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Isospin breaking effects in baryon octet (and decuplet) masses are due to a combination of up and down
quark mass differences and electromagnetic effects and lead to small mass splittings. Between the Sigma
and Lambda this mass splitting is much larger, this being mostly due to their different wave functions.
However when isospin is broken, there is a mixing between these states. We describe the formalism
necessary to determine the QCDmixing matrix and hence find the mixing angle and mass splitting between
the Sigma and Lambda particles due to QCD effects.
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I. INTRODUCTION

Mass breaking effects in hadron octets (and decuplets) are
mainly due to a combination of quark mass differences and
electromagnetic effects, but can also sometimes have an
additional component due to mixing between the hadron
states. In this articlewe consider the baryon octet as shown in
Fig. 1where the spin 1

2
baryons are plotted in the I3 − Y plane.

The particles on the (outer) ring, namely thenðdduÞ,pðuudÞ,
Σ−ðddsÞ, ΣþðuusÞ and Ξ−ðssdÞ, Ξ0ðssuÞ all consist of
combinations of aab quarks (where we use the notation of
denoting a quark, q, by a; b;…which can be the up u, down
d or strange s quark).a here are the flavor doubly represented
quarks, while b is the flavor singly represented quark. For
u − d quark mass differences these isospin breaking effects
are small. Examples for the lowest baryonoctet are then − p,
Σ− − Σþ and Ξ− − Ξ0 mass differences. In [1] we inves-
tigated the hadronic QCD contribution to these isospin
breaking splittings using lattice techniques. In this article
we extend these results to the Σ0 − Λ0 baryon octet masses.
The method developed here for the Σ0 − Λ0 mass splitting
will automatically encompass the other splittings.
The Σ0 and Λ0 masses1 are accurately known; from the

Particle Data Group [2] we have

Mexp
Σ0 ¼ 1.192642ð24Þ GeV; Mexp

Λ0 ¼ 1.115683ð6Þ GeV;
ð1Þ

giving a mass splitting of

ðMΣ0 −MΛ0Þexp ¼ 76.959ð23Þ MeV: ð2Þ

This is very much larger than the other mass splittings
mentioned above, which are all of the order of a few MeV.
It is also more complicated than other mass splittings as
while both baryons have the same quark content, namely
u; d; s, most of the mass difference is due to their different
wave functions. However there will also be additional
mixing between these states. This will be apparent when we
later consider Σðll0sÞ and Λðll0sÞ where l and l0 are distinct
quarks, but mass degenerate, which already has this large
mass splitting.
Understanding how this mixing works will be useful for

understanding other mixing cases, such as η − η0 or ω − ϕ
meson mixing, for which lattice simulations are consid-
erably more difficult as there are computationally intensive
disconnected terms in the correlation function to consider,
[3–6]. In these latter cases a state at the center of the octet
(the pure “η8” octet state) mixes with a further singlet state,
“η1.” The case here of Σ0 − Λ0 mixing is a little different as
the particles have the same quantum numbers but now lie in
the same octet (as shown in Fig. 1). In Fig. 2 we sketch the
expected situation for the Lambda and Sigma hadrons,

1We use Σ to stand for the unmixed Sigma particle (pure
isospin 1) and Σ0 to denote the physical Sigma particle, with
mixed isospin. Similarly Λ denotes the pure isospin 0 state, and
Λ0 the physical Lambda particle.
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plotting M2
B against mu þmd − 2ms. The lines represent

lines of constant mu −md, with the (red) dashed lines for
mu −md ¼ 0, while the (blue) lines are for mu −md ≠ 0.
The central point is the quark mass symmetric point, when
all quark masses are the same, when there is no difference
between the Lambda and Sigma masses. In the isospin
limit, when mu ¼ md ≠ ms we sit at the points denoted by
an open (red) circle. The mass splitting between the Sigma
and Lambda particles is given by the vertical difference
between these points.
However if mu ≠ md then we have mixing between the

Lambda and Sigma particles, as also depicted in the figure
by (blue) lines. The physical Σ0 and Λ0 masses are now
given by the (blue) filled circles. We see that there is then an
additional mass splitting.

As can also be seen from the figure, depending on the
numerical values of the quark masses, the physical Σ0 and
Λ0 masses can have a larger or smaller component of the
original Σ and Λ particles. To avoid confusion we shall call
in future the lower branch the light or L branch with
associated mass ML, while the upper is the heavy or H
branch with mass MH. For example in the isospin limit
mu ¼ md ≡ml we have

MH ¼
�
MΣ ml < ms

MΛ ml > ms
; ML ¼

�
MΛ ml < ms

MΣ ml > ms
:

ð3Þ

At the physical point, denoted by a *, we set

MΣ0 ¼ M�
H; MΛ0 ¼ M�

L: ð4Þ

In the following we denote the pure octet, i.e. unmixed Σ
and Λ mass states, by the Hermitian matrix

�
M2

ΣΣ M2
ΣΛ

M2
ΛΣ M2

ΛΛ

�
; ð5Þ

while the mixed mass states will be denoted by M2
H, M

2
L.

We determine the mixing angle, θΣΛ, which rotates Eq. (5)
with rotation matrix

R ¼
�

cos θΣΛ eiϕΣΛ sin θΣΛ
−e−iϕΣΛ sin θΣΛ cos θΣΛ

�
; ð6Þ

to the diagonal form

�
M2

H 0

0 M2
L

�
; ð7Þ

where ϕΣΛ is the phase. Note that for the general symmetry
arguments used here it does not matter whether they are
applied to the hadron mass matrix, or some function of the
mass matrix. We have chosen the quadratic form (see
Sec. II A).
Although we discuss mixing between the Λ and Σ

particles induced by quark mass differences, we neglect
electromagnetic effects, which will also contribute mixing
of roughly the same order of magnitude as isospin breaking
effects. Thus we consider pure QCD effects only. The
method also applies to mixing of JP ¼ 1

2
þ baryons in

the singly charmed sector. For csu (or csd) baryons the
hadronic mixing will be far larger than electromagnetic
effects.
Previous determinations of Σ − Λ mixing include using

the quark model, e.g. [7], chiral perturbation theory, e.g. [8]
and “sum rule” methods, e.g. [9,10].

FIG. 2 (color online). A sketch of the heavy, H, and light, L,
baryon ðmassesÞ2 against mu þmd − 2ms for fixed mu −md.
The mass splitting between the Sigma and Lambda masses in the
isospin limit (mu ¼ md) is given by the difference between the
(red) circles; if mu ≠ md then there is an additional mass
difference due to mixing, the filled (blue) circles. Further
explanation of the figure is given in the text.
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FIG. 1 (color online). The lowest octet for the spin 1
2
baryons

plotted in the I3 − Y plane.

R. HORSLEY et al. PHYSICAL REVIEW D 91, 074512 (2015)

074512-2



The plan of this article is as follows. In the next section,
Sec. II, we first discuss in more detail the calculational
strategy that we employ here. In particular as summarized
in Sec. II C, and discussed further in Appendixes A–B we
make a SUð3Þ flavor expansion about a point with
degenerate mass u, d and s quarks. Section III then gives
the Σ − Λ mass mixing expansion up to next-to-leading
order (NLO) (i.e. quadratic in the quark masses). We have
actually computed the expansion to next-to-next-to-leading
order (NNLO), but as we only use these to help to estimate
systematic errors, the complete expansions are relegated to
Appendix C. We also show numerical simulations with two
mass degenerate sea quark masses as sufficient to deter-
mine the expansion coefficients also for the nondegenerate
quark mass case. In Sec. IV we modify the expansion, to
consider ratios, rather than lattice or scale dependent
quantities. Some comments on matrix elements are given
in Sec. V. Our numerical simulations are then detailed in
Sec. VI and correlation functions and determination of the
expansion coefficients are given in Secs. VI A–VI B,
together with results for mass degenerate quarks. Finally
our results and discussion are given in Sec. VII.

II. THE SUð3Þ FLAVOR EXPANSION

A. Mass matrix symmetries

When all three quarks have the same mass, an SUð3Þ
transformation U on the quark fields is a symmetry of the
action; it leaves the quark mass matrix,M, unchanged. We,
however, are more interested in what happens in the case of
unequal quark masses

M ¼

0
B@

mu 0 0

0 md 0

0 0 ms

1
CA; ð8Þ

when we make an SUð3Þ transformation

M0 ¼ UMU†: ð9Þ

Although this changes the quark matrix, it does not really
change the physical situation. The eigenvalues of M0 are
the same as those of M, only the eigenvectors have been
changed. Likewise, the mass spectrum of composite par-
ticles such as the mesons and baryons will not change; only
the eigenvectors change.
This is easiest to see if the transformation U is simply a

permutation. For example, if we interchange md and ms we
still get the same set of baryon masses (see Fig. 1); all that
changes is the names we give them. In this case, Mn and
MΞ0 would be interchanged, as would Mp and MΞþ and so
on. A rotation of the quark mass matrix simply leads to a
corresponding rotation of the baryon mass matrix, M,

MðUMU†Þ ¼ UMðMÞU†: ð10Þ

The U matrices in Eq. (9) belong to a 3 × 3 matrix
representation of SUð3Þ, while the U matrices in
Eq. (10) belong to an 8 × 8 representation of the
same group.
We can see from Eq. (10) that the mass matrix and the

ðmassmatrixÞ2 both transform in the same way,

M2 → ðUMU†ÞðUMU†Þ ¼ UM2U† ð11Þ

(where, as always,M2 is shorthand forMM). Therefore, as
far as symmetry arguments go, it makes no difference
whether we discuss the hadron mass matrix, or the mass-
squared matrix. Note also that we can see from Eq. (11) that
the eigenvectors of M and of M2 are the same.
We consider in future the SUð3Þ flavor breaking expan-

sion of M2 rather than M, [8]. Thus we set

M2 ¼

0
BBBBBBBBBBBBBBB@

M2
n 0 0 0 0 0 0 0

0 M2
p 0 0 0 0 0 0

0 0 M2
Σ− 0 0 0 0 0

0 0 0 M2
ΣΣ M2

ΣΛ 0 0 0

0 0 0 M2
ΛΣ M2

ΛΛ 0 0 0

0 0 0 0 0 M2
Σþ 0 0

0 0 0 0 0 0 M2
Ξ− 0

0 0 0 0 0 0 0 M2
Ξ0

1
CCCCCCCCCCCCCCCA

:

ð12Þ

The reason is that as in [1] we have found again that better
numerical fits in the quark mass range considered are
obtained using the hadron mass matrix squared.
In Appendix A an explicit example for the transforma-

tion u ↔ d is given.

B. The Σ − Λ mass matrix

1. Derivation

The SUð3Þ flavor expansion classifies mass polynomials
according to the S3 permutation group and the SUð3Þ flavor
group. S3 is the symmetry group of an equilateral triangle,
C3v. This group has three irreducible representations, [11],
two different singlets, A1 and A2 and a doublet E, with
elements Eþ and E−. Some details of this group and its
representations are given in Appendix A of [12].
In [12] we classified the ten matrices (Ni, i ¼ 1;…; 10)

which can contribute to the octet baryon mass matrix
Eq. (12) according to their permutation, S3 and SUð3Þ
symmetry; see Table I. The compact notation of Table I
gives just the diagonal elements (the rows/columns being
denoted by n; p;…). From Table I we see that seven of the

LATTICE DETERMINATION OF SIGMA-LAMBDA MIXING PHYSICAL REVIEW D 91, 074512 (2015)

074512-3



matrices are diagonal; they can be read off directly from the
table. For example the first row gives the 8 × 8 matrix:
diagð1; 1; 1; 1; 1; 1; 1; 1Þ. The table also contains three
matrices which mix the Σ and Λ, the fifth, eighth rows
which mix at the quadratic quark mass level and the tenth
row which mixes with the cubic terms. All the matrices are
explicitly listed in Appendix B. Thus we write

M2 ¼
X10
i¼1

KiNi; ð13Þ

where Ki are some functions of the quark masses (to be
determined).
We now need the three nondiagonal matrices in full.

From Appendix B they are N5, N8 and N10. We thus have

E− 8b

0
BBBBBBBBBBBBBBB@

−1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 2ffiffi
3

p 0 0 0

0 0 0 2ffiffi
3

p 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 −1

1
CCCCCCCCCCCCCCCA

ð14Þ

E− 27

0
BBBBBBBBBBBBBBB@

−1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 −
ffiffiffi
3

p
0 0 0

0 0 0 −
ffiffiffi
3

p
0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 −1

1
CCCCCCCCCCCCCCCA

ð15Þ

A2 10; 10

0
BBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 −i 0 0 0

0 0 0 i 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCCCA

: ð16Þ

We are now ready to write down the general form of the
Σ − Λ mass matrix. From Table I we see that the A1 terms
always make equal contributions to the Σ and Λ; and the Eþ
terms always make opposite contributions to the Σ and Λ.
From Eqs. (14)–(15) we see that E− terms contribute a real
symmetric mixing term, and from Eq. (16) that A2 terms
contribute an imaginary, antisymmetric mixing. The
allowed form of the Σ − Λ mass matrix Eq. (5) is therefore

�
M2

ΣΣ M2
ΣΛ

M2
ΛΣ M2

ΛΛ

�
¼ PA1

�
1 0

0 1

�
þ PEþ

�
1 0

0 −1

�

þ PE−

�
0 1

1 0

�
þ PA2

�
0 −i
i 0

�
;

ð17Þ

where PG means a function of the quark masses with the
symmetry G under the S3 permutation group.
We can also give a permutation argument for Eq. (17).

The Σ and Λ form an E representation of the permutation
group, with the pure Σ even under u ↔ d and the Λ odd. If
mu ≠ md there will be mixing between these states.
Because the Σ and Λ have opposite behaviors under
u ↔ d exchange, the mass matrix for the Σ − Λ system
must have the behavior

�
even odd

odd even

�
; ð18Þ

under the operation u ↔ d. The possible symmetries of the
terms in the mass matrix are given by

E ⊗ E ¼ A1⊕E⊕A2: ð19Þ

The A1 and the Eþ member of the E doublet are even under
u ↔ d, so they must be responsible for the diagonal part of
the mass matrix. The mixing terms in the mass matrix are
odd, so they must come from E− and A2 expressions.
From the above discussion we note that the formalism

includes the no-mixing case when mu ¼ md; we simply set

TABLE I. Mass matrix contributions for octet baryons, clas-
sified by permutation and SUð3Þ symmetry. (See Table V in [12].)

n p Σ− Σ Λ Σþ Ξ− Ξ0 S3 SUð3Þ
1 1 1 1 1 1 1 1 A1 1

−1 −1 0 0 0 0 1 1 Eþ 8a
−1 1 −2 0 0 2 −1 1 E− 8a
1 1 −2 −2 2 −2 1 1 Eþ 8b

−1 1 0 mix 0 1 −1 E− 8b
1 1 1 −3 −3 1 1 1 A1 27
1 1 −2 3 −3 −2 1 1 Eþ 27

−1 1 0 mix 0 1 −1 E− 27
1 −1 −1 0 0 1 1 −1 A2 10,10
0 0 0 mix 0 0 0 A2 10,10

R. HORSLEY et al. PHYSICAL REVIEW D 91, 074512 (2015)

074512-4



PE− ¼ 0; PA2
¼ 0; ð20Þ

and the upper component of Eq. (17), now in a diagonal
form, gives the degenerate mass of the Sigma baryons: Σ≡
ðΣ−;Σ0;ΣþÞ [which upon interchanging the quarks also
gives the other baryon masses on the outer ring N ≡ ðn; pÞ,
Ξ≡ ðΞ−;Ξ0Þ], while the lower component gives Λ.

2. Diagonalization

We now diagonalize the 2 × 2 ðmassmatrixÞ2 of Eq. (17)
giving eigenvalues

M2
H ¼ PA1

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
Eþ þ P2

E− þ P2
A2

q

M2
L ¼ PA1

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
Eþ þ P2

E− þ P2
A2

q
; ð21Þ

while if the eigenvectors are written as

eH ¼
�

cos θΣΛ
e−iϕΣΛ sin θΣΛ

�
; eL ¼

�
−eiϕΣΛ sin θΣΛ

cos θΣΛ

�
;

ð22Þ

[cf Eq. (6)] we have

tan 2θΣΛ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
E− þ P2

A2

q
PEþ

; tanϕΣΛ ¼ PA2

PE−
; ð23Þ

for the mixing angle, θΣΛ, and phase, ϕΣΛ. Note that
Eq. (21) trivially gives the H and L masses and also the
mass difference MH −ML.
Alternatively the PG coefficients have some nice links to

the H and L masses. PA1
gives the average ðmassÞ2

1

2
ðM2

H þM2
LÞ ¼ PA1

; ð24Þ

while the other three coefficients contribute symmetrically
to the splitting of the two states

1

2
ðM2

H −M2
LÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
Eþ þ P2

E− þ P2
A2

q
: ð25Þ

C. The SUð3Þ flavor expansion

Our strategy, as discussed in detail in [12] is to start from
a point in the quark mass plane with all three sea quark
masses equal,

mu ¼ md ¼ ms ≡m0; ð26Þ

and extrapolate towards the physical point, denoted by a
star, *, keeping the average sea quark mass

m̄ ¼ 1

3
ðmu þmd þmsÞ ð27Þ

constant at the value m0. As we approach the physical
point, the u and d quarks become lighter, but the s quark
becomes heavier. Pions are decreasing in mass, but K and η
increase in mass as we approach the physical point.
Keeping m̄ constant greatly reduces the number of mass
polynomials which can occur in Taylor expansions of
physical quantities within an SUð3Þ multiplet. As we are
expanding about the symmetric point, it is useful to
introduce the notation

δmq ≡mq − m̄; q ¼ u; d; s: ð28Þ

Note that it follows from the definition that

δmu þ δmd þ δms ¼ 0; ð29Þ

so we could eliminate one of the δmqs. However we often
keep all three terms as we can then write some expressions
in a more obviously symmetrical form.
We can also generalize the SUð3Þ flavor expansion to the

case when the mass of the valence quarks can be different to
the mass of the sea quarks, i.e. we leave the “unitary line.”
We call this the partially quenched (PQ) case. To do this we
introduce

δμq ¼ μq − m̄; q ¼ u; d; s; ð30Þ

where μq is the valence quark mass. In distinction to the sea
quarks there is no restriction of the form Eq. (29) on the
values of the valence quark masses. We give our results in
this slightly more general case and then specialize to the
unitary case δμq → δmq and then to the physical point
δmq → δm�

q. This generalization will prove to be useful for
the numerical determination of the SUð3Þ expansion
coefficients.

TABLE II. All the quark mass polynomials needed for partially
quenched masses, classified by symmetry properties. The table
includes entries up to Oðδμ2qÞ (Table XIV of [12]).

Polynomial S3 SUð3Þ
1 A1 1
δμu þ δμd þ δμs A1 1
2δμs − δμu − δμd Eþ 8
δμu − δμd E− 8
ðδμu þ δμd þ δμsÞ2 A1 1
ðδμu þ δμd þ δμsÞð2δμs − δμu − δμdÞ Eþ 8
ðδμu þ δμd þ δμsÞðδμu − δμdÞ E− 8
ðδμs − δμuÞ2 þ ðδμs − δμdÞ2 þ ðδμu − δμdÞ2 A1 1 27
ðδμs − δμuÞ2 þ ðδμs − δμdÞ2 − 2ðδμu − δμdÞ2 Eþ 8 27
ðδμs − δμuÞ2 − ðδμs − δμdÞ2 E− 8 27
δm2

u þ δm2
d þ δm2

s A1 1 27
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In the following we give SUð3Þ flavor symmetry break-
ing expansions up to cubic terms in the quark’s mass, i.e. to
Oðδμ3qÞ (in both the sea and valence quarks). We call this
the NNLO. However practically we see that the cubic terms
contribute a small amount, so we regard this order as
mainly being a “control” on the NLO results (for which
analytic results are also given). In Table II we give the
results to NLO.

III. THE Σ − Λ MIXING MASS FORMULA

A. Expansion of the PG coefficients

We now return to the evaluation of the Σ − Λ mass
matrix as discussed in Sec. II B and demand that under all
SUð3Þ transformations

M→M0 ¼UMU† ⇔ M2ðM0Þ¼UM2ðMÞU†: ð31Þ

Physically there is no change, just a relabeling of the states.
For example md ↔ ms is equivalent to relabeling
Mn ↔ MΞ0 ;…
The most general form of the partially quenched octet

baryon mass matrix, for 1þ 1þ 1 valence and sea quarks,
up to order δμ3q, in the case where m̄ is held constant can
now be determined. In Appendix B we illustrate explicitly
the computation to leading order (LO) of the SUð3Þ flavor
expansion and Σ − Λ mixing. We find that the coefficients2

in the Σ − Λ mixing matrix, Eq. (17) are

PA1
¼ M2

0 þ 3A1δμ̄þ
1

6
B0ðδm2

u þ δm2
d þ δm2

sÞ þ B1ðδμ2u þ δμ2d þ δμ2sÞ

þ 1

4
ðB3 þ B4Þ½ðδμs − δμuÞ2 þ ðδμs − δμdÞ2 þ ðδμu − δμdÞ2� þ C0δmuδmdδms þ 3C1δμ̄ðδm2

u þ δm2
d þ δm2

sÞ

− 4ðC5 þ C7Þδμuδμdδμs þ
1

2
Q1ðδμs þ δμuÞðδμs þ δμdÞðδμu þ δμdÞ þ

27

4
Q2ðδμs − δμ̄Þðδμu − δμ̄Þðδμd − δμ̄Þ;

PEþ ¼ 3

2
A2ðδμs − δμ̄Þ þ 1

2
B2ð2δμ2s − δμ2u − δμ2dÞ þ

1

4
ðB3 − B4Þ½ðδμs − δμuÞ2 þ ðδμs − δμdÞ2 − 2ðδμu − δμdÞ2�

þ 3

2
C2ðδμs − δμ̄Þðδm2

u þ δm2
d þ δm2

sÞ þ 6ðC3 − C4Þðδμs − δμ̄Þδμ̄2

þ 1

6
Q3½ðδμs − δμuÞ2 þ ðδμs − δμdÞ2 − 2ðδμu − δμdÞ2�δμ̄þ

1

8
Q4ðδμs − δμ̄Þðδμ2u þ δμ2d þ δμ2s − 3δμ̄2Þ;

PE− ¼
ffiffiffi
3

p

2
A2ðδμd − δμuÞ þ

ffiffiffi
3

p

2
B2ðδμ2d − δμ2uÞ þ

ffiffiffi
3

p

4
ðB3 − B4Þ½ðδμs − δμdÞ2 − ðδμs − δμuÞ2�

þ
ffiffiffi
3

p

2
C2ðδμd − δμuÞðδm2

u þ δm2
d þ δm2

sÞ þ 2
ffiffiffi
3

p
ðC3 − C4Þðδμd − δμuÞδμ̄2

þ 1

8
ffiffiffi
3

p Q4ðδμd − δμuÞðδμ2u þ δμ2d þ δμ2s − 3δμ̄2Þ −
ffiffiffi
3

p

2
Q3ðδμd − δμuÞðδμs − δμ̄Þδμ̄;

PA2
¼ C9ðδμs − δμuÞðδμs − δμdÞðδμu − δμdÞ; ð32Þ

where

Q1 ≡ 2C3 þ C5 þ C7

Q2 ≡ C5 − C6 þ C7 þ C8

Q3 ≡ 4ðC3 − C4Þ þ 3ðC5 − C7Þ
Q4 ≡ 2ðC3 − C4Þ þ 3ðC5 − C7Þ − 9ðC6 þ C8Þ; ð33Þ

and

δμ̄≡ 1

3
ðδμu þ δμd þ δμsÞ: ð34Þ

We can check that all the polynomials that occur here are
polynomials of the appropriate symmetry from Table II (i.e.

Table XIV of [12]), or linear combinations of those
polynomials. For example for Eþ we have written

1

2
ð2δμ2s − δμ2u − δμ2dÞ

¼ 1

3
ðδμu þ δμd þ δμsÞð2δμs − δμu − δμdÞ

þ 1

6
ððδμs − δμuÞ2 þ ðδμs − δμdÞ2 − 2ðδμu − δμdÞ2Þ:

ð35Þ

2Note that A1 and A2 are used both for the S3 representation
and the expansion coefficient. Hopefully this will cause no
confusion in the following.
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PEþ and PE− form a doublet, i.e. they are related by S3 symmetry, and involve the same parameters.
Using these expansions Eqs. (21) and (23) now give the H and L masses, together with the mixing angle θΣΛ and phase

ϕΣΛ. Note that in the unitary limit δμq → δmq these expressions simplify greatly,

PA1
¼M2

0þ
1

12
ð2B0þ12B1þ9B3þ9B4Þðδm2

uþδm2
dþδm2

sÞþ
1

4
ð4C0−16C5−16C7−16Q1þ27Q2Þδmuδmdδms

PEþ ¼3

2
A2δmsþ

1

8
ð2B2þ3B3−3B4Þ½3δm2

s−ðδmu−δmdÞ2�þ
1

8
ð12C2þQ4Þδmsðδm2

uþδm2
dþδm2

sÞ

PE− ¼
ffiffiffi
3

p

2
A2ðδmd−δmuÞþ

ffiffiffi
3

p

4
ð2B2þ3B3−3B4Þδmsðδmu−δmdÞþ

1

8
ffiffiffi
3

p ð12C2þQ4Þðδmu−δmdÞðδm2
uþδm2

dþδm2
sÞ

PA2
¼C9ðδms−δmuÞðδms−δmdÞðδmu−δmdÞ: ð36Þ

B. Mass formulas, octet hadrons, 2þ 1 case

Let us now consider the equal mass valence up and down quark limit, i.e.

δμu ¼ δμd ≡ δμl; ð37Þ
then PE− ¼ 0 ¼ PA2

(and PA1
, PEþ simplify) which means that θΣΛ ¼ 0, i.e. there is no Σ − Λ mixing; Eq. (17) is already

diagonal and so

M2
Σ ¼ PA1

þ PEþ ; M2
Λ ¼ PA1

− PEþ ; ð38Þ
with3 A2 > 0.
However as there is now no mixing the mass formula must also automatically describe the Σþ, Σ− and hence all the outer

baryons with flavor structure aab, Eq. (12). Replacing δμl by δμa and δμs by δμb we find

M2
ΣðaabÞ≡M2

Σðaa0bÞ

¼ M2
0 þ A1ð2δμa þ δμbÞ þ A2ðδμb − δμaÞ þ

1

6
B0ðδm2

u þ δm2
d þ δm2

sÞ
þ B1ð2δμ2a þ δμ2bÞ þ B2ðδμ2b − δμ2aÞ þ B3ðδμb − δμaÞ2 þ C0δmuδmdδms

þ ½C1ð2δμa þ δμbÞ þ C2ðδμb − δμaÞ�ðδm2
u þ δm2

d þ δm2
sÞ

þ C3ðδμa þ δμbÞ3 þ C4ðδμa þ δμbÞ2ðδμa − δμbÞ
þ C5ðδμa þ δμbÞðδμa − δμbÞ2 þ C6ðδμa − δμbÞ3: ð39Þ

The notation used here is meant to indicate that a, a0 (and
a00) are distinct quarks (in the baryon wave function), but
are mass degenerate, i.e. μa ¼ μa0 (¼ μa00).

4 This agrees
with our previous results in [1] and [12] [and justifies the
notation for the expansion coefficients of Eq. (32)].
The valence flavor structure of Eq. (39) then describes

the broken isospin case of p≡ ΣðuudÞ, n≡ ΣðdduÞ,
Σþ ≡ ΣðuusÞ, Σ− ≡ ΣðddsÞ, and Ξ0 ¼ ΣðssuÞ, Ξ− ¼
ΣðssdÞ as well as the isospin degenerate Σ0 ≡ Σðll0sÞ.
Furthermore now that we have cubic terms present, the
Coleman-Glashow mass relation [13] is violated,

M2
n −M2

p −M2
Σ− þM2

Σþ þM2
Ξ− −M2

Ξ0

¼ 2ðC4 − 3C6Þðδμs − δμuÞðδμs − δμdÞðδμd − δμuÞ
ð40Þ

(compare with Eq. (38) in [12]).
At the cubic level we have four new coefficients C3, C4,

C5, C6 involving the valence quarks alone, and three new
coefficients C0, C1, C2 which involve the sea quark masses,
and which drop out for calculations on the symmetric
background, δmq ¼ 0. Equation (39) assumes that m̄, the

4It should be clear from the context whether we are referring to
the Sigma particle or collectively to a particle on the outer ring of
the octet. A similar comment holds for the Lambda.

3From Eq. (32) we have PEþ ¼ 3
2
A2ðδμs − δμ̄Þ þ � � � ¼

A2ðδμs − δμlÞ þ � � �. From Eq. (3) (and Fig. 2), generalizing to
PQ quarks, Eq. (30), we see that with A2 > 0 if δμl < δμs then
MH describes MΣ while if δμl > δμs then ML describes MΣ.
Hence M2

Σ is always given by PA1
þ PEþ. Similarly M2

Λ is given
by PA1

− PEþ.

LATTICE DETERMINATION OF SIGMA-LAMBDA MIXING PHYSICAL REVIEW D 91, 074512 (2015)

074512-7



average sea quark mass, is held constant. A large number of
additional terms appear if that constraint is relaxed. If we
work on single background all the sea quark terms can be
absorbed into the valence parameters; the B0 and C0 terms
can be absorbed into M2

0; C1 and C2 can be absorbed into
A1 and A2 respectively.
Useful for numerical simulations is to take mass degen-

erate u and d sea quarks, so we have 2þ 1 flavors rather
than 1þ 1þ 1 in the generation of configurations

δmu ¼ δmd ≡ δml; ð41Þ

which [together with Eq. (29)] is equivalent to the replace-
ments

δm2
l ↔

1

6
ðδm2

u þ δm2
d þ δm2

sÞ; δm3
l ↔ −

1

2
δmuδmdδms;

ð42Þ

in Eq. (32) for PG, G ¼ A1, Eþ, E−, A2.
Similarly we can write down the mass of the octet

Lambda baryon as

M2
Λðaa0bÞ ¼ M2

0 þ A1ð2δμa þ δμbÞ − A2ðδμb − δμaÞ þ
1

6
B0ðδm2

u þ δm2
d þ δm2

sÞ
þ B1ð2δμ2a þ δμ2bÞ − B2ðδμ2b − δμ2aÞ þ B4ðδμb − δμaÞ2 þ C0δmuδmdδms

þ ½C1ð2δμa þ δμbÞ − C2ðδμb − δμaÞ�ðδm2
u þ δm2

d þ δm2
sÞ

þ C3ðδμa þ δμbÞ3 þ ðC4 − 2C3Þðδμa þ δμbÞ2ðδμb − δμaÞ
þ C7ðδμa þ δμbÞðδμb − δμaÞ2 þ C8ðδμb − δμaÞ3: ð43Þ

If all three quark masses are the same then all the masses
become degenerate,

M2
Σðaaa00Þ≡M2

Σðaa0a00Þ≡M2
Λðaa0a00Þ: ð44Þ

In addition, for mass degenerate valence up and down
quarks, the expansion in Eq. (39) now incorporates not only
the mass degenerate nucleons, p; n≡ Σðlll00Þ with mass
MN ¼ MΣðlll00Þ, the Sigmas, Σ−;Σþ ≡ ΣðllsÞ and Σ0 ≡
Σðll0sÞ with mass MΣ ¼ MΣðllsÞ ¼ MΣðll0sÞ and Xis,
Ξ−;Ξ0 ≡ ΞðsslÞ with mass MΞ ¼ MΣðsslÞ, but can also
be extended to incorporate the fictitious baryon, Nsðsss00Þ
with mass MΣðsss00Þ. Furthermore the expansion in
Eq. (43) also incorporates not only the Lambda, Λ≡
Λðll0sÞ with mass MΛ ¼ MΛðll0sÞ, but can be extended
to the fictitious baryon Λ2slðss0lÞ with mass MΛðss0lÞ. For
three mass degenerate valence quarks, we see that this mass
formula reduces to the previous formula MΛðll0l00Þ ¼
MΣðlll00Þ and MΛðss0s00Þ ¼ MΣðsss00Þ.
The Λ mass formula involves several parameters B4, C7

and C8 which do not appear in the other baryon masses. We
can understand why some terms in M2

Λ are constrained by
the other hadron masses, while others are independent. The
partially quenched quantities

ðX2
NÞPQ ≡ 1

3
ðM2

N þM2
Σ þM2

ΞÞ; ðX2
ΛÞPQ ≡ 1

2
ðM2

Λ þM2
ΣÞ

ð45Þ

agree with each other exactly if δμs ¼ δμl [unbroken
valence SUð3Þ, Eq. (44)]. The quantity ðX2

ΛÞPQ − ðX2
NÞPQ

is a 27-plet, so it should be Oððδμs − δμlÞ2Þ if valence
SUð3Þ is broken. Therefore any terms inM2

Λ which survive,

or vanish more slowly than ðδμs − δμlÞ2, as δμs → δμl are
constrained by the other baryon masses; any terms which
vanish like ðδμs − δμlÞ2 or faster can have new independent
coefficients unconnected to the other baryon masses. The
B4, C7 and C8 terms are the only terms inM2

Λ which vanish
fast enough as δμs → δμl to evade this ðX2

ΛÞPQ → ðX2
NÞPQ

constraint, as from Eqs. (39) and (43) we find5

ðX2
ΛÞPQ − ðX2

NÞPQ

¼ 1

6
ð3B4 − B3Þðδμs − δμlÞ2

þ 1

18
ð3C7 − C5 − 9C6 þ 9C8Þðδμs − δμlÞ3

þ 1

9
ð3C7 − 6C3 − C5Þðδμs þ 2δμlÞðδμs − δμlÞ2:

ð46Þ

5For completeness, we also give here the result for ðX2
ΛÞPQ −

ðX2
NÞPQ in the full 1þ 1þ 1 case, generalizing Eq. (46),

ðX2
ΛÞPQ − ðX2

NÞPQ

¼ 1

4
ð3B4 − B3Þðδμ2u þ δμ2d þ δμ2s − 3δμ̄2Þ

þ 3

4
ð3C7 − C5 − 9C6 þ 9C8Þðδμs − δμ̄Þðδμu − δμ̄Þðδμd − δμ̄Þ

þ 1

2
ð3C7 − 6C3 − C5Þðδμ2u þ δμ2d þ δμ2s − 3δμ̄2Þδμ̄;

where δμ̄ is defined in Eq. (34).
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At the Oðδμ2qÞ level all the coefficients M2
0; Ai; Bi occur

in Eqs. (39) and (43), and so can be found from a 2þ 1
flavor partially quenched calculation. (The coefficients are
functions of m̄, and so will not change from a 1þ 1þ 1
simulation to a 2þ 1 simulation provided that m̄ is held
constant.) This will no longer hold at Oðδμ3qÞ; to find PA2

we would need to measure the other A2 mass combination,
which is the Coleman–Glashow violation, Eq. (40) or (38)
of [12], which requires 1þ 1þ 1 valence quarks and a
more general expansion than given in Eqs. (39) and (43), so
we have introduced a new coefficient, C9, here.

IV. SCALE INDEPENDENT QUANTITIES

A. Ratios

We now restrict ourselves to giving results to NLO
(which will be sufficient for our numerical determinations).
For completeness the full NNLO expressions are given in
Appendix C.
Numerically it is advantageous to consider scale inde-

pendent quantities, as previously discussed and used in
[1,12]. As stated in Sec. II C flavor blind (or singlet)
quantities are suitable to form both scale independent mass
ratios and to determine the scale. We denote these quan-
tities generically by XS. One useful type can be considered
as the “center of mass” of the multiplet. Thus for the baryon
octet, one possibility is

X2
N ¼ 1

6
ðM2

p þM2
n þM2

Σþ þM2
Σ− þM2

Ξ0 þM2
Ξ−Þ

¼ M2
0 þ

�
1

6
B0 þ B1 þ B3

�
ðδm2

u þ δm2
d þ δm2

sÞ:

ð47Þ

At the physical point this has the value [2]

Xexp
N ¼ 1.1610 GeV: ð48Þ

As discussed in [12] flavor blind quantities, due to the
vanishing of the linear δmq terms [see Eq. (47)] remain
almost constant as we approach the physical point, so aN ¼
ðaNXNÞ=Xexp

N determines the lattice spacing aNðκ0Þ, [12].
(We have introduced the N subscript as we are using XN to
set the scale.)
We shall in future consider for the baryon octet the

dimensionless ratios

~M2 ≡M2

X2
N
;…; ð49Þ

and we wish to rewrite Eq. (21) in the form

~M2
H ¼ ~PA1

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~P2
Eþ þ ~P2

E− þ ~P2
A2

q

~M2
L ¼ ~PA1

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~P2
Eþ þ ~P2

E− þ ~P2
A2

q
; ð50Þ

and Eq. (23) as

tan 2θΣΛ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~P2
E− þ ~P2

A2

q
~PEþ

; tanϕΣΛ ¼
~PA2

~PE−
; ð51Þ

where

PG → ~PG ¼ PG

X2
N
; G ¼ A1; Eþ; E−; A2: ð52Þ

This can be achieved by defining

~Ai ¼
Ai

M2
0

; ~Bi ¼
Bi

M2
0

; ð53Þ

together with the replacement

B0 → ~B0 ¼ −6
B1 þ B3

M2
0

¼ −6ð ~B1 þ ~B3Þ: ð54Þ

The ~PG, G ¼ A1, Eþ, E−, A2 scale independent flavor
SUð3Þ expansion coefficients are then given to NLO by

~PA1
¼ 1þ 3 ~A1δμ̄

þ 1

6
~B0ðδm2

u þ δm2
d þ δm2

sÞ þ ~B1ðδμ2a þ δμ2b þ δμ2cÞ

þ 1

4
ð ~B3 þ ~B4Þ½ðδμc − δμaÞ2

þ ðδμc − δμbÞ2 þ ðδμa − δμbÞ2�;
~PEþ ¼ 3

2
~A2ðδμc − δμ̄Þ þ 1

2
~B2ð2δμ2c − δμ2a − δμ2bÞ

þ 1

4
ð ~B3 − ~B4Þ½ðδμc − δμaÞ2

þ ðδμc − δμbÞ2 − 2ðδμa − δμbÞ2�;

~PE− ¼
ffiffiffi
3

p

2
~A2ðδμb − δμaÞ

þ
ffiffiffi
3

p

2
~B2ðδμ2b − δμ2aÞ

þ
ffiffiffi
3

p

4
ð ~B3 − ~B4Þ½ðδμc − δμbÞ2 − ðδμc − δμaÞ2�;

~PA2
¼ 0; ð55Þ

and

δμ̄≡ 1

3
ðδμa þ δμb þ δμcÞ ð56Þ
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(where we have written the more general δμa, δμb, δμc
rather than the previous δμu, δμd, δμs respectively).
Similarly the changes to the baryon masses for mass

degenerate up and down quarks are relatively simple. For
completeness we give the scale independent flavor SUð3Þ
expansions

~M2
ΣðaabÞ ¼ 1þ ~A1ð2δμa þ δμbÞ þ ~A2ðδμb − δμaÞ

þ ~B0δm2
l þ ~B1ð2δμ2a þ δμ2bÞ

þ ~B2ðδμ2b − δμ2aÞ þ ~B3ðδμb − δμaÞ2; ð57Þ

and

~M2
Λðaa0bÞ ¼ 1þ ~A1ð2δμa þ δμbÞ − ~A2ðδμb − δμaÞ

þ ~B0δm2
l þ ~B1ð2δμ2a þ δμ2bÞ

− ~B2ðδμ2b − δμ2aÞ þ ~B4ðδμb − δμaÞ2; ð58Þ

where ~B0 is given in Eq. (54).

B. Analytic expressions

Finally we analytically expand out Eqs. (50)–(51) to
NLO. On the unitary line (which is all that we shall later
need) this gives

tan 2θΣΛ ¼ ðδmd − δmuÞffiffiffi
3

p
δms

×
�
1 −

1

3

�
2 ~B2 þ 3 ~B3 − 3 ~B4

~A2

�

×
ðδms − δmuÞðδms − δmdÞ

δms

�
; ð59Þ

and for the sum and difference, after additionally expanding
further in the masses [rather than ðmassÞ2]

1

2
ð ~MΣ0 þ ~MΛ0Þ

¼ 1þ 1

8

�
− ~B3 þ 3 ~B4 −

3

2
~A2
2

�
ðδm2

u þ δm2
d þ δm2

sÞ;

ð60Þ

and

~MΣ0 − ~MΛ0 ¼
ffiffiffi
3

2

r
~A2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δm2

u þ δm2
d þ δm2

s

q

×

�
1þ 3

2

�
2 ~B2 þ 3 ~B3 − 3 ~B4

~A2

�

×
δmuδmdδms

δm2
u þ δm2

d þ δm2
s

�
: ð61Þ

In the isospin limit, upon using Eq. (41) we again see that
the mixing angle in Eq. (59) vanishes, but the Σ − Λ mass
difference in Eq. (61) still persists. Let us first examine the
convergence of the series. If we expand in terms of the
quark mass difference δmd − δmu and, now generalizing
Eq. (41) slightly, the average quark mass δml where δml is
given by

δml ¼ ðδmu þ δmdÞ=2; ð62Þ

then

−
ðδms − δmuÞðδms − δmdÞ

3δms
¼ 3

2
δml þOððδmd − δmuÞ2Þ;

3δmuδmdδms

2ðδm2
u þ δm2

d þ δm2
sÞ

¼ 1

2
δml þOððδmd − δmuÞ2Þ:

ð63Þ

At (or close to) the physical point δmd ≈ δmu so that in the
expansion of tan 2θΣΛ, as compared to ~MΣ0 − ~MΛ0 the NLO
term is a factor ≈3 larger, and hence the convergence of the
SUð3Þ symmetry flavor breaking series is expected to be
worse for the mixing angle than for the mass difference.
As an estimate of the contribution of isospin breaking to

Σ − Λ mass splitting we expand in the difference between
the isospin breaking and isospin symmetric cases giving
to LO,

ð ~MΣ0 − ~MΛ0Þ − ð ~MΣ − ~MΛÞjδml
¼ 1

8
~A2

ðδmd − δmuÞ2
jδmlj

:

ð64Þ

Mass splitting formulas for the baryons on the outer ring
were given in [1] [Eqs. (12)–(15)]. For example we have

~Mn − ~Mp ≡ ~MΣðdduÞ − ~MΣðuudÞ

¼ 1

2
ðδmd − δmuÞ

�
~A1 − 2 ~A2

þ
�
2 ~B1 − 4 ~B2 −

3

2
~A2
1 þ 3 ~A1

~A2

�
δml

�
: ð65Þ

There are several differences between the isospin splitting
between Σ0 − Λ0 and n − p. For Σ − Λ mixing from
Eq. (64) we see that the mass splitting starts quadratically
in ðδmd − δmdÞ while from Eq. (65) for n − p the splitting
is linear. Furthermore from Eq. (61) we see that this
difference depends principally on ~A2 and not at all on
~A1. [The ~A1 term has canceled in the unitary limit in
Eq. (36).] This is completely opposite to the mass splittings
of the baryons on the outer ring, [1] and Eq. (65), which
depend on ~A1 as well as ~A2. As ~A1 is numerically found to
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be much larger the result is then dominated by this
coefficient.
We use these expansions in our numerical determina-

tions. While for the central values ofMΣ0 −MΛ0 andMn −
Mp;… it matters little whether we use these expressions or
directly use those in Sec. IVA, for the error (particularly of
Mn −Mp;… but rather less so for MΣ0 −MΛ0) the differ-
ence depending on just one or two coefficients leads to a
better determination.

V. MATRIX ELEMENTS

While we are primarily interested in this article in
masses, we now make a few comments here on matrix
elements. We see from Eq. (64) that in masses isospin
breaking effects are second order in δmd − δmu. However,
if we look at transition amplitudes instead of masses, the
effects of the mixing angle appear at first order in θΣΛ, i.e. at
first order in δmd − δmu, making an experimental deter-
mination of the mixing angle much more feasible.
It was pointed out in [14] that the semileptonic decays

Σ− → Λ0eν̄ and Σþ → Λ0eþν are particularly sensitive to
the Σ − Λmixing angle. In the absence of mixing wewould
have

Σ− → Σ A ¼
ffiffiffi
2

p
ðγμ þ Fγμγ5ÞVud

Σþ → Σ A ¼ −
ffiffiffi
2

p
ðγμ þ Fγμγ5ÞVud

Σ− → Λ A ¼
ffiffiffi
2

3

r
Dγμγ5Vud

Σþ → Λ A ¼
ffiffiffi
2

3

r
Dγμγ5Vud; ð66Þ

where A is the amplitude, F and D are the axial SUð3Þ
couplings and Vud ∼ cos θC is the appropriate CKM matrix
element. There are two important points to note about these
amplitudes. First, the Σ− → Λ amplitude is equal to the
Σþ → Λ amplitude, while the Σ− → Σ has the opposite sign
to the Σþ → Σ. Second, the Σ → Λ amplitudes are purely
axial, while the Σ → Σ amplitudes have a large vector
contribution.
If we now introduce mixing as defined in Eq. (22),

Λ0 ¼ − sin θΣΛΣþ cos θΣΛΛ; ð67Þ

we have

Σþ → Λ0 A ¼
� ffiffiffi

2
p

γμ sin θΣΛ þ
� ffiffiffi

2

3

r
D cos θΣΛ þ

ffiffiffi
2

p
F sin θΣΛ

�
γμγ5

�
Vud

Σ− → Λ0 A ¼
�
−

ffiffiffi
2

p
γμ sin θΣΛ þ

� ffiffiffi
2

3

r
D cos θΣΛ −

ffiffiffi
2

p
F sin θΣΛ

�
γμγ5

�
Vud; ð68Þ

for the transition amplitudes to the physical (mixed) Λ0.
We see two effects which might be experimentally

measurable at levels of the order of several percent.
First, the Σ → Λ amplitudes have acquired a small vector
component, which should change the angular distributions
of the decay products. Second, the interference between the
D and F components of the amplitudes works in opposite
directions in the two cases. After correcting for phase space
differences, we should see that the total Σþ → Λ0 decay
rate is enhanced, while the Σ− → Λ0 is suppressed by
mixing. Both effects are first order in the mixing, and so
first order in md −mu, and so they should be much more
significant than the effect of mixing on the hadron masses.
In principle mixing effects of this sort appear in all

decays of the Σ0 and Λ0, and all decays with a Σ0 or Λ0 in
the decay products. All the semileptonic decays effected by
the Σ − Λ mixing are also discussed in [14].

VI. DETERMINATION OF THE EXPANSION
COEFFICIENTS

From Eq. (17) we see that we need to find the 2 × 2mass
matrix. We see from Eqs. (59) and (61) that to determine

θΣΛ, MΣ0 , MΛ0 to LO we need to find the ~A2 coefficient (to
NLO also ~B2, ~B3 and ~B4). We also need, of course, δm�

u,
δm�

d, δm
�
s , i.e. a determination of the physical point. As

apparent from Sec. III B, they can in principle all be
determined from 2þ 1 simulations of the Σ and Λ masses.
However we have in addition also determined the off-
diagonal matrix elements of the 2 × 2 mass matrix Eq. (17)
for some PQ quark masses with δμa ≠ δμb ≠ δμc.
Numerical simulations have been performed using nf ¼

2þ 1 OðaÞ improved clover fermions [15] at β ¼ 5.50 and
mainly on 323 × 64 lattice sizes, [12]. Errors given here are
statistical [using ∼Oð1500Þ configurations] later together
with an estimate of the systematic errors.
Once the SUð3Þ flavor degenerate sea quark mass,m0, is

chosen, subsequent sea quark mass points ml, ms are then
arranged in the various simulations to keep m̄ (¼ m0)
constant. This ensures that all the expansion coefficients
given previously do not change. In [12] it was seen that a
linear fit provides a good description of the numerical data
on the unitary line over the relatively short distance from
the SUð3Þ flavor symmetric point down to the physical
pion mass. This proved useful in helping us in choosing the
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initial point on the SUð3Þ flavor symmetric line to give a
path that reaches (or is very close to) the physical point.
The bare quark masses (both valence μq and unitary

μq → mq) in lattice units are given by

μq ¼
1

2

�
1

κq
−

1

κ0c

�
with q ¼ l; s; 0; a; b; ð69Þ

where vanishing of the quark mass along the SUð3Þ flavor
symmetric line determines κ0c. We denote the SUð3Þ flavor
symmetric kappa value, κ0, as being the initial point on the
path that leads to the physical point. This is given in
Eq. (69) with q ¼ 0 and replacing μ0 by m0. Keeping m̄ ¼
constant ¼ m0 then gives

δμq ¼
1

2

�
1

κq
−

1

κ0

�
: ð70Þ

We see that κ0c has dropped out of Eq. (70), so we do not
need its explicit value here. While the choice of partially
quenched quark masses is not restricted, along the unitary
line the quark masses are restricted and we have

κs ¼
1

3
κ0
− 2

κl

: ð71Þ

So a given κl determines κs here. The SUð3Þ flavor
symmetric κ0 value chosen here for this action was found
to be κ0 ¼ 0.12090 [12]. The constancy of flavor singlet
quantities along the unitary line to the physical point [12]
leads directly from XN to an estimation of the lattice
spacing here of aNðκ0 ¼ 0.12090Þ ∼ 0.079 fm.

A. Correlation functions

The wave functions (operators) used to determine the
hadron masses are all taken to be Jacobi smeared. For the
ΣðabcÞ and ΛðabcÞ we have

BΣðabcÞαðxÞ ¼
1ffiffiffi
2

p ϵabcðbaαðxÞ½abðxÞTDCγ5ccðxÞ�

þ aaαðxÞ½bbðxÞTDCγ5ccðxÞ�Þ;

BΛðabcÞαðxÞ ¼
1ffiffiffi
6

p ϵabcð2caαðxÞ½abðxÞTDCγ5bcðxÞ�

þbaαðxÞ½abðxÞTDCγ5ccðxÞ�
− aaαðxÞ½bbðxÞTDCγ5ccðxÞ�Þ; ð72Þ

where C ¼ γ2γ4 and the superscript TD denotes a transpose
in Dirac space.6 The Σ wave function is even under the
interchange a ↔ b, while the Λwave function is odd under
this interchange.

The correlation functions (on a lattice of temporal
extension T and spatial volume Vs) are given from the
correlation matrix7

CijðtÞ ¼
1

Vs
TrDΓunpol

	X
~y

Bið~y; tÞ
X
~x

B̄jð~x; 0Þ



∝ AiAje−MLt þ BiBje−MHt; 0 ≪ t ≪ T=2;

ð73Þ

with i; j ¼ ΣðabcÞ;ΛðabcÞ. This matrix is diagonalized,
yielding MH and ML.
As many of our choices of PQ valence quark masses

have degenerate mass a and b quarks, as discussed in
Sec. III B, some simplification for the Σ wave function is
possible. In this case we note that the Grassmann con-
tractions lead to CΣðaa0bÞΛðaa0bÞ ¼ 0 identically, so that, as
expected, the correlation matrix Eq. (73) is diagonal.
Furthermore for the outer octet baryons we can use instead
the wave function

BΣðaabÞαðxÞ ¼ ϵabcaaαðxÞ½abðxÞTDCγ5bcðxÞ�; ð74Þ

for valence quarks a and b. The corresponding correlation
function is

CΣðaabÞΣðaabÞðtÞ ¼
1

Vs
TrDΓunpol

×

	X
~y

BΣðaabÞð~y; tÞ
X
~x

B̄ΣðaabÞð~x; 0Þ



∝ Ae−MΣt; 0 ≪ t ≪ T=2: ð75Þ

This determines the MΣðaabÞ masses. Considering the
correlation functions, CΣðaa0bÞΣðaa0bÞðtÞ and CΣðaabÞΣðaabÞðtÞ,
the Grassmann contractions can be shown to be equivalent
so

CΣðaabÞΣðaabÞðtÞ ∝ CΣðaa0bÞΣðaa0bÞðtÞ; ð76Þ

and so the masses are the same, MΣðaabÞ ¼ MΣðaa0bÞ,
as indicated in in Eq. (39). Similarly when all the
quark masses are degenerate, CΣðaaa00ÞΣðaaa00ÞðtÞ ∝
CΛðaa0a00ÞΛðaa0a00ÞðtÞ or MΣðaaa00Þ ¼ MΛðaa0a00Þ as expected.
Fitting to Eq. (50) then determines the ~A, ~B coefficients.

Together with a knowledge of the physical (and unitary)
quark masses, δm�

u, δm�
d, δm

�
s , this leads to an evaluation of

the physical Σ0 and Λ0 masses; see Eq. (4).
6The color indices are also denoted by a, b and c; hopefully

this will cause no confusion. 7Γunpol ¼ 1
2
ð1þ γ4Þ.
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B. Numerical results for the expansion coefficients

Although simulations between the SUð3Þ flavor sym-
metric point and the physical point are in principle enough
to determine the expansion coefficients, in practice it is
advantageous to increase the range to try to determine the
NLO terms more reliably (i.e. with reduced error bars).
However we also hope that the SUð3Þ flavor breaking
expansion developed here remains valid. As we see later in
this section, for the Σ − Λ splitting there is a further
constraint. This leads to a choice of valence quark masses
in the range jδμaj þ jδμbj þ jδμcj≲ 0.2. This translates to
nucleon masses of≲2 GeV, so roughly the physical baryon
masses lie in the middle of our fit range. The corresponding
pion mass range is from about 800 down to 200 MeV, the
SUð3Þ flavor symmetric pion lying at about 420 MeV.
In order to determine these ~A and ~B coefficients, addi-

tional PQ masses have been determined on the set of gauge
configurations that have all three sea quark masses equal,
i.e. at the SUð3Þ flavor symmetric point κ0 ¼ 0.12090. For
these particular masses δml ¼ 0 ¼ δms automatically.
These masses are a mixture of masses with three distinctive
valence quark masses (so we have mixing and H and L
masses), together with two mass degenerate quark
data, when there is no mixing. Thus we now make a
simultaneous fit to Eq. (50) using the available data: the
unitary data from [12] (the 323 × 64 lattice data for MN,
MΛ, MΣ, MΞ in Table XXII) together with some lighter
quark mass data on a 483 × 96 lattice. Specifically we
have used 23 valence quark masses on the 323 × 64
lattice with ðκl; κsÞ ¼ ð0.12090; 0.12090Þ, four valence
quark masses on each of the 323 × 64 lattice ense-
mbles (0.12104,0.12062), (0.121095,0.120512) and
(0.121145,0.120413) and a further four on the 483 × 96
lattice ensemble with (0.121166,0.120371). All the fit data
used are given in Appendix D.
There are two LO ( ~A) and four NLO ( ~B) coefficients to

determine. Thus we have a six parameter fit for the fit
functions in Eq. (50). It was found advantageous to
preserve the identity of the Σ and Λ particles whenever
possible, so for the mass degenerate PQ results, Eqs. (57)–
(58) were used. In Table III we give the results of this fit
with bootstrap errors. With our normalization for the
expansion coefficients all the numbers are ∼Oð10Þ, except

~A2 which is rather smaller. The (MINUIT) fit used gave
χ2=dof ∼ 38=60 ∼ 0.6 per degree of freedom.
Two simple plots which illustrate the fit results are first

the completely mass degenerate case (when as discussed
previously in Sec. VI A all outer baryon, Σ and Λ masses
are the same), which may be illustrated by defining

SΣΛ ≡ ~M2
Σðaaa00Þ ¼ 1þ 3 ~A1δμa þ 3 ~B1δμ

2
a: ð77Þ

Second we can consider the symmetric difference case
(between Σ and Λ) by setting

Dsym
ΣΛ ≡ ~M2

ΣðaabÞ − ~M2
Λðaa0bÞ − ~M2

ΣðbbaÞ þ ~M2
Λðbb0aÞ

4ðδμb − δμaÞ
¼ ~A2 þ ~B2ðδμa þ δμbÞ: ð78Þ

(Again in these expressions and elsewhere a0, a00;… are
mass degenerate but distinct quarks.) At this order Dsym

ΣΛ is
just a function of δμa þ δμb; at higher orders [see
Appendix C, Eq. (C7)] there are terms ∝ δμa − δμb.
Note that the choice for Dsym

ΣΛ tends to suppress them
(and indeed eliminates them at NLO); this was the reason
for the choice of this “symmetric derivative.”
For the SΣΛ we have the results shown in Fig. 3. For SΣΛ,

the fit is very good and as indicated this could be easily
extended to larger quark masses. As mentioned before ~A1 is
the relevant coefficient for mass splittings on the outer
baryon ring.
In Fig. 4 we plotDsym

ΣΛ against δμa þ δμb. We see that the
data are not linear in δμa þ δμb. (As explained before we
would not expect the data in this plot to lie on a unique

TABLE III. Fit results for LO and NLO expansion coefficients.

~A1 10.17(12)
~A2 1.849(124)
~B1 13.71(4.19)
~B2 −20.02ð4.70Þ
~B3 −4.125ð5.742Þ
~B4 −30.63ð5.97Þ

2.01.00.0
δμa

0

5

10

S
ΣΛ

SΣΛ

FIG. 3 (color online). SΣΛ versus δμa [SΣΛ is defined in
Eq. (77)], together with a fit also given in Eq. (77). Points used
in the fit are denoted by filled circles (those outside the fit range
are given by open circles).
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curve due to the possible presence in the fit of terms
proportional to δμa − δμb. However due to the choice of
Dsym

ΣΛ deviations should be small.) However despite this the
plot has a sharp increase as the quark mass is reduced,
indicating a possible nonpolynomial behavior there. As this
is related to the Σ − Λ mass splitting, this necessitates the
restricted fit region, as compared to Fig. 3. (It should
however also be noted that the unitary quark masses
have jδmaj ≲ 0.01.)
The reason for this behavior is due to spin-spin inter-

action between the quarks. It is known (e.g. [16]) that in
quark models the mass splittings are partially due to the
QCD spin-spin interaction between the quarks. From the
Dirac equation we know that the magnetic moment of a
fermion ∝ 1=ma, this holds in QCD too, for the chromo-
magnetic moment, which might suggest a spin-spin inter-
action of the form ∝ 1=ðmambÞ. This has also recently been
proposed in [17].

C. The physical point

Considering the equivalent pseudoscalar SUð3Þ flavor
breaking mass expansion as for the baryon octet and
matching to the pseudoscalar meson masses gives δm�

u,
δm�

d, δm
�
s . Again note that by considering the outer ring of

the pseudoscalar octet, provided that the average
quark mass m̄ is held constant, the expansion coefficients
can be determined from partially quenched 2þ 1 flavor

simulations rather than 1þ 1þ 1 flavor expansions. This
was discussed in [1] (and in particular the subtraction of
QED effects) and we just quote the result of the analysis
here, as given in Table IV. To cover uncertainties in
electromagnetic effects arising from violations of
Dashen’s theorem, we assign a relative error ∼15% to
the splitting δm�

d − δm�
u, [1].

D. Comparison with “fan” plots

We now compare the fit results with the mass values
along the unitary line, i.e. which describe the evolution of
the baryon masses along a path from the SUð3Þ symmetric
point down to the physical point in the isospin degenerate
limit, i.e. mu ¼ md ≡ml. For this comparison we take the
physical quark mass, in lattice units, from Table IV as

δm�
l ≡ ðδm�

u þ δm�
dÞ=2 ¼ −0.01103ð2Þ: ð79Þ

In Fig. 5 we show the fan plot for all the Σ- and Λ-type
particles. We have Nðlll00Þ½¼ Λ3lðll0l00Þ�, Λðll0sÞ, ΣðllsÞ,

2.01.00.0
δμa+δμb

0.0

0.5

1.0

1.5

2.0

2.5

3.0
D

ΣΛ
sy

m

DΣΛ
sym

FIG. 4 (color online). Dsym
ΣΛ versus δμa þ δμb [Dsym

ΣΛ is defined
in Eq. (78)], together with the fit also given in Eq. (78). The same
notation as in Fig. 3 is used.

TABLE IV. Results for the bare quark mass in lattice units at the
physical point, slightly updated from [1].

δm�
u δm�

d δm�
s

−0.01140ð3Þ −0.01067ð3Þ 0.02207ð4Þ

−0.010 −0.005 0.000
δml

0.6

0.8

1.0

1.2

1.4

1.6

1.8
M

O

2 /X
N

2   O
 =

 N
, Λ

,Σ
,Ξ

,Λ
2s

l, 
N

s
 pure QCD
N(lll’’)
Λ(ll’s)
Σ(lls)
Ξ(ssl)
Λ2sl(ss’l)
Ns(sss’’)
sym. pt.

FIG. 5 (color online). The baryon fan plot for the Σ- and Λ-type
particles ~M2

O (O ¼ N, Λ, Σ, Ξ, Λ2sl, Ns) versus δml. Filled up
triangles, squares, left triangles, right triangles, diamonds and
down triangles are the Nðlll00Þ, Λðll0sÞ, ΣðllsÞ, ΞðsslÞ, Λl2sðss0lÞ
and Nsðsss00Þ results respectively using 323 × 64 sized lattices.
The common symmetric point is the filled circle. The open up
triangles, left triangles, right triangles and down triangles are
from comparison 243 × 48 sized lattices (and not used in the fits
here). The vertical dashed line from Eq. (79) is the nf ¼ 2þ 1

pure QCD physical point, with the open circles being the
numerically determined pure QCD hadron mass ratios
for 2þ 1 quark flavors. For comparison, the stars represent
the average of the ðmassÞ2 of M�2

N ðlll00Þ ¼ ðMexp 2
n ðdduÞþ

Mexp 2
p ðuudÞÞ=2, M�2

Λ ðllsÞ ¼ Mexp 2

Λ0 ðudsÞ, M�2
Σ ðllsÞ¼

ðMexp2
Σ− ðddsÞþMexp2

Σþ ðuusÞÞ=2 and M�2
Ξ ðsslÞ ¼ ðMexp 2

Ξ− ðssdÞþ
Mexp 2

Ξ0 ðssuÞÞ=2.
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ΞðsslÞ, Λ2slðss0lÞ and Nsðsss00Þ½¼ Λ3sðss0s00�. [Nsðsss00Þ
and Λ2slðss0lÞ are fictitious baryons, but provide additional
useful data for the fits.] As this is the diagonal case there is
no mixing and from Eq. (38) the fit is given by
~M2
N ¼ PA1

þ PEþ , ~M2
Λ ¼ PA1

− PEþ . We find good agree-
ment with the expected results.
It can easily be seen (“ruler test”) that the fits are

dominated by the LO in the SUð3Þ flavor symmetry
breaking expansion. Given the fit results, this is not so
surprising, as for the unitary results we have a maximum
quark mass given by jδmlj ∼ 0.01, which is rather small
(certainly in comparison with many of the PQ masses used)
and indicates that at least in the region we are interested in
the low order SUð3Þ flavor breaking expansion describes
the data well.
For completeness we give here the values at the 2þ 1

QCD physical point (open circles in Fig. 5) of
~M�2
N ¼ 0.6612ð58Þ, ~M�2

Λ ¼ 0.9155ð89Þ, ~M�2
Σ ¼ 1.052ð4Þ,

~M�2
Ξ ¼ 1.286ð9Þ, ~M�2

Λ2sl
¼ 1.365ð5Þ and ~M�2

Ns
¼ 1.687ð6Þ.

For a comparison to these values, the stars in Fig. 5
represent the average of the squared experimental masses
of the appropriate particles, as defined in the figure caption.

VII. RESULTS AND CONCLUSIONS

We now give results for the QCD contribution to the
baryon masses and their splittings.

A. Outer ring of the baryon octet

We first discuss the masses on the outer ring of the
baryon octet using the physical quark masses given in
Table IV and the expansion coefficients as given in
Table III.
Possible sources of systematic errors are discussed in

Appendix A of [1] as coming from the following: finite
lattice volume, convergence of the SUð3Þ flavor symmetry
breaking expansion, the path to the physical point and finite
lattice spacing (to which we refer the reader). As the data
set used has not changed greatly, the systematic errors are
little effected, so we use the same methods giving similar
results as determined there. For the mass ratios ~M we find
estimates of systematic errors of ∼1% for finite volume,
∼1% for the flavor symmetry expansion (it is also apparent
from Fig. 5 that in the region we are interested in curvature
effects are very small), ∼4% as the chosen κ0 and hence the
trajectory in the ms −ml plane does not quite go through
the physical point, while the systematic errors arising from
a finite lattice spacing are small.
We find the results for the masses and splittings of

Table V. For the splittings, rather than using Eq. (50)
directly (i.e. the results of the left panel of Table V) we use
the expressions in Sec. IV B. As discussed there, for the
central values it makes little difference; however the error is
now better determined. For the baryons on the outer ring of
the octet the central values (both for masses and mass

splittings) are in agreement with previous results, [1]. Note
that we are not trying to compare the mass splittings with
the experimental values, due to electromagnetic effects (not
considered here).

B. Σ − Λ mixing

We now turn to the result for Σ − Λ mixing. In Table VI
we give the Σ0 and Λ0 masses. The Σ0 − Λ0 mass difference
is

MΣ0 −MΛ0 ¼ 79.44ð7.37Þð3.37Þ MeV: ð80Þ

(The same discussion for the determination of the errors as
for the previous results, Sec. VII A, also holds here.) This is
to be compared with the experimental result, Eq. (2) of
76.96(2) MeV. As both particles have the same quark
content (and are uncharged) we do not expect much
electromagnetic contribution. Between the LO and NLO
result there is only a few percent difference. Furthermore
taking the difference between theMΣ0 −MΛ0 mass splitting
in Table VI and M�

ΣðllsÞ −M�
Λðll0sÞ (i.e. the isospin limit)

gives a tiny contribution due to isospin breaking, consistent
with zero and which our present results are not precise
enough to reliably estimate.

TABLE V. Left panel: Baryon masses on the outer ring of the
octet. The second column gives the quark content, while the third
column, Exp, gives the experimental masses from [2]. The last
column, Result, gives the result from this work. The first error is
the statistical error, while the second is the total systematic error
(in quadrature). Xexp

N from Eq. (48) has been used to convert to
GeV. Right panel: Baryon mass splittings on the outer ring. The
third error is due to possible violations in Dashen’s theorem,
Sec. VI C.

Particle Exp [GeV] Result [GeV]

Mp uud 0.9383 0.9427(41)(40)
Mn ddu 0.9396 0.9454(40)(40)
MΣþ uus 1.1894 1.1874(23)(50)
MΣ− dds 1.1974 1.1947(22)(51)
MΞ0 ssu 1.3149 1.3145(49)(56)
MΞ− ssd 1.3217 1.3191(48)(56)

Splitting Result [MeV]

Mn −Mp 2.70(15)(11)(40)
MΣ− −MΣþ 7.27(22)(31)(109)
MΞ− −MΞ0 4.57(19)(19)(68)

TABLE VI. Σ0 and Λ0 masses. The same notation is used as for
the first panel of Table V.

Particle Exp [GeV] Result [GeV]

MΣ0 uds 1.1926 1.1910(23)(51)
MΛ0 uds 1.1157 1.1109(54)(47)
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For the mixing angle we find

tan 2θΣΛ ¼ 0.0123ð45Þð25Þ; ð81Þ

which, as anticipated, gives a very small angle,
θΣΛ ∼ 0.006ð3Þ rads≲ 1°. Comparing with e.g. a quark
model result [7] gives θΣΛ ∼ 0.01 rads which is compatible
with our result.
We note that the LO value of tan 2θΣΛ from Eq. (59) is

∼0.0191 so in this case with our determined ~A and ~B values
for the SUð3Þ flavor breaking expansion there is some
reduction in the value of the angle when going to NLO.
However in distinction to the Σ0 − Λ0 mass difference the
nonleading term is now much larger. This is because
numerically ðδms − δmuÞðδms − δmdÞ=3δmsj� ∼ 0.0166
to be compared with 3δmuδmdδms=2ðδm2

u þ δm2
dþ

δm2
sÞj� ∼ 0.0056, which as expected from the discussion

in Sec. IV B is a factor 3 smaller. Thus the SUð3Þ symmetry
flavor breaking expansion for the mixing angle in Eq. (59)
appears less convergent than for the Σ0 − Λ0 mass differ-
ence, Eq. (61). In order to account for this, we have
increased the relative systematic error associated with the
flavor symmetry expansion to ∼15%.

C. CONCLUSIONS

In this article we have extended our earlier work
describing the QCD contribution to isospin breaking effects
in baryon masses [1] to now also include states with the
same quantum numbers, in this case the Σ0 and Λ0, and
their isospin mixing. This gives a complete description of
the SUð3Þ flavor symmetry expansion of the (baryon) octet.
As an example we have numerically investigated Σ0 − Λ0

mixing. While the mass splitting is reasonably well
determined, to determine reliably the mixing angle will
require a better determination of the SUð3Þ symmetry
flavor breaking expansion. An accurate determination of
the mixing angle may be useful in baryonic semileptonic
decays; see Sec. V. Further work in these directions is in
progress.
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APPENDIX A: MASS MATRIX
SYMMETRIES—AN EXAMPLE

To illustrate the transformations of the hadron mass
matrices with an explicit example, let us write out in full the
symmetry matrices for the transformation u ↔ d. A 3 × 3
SUð3Þ matrix which exchanges the u and d quarks in the
quark mass matrix Eq. (8) is [see [12], Eq. (128)]

U ¼ exp

�
i
π

2
ðλ1 þ

ffiffiffi
3

p
λ8Þ

�
¼

0
B@

0 −1 0

−1 0 0

0 0 −1

1
CA: ðA1Þ

[The minus signs ensure that jUj ¼ 1, as required for an
SUð3Þ matrix.] If we act with this U on the quark mass
matrix it simply swaps the u and d quark masses.

U

0
B@

mu 0 0

0 md 0

0 0 ms

1
CAU† ¼

0
B@

md 0 0

0 mu 0

0 0 ms

1
CA: ðA2Þ

To transform the baryon mass matrix we need an 8 × 8
matrix corresponding to Eq. (A1),

U ¼ exp

�
i
π

2
ðλ1 þ

ffiffiffi
3

p
λ8Þ

�

¼

0
BBBBBBBBBBBBB@

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

1
CCCCCCCCCCCCCA

; ðA3Þ

found by using an 8 × 8 set of λ matrices [defined in
[12], Eq. (144)].
What happens to the baryon mass matrix when we rotate

it with this U?
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U

0
BBBBBBBBBBBBBBB@

M2
n 0 0 0 0 0 0 0

0 M2
p 0 0 0 0 0 0

0 0 M2
Σ− 0 0 0 0 0

0 0 0 M2
ΣΣ M2

ΣΛ 0 0 0

0 0 0 M2
ΛΣ M2

ΛΛ 0 0 0

0 0 0 0 0 M2
Σþ 0 0

0 0 0 0 0 0 M2
Ξ− 0

0 0 0 0 0 0 0 M2
Ξ0

1
CCCCCCCCCCCCCCCA

U†

¼

0
BBBBBBBBBBBBBBB@

M2
p 0 0 0 0 0 0 0

0 M2
n 0 0 0 0 0 0

0 0 M2
Σþ 0 0 0 0 0

0 0 0 M2
ΣΣ −M2

ΣΛ 0 0 0

0 0 0 −M2
ΛΣ M2

ΛΛ 0 0 0

0 0 0 0 0 M2
Σ− 0 0

0 0 0 0 0 0 M2
Ξ0 0

0 0 0 0 0 0 0 M2
Ξ−

1
CCCCCCCCCCCCCCCA

:

ðA4Þ
The n and p switch masses, as do the Σ− and Σþ and the Ξ0

and Ξ−, all as expected when u ↔ d. In the central block,
which tells us about the Σ0Λ0 sector, we see that the
diagonal entries are unchanged; the off-diagonal entries
have their sign flipped. This is just what should happen

under u ↔ d; the eigenvalues (masses of the two states)
will be the same, but the mixing angle will be
reversed, θΣΛ → −θΣΛ.

APPENDIX B: THE OCTET BARYON
MASS MATRIX

1. The outer octet baryon masses

Here we discuss the mass matrix for partially quenched
octet baryons in more detail than we could in the body of
the paper. The arguments given here are similar to those
given in Sec. B.4 of [12] for the meson mass matrix, and in
Sec. IVA for the partially quenched decuplet mass formula.
If we have a diagonal quark mass matrix, strangeness,

“upness” and “downness” are all conserved quantum num-
bers. There are therefore only ten nonzero entries in the8 × 8
octet mass matrix, namely the eight diagonal entries, and the
two entries corresponding toΣ − Λmixing.Σ − Λmixing is
permitted because both baryons have the same flavor content
(uds); any other mixing would violate flavor conservation.
Since there are ten nonzero entries, we can express the

mass matrix in terms of a basis of ten 8 × 8matrices. In [12]
we classified these ten matrices according to their sym-
metries; see Table I. Seven of the matrices are diagonal;
they can be read off directly from the table. The table also
contains three matrices which mix the Σ and Λ.
In [12] we did not specify the mixing, as we were

concentrating on the case of unbroken isospin symmetry,
where there is no mixing. We now list the basis matrices Ni
in full, including the three nondiagonal matrices.

N1¼

0
BBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCA

N2¼

0
BBBBBBBBBBBBBBB@

−1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCA

N3¼

0
BBBBBBBBBBBBBBB@

−1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 −2 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 2 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCA

N4¼

0
BBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 −2 0 0 0 0 0

0 0 0 −2 0 0 0 0

0 0 0 0 2 0 0 0

0 0 0 0 0 −2 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCA

N5¼

0
BBBBBBBBBBBBBBB@

−1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 2ffiffi
3

p 0 0 0

0 0 0 2ffiffi
3

p 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 −1

1
CCCCCCCCCCCCCCCA

N6¼

0
BBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 −3 0 0 0 0

0 0 0 0 −3 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCA
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N7 ¼

0
BBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 −2 0 0 0 0 0

0 0 0 3 0 0 0 0

0 0 0 0 −3 0 0 0

0 0 0 0 0 −2 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCA

N8 ¼

0
BBBBBBBBBBBBBBB@

−1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 −
ffiffiffi
3

p
0 0 0

0 0 0 −
ffiffiffi
3

p
0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 −1

1
CCCCCCCCCCCCCCCA

N9 ¼

0
BBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 −1

1
CCCCCCCCCCCCCCCA

N10 ¼

0
BBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 −i 0 0 0

0 0 0 i 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCCCA

: ðB1Þ

These matrices are orthogonal, in the sense that Tr½NiNj� ¼
0 if i ≠ j.
We can write the ðmassmatrixÞ2 in terms of the basis

matrices

M2 ¼
X
i

KiNi: ðB2Þ

This expansion is completely general. The coefficients Ki
could be functions of the pseudoscalar meson masses if we
are doing chiral perturbation theory, but in our case we use
polynomials of the bare quark masses. The symmetries of
the coefficients must match the symmetries of the Ni
matrices, for example if the matrix has symmetry A1 or
Eþ its coefficient must be even under mu ↔ md; if it has
symmetry A2 or E− it must be odd under this interchange.
We find the coefficientsKi by making all possible SUð3Þ

rotations on the quark mass matrix, and asking
Mathematica to find the most general coefficients Ki which
lead to a ðmassmatrixÞ2 which transforms like Eq. (11).
Once we know the Ki we can then read off the individual
baryon masses.
At first order in δμq we are only allowed singlet and octet

matrices, so our M2 matrix has to have the form

M2 ¼
X5
i¼1

KiNi; ðB3Þ

with only five terms.

When we put this in the computer, we find that at first
order, partially quenched, the most general form of the Ki
consistent with Eq. (11) is

K1 ¼ M2
0 þ a1ðδμu þ δμd þ δμsÞ

K2 ¼ a8að2δμs − δμu − δμdÞ
K3 ¼ a8aðδμu − δμdÞ
K4 ¼ a8bð2δμs − δμu − δμdÞ
K5 ¼ 3a8bðδμu − δμdÞ: ðB4Þ

Much of this could be anticipated on general grounds. The
form of the polynomials can be read off from Table II. Since
N2 and N3 are part of the same representation, we know
that K2 and K3 are not independent; they must both be
proportional to the same coefficient. Likewise, K4 and K5

must share a coefficient. The only slightly nontrivial
features in Eq. (B4) are the proportionality factors relating
K3 and K5 to K2 and K4, (factors of 1 and 3). These have to
be found by considering a symmetry operation that mixes
N2 with N3, and N4 with N5. Examples of such operations
are the interchanges δμd ↔ δμs or δμu ↔ δμs, or the cyclic
operation δμu → δμd → δμs → δμu.
We are not quite finished; there is one extra constraint

coming from partial quenching. If we calculate the neutron
mass from Eq. (B4) we have

R. HORSLEY et al. PHYSICAL REVIEW D 91, 074512 (2015)

074512-18



M2
n ¼ ðM2Þ11 ¼ K1 − K2 − K3 þ K4 − K5

¼ M2
0 þ δμuða1 − 4a8bÞ þ δμdða1 þ 2a8a þ 2a8bÞ

þ δμsða1 − 2a8a þ 2a8bÞ: ðB5Þ

However, we know that although the neutron can depend in
a symmetric manner on all the sea quark masses, there is no
way it can have any information about the mass of the
partially quenched valence s quark, so the final term should
not occur. We remove this unwanted term by imposing the
constraint

a1 − 2a8a þ 2a8b ¼ 0; ðB6Þ

leaving

M2
n ¼ M2

0 þ a1ð2δμd þ δμuÞ − 4a8bðδμu − δμdÞ: ðB7Þ

Finally, we define new parameters

A1 ≡ a1; A2 ≡ −4a8b ; ðB8Þ

simply to tidy up the result,

M2
n ¼ M2

0 þ A1ð2δμd þ δμuÞ þ A2ðδμu − δμdÞ: ðB9Þ

The constraint Eq. (B6) does not only remove the
unphysical term from the neutron mass formula; it auto-
matically does the same for all the outer baryons, giving
them all a mass formula independent of the absent valence
quark mass:

M2ðaabÞ ¼ M2
0 þ A1ð2δμa þ δμbÞ þ A2ðδμb − δμaÞ:

ðB10Þ

In terms of the new parameters Eq. (B8) the final
expressions for the Ki are

K1 ¼ M2
0 þ A1ðδμu þ δμd þ δμsÞ

K2 ¼
1

4
ð2A1 − A2Þð2δμs − δμu − δμdÞ

K3 ¼
1

4
ð2A1 − A2Þðδμu − δμdÞ

K4 ¼ −
1

4
A2ð2δμs − δμu − δμdÞ

K5 ¼ −
3

4
A2ðδμu − δμdÞ: ðB11Þ

At higher order we proceed in the same way, finding the
analogue of Eq. (B4) by considering all possible rotations
of the quark matrix, and then the analogue of Eq. (B11) by
imposing the partially quenched constraint that the absent
valence quark cannot appear in the mass formula for
M2ðaabÞ. Of course at higher order more of the Ki appear;
at quadratic order the 27-plet enters, and we need K1 to K8;
at cubic or higher order, all ten Ki appear. Also, the
expressions for each Ki coefficient become longer, as can
be seen from Table II. It would be difficult to carry out the
calculation by hand, but with the help of a computer we can
find all the Ki, and thus the complete M2 matrix.

2. The Σ − Λ mass matrix

In this paper we are primarily interested in the Σ − Λ
sector. Let us concentrate on the 2 × 2 block of M2

responsible for these two central baryons. From Eq. (B1)
we read off

�
M2

ΣΣ M2
ΣΛ

M2
ΛΣ M2

ΛΛ

�
¼

�K1 − 2K4 − 3K6 þ 3K7
2ffiffi
3

p K5 −
ffiffiffi
3

p
K8 − iK10

2ffiffi
3

p K5 −
ffiffiffi
3

p
K8 þ iK10 K1 þ 2K4 − 3K6 − 3K7

�
: ðB12Þ

A tidier way to write this is to split the matrix up according to the behavior of the various terms under the permutation group,
Eq. (17),

�
M2

ΣΣ M2
ΣΛ

M2
ΛΣ M2

ΛΛ

�
¼ PA1

�
1 0

0 1

�
þ PEþ

�
1 0

0 −1

�
þ PE−

�
0 1

1 0

�
þ PA2

�
0 −i
i 0

�
; ðB13Þ

where PG means a function of the quark masses with the symmetryG under the S3 permutation group. The individual terms
in this expansion are given by

PA1
¼ K1 − 3K6 PEþ ¼ −2K4 þ 3K7 PE− ¼ 2ffiffiffi

3
p K5 −

ffiffiffi
3

p
K8 PA2

¼ K10: ðB14Þ

In the main part of the paper we give the full cubic expression for the PG, derived from the full results for the Ki.
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APPENDIX C: SCALE INDEPENDENT QUANTITIES TO NNLO

For completeness we list here the results of Sec. IV to NNLO.

X2
N ¼ M2

0 þ
1

6
ðB0 þ B1 þ B3Þðδm2

u þ δm2
d þ δm2

sÞ þ ðC0 − C3 þ 3C5Þδmuδmdδms: ðC1Þ

C0 → ~C0 ¼
C3 − 3C5

M2
0

¼ ~C3 − 3 ~C5: ðC2Þ

~PA1
¼ 1þ 3 ~A1δμ̄þ

1

6
~B0ðδm2

u þ δm2
d þ δm2

sÞ þ ~B1ðδμ2a þ δμ2b þ δμ2cÞ

þ 1

4
ð ~B3 þ ~B4Þ½ðδμc − δμaÞ2 þ ðδμc − δμbÞ2 þ ðδμa − δμbÞ2� þ ~C0δmuδmdδms þ 3 ~C1δμ̄ðδm2

u þ δm2
d þ δm2

sÞ

− 4ð ~C5 þ ~C7Þδμaδμbδμc þ
1

2
~Q1ðδμc þ δμaÞðδμc þ δμbÞðδμa þ δμbÞ þ

27

4
~Q2ðδμc − δμ̄Þðδμa − δμ̄Þðδμb − δμ̄Þ;

~PEþ ¼ 3

2
~A2ðδμc − δμ̄Þ þ 1

2
~B2ð2δμ2c − δμ2a − δμ2bÞ þ

1

4
ð ~B3 − ~B4Þ½ðδμc − δμaÞ2 þ ðδμc − δμbÞ2 − 2ðδμa − δμbÞ2�

þ 3

2
~C2ðδμc − δμ̄Þðδm2

u þ δm2
d þ δm2

sÞ þ 6ð ~C3 − ~C4Þðδμc − δμ̄Þδμ̄2

þ 1

6
~Q3½ðδμc − δμaÞ2 þ ðδμc − δμbÞ2 − 2ðδμa − δμbÞ2�δμ̄þ

1

8
~Q4ðδμc − δμ̄Þðδμ2a þ δμ2b þ δμ2c − 3δμ̄2Þ;

~PE− ¼
ffiffiffi
3

p

2
~A2ðδμb − δμaÞ þ

ffiffiffi
3

p

2
~B2ðδμ2b − δμ2aÞ þ

ffiffiffi
3

p

4
ð ~B3 − ~B4Þ½ðδμc − δμbÞ2 − ðδμc − δμaÞ2�

þ
ffiffiffi
3

p

2
~C2ðδμb − δμaÞðδm2

u þ δm2
d þ δm2

sÞ þ 2
ffiffiffi
3

p
ð ~C3 − ~C4Þðδμb − δμaÞδμ̄2

þ 1

8
ffiffiffi
3

p ~Q4ðδμb − δμaÞðδμ2a þ δμ2b þ δμ2c − 3δμ̄2Þ −
ffiffiffi
3

p

2
~Q3ðδμb − δμaÞðδμc − δμ̄Þδμ̄;

~PA2
¼ ~C9ðδμc − δμaÞðδμc − δμbÞðδμa − δμbÞ; ðC3Þ

where

~Q1 ≡ 2 ~C3 þ ~C5 þ ~C7
~Q2 ≡ ~C5 − ~C6 þ ~C7 þ ~C8

~Q3 ≡ 4ð ~C3 − ~C4Þ þ 3ð ~C5 − ~C7Þ ~Q4 ≡ 2ð ~C3 − ~C4Þ þ 3ð ~C5 − ~C7Þ − 9ð ~C6 þ ~C8Þ; ðC4Þ
and δμ̄≡ 1

3
ðδμa þ δμb þ δμcÞ.

~M2
ΣðaabÞ ¼ 1þ ~A1ð2δμa þ δμbÞ þ ~A2ðδμb − δμaÞ þ ~B0δm2

l þ ~B1ð2δμ2a þ δμ2bÞ þ ~B2ðδμ2b − δμ2aÞ þ ~B3ðδμb − δμaÞ2
− 2 ~C0δm3

l þ 6½ ~C1ð2δμa þ δμbÞ þ ~C2ðδμb − δμaÞ�δm2
l þ ~C3ðδμa þ δμbÞ3 þ ~C4ðδμa þ δμbÞ2ðδμa − δμbÞ

þ ~C5ðδμa þ δμbÞðδμa − δμbÞ2 þ ~C6ðδμa − δμbÞ3; ðC5Þ
and

~M2
Λðaa0bÞ¼1þ ~A1ð2δμaþδμbÞ− ~A2ðδμb−δμaÞþ ~B0δm2

l þ ~B1ð2δμ2aþδμ2bÞ− ~B2ðδμ2b−δμ2aÞþ ~B4ðδμb−δμaÞ2
−2 ~C0δm3

l þ6½ ~C1ð2δμaþδμbÞ− ~C2ðδμb−δμaÞ�δm2
l þ ~C3ðδμaþδμbÞ3þð ~C4−2 ~C3ÞðδμaþδμbÞ2ðδμb−δμaÞ

þ ~C7ðδμaþδμbÞðδμb−δμaÞ2þ ~C8ðδμb−δμaÞ3: ðC6Þ

Equation (78) is generalized to

Dsym
ΣΛ ¼ ~A2 þ ~B2ðδμa þ δμbÞ þ 6 ~C2δm2

l þ ð ~C3 − ~C4Þðδμa þ δμbÞ2 −
1

2
ð ~C6 þ ~C8Þðδμb − δμaÞ2: ðC7Þ
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APPENDIX D: TABLES

Table VII gives the PQ baryon masses when all three valence quarks are different, while Table VIII gives the masses
when two valence quarks are mass degenerate. The three sea quark kappa values are κl (twice) and κs, while the valence
quark values are κa, κb, κc.

TABLE VII. Baryon masses used with valence quark kappa values κa ≠ κb ≠ κc.

κl κs κa κb κc V MHðabcÞ MLðabcÞ
0.120900 0.120900 0.120900 0.120512 0.120000 323 × 64 0.5698(31) 0.5580(26)
0.120900 0.120900 0.121095 0.120512 0.120000 323 × 64 0.5577(38) 0.5433(31)
0.120900 0.120900 0.121095 0.120900 0.120000 323 × 64 0.5300(45) 0.5123(39)
0.120900 0.120900 0.121095 0.120900 0.120512 323 × 64 0.4892(48) 0.4777(43)
0.120900 0.120900 0.120900 0.120000 0.118000 323 × 64 0.7278(26) 0.7087(24)

TABLE VIII. Baryon masses used with valence quark kappa values κa ¼ κb.

κl κs κa κb κc V MΣðaabÞ MΛðaa0bÞ
0.120900 0.120900 0.120000 0.120000 0.118000 323 × 64 0.7789(23) 0.7684(23)
0.120900 0.120900 0.120000 0.120000 0.120000 323 × 64 0.6588(23) 0.6588(23)
0.120900 0.120900 0.120000 0.120000 0.120512 323 × 64 0.6232(24) 0.6290(26)
0.120900 0.120900 0.120000 0.120000 0.120900 323 × 64 0.5945(26) 0.6058(29)
0.120900 0.120900 0.120512 0.120512 0.120000 323 × 64 0.5945(25) 0.5892(28)
0.120900 0.120900 0.120512 0.120512 0.120512 323 × 64 0.5564(27) 0.5564(27)
0.120900 0.120900 0.120512 0.120512 0.120900 323 × 64 0.5247(30) 0.5328(34)
0.120900 0.120900 0.120900 0.120900 0.116000 323 × 64 0.7811(34) 0.7438(33)
0.120900 0.120900 0.120900 0.120900 0.118000 323 × 64 0.6739(33) 0.6442(32)
0.120900 0.120900 0.120900 0.120900 0.120000 323 × 64 0.5435(32) 0.5277(37)
0.120900 0.120900 0.120900 0.120900 0.120512 323 × 64 0.5031(35) 0.4938(41)
0.120900 0.120900 0.120000 0.120000 0.121095 323 × 64 0.5806(31) 0.5960(37)
0.120900 0.120900 0.120512 0.120512 0.121095 323 × 64 0.5086(36) 0.5234(46)
0.120900 0.120900 0.120900 0.120900 0.121095 323 × 64 0.4502(55) 0.4606(80)
0.120900 0.120900 0.121095 0.121095 0.120000 323 × 64 0.5226(65) 0.5029(123)
0.120900 0.120900 0.121095 0.121095 0.120512 323 × 64 0.4838(77) 0.4744(177)
0.120900 0.120900 0.121095 0.121095 0.120900 323 × 64 0.4519(42) 0.4613(300)
0.121040 0.120620 0.120620 0.120620 0.120620 323 × 64 0.5265(16) 0.5265(16)
0.121040 0.120620 0.120620 0.120620 0.121040 323 × 64 0.4907(21) 0.5014(30)
0.121040 0.120620 0.121040 0.121040 0.120620 323 × 64 0.4697(33) 0.4547(43)
0.121040 0.120620 0.121040 0.121040 0.121040 323 × 64 0.4267(50) 0.4267(50)
0.121095 0.120512 0.120512 0.120512 0.120512 323 × 64 0.5446(16) 0.5446(16)
0.121095 0.120512 0.120512 0.120512 0.121095 323 × 64 0.4971(21) 0.5054(31)
0.121095 0.120512 0.121095 0.121095 0.120512 323 × 64 0.4690(37) 0.4510(58)
0.121095 0.120512 0.121095 0.121095 0.121095 323 × 64 0.4140(61) 0.4140(61)
0.121145 0.120413 0.120413 0.120413 0.120413 323 × 64 0.5682(13) 0.5682(13)
0.121145 0.120413 0.120413 0.120413 0.121145 323 × 64 0.5092(19) 0.5239(23)
0.121145 0.120413 0.121145 0.121145 0.120413 323 × 64 0.4761(39) 0.4507(65)
0.121145 0.120413 0.121145 0.121145 0.121145 323 × 64 0.4016(89) 0.4016(89)
0.120900 0.120900 0.120900 0.120900 0.120900 323 × 64 0.4673(27) 0.4673(27)
0.121166 0.120371 0.120371 0.120371 0.120371 483 × 96 0.5730(26) 0.5730(26)
0.121166 0.120371 0.120371 0.120371 0.121166 483 × 96 0.5083(35) 0.5247(46)
0.121166 0.120371 0.121166 0.121166 0.120371 483 × 96 0.4680(66) 0.4322(66)
0.121166 0.120371 0.121166 0.121166 0.121166 483 × 96 0.3817(123) 0.3817(123)
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