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Hadron masses can be decomposed as a sum of quark and glue components that are defined through
hadronic matrix elements of QCD operators. The components consist of the quark mass term, the quark
energy term, the glue energy term, and the trace anomaly term. We calculate these components for mesons
with lattice QCD for the first time. The calculation is carried out with overlap fermion on 2þ 1 flavor
domain-wall fermion gauge configurations. We confirm that ∼50% of the light pion mass comes from the
quark mass term and ∼10% comes from the quark energy; whereas, for the ρ meson, the quark energy
contributes roughly half of its mass but the quark mass term contributes little. The combined glue
components contribute ∼40–50% for both mesons. It is interesting to observe that the quark mass
contribution to the mass of the vector meson is almost linear in quark mass over a large quark mass region
below the charm quark mass. For heavy mesons, the quark mass term dominates the masses, while the
contribution from the glue components is about 200 MeV (a bare value around 2 GeV) for the heavy
pseudoscalar and vector mesons. The charmonium hyperfine splitting is found to be dominated by the
quark energy term which is consistent with the picture of the quark potential model.
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I. INTRODUCTION

Hadrons are confined states of quarks and gluons. QCD is
the theory describing the interaction of the quarks and
gluons. Given the fact that masses of hadrons are well
measured and successfully calculated with lattice QCD, an
interesting, important, and yet unanswered question is how
large the contributions are to the masses from the quark and
glue constituents. The answer will be important for under-
standing the quark-glue structure of hadrons. It is clear that
the question can only be answered by solving QCD non-
perturbatively, and/or with information from experiments.
The decomposition for the proton has been carried out with
phenomenological inputs [1]. For hadrons other than the
proton, there is little information from experiments to be
used, while some discussion is provided in [2,3]. At the same
time, the question can be addressed for all the hadrons by
employing lattice QCD. In this paper, we present such an
exploratory study with lattice QCD calculations for the
pseudoscalar (PS) and vector (V) mesons.
The energy-momentum tensor from the QCD

Lagrangian in Euclidean space [4] is

Tμν ¼
1

4
ψ̄γðμD

↔

νÞψ þ FμαFνα −
1

4
δμνF2; ð1Þ

which is symmetric and conserved. Each term in the
tensor depends on the renormalization scale, but the

total tensor does not. The trace term of the tensor is
given by

Tμμ ¼ −mψ̄ψ − γmmψ̄ψ þ βðgÞ
2g

F2; ð2Þ

in which the quantum trace anomaly (the term propor-
tional to the anomalous dimension of the mass operator
γm, plus the glue term) has been taken into account. In
the above anomaly equation, the first term and the
combined second and third terms are scale independent.
The definition of the anomalous dimension of the mass
operator is [5]

γm ¼ −
μ

m
dm
dμ

: ð3Þ

In lowest order perturbation, the coefficient of the glue
anomaly term [the third term in Eq. (2)] is βðgÞ ¼
−ð11 − 2nf=3Þg3=ð4πÞ2 with nf being the number of
flavors.
Combining the classical Tμν from Eq. (1) and the

quantum anomaly in Eq. (2), one can divide Tμν into a
traceless part T̄μν and a trace part T̂μν, i.e. Tμν ¼ T̄μν þ T̂μν

[1]. From its matrix element of a single-meson state with
momentum P, hPjTμνjPi ¼ 2PμPν, and taking μ ¼ ν ¼ 4

in the rest frame, one has
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hT44i≡ hPj R d3xT44ð~xÞjPi
hPjPi ¼ −M;

hT̄44i ¼ −3=4M; hT̂44i ¼ −1=4M; ð4Þ

with

T̄44 ¼
1

4
ψ̄γð4D

↔

4Þψ −
1

16
ψ̄γðμD

↔

μÞψ þ F4αF4α −
1

4
F2

¼
X
u;d;s

�
ψ̄γ4 ~D4ψ þ 1

4
mψ̄ψ

�
þ 1

2
ðE2 − B2Þ; ð5Þ

T̂44 ¼
1

4
Tμμ

¼ 1

4

�
−ð1þ γmÞ

X
u;d;s…

mψ̄ψ þ βðgÞ
g

ðE2 þ B2Þ
�
; ð6Þ

for the zero momentum case. The Hamiltonian of QCD can
be decomposed as [1]

HQCD ≡ −
Z

d3xT44ð~xÞ ¼ Hq þHg þHa
g þHγ

m; ð7Þ

Hq ¼ −
X

u;d;s…

Z
d3xψ̄ðD4γ4Þψ ;

Hg ¼
Z

d3x
1

2
ðB2 − E2Þ;

Ha
g ¼

Z
d3x

−βðgÞ
4g

ðE2 þ B2Þ;

Hγ
m ¼

X
u;d;s…

Z
d3x

1

4
γmmψ̄ψ ð8Þ

with Hq, Hg, Ha
g , and Hγ

m denoting the total contributions
from the quarks, the glue field energy, the QCD glue trace
anomaly, and the quark mass anomaly, respectively. Note
that the sum of the first two and the sum of the last two
terms are separately scale and renormalization scheme
independent, while each term separately is not. Using
the equation of motion (EOM), Hq can be further divided
into quark energy and mass terms

Hq ¼ HE þHm; ð9Þ

with

HE ¼
X

u;d;s…

Z
d3xψ̄ð ~D · ~γÞψ ;

Hm ¼
X

u;d;s…

Z
d3xmψ̄ψ : ð10Þ

N.B.: the quark energy HE includes both kinetic and
potential energies due to the covariant derivative. Given

the above division, a hadron mass can be decomposed into
the following matrix elements:

M ¼ −hT44i ¼ hHqi þ hHgi þ hHai þ hHγ
mi

¼ hHEi þ hHmi þ hHgi þ hHai; ð11Þ
1

4
M ¼ −hT̂44i ¼

1

4
hHmi þ hHai; ð12Þ

with all the hHi defined by hPjHjPi=hPjPi and

hHai ¼ hHγ
mi þ hHa

gi ð13Þ

as the total trace anomaly. Each matrix element can be
calculated with lattice QCD. Since hadron masses can be
obtained from the two-point correlators on the lattice, we
calculate hHqi (or hHEi) and hHmi through the three-point
correlators and extract hHai and hHgi from Eqs. (11)–(12)
in this work. We will directly calculate these glue matrix
elements in the future.
The structure of the rest of the paper is organized as

follows. The numerical details of the simulation, including
the fermion action and configurations used, and the
systematic uncertainties, will be discussed in Sec. II. In
Sec. III, the results such as the condensates in the mesons,
the decomposition of the PS/V mesons, and their difference
(the splitting) are provided. A short summary and outlook
are presented in Sec. IV.

II. NUMERICAL DETAILS

In this work, we use the valence overlap fermion on 2þ1
flavor domain-wall fermion (DWF) configurations [6] to
carry out the calculation [7]. The effective quark propagator
of the massive overlap fermion is the inverse of the operator
ðDc þmÞ [8,9], where Dc is chiral, i.e. fDc; γ5g ¼ 0 [10],
and is expressed in terms of the overlap operator Dov as

Dc ¼
ρDov

1 −Dov=2
with Dov ¼ 1þ γ5ϵðγ5DwðρÞÞ; ð14Þ

where ϵ is the matrix sign function and Dw is the Wilson
Dirac operator with a negative mass characterized by the
parameter ρ ¼ 4 − 1=2κ for κc < κ < 0.25. We set κ ¼ 0.2,
which corresponds to ρ ¼ 1.5.
The lattice we use has a size 243 × 64 with lattice

spacing a−1 ¼ 1.77ð5Þ GeV set by Ref. [11]. The light
sea u=d quark mass mla ¼ 0.005 corresponds to
mπ ∼ 330 MeV. We have calculated the PS and V meson
masses and the corresponding hHmi; hHqi, and hHEi at 12
valence quark mass parameters that correspond to the
renormalized masses mR

q ≡mMS
q ð2 GeVÞ ranging from

0.016 to 1.1 GeVafter the nonperturbative renormalization
procedure in Ref. [12]. The smallest one is slightly smaller
than the sea quark mass and corresponds to a pion mass at
281 MeV, and the largest quark mass is close to that of the
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charm. In order to enhance the signal-to-noise ratio in the
calculation of three-point functions, we set two smeared
noise-grid sources at ti ¼ 0=32 [13] and four noise-grid
point sources at positions tf that are ten time slices away
from the sources on 101 configurations. To obtain a better
signal in the light quark region (< 0.1 GeV), the low-mode
substitution technique [7] is applied to the contraction in
those cases.
It would be ideal to use the conserved lattice stress tensor

and there are attempts to construct the conserved stress
tensor on the lattice perturbatively and nonperturbatively
[4] and recently by Suzuki [14,15] with Wilson flow at
finite lattice spacing. However, these approaches inevitably
involve complicated sets of operators, which are difficult to
compute in the lattice calculation. Our approach is to use
the quark stress operators with lattice derivative (the point-
split operators with gauge links [4]) for ψ̄γμD

↔

νψ,

1

2
ðψ̄ðxÞγμðUνðxÞψðxþ ν̂Þ −U†

νðx − ν̂Þψðx − ν̂ÞÞ
þ ðψ̄ðxþ ν̂ÞUνðxþ ν̂Þ − ψ̄ðxþ ν̂ÞU†

νðxÞÞγμψðxÞÞ
¼ aγμðxÞD

↔

νψðxÞ þOða3Þ; ð15Þ
to carry out lattice calculation at a finite cutoff and then to
extrapolate to the continuum limit as a next step.

The matrix elements for the operators ψ̄γ4D
↔

4ψ ; ψ̄γiD
↔

iψ
and mψ̄ψ are extracted from the plateaus of the ratios of
three-to-two point functions to obtain hHmi; hHqi, and
hHEi in the connected insertions for different quark masses.
In the present work, we only consider the equal-mass case
for the quark-antiquark pairs in the mesons.
We show in Fig. 1 the ratio of three-point functions to

corresponding two-point functions for (a) PS mesons and
(b) V mesons with light quark pairs, which corresponds to
mπ ∼ 330 MeV. We see that the plateaus for hHmi; hHqi,
hHEi from the ratio of three-to-two point functions are
clearly visible. At the same time, the plateaus of the total
mass M from the effective mass of the two-point function
with noise-smeared grid source are also long enough to
obtain precise results. We also applied a curve fit including
the contribution of excited states to extract the matrix
elements and found that the results are consistent with the
ones from the constant fit.
As observed in Fig. 1, the quark mass term hHmi

contributes about half of the light PS mass, while the
quark energy term hHEi is very small. This implies that the
other half of the light PS mass comes mainly from the glue.
For the light V mass, the combined glue components also
contribute roughly one half, while hHEi is dominant in the
other half, and hHmi is small.

A. Equation of motion and quark energy

Before presenting our results, we discuss the theoretical
underpinning of the EOM in the context of lattice

calculation of three-point functions. In the three-point
function with the operator Dc þm inserted at a time
different from the meson source and sink, part of the
correlator will involve the product of the operator and a
quark propagator that has the relation

X
z

ðDc þmÞðx;zÞ:
1

Dc þmðz;yÞ
¼ δx;y; ð16Þ

where x; y; z denote all the space-time, color, and Dirac
indices. Since the inserted operator Dc þm is at a different
time from that of the source time, x ≠ y. As a result, the
matrix element of Dc þm is zero. For the disconnected
insertion (DI), the delta function leads to a constant for the
quark loop. Since the uncorrelated part after gauge averag-
ing is to be subtracted, this also gives a null result for
Dc þm in the DI. Therefore, the matrix element with the
insertion of the Dc þm operator is zero, which is just
the equation of motion on the lattice for fermions with the
quark mass as an additive constant in the fermion propa-
gator. This does not hold straightforwardly for the Wilson
fermion where there is an additive mass renormalization
and mixing with lower dimensional operators that need to
be taken into account.
Since Dov has eigenvalues on a unit circle centered at 1

on the real axis, the eigenvalues ofDc are purely imaginary
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FIG. 1 (color online). Plateaus of quark components of (a) PS
mesons and (b) V mesons with light quark pairs that correspond
to mπ ∼ 330 MeV. Half of each of the light PS/V meson masses
comes from the glue, while the other half is dominated by the
quark mass/energy in the PS/V case respectively.
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except for the zero modes [9]. This is the same as in the
continuum. Thus, ψ̄Dcψ approaches ψ̄γμDμψ with
an Oða2Þ error and we thus have hHqi ¼ hHEi þ hHmi þ
Oða2Þ as in the continuum in Eq. (9) modulo an
Oða2Þ error.
One can estimate this Oða2Þ error by considering the

ratio of hDci to hHE −Hqi. Both matrix elements approach

the same matrix element of ψ̄γμD
↔

μψ in the continuum. This
is equivalent to considering the ratio

R ¼ hHmi þ hHEi
hHqi

; ð17Þ

which should be equal to 1þOða2Þ. We plot R as a
function of the quark mass in Fig. 2 for the PS and V
mesons. Except for the region of very light quark masses,
they are roughly the same for PS and V mesons. In the
charm quark mass region, the ratio is close to unity, while
for light quarks, the ratio for the PS can be as large as ∼1.2
and it is close to unity for the V mesons. We take 20% as a
conservative estimate for the systematic errors of hHEi and
hHqi for the light quark case due to the finite lattice
spacing.

B. Disconnected insertion

The DI contribution to the quark mass and quark
energy terms needs to be estimated stochastically, which
is usually quite a bit noisier than that of the connected
insertion (CI). It was found recently that the signal of the
DI contribution for the quark loops with scalar density
can be highly improved by the low-mode averaging in
the loop and low-mode substitution for the nucleon
propagator [13]. We use this approach and calculate
the DI of the quark mass term for the PS and V mesons
to gauge the DI contributions.

We show the Hm results for the DI in Fig. 3 for the cases
where the quark loop mass equals that of the light sea (i.e.
corresponding to mπ ¼ 330 MeV), the valence quark mass
in the meson, and the strange mass as a function of the
valence quark mass of the meson. We see in the upper panel
of Fig. 3 that in all cases, the DI contribution ofHm is of the
order of a few MeV for all the PS mesons. For the case of
the V mesons in the lower panel of Fig. 3, they are also
small with the largest contribution being ∼40 MeV due to
the strange quark contribution in the light quark case. It is
also about 40 MeV for the case where the loop and valence
has the same quark mass for mq > 0.2 GeV where the
vector meson mass is greater than 1.5 GeV. Based on these
estimates, we ignore the small and noisy DI contribution of
Hm in this study.
In view of the fact the strange momentum fraction hxis is

only 2–4% of the total nucleon momentum experimentally
[16] and the ratio of hxis to hxiu=d in the DI is 0.78(3) from
the latest lattice calculation with overlap fermion on DWF
configurations on the 243 × 64 lattice [17], we expect that
the DI contribution of the quark energy term is an order of
magnitude smaller than that of the CI. Thus, we neglect
them also in the present study.
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FIG. 2 (color online). The ratio R as defined in the text as a
function of the renormalized quark mass mR

q in the MS scheme at
2 GeV, to estimate the Oða2Þ error due to the breaking of the
EOM. The systematic uncertainty vanishes when R ¼ 1. The
values of R are close to unity except for the very light quark mass
region in the PS meson case.
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FIG. 3 (color online). The contributions of the quark mass term
in the PS/V meson from kinds of DI diagrams. The red-square,
blue-circle, and pink triangle points are the contributions from the
quark loop with mass equal to light sea quark mass, valence quark
mass, and strange sea quark mass correspondingly. It is easy to
confirm that the DI contribution to the quark mass term in the PS
meson case is just a few MeV for all cases, while that in the V
meson case is larger but no more than ∼40 MeV for all the cases.
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C. The scale and renormalization scheme dependence
of the decomposition

In the decomposition equation

M ¼ hHai þ hHmi þ hHgi þ hHEi; ð18Þ
each of the first two terms and the sum of the last two terms
are separately scale and renormalization scheme indepen-
dent, while each of the last two terms is not.
Another way to decompose the first two terms is to

absorb the quark mass anomaly term hHγ
mi into the quark

mass term hH̄mi ¼ ð1þ 1
4
γmÞhHmi, leaving the QCD glue

trace anomaly hHa
gi alone. Using Eqs. (46)–(49) of

Ref. [18], we would get the four-loop result of γm in the
MS scheme at 2 GeV to be

γMS
m ð2 GeVÞ ¼ 0.26ð1Þ; ð19Þ

with the uncertainty estimated by its fourth order contri-
bution. The higher order corrections of βðgÞ could also be
found in Ref. [18], but this would be beyond the demand of
this work since we do not calculate the glue contribution
directly. Such a decomposition is not favored, however, as
both the total quark mass term and the QCD glue anomaly
term depend on both renormalization scheme and scale. It is
worthwhile to note that, in the light quark case, the anomaly
quark mass term is suppressed by both the quark mass and
the factor γm=4 so that the two kinds of decompositions are
not significantly different numerically.
For the quark/glue energy, the present calculation of

the quark energy is its lattice value at the scale around the
inverse of the lattice spacing a−1 ¼ 1.77 GeV. Since the
combined energy is scale and renormalization scheme
independent, the glue energy is also at the same scale.
In principle, to obtain the result at 2 GeV in the MS scheme,
we could calculate the renormalization of the quark energy
in RI/MOM schemewith simulation and then convert it into
MS scheme perturbatively, or use lattice perturbation
theory to calculate the renormalization of the quark energy
in MS with finite lattice spacing. Also, the mixing effect
between the quark/glue components should be taken into
account [3,19].

III. RESULTS

A. The scalar matrix element in the PS/V meson

The CI parts of the matrix element SM ≡
hMj R d3xψ̄ψ jMi=hMjMi for PS and V are plotted in
Fig. 4. Even though they are almost identical in the heavy
quark region as expected, SPS;CI increases with decreasing
mR

q , while SV;CI remains largely constant and is close to
unity throughout the quark mass range below the charm
quark mass. From the Feynman-Hellman theorem,

SM;CI ¼
∂M
∂mv

; ð20Þ

one can easily deduce the 1=
ffiffiffiffiffiffiffi
mR

q

q
behavior of PS

mesons with the Gell-Mann-Oakes-Renner relation m2
PS ¼

−2mqhq̄qi=f2π . We see later that Eq. (20) is also useful to
understand the quark mass dependence of the V meson.

B. Pseudoscalar meson

Our lattice results of the difference between M and the
quark mass term hHmi, i.e.M − hHmi, the quark kinetic and
potential energy term hHEi, the glue field energy hHgi, and
the anomaly hHai for the PS meson as a function of the
renormalized valence quark mass are presented in Fig. 5. It is
interesting to observe that all these contributions are positive,
which suggests that they all approach zero at the chiral limit
when the pion mass approaches zero. We also note that the
contributions from the glue energy and trace anomaly are
stable in the region of mR

q from 0.2 to 0.8 GeV and then the
former one decreases for the heavier quark mass case.
We also plot the ratios of the quark and glue components

with respect to M in Fig. 6. For the light PS mesons, the
quark mass term is about 50% of the total mass. This can be
derived from the Gell-Mann-Oakes-Renner relation
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FIG. 4 (color online). Matrix elements SM;CI for the PS and V
mesons. SPS;CI (red square) increases with decreasing mR

q while
SV;CI (blue circle) remains constant and is close to unity
throughout the quark mass range below the charm quark mass.
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FIG. 5 (color online). Different component contributions to the
PS mass as functions of the renormalized valence quark mass.
The contributions from the glue energy and trace anomaly are
stable in the region from 0.2 to 0.8 GeV, while the former one
decreases for heavier quark masses.
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mπ ∝
ffiffiffiffiffiffi
mq

p
and the Feynman-Hellman relation Eq. (20).

This implies from Eq. (12) that the anomaly term hHai
contributes ∼12% of the mass. The remaining contributions
from hHgi and hHEi are ∼30% and ∼8% respectively. They
are consistent with an estimate based on the quark
momentum fraction in the pion and the Gell-Mann-
Oakes-Renner relation [2]. Since our present results are
from the partially quenched calculation, it will be interest-
ing to check them again in the future for configurations
with physical light sea quark masses.

C. Vector meson

The same components in the V mesons and their ratios to
the total mass are plotted in Figs. 7–8. Close to the chiral
limit, hHEi constitutes ∼40% of the ρ meson mass, while
the sum of the glue energy and anomaly terms contributes
about 60% and hHmi vanishes like OðmR

q Þ.
For the heavier V mesons, the behavior

MVðmR
q Þ ∼ 2mR

qC0 þ const: ð21Þ
with C0 being a constant is observed in Fig. 9.

We note that the components hHEi, hHgi, and hHai
are insensitive to the current quark mass through the
quark mass region less than ∼500 MeV. In this region,
the glue energy and trace anomaly contribution to the V
meson mass, i.e. hHai þ hHgi, is about 500 MeV and
the quark energy hHEi contributes about 350 MeV. It is
tantalizing to consider the possibility that the constant
glue contribution and quark energy could be the origin
of the constituent quark mass in the quark model
picture.

D. Hyperfine splitting

As seen in Figs. 5 and 7, when the valence quark
mass increases, the quark energy contribution also
increases while both the glue energy and trace anomaly
decrease. To study the consequence of this behavior, we
examine the hyperfine splitting of charmonium and we
plot in Fig. 10 the difference of the quark and glue
components between the V and PS mesons as a function
of the quark mass. For charmonium with mR

q at 1 GeV,
ΔhHmi is consistent with zero. Therefore, as in Fig. 11,
ΔhHai gives 1=4 of the hyperfine splitting from the
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FIG. 6 (color online). Ratios of the different component
contributions to the PS mass as functions of the renormalized
valence quark mass. All these ratios are positive, which suggests
that all the components approach zero at the chiral limit.
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FIG. 7 (color online). Same as in Fig. 5 for the vector meson.
The contributions from all the components except the quark mass
term (which will be discussed in Fig. 8) are stable when the
valence quark mass is smaller then ∼500 MeV.
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trace anomaly equation Eq. (12). On the other hand,
ΔhHgi turns negative in the charm mass region and
largely cancels out the positive ΔhHai. As a result, the
major part of the hyperfine splitting is due to the quark
energy difference ΔhHEi. This seems to be consistent
with the potential model picture where the charmonium
hyperfine splitting is attributable to the spin-spin

interaction of the one glue-exchange potential. Higher
precision calculation is needed to confirm this.

IV. SUMMARY

In summary, we have directly calculated the quark
components of the pseudoscalar and vector meson masses
with lattice QCD. The glue field energy and the anomaly
components are extracted from the mass relations from the
Hamilton and the trace anomaly. We have estimated the
systematic errors due to the neglect of the disconnected
insertions and the use of the equation of motion. From our
exploratory study, we confirmed that there are significant
contributions from the glue components in light mesons.
Throughout the valence quark mass range below the charm,
the quark mass dependence of the V meson mass comes
almost entirely from hHmi, which is linear in the valence
quark mass; whereas, hHEi, hHai, and hHgi are almost
constant. We also find that the hyperfine splitting between
J=Ψ and ηc is dominated by the quark energy term.
In the decomposition equation Eq. (18), each of the first

two terms and the sum of the last two terms are separately
scale and renormalization scheme independent, while each
of the last two terms is not. For reference, the scale
independent combination of the quark and glue energy
contributions to the PS/V meson mass is plotted in Fig. 12.
We can see that the combined energy in the V meson is
almost a constant (∼650 MeV), and the one in the PS
meson becomes close to that value only in the charm quark
region.
For future studies, we will perform calculations with the

physical sea quark masses and calculate the glue field
energy and trace anomaly contributions directly.
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