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We present a mechanism that allows a large Higgsino mass without large fine-tuning. The Higgs is a
pseudo-Nambu-Goldstone boson (PNGB) of the global symmetry breaking pattern SOð5Þ → SOð4Þ.
Because of the PNGB nature of the light Higgs, the SOð5Þ invariant Higgsino mass does not directly
contribute to the Higgs mass. Large couplings in the Higgs sector that spontaneously breaks SOð5Þ
minimize the tuning, and are also motivated by the requirements of generating a sufficiently large Higgs
quartic coupling and of maintaining a natural approximate global SOð5Þ symmetry. When these conditions
are imposed, theories of this type predict heavy Higgsinos. This construction differs from composite Higgs
models in that no new particles are introduced to form complete SOð5Þ multiplets involving the top
quark—the stop is the only top partner. Compatibility with Higgs coupling measurements requires
cancellations among contributions to the Higgs mass-squared parameter at the 10% level. An important
implication of this construction is that the compressed region of stop and sbottom searches can still be natural.
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I. INTRODUCTION

The Standard Model of particle physics is in many
respects the perfect effective quantum field theory. It is
fully determined by including all possible relevant and
marginal couplings compatible with the particle content,
Lorentz symmetry, and gauge invariance. The resulting
theory accurately describes all interactions of elementary
particles up to the highest energies probed by experiments,
including the intricate structure of electroweak interactions
and flavor-changing transitions; allowing dimension-5
couplings suppressed by a large mass scale accounts for
small neutrino masses and oscillations. Moreover, the
recent discovery of the 125 GeV Higgs by the ATLAS
[1] and CMS [2] collaborations at the Large Hadron
Collider (LHC) has experimentally completed the
Standard Model.
However, this triumph of effective field theory is marred

by the fact that the Standard Model does not give us any
understanding of the size of the Higgs mass, the single
relevant parameter of the model (ignoring the cosmological
constant). In particular, new physics at exponentially high
energies, such as the grand unification scale ∼1016 GeV or
the Planck scale ∼1019 GeV, generically gives contribu-
tions to the Higgs mass proportional to the relevant scale,
requiring fine-tuning of fundamental parameters to explain
the observed value. This motivates models of physics
beyond the Standard Model in which the Higgs mass
parameter is calculable and naturally of the order of the
electroweak scale.

A basic but very important point about this problem is
that obtaining a light Higgs mass in the Standard Model
requires only a single tuning. This is also true in models
with supersymmetry (SUSY), which are the focus of this
paper. These models have many parameters, but requiring
the absence of fine-tuning constrains only one combination
of them. As such, the tuning is dominated by the super-
partner masses that give the largest correction to the
effective Higgs mass [3,4]. In the minimal supersymmetric
Standard Model (MSSM) we obtain (see e.g. [5,6])

1

tuning
∼ 5 × max

��
μ

200 GeV

�
2

;
m2

~t1
þm2

~t2

ð600 GeVÞ2 ;�
m~g

900 GeV

�
2
�
; ð1Þ

where μ is the Higgsino mass, m~t1;2 are the masses of the
two stop mass eigenstates, and m~g is the gluino mass. For
simplicity we have assumed large tan β and neglected A
terms (no stop mixing). The lack of signals in the
impressive variety of SUSY searches at the 8 TeV LHC
sets lower bounds on superpartner masses, pushing the
theory toward the fine-tuned regime. The large number of
possible spectra makes it impossible to draw completely
general conclusions regarding naturalness, but it is prob-
ably fair to say that naturalness has been experimentally
probed at the 10% level (see e.g. [7]).
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Another independent tension with naturalness is that the
observed physical Higgs massmh is an additional source of
tuning. In the MSSM, the observed value mh ≃ 125 GeV
requires m~t ∼ 1 TeV, which implies percent-level tuning,
as we see in Eq. (1). Equation (1) neglects A terms and
hence stop mixing, but including this does not alleviate the
tension [8]. Naturalness therefore motivates extensions of
the MSSM Higgs sector, and many different possibilities
have been explored in the literature [9–19].
Therefore, complete naturalness of SUSY models

requires both a spectrum of light superpartners and an
extension of the MSSM Higgs sector. This level of non-
minimality has led some to argue that the price of
naturalness is too high, and that nature may prefer a
simpler but more fine-tuned scenario (see e.g. [20–22]).
As discussed above, this tuning requires only a single
accidental cancellation, so this point of view should be
taken seriously. However, fully exploring natural models is
one of the most important tasks of particle physics.
In this spirit, the aim of this paper is to investigate the

model independence of the naturalness constraints esti-
mated in Eq. (1) on the superpartner spectrum. The
naturalness bound on the stop mass can be understood
on very general bottom-up principles. The top loop
correction to the Higgs mass in the Standard Model is
quadratically sensitive to UV physics. In a natural model,
some new physics must cut off this dependence. Two
possibilities are compositeness of the Higgs and/or top
quark, and the existence of “top partners,” particles whose
loop corrections cancel the quadratic UV sensitivity from
top loops. SUSY is the canonical example of the latter, with
the stop playing the role of the top partner. The bound on
the stop mass in SUSY models is therefore very robust and
model independent. The bound on the gluino mass is also
quite general—it arises because m~g contributes to the stop
mass at loop level, which in turn contributes to the
Higgs mass.1

There is no analogous argument for the naturalness
constraint on the Higgsino mass, which is the focus of
this paper. In the MSSM and most extensions considered in
the literature, a Higgsino mass μ directly contributes to the
Higgs mass parameter at tree level:Δm2

H ¼ μ2. A Higgsino
mass significantly larger than the observed Higgs mass then
requires large cancellations from some other source, giving
rise to fine-tuning. This connection arises from details of
the symmetry structure, so the argument for a naturalness
constraint on the Higgsino mass is more model dependent.
In this paper, we point out that the connection between

Higgsino and Higgs masses is completely severed in
models where the Higgs boson is a pseudo-Nambu-
Goldstone boson (PNGB). In such models, the Higgs
sector has an approximate global symmetry G, weakly

gauged by SUð2ÞW ×Uð1ÞY, that is broken spontaneously
down to a subgroup H. The Higgs is identified as a PNGB
in the coset G=H [25–27].2 Consequently, a Higgsino mass
that is invariant under G does not contribute to the Higgs
mass, breaking the connection between the two. As a result
the Higgsino mass can naturally be much larger than mh
without significant fine-tuning.
These models do however require a moderate amount of

fine-tuning in the Higgs potential to be phenomenologi-
cally viable. Denoting the scale of G → H breaking by f,
precision electroweak and Higgs coupling measurements
require

v2

f2
≲ 10%; ð2Þ

where v ¼ 246 GeV is the Higgs vacuum expectation
value (VEV). The ratio v2=f2 is also a direct measure of
the tuning required to obtain v ≪ f. To make a fair
comparison of the tuning in our SUSY PNGB Higgs
models and conventional SUSY models, we compare this
with the tuning required to raise the Higgsino mass in the
MSSM, which is ∼m2

h=μ
2. In our models, the Higgsino

mass is ∼λf, where λ is a dimensionless coupling in the
Higgs sector that spontaneously breaks SOð5Þ. This is also
proportional to f, but the tuning is reduced (compared to
the MSSM with the same value of the Higgsino mass) for
large λ.
Large couplings in the Higgs sector that spontaneously

breaks SOð5Þ are in fact required in our model to maintain
the approximate SOð5Þ symmetry while also generating a
Higgs quadratic coupling sufficiently large to be compat-
ible with the observed Higgs mass. Moreover, they are
motivated by the fact that approximate invariance under a
global symmetry broken by electroweak gauge and top
Yukawa couplings is natural in models with a strong
coupling in the Higgs sector. The paradigmatic example
is QCD, where an approximate SUð2ÞL × SUð2ÞR sym-
metry is broken only weakly by the fact that the quarks
have different electromagnetic charges and masses.
For concreteness, these ideas will be demonstrated with a

simple model based on the minimal coset structure G=H ¼
SOð5Þ=SOð4Þ [27]. The only additional degrees of freedom
beyond the MSSM are two gauge singlet chiral superfields
that couple to the MSSM via the superpotential. The
approximate global SOð5Þ symmetry is radiatively stable,
but its origin will not be addressed in this work. Since the
model is meant as an existence proof, we will work in a
subregion of the full parameter space to demonstrate that
the general arguments about tuning are supported by a
complete numerical analysis.

1This bound can be somewhat alleviated in models where the
gluino is a Dirac fermion [23,24].

2For a review and general phenomenological discussion of
PNGB Higgs models, see [28,29].
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In our model, we can obtain tuning ≲1=20 for
μ≳ 2 TeV. Since we will be working with large values
of λ, the theory has Landau poles at relatively low scales.
These can be cut off by new physics below the Landau pole
scale, as is done for other SUSY models in the literature,
e.g. [30–33]. Alternatively, it is possible that the sector that
produces the PNGB is strongly coupled, analogous to
“superconformal technicolor” models [11,12] or the ideas
in [34,35].
A significant difference between models of the type

presented below and other realistic PNGB Higgs models in
the literature is that in our models the stop is the only top
partner. PNGB Higgs models without SUSY additionally
require fermionic top partners in complete SOð5Þ repre-
sentations in order to render the Higgs mass calculable. In
our models, the stops are sufficient to control the quadratic
corrections to the Higgs mass-squared parameter. However,
logarithmic sensitivity to UV scales remains due to the
allowed SOð5Þ breaking terms in the theory. We check that,
under renormalization group evolution, the SOð5Þ breaking
remains small up to scales in the range 102–106 TeV. This
pushes the question of the origin of the SOð5Þ symmetry
beyond scales that can be presently probed. At these high
scales, the global SOð5Þ symmetry may be the remnant of a
broken gauge symmetry, for example. The absence of
fermionic top partners means that our models have fewer
ingredients, and changes the phenomenology compared to
models of PNGB Higgs in the literature.
Previous studies of SUSY models with a PNGB Higgs

include [36–39]. In fact, the model of [37] is very similar to
ours, although they include top partners to fill out complete
SOð5Þ representations. However, to our knowledge the
implications of the naturalness on the Higgsino mass have
not been previously emphasized. Also, the possibility of
SUSY models with a PNGB Higgs but without SOð5Þ top
partners has not been noted. Supersymmetric little Higgs
models have also been considered, but with the goal of
eliminating tuning due to the large logarithms of the
form logðΛ=msoftÞ that appear in SUSY models [40,41].
Again, these models do not focus on the naturalness
implications of the Higgsino mass (for example [40] has
μ ∼ 200–400 GeV) and incorporate fermionic top partners.
An alternative approach to SUSY breaking that does lead to
heavy Higgsinos is to invoke TeV extra dimensions with
Scherk-Schwarz boundary conditions [42] that project out
the light Higgsino [43,44]. The presence of an extra
dimension means that these models require UV completion
near the TeV scale, while our models are based on soft
SUSY breaking.
The models considered here have potentially important

implications for the interpretation of SUSY searches. For
example, suppose that at the 13 TeV LHC a SUSY signal
consistent with gluino pair production followed by decays
involving tops, bottoms, and a neutral lightest supersym-
metric particle (LSP) χ is observed, with

m~g ∼ 1.2 TeV; m~t2 ∼ 800 GeV; m ~b1
∼ 700 GeV;

m~t1 ∼ 600 GeV; mχ ∼ 500 GeV;

where ~g is the gluino, ~t1;2 are the two stop mass eigenstates
(their masses are split due to the assumption of a large μ
term), and ~b1 is the lighter sbottom.3 Given the large
number of ~g ~g events, approximate values for the masses
and branching ratios would be inferred. We would not
know the identity of the LSP, but we know that the
Higgsino mass can be no smaller than 500 GeV, otherwise
it would be the LSP. In the MSSM, the tuning in such a
spectrum would be dominated by the Higgsino contribu-
tion, and would be of order 1% in the best-case scenario
where the LSP is Higgsino-like. In our model, we naturally
have a much larger Higgsino mass with tuning of order
10%, and the LSP would have essentially no Higgsino
admixture. Indeed, the conventional conclusion that natural
SUSY is under experimental pressure relies heavily on the
assumption that such spectra are tuned because of the
necessity of heavy Higgsinos [7].
Although we attempt to carefully quantify fine-tuning in

this paper, we are not claiming that the precise value of the
tuning is meaningful beyond a rough estimate. We also do
not advocate for the idea that nature chooses to minimize
some measure of tuning—if this were the case, SUSY
would have been discovered long ago. Our point of view is
that the fact that nature is apparently somewhat tuned is a
possible hint for nonminimal structure in the model, and we
are exploring one such possibility. We believe that all
possible natural models should be thoroughly examined,
and it is in this spirit that we present our work.
The remainder of this paper is organized as follows. In

Sec. II, we describe our model and analyze it in several
simplified limits to elucidate the important effects that
determine the amount of tuning. In Sec. III, we present the
results of a complete numerical analysis, demonstrating
the improvement in tuning relative to the MSSM. Our
conclusions are presented in Sec. IV.

II. A SUSY PNGB HIGGS MODEL

In this section, we show that a SUSY PNGB Higgs can
arise from a very simple extension of the MSSM, namely a
model with two additional gauge singlet chiral superfields.
This allows an embedding of the Higgs sector into a
representation of an approximate SOð5Þ global symmetry.
The symmetry is broken explicitly by small superpotential
and soft SUSY breaking terms, in addition to the electro-
weak gauge interactions and Yukawa couplings. The model

3There is currently a CMS search with null results for a subset
of this spectrum [45]. We used Fastlim [46] in combination with
SUSYHIT [47] to check that this spectrum is plausibly allowed
experimentally, and should be readily observable at the upcoming
13 TeV run of the LHC.
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will be analyzed in several steps in order to emphasize
important features:
(a) Beginning with the limit of exact SOð5Þ symmetry,

soft SUSY breaking will be introduced in order to
induce a spontaneous breaking of the global sym-
metry, SOð5Þ → SOð4Þ. In this limit, there are four
massless NGBs that will be identified with the
physical Higgs, and the Higgsinos will have a mass
of the order of the global symmetry breaking scale.
Because the Higgs potential vanishes in this limit, this
already shows that a Higgsino mass does not contrib-
ute to the light Higgs mass, thereby breaking the naive
SUSY intuition.

(b) Next, tree-level terms that provide a small explicit
breaking of the SOð5Þ global symmetry are added.
Electroweak gauge symmetry is spontaneously bro-
ken, and the physical Higgs boson acquires a nonzero
mass. The model is automatically in the limit of
tan β ¼ 1 due to an unbroken custodial SOð4Þ sym-
metry. In this limit, the tuning required to obtain a
realistic Higgs potential can be transparently derived,
and this can be compared with the tuning for an
analogous spectrum in the MSSM.

(c) Next, the effect of the explicit breaking of the SOð5Þ
global symmetry by the Standard Model electroweak
gauge and top Yukawa couplings will be included. In
particular, since the top Yukawa explicitly breaks
SOð4Þ, it pushes the model away from the tan β ¼ 1
limit, generating additional sensitivity to the global
symmetry breaking (and hence Higgsino mass) scale.
In addition, the model-dependent quadratic contribu-
tions proportional to the stop softmasswill be included.

(d) Finally, we present a complete numerical analysis of
the model, explicitly demonstrating that it exhibits the
main features described above.

In order to be quantitative, we use a version of the
Barbieri-Giudice measure of tuning [48], the fractional
sensitivity of the physical Higgs mass-squared m2

h to
changes in the various input parameters pi,

Δ−1 ¼ ∂ lnm2
h

∂ lnpi
: ð3Þ

We have checked that the (more traditional) tuning in v2 is
comparable, but we use m2

h for practical reasons.
Depending on the parameters, we find that the tuning is
dominated by one of the following sources:

Δ−1
PNGB ∼

f2

v2
; Δ−1

δtβ
∼ δtβ

μ2eff
v2

;

Δ−1
radiative ∼

3

16π2
m2

~t

v2
log

�
M2

SUSY

m2
~t

�
; ð4Þ

where δtβ ¼ tan β − 1 parametrizes the SOð4Þ breaking,
and μeff is the effective μ-term generated in our model. The

standard 1-loop tuning from stops is estimated by Δ−1
radiative,

and sets a minimum possible tuning for a particular choice
of SUSY breaking scaleMSUSY. For sufficiently low values
of MSUSY this contribution is subdominant, and the
dominant tuning is determined by a competition between
the other two sources of tuning.
In the following, we present an approximate analytic

argument for these scalings, followed by a complete
numerical analysis of the model, which will demonstrate
that these effects are robust.

A. The SOð5Þ limit

Our model contains the fields of the MSSM, plus
two singlet chiral superfields Σ and S. The MSSM
Higgs fields Hu and Hd can be embedded into a funda-
mental representation of SOð4Þ,

Φi ¼
1ffiffiffi
2

p

0
BBBBB@

−iðH1
u þH2

dÞ
H1

u −H2
d

iðH2
u −H1

dÞ
H2

u þH1
d

1
CCCCCA; i ¼ 1;…; 4; ð5Þ

where the superscripts on the Hu;d scalars are SUð2ÞW
indices. This implies the relationships

Φ†
iΦi ¼ H†

uHu þH†
dHd; ΦiΦi ¼ −2HuHd: ð6Þ

Combining Σ with these Higgs fields forms a (complex)
fundamental of SOð5Þ,

Φa ¼ ðΣ;ΦiÞ; a ¼ 0;…; 4: ð7Þ

We now present the model in the limit of exact SOð5Þ
symmetry. The superpotential is

W ¼ λ

2
SΦaΦa −

κ

3
S3: ð8Þ

W contains no dimensionful parameters—as in the next-to-
minimal supersymmetric model (NMSSM), this can give a
solution to the μ problem.4 SUSY is assumed to be broken
softly by introducing the following terms into the scalar
potential5:

Vsoft ¼ m2
SjSj2 þm2

ΦΦ
†
aΦa þ BSðS2 þ H:c:Þ

þ BΦðΦaΦa þ H:c:Þ: ð9Þ

The couplings and soft masses can be chosen such that S
and Σ acquire nonzero VEVs,

4The omission of the relevant terms S, S2, and ΦaΦa can be
justified by imposing additional symmetries.

5A linear term in S can be forbidden by imposing additional
symmetries. A terms are also neglected.
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hSi ¼ uffiffiffi
2

p ; hΣi ¼ fffiffiffi
2

p : ð10Þ

When f ≠ 0, SOð5Þ is spontaneously broken, yielding a
Nambu-Goldstone boson (NGB) multiplet consisting of the
real components of Φi, which parametrize the coset space
SOð5Þ=SOð4Þ. These will be identified with the Higgs field
responsible for breaking electroweak symmetry. The imagi-
nary components of Φi make up a heavy Higgs doublet
with mass

m2
ImðΦiÞ ¼

λκu2

2
−
λ2f2

4
: ð11Þ

This must be positive in order to have a stable vacuum.
In the absence of explicit SOð4Þ breaking, tan β ¼ 1.
Furthermore, the heavy Higgs doublet has a vanishing
VEV and does not mix with the light Higgs.
In addition to the Higgs doublets, the spectrum also

contains two singlet scalars and two singlet pseudoscalars,
which are admixtures of the real and imaginary components
of S and Σ. In the limit of vanishing B-terms BS; BΦ → 0
the theory above has a Uð1ÞR symmetry with charges
RðSÞ ¼ RðΦÞ ¼ 2

3
, and therefore an associated axionlike

NGB. Nonzero B-terms are therefore important for the
phenomenology of the theory, but do not significantly
affect the aspects of the Higgs sector that are the focus of
this paper. For the numerical analyses performed below,
parameters will be chosen such that this axion state is lifted.
The Higgsino mass is given by

μeff ¼
λuffiffiffi
2

p ; ð12Þ

while the NGBs are exactly massless. Therefore, this
simple limit already demonstrates the separation between
the (so-far massless) Higgs scalars and the Higgsinos.

B. Explicit breaking of SOð5Þ
We now include terms that explicitly break the global

SOð5Þ symmetry at tree level in order to generate a Higgs
potential. The next subsection will analyze the largest
effects from the loops of Standard Model particles/spar-
ticles. Our purpose is to discuss the tuning required for
realistic electroweak symmetry breaking in the simplest
possible context.
Considering only dimensionless terms in the

superpotential, we include the following SOð5Þ breaking
couplings

ΔW ¼ λ0

2
SΣ2 þ η

2
S2Σ −

κ0

2
Σ3; ð13Þ

and the soft SUSY and SOð5Þ breaking terms

ΔVsoft ¼ Δm2
ΣjΣj2 þ Δm2

SΣðSΣ† þ H:c:Þ þ BΣðΣ2 þ H:c:Þ
þ BSΣðSΣþ H:c:Þ ð14Þ

in the potential. In order to understand the light Higgs
potential, it is simplest to use the effective theory below the
mass scale of the heavy fields. Due to the large separation
of scales, it is consistent to work at leading order in the
SOð5Þ breaking terms above. We analyze this model in the
limit where the B-terms and Δm2

SΣ vanish, purely for
simplicity. However, we include BS in our numerical
analysis below, and also discuss the radiative stability of
neglecting various terms in the Appendix. Explicit SOð5Þ
breaking gives rise to a potential for the light Higgs doublet
H with the Standard Model form

V ¼ m2
HH

†H þ λH
4
ðH†HÞ2: ð15Þ

The effective parameters m2
H and λH can be obtained by

integrating out the heavy fields at tree level:

m2
H ¼ −Δm2

Σ −
λ0

4
½λf2 − 2ðκ − 2λÞu2�

−
η

4

�
λfu − ð2κ − λÞ u

3

f

�
þ 3κ0

2
λfu; ð16Þ

and

λH ¼ η

2

�ð2κ − λÞu3
f3

−
λu
2f

�
−
3κ0λu
f

: ð17Þ

Here we have traded the SOð5Þ invariant parameters m2
S

and m2
Φ for the VEVs f and u. Note that the terms in the

light Higgs potential are proportional to explicit SOð5Þ
breaking, as they must be. There is clearly sufficient
freedom to obtain m2

H < 0 and λH > 0, while still having
a stable minimum [see Eq. (11)].
To understand the tuning, consider the simplest case

where λ ∼ κ, u ∼ f, and η ∼ λ0 ∼ κ0 ≪ λ. Then

m2
H ∼ −Δm2

Σ þ ηλf2; λH ∼ ηλ: ð18Þ

The VEV of the Higgs field is given by

v2 ¼ −
m2

H

λH
; ð19Þ

such that v ≳ f unless m2
H is tuned to be smaller than its

natural size. This is the canonical tuning inherent in PNGB
Higgs models. For example, if the small value of m2

H is
obtained by canceling Δm2

Σ against the other terms, the
largest sensitivity is given by
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Δ−1
PNGB ≃ −

Δm2
Σ

m2
H

∼
f2

v2
: ð20Þ

The tuning is always of order v2=f2, which can be
understood from the fact that we are tuning the Higgs to
be light compared to heavy states whose mass is propor-
tional to f. The same parameter v2=f2 controls the
deviation of the couplings of the light Higgs from the
Standard Model (SM) values. The observed Higgs cou-
plings imply v2=f2 ≲ 10%, so there is an unavoidable
tuning of the order of 10% in this framework.
It may appear that this tuning of the Higgs potential

spoils our claim of enhanced naturalness for this model. In
fact, the Higgsino mass is also proportional to f, so the
tuning required to raise the Higgsino mass in the MSSM is
proportional to v2=f2, just like the tuning in the Higgs
potential above. However, the tuning in our model is
parametrically improved relative to a MSSM-like theory
when the dimensionless SOð5Þ preserving couplings are
large. In a MSSM-like theory where the Higgsino mass
contributes to the Higgs mass at tree level, we have a tuning

Δ−1
MSSM ≃

				 μ2effm2
H

				 ¼ 2μ2eff
m2

h

; ð21Þ

where mh ¼ 125 GeV is the physical Higgs mass. Note
that this is a conservative estimate of the tuning, since it
assumes that there is a natural mechanism for generating
the Higgs quartic and does not include the tuning con-
tribution from stop loops. For example, this is the case in
the NMSSM for large values of the SHuHd coupling (i.e.
“λ-SUSY” [33]), but not for the MSSM where stop loops
generate the Higgs quartic. To make a fair comparison to
our model, we consider the ratio of the tuning in our model
to the tuning in a MSSM-like theory for the same value of
the Higgsino mass, μeff ∼ λu, yielding

T ≡ Δ−1
MSSM

Δ−1
PNGB

∼
λ2

λH
; ð22Þ

where λ is an SOð5Þ preserving coupling in our model and
λH ¼ m2

h=2v
2 ¼ 0.13 is the SM Higgs coupling. We see

that the tuning is parametrically improved relative to a
MSSM-like model. This is one of the main conclusions of
our work.
The tuning in theories with heavy Higgsinos is most

significantly improved relative to MSSM-like theories
when the Higgs sector that spontaneously breaks SOð5Þ
is strongly coupled. This means that we get the maximum
gain in a limit where our model is not calculable. Our
attitude toward this is that the model we are presenting is an
existence proof, and we will use it to demonstrate that the
above simple picture of the tuning can be realized in a
complete model. The improvement in the tuning in this
model is then limited by the weak coupling that we need for

calculability, but we can be confident that there are no
hidden problems in this scenario. It is therefore plausible
that there are strongly coupled models with the same
general features, and we will illustrate the possibilities
by extrapolating the present model all the way to strong
coupling.

C. Explicit SOð5Þ breaking by gauge and
Yukawa couplings

In this section, the effects of the Standard Model
electroweak gauge and Yukawa couplings are discussed.
These must not be too large if we are to maintain a light
Higgs mass without fine-tuning. Not surprisingly, we find
that the largest contribution comes from top/stop loops.
First, consider the electroweak gauge couplings. Because

tan β ≃ 1, the electroweak D-term contribution to the
Higgs potential is negligible. However, electroweak loops
will generate a radiative correction to the mass-squared
parameters for Hu;Hd but not Σ, thereby breaking SOð5Þ.
The largest contribution comes from the Higgsinos due to
the large Higgsino mass in our models. The value is model
dependent because it is sensitive to UV-scale physics, but it
can be estimated using the leading-log approximation:

ðΔm2
ΣÞEW ≃ −

3g22
8π2

μ2eff log

�
MSUSY

μeff

�
ð23Þ

where MSUSY is the SUSY breaking scale and g2 is the
SUð2ÞW gauge coupling. Therefore, requiring small Δm2

Σ
and the approximate SOð5Þ symmetry potentially gives rise
to a loop-level tuning. Using Eq. (23), one expects

Δ−1
radiative ∼

3g2

16π2
μ2eff
v2

log

�
MSUSY

μeff

�
: ð24Þ

In our numerical analysis below, we include this tuning by
including in the potential

Δm2
Σ ¼ Δm2

Σ;0 þ ðΔm2
ΣÞEW ð25Þ

and calculate the tuning with respect to Δm2
Σ;0. Therefore,

any radiative tuning of Eq. (24) will show up as the tuning
of Δm2

Σ;0 against the Higgsino loop contribution that is
required to keep Δm2

Σ small. We find that this tuning is
generally subdominant in the regions of parameter space
we consider, but it can become relevant for larger Higgsino
masses.
Another important source of explicit SOð5Þ breaking is

the large top Yukawa coupling, which is particularly
important as it impacts the potentials for Hu and Hd
differently. Integrating out the tops and stops generates a
correction to the Higgs potential for Hu but not for Hd:

ΔVt ¼ Δm2
Hu
H†

uHu þ
ΔλHu

4
ðH†

uHuÞ2: ð26Þ
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These contributions break the custodial SOð4Þ subgroup
of the approximate global SOð5Þ, so this source of
explicit breaking can be parametrized in terms of the
resulting deviation from tan β ¼ 1. In particular, for
δtβ ¼ tan β − 1 ≠ 0, the light Higgs mass will pick up
contributions Δm2

H ∼ δtβμ2eff . This can be understood as a
mixing between the PNGB Higgs and the second Higgs
doublet, with the amount of mixing set by δtβ, and this
effect induces an additional source of sensitivity to the
global symmetry breaking scales u; f. As a result, the
corresponding tuning is

Δ−1
δtβ

∼ δtβ
μ2eff
v2

∝ Δ−1
MSSM ð27Þ

such that T ∝ δtβ is approximately constant for regions of
the PNGB sector parameter space where this contribution
to the tuning dominates. Hence, for a given value of δtβ,
there will be a maximum possible improvement in the
tuning with respect to the MSSM.
The contribution from top/stop loops to the Higgs quartic

is [49]

ΔλHu
¼ 3

π2

�
mt

vu

�
4
�
log

�
m~t1m~t2

m2
t

�
þc2~t s

2
~t

m2
~t2
−m2

~t1

m2
t

log

�m2
~t2

m2
~t1

�

þ c4~t s
4
~t

ðm2
~t2
−m2

~t1
Þ2−1

2
ðm4

~t2
−m4

~t1
Þlogðm2

~t2
=m2

~t1
Þ

m4
t

)
:

ð28Þ

In a natural model with lighter stops, as envisioned here,
this contribution to λH is subdominant for mh ¼ 125 GeV.
Nonetheless, it does yield a∼30% contribution to the Higgs
mass, so we include a contribution to ΔλHu

given by
Eq. (28) in our numerical analysis below.
As for the electroweak correction discussed above, the

term Δm2
Hu

is model dependent since it is sensitive to UV-
scale physics. In the leading-log approximation, the size of
the radiative contribution to Δm2

Hu
is given by

ðΔm2
Hu
Þ
stop

≃ −
3y2t
16π2

ðm2
Q3

þm2
u3Þ log

�
M2

SUSY

m~t1m~t2

�
; ð29Þ

where we have neglected A terms and the contribution from
the gluino for simplicity. Thus, a reasonable concern is that
maintaining small δtβ (and hence improvement relative to
the MSSM) represents an additional source of tuning in the
model due to the radiative (in)stability of small Δm2

Hu
. The

magnitude of the radiative tuning can be estimated using
Eq. (29),

Δ−1
radiative ∼

3y2t
32π2

m2
Q3

v2
log

�
M2

SUSY

m~t1m~t2

�
: ð30Þ

This contribution gives a lower bound on the tuning in the
model for a given set of stop masses and MSUSY, as in any

natural SUSY model. Note that we do not include Δ−1
radiative

as a contribution to Δ−1
MSSM when computing T, making our

comparison to the MSSM maximally conservative. In our
numerical analysis below, we account for this tuning by
including in the potential

Δm2
Hu

¼ Δm2
Hu;0

þ ðΔm2
Hu
Þ
stop

ð31Þ

and calculate Δ−1 with respect to both Δm2
Hu;0

and the stop
mass-squared parameters.
The stop mass contributions described above become

more important for large μeff because this increases the stop
mass splittings. This increases the tension with naturalness
because larger soft masses in the stop sector are required to
avoid conflict with LHC bounds on the lightest stop. One
could allow At ≠ 0, but this would also contribute to
ðΔm2

Hu
Þ
stop

through the renormalization group evolution.
In the numerical results below, we will fix the lowest stop
mass to be 600 GeV, thereby accounting for the increased
contribution to the tuning with larger soft masses.
As one might expect, we find that preserving the gain

relative to the MSSM requires maintaining the limit where
the PNGB description is approximately valid, which
includes the requirement that tan β ≃ 1. Consequently,
while the largest gains relative to the MSSM are achieved
for strong coupling, the improvement does not increase
arbitrarily as λ → ∞. As λ ∝ μeff increases, small δtβ is
required such that Δ−1

δtβ
does not dominate the tuning.

Eventually, however, the tuning Δ−1
radiative required to keep

Δm2
Hu

(and hence δtβ) small prevents δtβ from being
decreased further. In other words, the top/stop loops are
what limit the improvement in tuning for large λ.

III. RESULTS

In this section, we confirm the above results based on a
full numeric analysis of the tree-level potential, including
the most important radiative corrections in Eqs. (24) and
(30) as described above. A weakly coupled benchmark
point is presented as a proof of principle, and we also
present results as a function of λ for a subspace of the
parameter space in order to demonstrate the improvement
when extrapolating to a strong coupling.
The most important experimental constraint on this

model comes from Higgs coupling measurements at the
LHC. In our model, the light Higgs mixes with CP-even
components of S and Σ, resulting in a universal reduction
factor κh in the couplings between the couplings of the
Higgs to all other SM particles. Using the full 7 and 8 TeV
data sets, ATLAS has given the constraint [50]

κh − 1 > −0.064: ð32Þ

As in any PNGB Higgs model, we have κh − 1 ∼ v2=f2,
assuming v ≪ f ∼ u. In the minimal composite
Higgs model the constraint equation (32) implies
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f > 710 GeV, which in turn requires tuning of order
v2=f2 ∼ 10%. In our model, the precise constraint has a
more complicated parametric dependence because the
coupling suppression arises from the mixing of three states,
but the conclusions are essentially the same. We find that
imposing the constraint equation (32) implies a tuning of at
least 10%.

A. Benchmark model

We present a complete weakly coupled benchmark in
Table I that satisfies all experimental constraints. This will
be used as a starting point to extrapolate into the strongly
coupled regime in the following subsection. Note that we
consider only a subset of the possible couplings for
simplicity. In the Appendix we show that this choice is

sufficiently radiatively stable that it does not introduce
additional tuning.
The physical masses of the particles are

m~t ¼ 600 GeV; 851 GeV; ð33Þ

m ~b ¼ 718 GeV; 1.5 TeV; ð34Þ

mh ¼ 125 GeV; ð35Þ

m ~H;H0;H�;A0 ¼ 1.73 TeV; ð36Þ

scalars∶ m ¼ 811 GeV; 3.1 TeV; ð37Þ

pseudoscalars∶ m ¼ 337 GeV; 2.29 TeV: ð38Þ

The tunings with respect to the input parameters are as
follows:

pi λ κ m2
S m2

Φ Δm2
Σ;0 η Δm2

Hu;0
m2

Q3
m2

u3

Δ−1 22 29 4 4 12 8 10 9 9

The tunings in λ; κ capture Δ−1
PNGB, while the tunings in

Δm2
Σ;0;Δm2

Hu;0
; m2

Q3
, and m2

u3 correspond to the radiative
tunings described in Eqs. (24) and (30). Note that, for
MSUSY ¼ 104ð106Þ TeV, we would have Δm2

Hu;0
¼

0.479ð0.785Þ TeV2 and Δ−1
radiative ∼ 25 (50). As expected,

the radiative tuning required to keep tan β ≃ 1 dominates
for larger values of MSUSY.
This benchmark model is tuned at a level of 3%. Given

that the Higgsino mass is μeff ¼ 1.17 TeV, the correspond-
ing Higgsino tuning in a MSSM-like model would be
∼0.5%, corresponding to an improvement factor of T ¼ 5.9
[see Eq. (22)]. This modest improvement is expected since
we are working at weak coupling.

TABLE I. Input parameters for a weakly coupled benchmark.
The upper table lists the SOð4Þ preserving parameters as
discussed in Secs. II A and II B, and the middle table lists the
parameters of the stop sector, which violate SOð4Þ and are
discussed in Sec. II C. The lower table shows the soft SUSY
breaking masses that give rise to the assumed VEVs.

SOð4Þ symmetric input parameters

λ κ u [TeV] f [TeV] BS ½TeV2� η
1.5 2.0 1.1 0.65 −0.04 0.0872

Stop sector input parameters

tan β mQ3
¼ mu3 [TeV] md3 [TeV] At ¼ Ab [TeV]

1.05 0.718 1.5 0

Soft SUSY breaking masses

m2
S ½TeV2� m2

Φ ½TeV2� Δm2
Σ;0 ½TeV2� Δm2

Hu;0
½TeV2�

−4.48 0.216 0.103 0.174

FIG. 1 (color online). The left (right) panel shows Δ−1
max (T) as a function of λ for different values of tan β given on each curve. The

other fixed parameters are given in the text.
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B. Strong coupling

We now extrapolate the results of the benchmark model
to larger values of λ. We do this by simply using the same
approximations made for the weakly coupled model. Even
though some quantities will have corrections of the order of
100%, we expect that the qualitative estimates of the tuning
are accurate. The other input parameters are fixed as follows:
f ¼ 650 GeV, u ¼ 1.1 TeV, κ ¼ 4

3
λ, BS ¼ −0.04 TeV2.

The parameters Δm2
Σ;0 and η are chosen to reproduce v ¼

246 GeV and mh ¼ 125 GeV.
Our results are presented in Figs. 1 and 2. Both figures

show the largest tuning in our model in the left panel, and
the ratio of the tuning compared to a MSSM-like model in
the right panel. The purpose of Fig. 1 is to show how the
simple scaling arguments provided above are reproduced in
the full numerical analysis. In particular, four different
choices of tan β are shown. The transition from a regime
where the tuning is dominated by Δ−1

PNGB to where it is
dominated by Δ−1

δtβ
is manifest from the turnover. Note

that, for the curve with tan β ¼ 1.05, Δ−1
δtβ

does not
dominate for the values of λ ∝ μeff shown. Here, we have
fixed MSUSY ¼ 102 TeV; the radiative tuning is always
subdominant for this choice of parameters.
Figure 2 presents the bottom line results for the tuning in

the model at stronger coupling. It shows Δ−1
max and T for

three choices of MSUSY, with tan β chosen at each point to
minimize the tuning. The quadratic improvement of the
tuning as λ increases turns over at large values of λ due to
the radiative tuning, which is more important at larger
values of MSUSY. This shows that a significant improve-
ment in tuning with respect to MSSM-like models is
possible in this framework.

IV. CONCLUSIONS

We have presented a general mechanism for improved
naturalness in SUSY theories with heavy Higgsinos.

The main idea is that if the Higgs is a PNGB arising
from a global symmetry breaking pattern such as
SOð5Þ → SOð4Þ, an SOð5Þ preserving Higgsino mass does
not contribute to the Higgs mass, decoupling the Higgsino
mass from the naturalness of the Higgs mass at tree level.
This implies that experimentally allowed models with
relatively light stops and LSP masses not far below the
stop masses can be natural.
We have presented a simple model that realizes this

scenario. The only fields beyond the MSSM that are
required are two additional singlet chiral multiplets. In
particular, there are no additional top partners to fill out
SOð5Þ multiplets. The model has an approximate SOð5Þ
global symmetry, and the observed Higgs is a PNGB
associated with the spontaneous breaking of this sym-
metry. A natural and phenomenologically acceptable Higgs
potential can arise from a combination of top/stop loops
and tree-level SOð5Þ breaking.
The tuning in this model was compared with a MSSM-

like model where the Higgsino mass contributes to
the Higgs mass at tree level. We find a parametric
enhancement of naturalness when the couplings in the
Higgs sector that spontaneously breaks SOð5Þ are large.
A model with a Higgsino mass of 2 TeV would lead to a
tuning of ∼1=20 in this model, an improvement with
respect to the Higgsino tuning in a MSSM-like model by
a factor of up to 30. Our model explains the observed
Higgs mass of 125 GeV without additional tuning, while
the MSSM-like model would require either additional
structure (such as the NMSSM) or additional tuning to
accomplish this.
Only experimentation can tell us whether the electro-

weak scale is fine tuned. In the meantime, we must continue
to explore all possible angles of electroweak naturalness.
The aim of this paper is to remind us that the only truly
model-independent naturalness constraints on the masses
of superpartners come from radiative corrections to the

FIG. 2 (color online). The left (right) panel shows Δ−1
max (T) as a function of λ, for different values of MSUSY given on each curve. At

each point, tan β has been chosen to minimize the tuning. The other fixed parameters are given in the text.
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Higgs mass. In particular, the Higgsino mass can be
naturally large in SUSY theories minimally extended
beyond the MSSM.

ACKNOWLEDGMENTS

We thank David Pinner and Josh Ruderman for the
useful conversations. T. C. is supported by DOE Contract
No. DE-AC02-76SF00515 and by a LHC Theory Initiative
Postdoctoral Fellowship, under National Science
Foundation Grant No. PHY-0969510. T. C. thanks the
KITP in Santa Barbara where some of this research was
performed, and for the support from the National Science
Foundation under Grant No. NSF PHY11-25915. T. C. also
thanks the MITP in Mainz where additional work was
performed. J. K. is supported by the DOE under Contract
No. DE-SC0007859 and Fermilab, operated by Fermi
Research Alliance, LLC under Contract No. DE-AC02-
07CH11359 with the U.S. Department of Energy. T. C. and
J. K. thank the CFHEP in Beijing where some of this
research was performed. M. A. L. is supported by the
Department of Energy under Grant No. DE-FG02-
91ER406746.

APPENDIX: ADDITIONAL SYMMETRY
BREAKING TERMS

In this appendix, we elaborate on the simplifying
assumptions made in Sec. III. We considered a minimal
set of parameters including soft SUSY breaking masses that
preserve both SOð5Þ and Uð1ÞR (m2

S; m
2
Φ), that explicitly

break SOð5Þ (Δm2
Σ;Δm2

Hu
), and that explicitly breakUð1ÞR

(BS), in addition to a single SOð5Þ-violating superpotential
coupling (η). These parameters are sufficient to yield a
viable model, and so we focused on them for simplicity,
although other terms could have been included. Indeed,
some of these terms will be generated radiatively, and so
must be included in a complete analysis.
We have confirmed numerically that including additional

terms does not disrupt the stability of our solutions.

Moreover, due to nonrenormalization of the superpotential
and the fact that any radiative corrections must be propor-
tional to small symmetry breaking parameters, the neglected
terms can be consistently treated as small perturbations to
the above setup without introducing sizable radiative tuning.
This allows us to consistently neglect the couplings λ0; κ0 in
Eq. (13). Similarly, consider (for example) the soft SUSY
breaking massm2

SΣ in Eq. (14). This term breaks SOð5Þ, and
as such will receive radiative contributions proportional to η
and large soft SUSY breaking masses. For instance, S loops
will generate corrections of size

Δm2
SΣ ∼

λη

16π2
m2

S: ðA1Þ

Such a contribution is a loop factor smaller than the leading
contributions to m2

H ∼ ληf2 ∼ ληm2
S, allowing m2

SΣ to be
taken small enough such that its contribution to the Higgs
potential is subdominant without simultaneously introduc-
ing large radiative tuning.
In addition, we considered a nonzero B-term, BS, in order

to lift the Uð1ÞR flat direction and to give mass to the
corresponding NGB—this could also have been accom-
plished with a nonzero BΦ term, see Eq. (9). As both terms
are SOð5Þ preserving, they do not significantly influence the
details of the Higgs potential. Furthermore, asUð1ÞR is only
softly broken by these terms, radiative corrections must be
proportional to BS;Φ, such that the smallness of these terms
relative to the other large mass scales in the model (namely
m2

S and m2
Φ) is radiatively stable. While BΣ;SΣ in Eq. (14)

would influence the Higgs sector, such terms require
explicit breaking of both SOð5Þ and Uð1ÞR, so they can
be kept small without introducing significant loop-level
tuning. Finally, we have neglected the possible inclusion of
A terms. Again, small A terms are radiatively stable as such
terms must be proportional to soft SUSY breaking and
Uð1ÞR breaking, and must be linear in mass—as we have no
such terms, large A terms will not be generated.
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