

;

ð73Þ

in the limit v2 ≫ v1;3. This limit is particularly useful in this
3HDM because it allows for approximations leading to
rather simple analytic expressions. It is valid because we
already know from the above analysis that v1 ≪ v2 and
from Refs. [32,33] that v3 ≪ v2; i.e., we are in the “large
tan β” region in both sectors.
For the pseudoscalars, the would-be Goldstone boson

eaten by the Z is given by G0 ¼ P
jvjψ

0;I
j =v; the pseudo-

scalars orthogonal to G0 further mix due to a complicated
2 × 2 mass matrix. We write ðA1; G0; A2Þ ¼ UAðψ0;I

1 ;ψ0;I
2 ;

ψ0;I
3 Þ with the parametrization

UA ¼

0
B@

−1
1

−1

1
CA
0
B@

1

cos η23 sin η23
− sin η23 cos η23

1
CA

×

0
B@

cos η13 sin η13
1

− sin η13 cos η13

1
CA

×

0
B@

cos η12 − sin η12
sin η12 cos η12

1

1
CA: ð74Þ

For v1;3 ≪ v2, the angles are approximately given by

η12 ≃ v1
v
; η23 ≃ v3

v
; ð75Þ

η13 ≃ v1v3
v2

2m2
3 þ ðλ23 þ ~λ23Þv2

2ðm2
1 −m2

3Þ þ ðλ12 þ ~λ12 − λ23 − ~λ23Þv2
: ð76Þ

Here, η13 is the most complicated angle but turns out to be
small due to v1v3 ≪ v2. While it is obvious that the 12 and
23 mixing is small in the limit v1;3 ≪ v2, it is less obvious
why the 13 mixing is so small. The reason is the absence of
a term m2

13Ψ
†
1Ψ3 in the potential, which implies that all 13

mixing originates from the products v1v3 of VEVs. We will
neglect the mixing in the 13 sector in the following, which
drastically simplifies matters. In the limit v1;3 ≪ v2, we
then define the two beta angles β12;23 ≃ π=2 − η12;23, i.e.,
tan βij ≃ 1=ηij. β12 then corresponds to the β angle from
above (Sec. II), while β23 corresponds to the β angle from
Refs. [32,33] and is hence expected to satisfy tan β23 ≫ 1
(to be quantified below).
The charged fields ψþ

j have the same mixing pattern to
linear order in v1;3: ðHþ

1 ; G
þ; Hþ

2 Þ≃UAðψþ
1 ;ψ

þ
2 ;ψ

þ
3 Þ,

with would-be Goldstone boson Gþ. Finally, the CP-even
fields ðψ0;R

1 ;ψ0;R
2 ;ψ0;R

3 Þ have a symmetric mass matrix

M2
S ≃

0
BBB@

m2
1 þ 1

2
ðλ12 þ ~λ12Þv2

�
1
2
ðλ12 þ ~λ12Þv −m2

1=v
	
v1 ðλ13 þ ~λ13Þv1v3

· λ2v2
�
1
2
ðλ23 þ ~λ23Þv −m2

3=v
	
v3

· · m2
3 þ 1

2
ðλ23 þ ~λ23Þv2

1
CCCA: ð77Þ

The mixing is obviously again suppressed by v1;3=v; in
particular the 13 mixing is small. We write ðH1; h;H2Þ ¼
UHðψ0;R

1 ;ψ0;R
2 ;ψ0;R

3 Þ with

UH ≃
0
B@

1

cos α23 − sin α23
sin α23 cos α23

1
CA

×

0
B@

cos α12 sin α12
− sin α12 cos α12

1

1
CA; ð78Þ

where we already neglected the small 13 mixing. The
remaining two scalar mixing angles take the form

α12 ≃ −
v1
v

2m2
1 − ðλ12 þ ~λ12Þv2

2m2
1 − 2λ2v2 þ ðλ12 þ ~λ12Þv2

; ð79Þ

α23 ≃ −
v3
v

2m2
3 − ðλ23 þ ~λ23Þv2

2m2
3 − 2λ2v2 þ ðλ23 þ ~λ23Þv2

: ð80Þ

Keeping in mind that the second and third scalar doublets
hardly mix in the limit of interest, our 3HDM simplifies
significantly, especially taking into account that Ψ3 only
couples to leptons and Ψ1 only to quarks. Essentially, our
model looks like the 2HDM from Ref. [32] in the lepton
sector and like a separate 2HDM in the quark sector. This
means we can describe the lepton sector as a type-I-like
2HDM with an angle β23 and α23 and the quark sector as a
type-I-like 2HDM with angle β12 and α12. The scalar
doublet Ψ2 is mostly SM-like and will inherit off-diagonal
couplings to μτ from Ψ3 and to tu, tc, db, sb from Ψ1.
In this limit, our 3HDM is parametrized by the masses

(mh, mH1;2
, mHþ

1;2
, mA1;2

), the vacuum-angles β12;23, and the
mixing angles α12;23 for the CP-even scalars.
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A. Quark masses and couplings

For the quark masses and couplings, nothing changes
compared to the 2HDM above; we simply replace tan β →
tan β12 ≃ v=v1 and α → α12, keeping in mind that this
only works in the limits of large tan βij and small αij. In
particular, we can again easily resolve the anomalies in
B → K�μþμ− and B → Kμþμ−=B → Keþe− using the
flavor-violating Z0 couplings as discussed above. As we
will see below, the additional constraints from the lepton
sector (compared to the 2HDM discussed before) do not
interfere with this solution. In fact, the additional resolution
of h → μτ makes possible a prediction for τ → 3μ, depend-
ing on C9.

B. Lepton masses and couplings

Lepton-flavor violation arises as in Ref. [32], with Ψ3

playing the role of the non-SM doublet. The Yukawa
couplings are given by

L ¼ −L̄fðξνRfi ~Ψ3 þ YνR
fi
~Ψ2ÞνR;i

− L̄fðξefiΨ3 þ Ye
fiΨ2Þei þ H:c: ð81Þ

YνR and Ye are diagonal due to the Uð1Þ0 symmetry, while
ξνR;e are given by

ξνR ¼

0
B@

0 0 0

0 0 ξ23

0 0 0

1
CA; ξe ¼

0
B@

0 0 0

0 0 0

0 ξτμ 0

1
CA: ð82Þ

The right-handed neutrino mass matrix takes again the form
of Eq. (36) with two vanishing entries. However, due to the
nondiagonal Dirac matrices, the active neutrino mass
matrix no longer features two vanishing minors but only
one, softening the fine-tuning to obtain valid mixing
parameters. We again expect a quasidegenerate neutrino
mass spectrum and a close-to-maximal atmospheric mixing
angle [32] but lose the very specific predictions we
obtained in the 2HDM from Sec. II D.
Diagonalization of the charged-lepton mass matrix

requires only a small 23 rotation of ðμR; τRÞ by an angle
θR ≃ cos β23ξτμv=

ffiffiffi
2

p
mτ, while the left-handed angle is

suppressed by mμ=mτ. The LFV coupling of h is then
approximately given by

L ⊃ −θR
mτ

v
cosðα23 − β23Þ
cos β23 sin β23

τ̄PRμhþ H:c: ð83Þ

A nonzero θR hence induces the decay h → μτ, while any
charged lepton-flavor violation involving electrons is for-
bidden (in the limit of zero neutrino masses). The scalars
—H2, A2, and Hþ

2 —also couple off diagonally to leptons,
but their effect in LFV observables is small [32]. The Z0
couplings are given by

L ⊃ g0ðēiγμPLejZ0
μΓeL

ij þ ēiγμPRejZ0
μΓeR

ij Þ; ð84Þ

with ΓeL ≃ diagð0; 1;−1Þ and

ΓeR
fi ≃

0
B@

0 0 0

0 1 2θR

0 2θR −1

1
CA: ð85Þ

Again, a nonzero θR induces lepton-flavor violation in the
μ–τ sector, mediated by the Z0.

C. Lepton-flavor violation

Concerning lepton-flavor violation, we can directly rely
on the analysis of Refs. [32,33]. The branching ratio for
h → μτ reads

Br½h → μτ�≃ mh

8πΓSM
jΓh

τμj2

≃ 1%

�
θR
0.1

�
2
�
cosðα23 − β23Þ

0.2

�
2
�
tan β23
20

�
2

;

ð86Þ

where ΓSM ≃ 4.1 MeV is the decay width in the SM for a
125 GeV Brout–Englert–Higgs boson and Γh

τμ is given by
the τ̄PRμh prefactor in Eq. (83).
Lepton-flavor violation mediated by Z0 most importantly

induces the decay τ → 3μ, with τ → μγ suppressed by an
additional factor 2αEM=π [33]. The branching ratio is
given by

Br½τ → 3μ�≃ m5
τθ

2
R

128π3Γτ

g04

m4
Z0
≃ 10−8

�
θR
0.1

�
2
�
6.6 TeV
mZ0=g0

�
4

;

ð87Þ
which has to be compared to the current upper limit of
1.2 × 10−8 at 90% C.L. which is obtained from combining
data from Belle and BABAR [94]. This limit can most likely
be improved by an order of magnitude to 10−9 in the
future [95].
In the previous sections, we have seen that a resolution of

the B-meson anomalies—indicated through a nonzero C9

[Eq. (56)]—requires mZ0=g0 to be in the TeV range (Fig. 5).
In Fig. 6 we show the exclusion limits from τ → 3μ
together with the preferred region for h → μτ and the C9

constraints on mZ0=g0. The important part is the upper limit
onmZ0=g0 from C9. With a nonzero value for θR required by
h → μτ, we can then predict a rate for τ → 3μ mediated by
the Z0. For this we express mZ0=g0 in terms of C9 and θR in
Br½h → μτ� to arrive at

Br½τ → 3μ�≃ 4.6 × 10−5
C2
9cos

2β23sin2β23
a2cos2ðα23 − β23Þ

Br½h → μτ�:

ð88Þ
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We remind the reader that the angles α23 and β23 do not
correspond to the 2HDM angles from Sec. II but to those
from Refs. [32,33]. Using the 2σ lower limits on C9

[Eq. (56)] and h → μτ [Eq. (2)], as well as the LHC
constraint j cosðα23 − β23Þj ≤ 0.4 [74,75], we can predict

Br½τ → 3μ� ≳ 9.3 × 10−9
�

10

tan β23

�
2

; ð89Þ

working in the large tan β23 limit and setting a ¼ 1=3.
The current bound is then tan β23 ≳ 9, while the future reach
goes above tan β23 ∼ 30. Using the 1σ limits for C9 and
h → μτ gives a current (future) bound of 30 (104) on tan β23.
This is much stronger than the prediction of Ref. [33] in a
model with vectorlike quarks, where 1σ limits only implied
a future reach up to tan β ∼ 60 [using the updated value for
h → μτ from Eq. (2)]. The 3HDM with gauged horizontal
Uð1Þ0 charges studied here is hence more tightly constrained
than the 2HDM with vectorlike quarks [33].
Equation (89) is the main prediction of the simultaneous

explanation of the B-meson anomalies in connection with
h → μτ. Note that in addition to the mZ0=g0 limits from C9,
ATLAS constrains mZ0 vs g0 (Fig. 4). For the parameters in
Fig. 6, this imposes the additional bound mZ0 ≳ 2.5 TeV
(or g0 ≳ 0.65), which puts the Uð1Þ0 Landau pole below
roughly 3 × 1012 GeV for a ¼ 1=3.

V. CONCLUSIONS AND OUTLOOK

In this paper we proposed a model with multiple scalar
doublets and a horizontal Uð1Þ0 gauge symmetry in which

all three LHC anomalies in the flavor sector (B → K�μþμ−,
RðKÞ and h → μτ) can be explained simultaneously.
Compared to previous explanations, our model does not
require vectorlike quarks charged under the new gauge
group. The spontaneously broken anomaly-free Uð1Þ0
gauge symmetry is generated by

Q0 ¼ ðLμ − LτÞ − aðB1 þ B2 − 2B3Þ; a ∈ Q; ð90Þ

which leads to successful fermion-mixing patterns. In
particular, it generates a large (small) atmospheric (reactor)
mixing angle in the lepton sector and explains the almost
decoupled third quark generation. The universal charges the
quarks of the first two generations allow for the generation of
the Cabibbo angle without dangerously large effects in Kaon
mixing, and the neutralness of electrons under the Uð1Þ0
symmetry softens constraints without fine-tuning.
The observed quark mixing of the CKM matrix requires

the Uð1Þ0 to be broken with a second scalar doublet
with Uð1Þ0 charge −a, which leads to flavor-violating
couplings of the Z0 and of the scalars, giving simulta-
neously a natural explanation for the smallness of Vub and
Vcb. Scalar contributions to Bs–B̄s mixing typically require
α − β≃ π=2, which is, however, relaxed formA < mH. The
anomalies in B → K�μþμ− and RðKÞ can be explained with
a TeV-scale Z0 boson and a < 1 while satisfying Bs–B̄s-
mixing constraints and limits from direct Z0 searches at the
LHC. Future LHC and future circular collider searches are
very interesting for our model as they might strengthen the
current limits or lead to the discovery of the Z0 boson.
Introducing a third scalar doublet, with Uð1Þ0 charge

−2, gives rise to the decay h → μτ in complete analogy to
Refs. [32,33]. Together with the large Z0 effect necessary
to resolve B → K�μþμ− and RðKÞ, the decay h → μτ
then allows us to predict a rate for τ → 3μ, depending on
tan β and cosðα − βÞ, potentially measurable in future
experiments.
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Note added in proof.—During the publication process of
this article, new LHCb results were presented at the
Rencontres de Moriond Electroweak Session 2015 which
hint at a confirmation of the anomaly in B → K�μþμ−. The
global fit now prefers new physics in Cμμ

9 over the Standard
Model by 4.3σ [96].
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FIG. 6 (color online). Allowed regions in the mZ0=g0– sinðθRÞ
plane for a ¼ 1=3: the horizontal stripes correspond to h → μτ
(1σ) for tan β23 ¼ 70; 40 and cosðα23 − β23Þ ¼ 0.25, and (light)
blue stands for (future) τ → 3μ limits at 90% C.L. The gray
regions are excluded by the 2σ range forCμμ

9 [see Eq. (56)]. In this
range, ATLAS limits constrain mZ0 ≳ 2.5 TeV (see Fig. 4).
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APPENDIX: OTHER HORIZONTAL
SYMMETRIES

Demanding a universal Uð1Þ0 quark coupling to the first
two generations and a good flavor symmetry in the lepton
sector does not uniquely single out our model with
B1 þ B2 − 2B3 and Lμ − Lτ. It is well known that, besides
Lμ − Lτ (which is connected to quasidegenerate neutrinos),
the symmetries Le and Le − Lμ − Lτ are good zeroth-order
approximations for a neutrino mass matrix with normal
and inverted hierarchy, respectively [55]. Since these two
are anomalous, one can consider B − 3Le [97,98] or Bþ
3ðLe − Lμ − LτÞ [99,100] as well-motivated gauge sym-
metries. With nonuniversal quark charges—but universal in
the first two generations—we can consider B3 − Le or
B3 þ ðLe − Lμ − LτÞ as anomaly-free gauge symmetries
that provide a successful neutrino mixing, single out the
third quark generation, and lead to lepton-flavor violation

in both the lepton and quark sectors. Quite analogously one
can consider the lepton symmetries from Ref. [59] with a
nonuniversal quark charge, which lead to predictive texture
zeros and vanishing minors in the neutrino mass matrix; for
example, 3B3 þ Le − 3Lμ − Lτ generates the texture zeros
ðmνÞ11 ¼ 0 ¼ ðmνÞ13 after seesaw. While all these sym-
metries are interesting in their own right, they are not useful
for our purpose because the Z0 coupling to quarks com-
pared to muons is rather large (and not adjustable), so it
becomes difficult to generate a large C9 without violating
B–B̄-mixing bounds. In addition, any Z0 that couples to
electrons unavoidably suffers from stringent LEP con-
straints [87]. The horizontal gauge symmetry ðLμ − LτÞ −
aðB1 þ B2 − 2B3Þ chosen in this paper is hence a remark-
ably good choice to address the existing hints for flavor
violation.
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