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We calculate the form factors for B → πlν and Bs → Klν decay in dynamical lattice quantum
chromodynamics (QCD) using domain-wall light quarks and relativistic b-quarks. We use the (2þ 1)-flavor
gauge-field ensembles generated by theRBCandUKQCDcollaborationswith the domain-wall fermion action
and Iwasaki gauge action. For the b-quarkswe use the anisotropic clover action with a relativistic heavy-quark
interpretation.We analyze data at two lattice spacings ofa ≈ 0.11, 0.086 fmwith unitary pionmasses as light as
Mπ ≈ 290 MeV.We simultaneously extrapolate our numerical results to the physical light-quarkmasses and to
the continuum and interpolate in the pion/kaon energy using SU(2) “hard-pion” chiral perturbation theory for
heavy-light meson form factors. We provide complete systematic error budgets for the vector and scalar form
factorsfþðq2Þ andf0ðq2Þ for bothB → πlν andBs → Klν at threemomenta that span theq2 range accessible
in our numerical simulations. Next we extrapolate these results to q2 ¼ 0 using a model-independent
z-parametrization based on analyticity and unitarity. We present our final results for fþðq2Þ and f0ðq2Þ as the
coefficients of the series in z and thematrix of correlations between them; this provides a parametrization of the
form factors validover the entire allowedkinematic range.Our results agreewithother three-flavor lattice-QCD
determinations using staggered light quarks, and have comparable precision, thereby providing important
independent cross-checks. Both B → πlν and Bs → Klν decays enable determinations of the Cabibbo-
Kobayashi-Maskawa matrix element jVubj. To illustrate this, we perform a combined z-fit of our numerical
B → πlν form-factor data with the experimental measurements of the branching fraction from BABAR and
Belle leaving the relative normalization as a free parameter; we obtain jVubj ¼ 3.61ð32Þ × 10−3, where the
error includes statistical and all systematic uncertainties. The same approach can be applied to the decay
Bs → Klν to provide an alternative determination of jVubj once the process has beenmeasured experimentally.
Finally, inanticipationoffuture experimentalmeasurements,wemakepredictions forB → πlν andBs → Klν
differential branching fractions and forward-backward asymmetries in the Standard Model.
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I. INTRODUCTION

Semileptonic B-meson decays play an important role in
the search for new physics in the quark-flavor sector. Tree-
level decays that occur via charged W-boson exchange are
used to obtain the Cabibbo-Kobayashi-Maskawa (CKM)
matrix elements jVubj and jVcbj, while flavor-changing
neutral-current decays provide sensitive probes for heavy
newparticles thatmay enter virtual loops.Decays involving τ
leptons are especially sensitive to charged Higgs bosons that

arise in many new-physics models (see e.g. Ref. [1] and
references therein).
The decays B → πlν and Bs → Klν probe the quark-

flavor-changing transition b → u. In the Standard Model,
the differential decay rate for these processes in the BðsÞ-
meson rest frame is given by
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where P denotes the light pseudoscalar pion or kaon and
q≡ ðpB − pPÞ is the momentum transferred to the out-
going charged-lepton-neutrino pair. The vector and scalar
form factors fþðq2Þ and f0ðq2Þ parametrize the hadronic
contributions to the electroweak decay and must be
calculated nonperturbatively, such as with lattice QCD.
Given an experimental measurement of the branching
fraction and a theoretical calculation of the form factor(s),
these decays enable a determination of the CKM matrix
element jVubj. [The contribution from fBπ0 ðq2Þ in Eq. (1)
can be neglected for light leptons l ¼ e; μ given the current
experimental and theoretical precision.] To date, both the
BABAR and Belle experiments have measured BðB → πlνÞ
[2–5], and the experimental uncertainty will continue to
improve with the collection of data at Belle II. The decay
Bs → Klν has not yet been measured, but we anticipate a
result from LHCb in the next few years.
The CKM matrix element jVubj places a constraint on

the apex of the CKM unitarity triangle [6–8]. Its value,
however, is under scrutiny because of the long-standing
∼3σ disagreement between jVubj obtained from exclusive
B → πlν decay and jVubj obtained from inclusive B →
Xulν decays, where Xu denotes all charmless final states
with up quarks [6–11]. The value of jVubj can also in
principle be obtained from leptonic B → τν decay, but the
current determination from this process lies in between
those from exclusive and inclusive semileptonic decays,
and is not as precise [11]. Further, B → τν is sensitive to
charged-Higgs boson exchange, and therefore does not
provide a clean Standard-Model determination of jVubj.
Thus the decay Bs → Klν, once measured experimen-
tally, will provide an important new determination
of jVubj.
In this paper we present a new calculation of the

semileptonic form factors for B → πlν and Bs → Klν
in (2þ 1)-flavor lattice QCD. Preliminary results were
presented in Refs. [12,13]. This is the second in a series of
B-meson matrix-element calculations that uses the same
lattice actions and ensembles, and our analysis follows a
similar approach to our earlier work on B-meson decay
constants [14]. We use the gauge-field ensembles generated
by the RBC and UKQCD collaborations with the domain-
wall fermion action and Iwasaki gluon action which
include the effects of dynamical u, d, and s quarks
[15,16]. For the bottom quarks, we use the Columbia
version of the relativistic heavy-quark (RHQ) action
introduced by Christ, Li, and Lin in Ref. [17], with the
parameters of the action that were obtained nonperturba-
tively in Ref. [18]. We renormalize the lattice heavy-light
vector current using the mostly nonperturbative method
introduced in Ref. [19], in which we compute the bulk of
the matching factor nonperturbatively [14,16], with a small
correction, that is close to unity, evaluated in lattice
perturbation theory [20,21]. We also improve the lattice
heavy-light current through OðαsaÞ.

We analyze data on five sea-quark ensembles with
unitary pions as light as ≈290 MeV and two lattice
spacings of a ≈ 0.11 and 0.086 fm. We simultaneously
extrapolate our numerical results to the physical light-quark
masses and to the continuum and interpolate in the pion/
kaon energy using SU(2) “hard-pion” chiral perturbation
theory (χPT) for heavy-light meson form factors [22,23],
which applies when the pion/kaon energy is large com-
pared to its rest mass. For B → πlν (Bs → Klν), we
directly simulate in the momentum region q2max > q2 ≳
19.0 GeV2 (q2max > q2 ≳ 17.6 GeV2). Both statistical
errors and discretization errors increase at lower q2, which
corresponds to larger pion/kaon energies. To extend our
results beyond the momenta accessible in our simulations,
we extrapolate our results to q2 ¼ 0 using a model-
independent z-parametrization based on analyticity and
unitarity [24,25]. Our results can be combined with current
and future experimental measurements of the experi-
mentally measured B → πlν and Bs → Klν branching
fractions to obtain the CKM matrix element jVubj.
There are two earlier published (2þ 1)-flavor calcula-

tions of the B → πlν semileptonic form factor in the
literature by the HPQCD and Fermilab/MILC collabora-
tions [26,27]; updates of these works are in progress
[28,29]. In addition, HPQCD recently obtained the first
results for the Bs → Klν form factor in Ref. [30]. Both
groups use the MILC collaboration’s asqtad-improved
staggered gauge-field ensembles [31,32], so their results
are somewhat correlated. The differences between the two
sets of calculations lie in the choices of light valence- and
b-quark actions. For the b quarks, HPQCD uses the
NRQCD action [33] while Fermilab/MILC uses a relativ-
istic formulation similar to ours. Specifically, they use the
Fermilab interpretation of the isotropic clover action [34]
with the tadpole-improved tree-level value of the clover
coefficient cSW . The more recent HPQCD calculation uses
the HISQ action for the light valence quarks to reduce taste-
breaking discretization effects, while in the other work
asqtad valence quarks are used.
Our form-factor calculation with domain-wall light

quarks and RHQ b quarks has the advantage that discre-
tization errors from the light quarks and gluons are simpler,
such that the SU(2) heavy-light meson χPT expressions are
continuum-like. Further, as compared to the Fermilab/
MILC calculation, we tune the coefficient of the clover
term in the b-quark action nonperturbatively and improve
the heavy-light vector current through OðαsaÞ, whereas
Fermilab/MILC only improve it through OðaÞ. Thus, for
similar values of the lattice spacing, discretization errors
from the heavy-quark action and current are smaller in our
calculation. Our new results for the B → πlν and Bs →
Klν form factors therefore enable important independent
determinations of the CKM matrix element jVubj.
This paper is organized as follows. Section II provides an

overview of the lattice calculation. First we define the
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needed matrix elements and form factors in Sec. II A. Next
we present the lattice actions and parameters in Sec. II B.
Then, in Sec. II C we describe the renormalization and
improvement of the heavy-light vector current operator.
Section III presents the numerical analysis. First, in
Secs. III A and III B we fit lattice two-point and three-
point correlators to extract the needed meson masses and
matrix elements, respectively. Then, in Sec. III C we
extrapolate our numerical data to the physical light-quark
masses and continuum, and interpolate in the pion/kaon
energy, using SU(2) hard-pion χPT. Section IV provides
complete error budgets for fþðq2Þ and f0ðq2Þ at three
momentum values that span the range accessible in our
numerical simulations; for clarity, we discuss each source
of systematic uncertainty in a separate subsection. In Sec. V
we extrapolate our form-factor data to q2 ¼ 0 using a
model-independent z-parametrization. We present our
results for fþðq2Þ and f0ðq2Þ as the coefficients of the
series in z and the matrix of correlations between them; this
provides a model-independent parametrization of the form
factors valid over the entire allowed kinematic range. We
illustrate the phenomenological utility of our form-factor
results in Sec. VI. First, in Sec. VI A, we perform a
combined z-fit of our numerical B → πlν form-factor data
with the experimental measurements of the branching
fraction from BABAR and Belle to determine jVubj.
Next, in Sec. VI B, we make predictions for Standard-
Model observables for the decay processes B → πlν and
Bs → Klν with l ¼ μ; τ in anticipation of future exper-
imental measurements. Section VII concludes with a
comparison of our results with other lattice determinations,
and with an outlook for the future.

II. LATTICE CALCULATION

Here we present the setup of our numerical lattice
calculation.

A. Form factors

The B → πlν and Bs → Klν semileptonic form factors
parametrize the hadronic matrix element of the b → u
vector current Vμ ≡ ūγμb:

hPjVμjBðsÞi ¼ fþðq2Þ
 
pμ
BðsÞ þ pμ

P −
M2

BðsÞ −M2
P

q2
qμ
!

þ f0ðq2Þ
M2

BðsÞ −M2
P

q2
qμ; ð2Þ

where fþðq2Þ and f0ðq2Þ are the vector and scalar form
factors, respectively. It is convenient in lattice simulations
to instead calculate the form factors f∥ðEPÞ and f⊥ðEPÞ,
which are defined by

hPjVμjBðsÞi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MBðsÞ

q
½vμf∥ðEPÞ þ pμ

⊥f⊥ðEPÞ�; ð3Þ

where EP is the outgoing light pseudoscalar meson
energy, vμ ≡ pμ

BðsÞ=MBðsÞ is the BðsÞ-meson velocity, and

pμ
⊥ ≡ pμ

P − ðpP · vÞvμ. In the BðsÞ-meson rest frame, which
we will use for our simulations, f∥ and f⊥ are proportional
to the hadronic matrix elements of the temporal and spatial
vector currents:

f∥ðEPÞ ¼
hPjV0jBðsÞiffiffiffiffiffiffiffiffiffiffiffiffiffi

2MBðsÞ

q ; ð4Þ
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hPjVijBðsÞiffiffiffiffiffiffiffiffiffiffiffiffiffi

2MBðsÞ

q 1
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P
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The vector and scalar form factors can be easily obtained
from f∥ and f⊥ via

fþðq2Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2MBðsÞ
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
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þ ðE2
P −M2

PÞf⊥ðEPÞ�: ð7Þ

B. Actions and parameters

We use the ð2þ 1Þ-flavor domain-wall fermion and
Iwasaki gauge-field ensembles generated by the RBC
and UKQCD collaborations [15,16]. We perform measure-
ments at five different light sea-quark massesml and at two
lattice spacings of a ≈ 0.11 fm (a−1 ≈ 1.729 GeV) and
a ≈ 0.086 fm (a−1 ≈ 2.281 GeV). The light sea-quark
masses ml correspond to pion masses of 289 MeV≲
Mπ ≲ 422 MeV. The up and down sea-quark masses are
degenerate and the strange sea-quark mass mh is tuned
within 10% of its physical value. The spatial volumes are
approximately ð2.6 fmÞ3, such that MπL ≥ 4. We summa-
rize the simulation parameters in Table I.
In the valence sector we use for the light quarks the

domain-wall action [35,36] and generate propagators with
periodic boundary conditions in space and time and with
the same domain-wall height (M5 ¼ 1.8) and extent of the
fifth dimension (Ls ¼ 16) as in the sea sector. We generate
both unitary light valence-quark propagators with the same
mass as the light sea quarks and propagators with a mass
close to the physical strange quark. On the coarser
ensembles we choose ams ¼ 0.0343 and on the finer
ensembles ams ¼ 0.0272.
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For the bottom quarks, we use the Columbia version of
the relativistic heavy quark (RHQ) action [17] to control
heavy-quark discretization errors introduced by the large
lattice b-quark mass. We use the anisotropic OðaÞ
improved Wilson-clover action with the following three
parameters: the bare-quark massm0a, clover coefficient cP,
and anisotropy parameter ζ. In this paper we use the RHQ
parameters tuned nonperturbatively in Ref. [18] to repro-
duce the experimentally measured Bs-meson mass and
hyperfine splitting; we list their values in Table II.
We reduce autocorrelations between our lattices by

shifting the gauge fields by a random 4-vector before
creating the sources for the valence-quark propagators used
in the 2-point and 3-point correlation functions. This
random 4-vector shift is equivalent to placing the sources
at random positions in spacetime but simplifies the sub-
sequent analysis. On the finer ensembles, we double the
statistics by using two sources per configuration separated
by half the lattice temporal extent.

C. Operator renormalization and improvement

To match the lattice amplitudes to the continuum matrix
elements, we multiply by the heavy-light renormalization
factor Zbl

Vμ
:

hPjVμjBðsÞi ¼ Zbl
Vμ
hPjVμjBðsÞi; ð8Þ

where Vμ and Vμ are the continuum and lattice current
operators, respectively. Following Ref. [19] we calculate
the renormalization factor Zbl

Vμ
using a mostly nonpertur-

bative method in which we express Zbl
Vμ

as the following

product:

Zbl
Vμ

¼ ρblVμ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Zbb
V Zll

V

q
: ð9Þ

Most of the heavy-light current renormalization comes
from the flavor-conserving factors Zbb

V and Zll
V . The

remaining factor ρblV is expected to be close to unity
because most of the radiative corrections, including
contributions from tadpole graphs, cancel [37].
Both flavor-conserving renormalization factors Zbb

V and
Zll
V were computed nonperturbatively in previous works.

We computed Zbb
V for our earlier calculation of B-meson

decay constants from the matrix element of the b → b
vector current between two Bs mesons [14]. We can also
take advantage of the fact that for domain-wall fermions
Zll
V ¼ Zll

A up to corrections of OðamresÞ and use the
determination of Zll

A from Ref. [16]. The flavor off-diagonal
renormalization factor ρblV is calculated at OðαsÞ in mean-
field improved lattice perturbation theory [38] and evalu-

ated at the MS coupling αMS
s ðμ ¼ a−1Þ. Our perturbative

computation extends the work of Ref. [39] to bilinears with
one relativistic heavy quark in the Columbia formulation

and one domain-wall light quark. For αMS
s , we use Eq. (167)

of Ref. [39], which does not take into account sea-quark
effects. Because sea-quark effects enter at two loops,
however, and the rest of the computation is performed at
one loop, the error introduced by setting Nf ¼ 0 is of the
same size as other remaining truncation errors. Further
details of the perturbative calculation will be provided in a
forthcoming publication [21]. Table III shows the renorm-
alization factors used in this paper.
We reduce discretization errors in the heavy-light vector

current by improving it through OðαsaÞ. We compute the
matrix element of the tree-level heavy-light vector current

TABLE I. Lattice simulation parameters [15,16]. The columns list the lattice volume, approximate lattice spacing, light (ml) and
strange (mh) sea-quark masses, residual chiral symmetry breaking parameter mres, physical u=d- and s-quark mass, unitary pion mass,
number of configurations analyzed and number of sources. The tildes over a ~mu=d and a ~ms denote that these values include the residual
quark mass.

ðLaÞ3 × ðTaÞ ≈ aðfmÞ a−1 [GeV] aml amh amres a ~mu=d a ~ms Mπ [MeV]
No.

configurations
No. time
sources

243 × 64 0.11 1.729(25) 0.005 0.040 0.003152 0.00136(4) 0.0379(11) 329 1636 1
243 × 64 0.11 1.729(25) 0.010 0.040 0.003152 0.00136(4) 0.0379(11) 422 1419 1

323 × 64 0.086 2.281(28) 0.004 0.030 0.0006664 0.00102(5) 0.0280(7) 289 628 2
323 × 64 0.086 2.281(28) 0.006 0.030 0.0006664 0.00102(5) 0.0280(7) 345 889 2
323 × 64 0.086 2.281(28) 0.008 0.030 0.0006664 0.00102(5) 0.0280(7) 394 544 2

TABLE II. Tuned RHQ parameters on the 243 and 323 ensembles [18]. The errors listed for m0a, cP, and ζ are
from left to right: statistics, heavy-quark discretization errors, the lattice scale uncertainty, and the uncertainty in the
experimental measurement of the Bs-meson hyperfine splitting, respectively.

m0a cP ζ

a ≈ 0.11 fm 8.45(6)(13)(50)(7) 5.8(1)(4)(4)(2) 3.10(7)(11)(9)(0)
a ≈ 0.086 fm 3.99(3)(6)(18)(3) 3.57(7)(22)(19)(14) 1.93(4)(7)(3)(0)
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V0
μðxÞ ¼ q̄ðxÞγμQðxÞ; ð10Þ

plus matrix elements of these additional single-derivative
operators

V1
μðxÞ ¼ q̄ðxÞ2 ~DμQðxÞ; ð11Þ

V2
μðxÞ ¼ q̄ðxÞ2D⃖μQðxÞ; ð12Þ

V3
μðxÞ ¼ q̄ðxÞ2γμγi ~DiQðxÞ; ð13Þ

V4
μðxÞ ¼ q̄ðxÞ2γμγiD⃖iQðxÞ; ð14Þ

where the covariant derivatives are defined by

~DμQðxÞ ¼ 1

2
ðUμðxÞQðxþ μ̂Þ

−U†
μðx − μ̂ÞQðx − μ̂ÞÞ; ð15Þ

q̄ðxÞD⃖μ ¼
1

2
ðq̄ðxþ μ̂ÞU†

μðxÞ
− q̄ðx − μ̂ÞUμðx − μ̂ÞÞ: ð16Þ

The temporal and spatial OðaÞ-improved vector-current
operators are given by the following sums:

V imp
0 ðxÞ ¼ V0

0ðxÞ þ c3t V3
0ðxÞ þ c4t V4

0ðxÞ; ð17Þ

V imp
i ðxÞ ¼ V0

i ðxÞ þ c1sV1
i ðxÞ þ c2sV2

i ðxÞ
þ c3sV3

i ðxÞ þ c4sV4
i ðxÞ: ð18Þ

We calculate the coefficients cnt and cns at one loop in mean-
field improved lattice perturbation theory [21]; the values of

the coefficients evaluated at αMS
s ða−1Þ are shown in

Table III.

III. ANALYSIS

Here we present our determinations of the form factors
fþðq2Þ and f0ðq2Þ for B → πlν (Bs → Klν) at large
values of q2 ≳ 19.0 GeV2 (q2 ≳ 17.6 GeV2) accessible
in our numerical simulations.
Our analysis proceeds in three steps: First, in Sec. III A,

we fit the pion, kaon, and BðsÞ-meson 2-point correlation

functions to obtain the ground-state meson masses. The
results for these meson masses then enter our 3-point
correlator fits in Sec. III B to obtain the lattice form factors
f∥ðEPÞ and f⊥ðEPÞ at fixed values of the pion/kaon energy
EP. In Sec. III C, we interpolate the renormalized values for
f∥ðEPÞ and f⊥ðEPÞ in energy, and extrapolate to the
physical light-quark masses and the continuum limit, using
SU(2) hard-pion χPT formulated for heavy-light mesons.
To avoid possible biases due to analysis choices, we use the
same fit functions in the correlator and chiral fits for both
processes B → πlν and Bs → Klν, and fitting ranges that
are as close as possible.
We propagate statistical errors throughout the analysis

via a single-elimination jackknife procedure. We avoid a
direct dependence on the lattice scale by carrying out our
analysis in units of the Bs-meson mass. The Bs-meson mass
plays a special role because we tuned parameters of the
b-quark action to match the experimental value. Thus we
can obtain the form factors in physical units after the chiral-
continuum extrapolation by multiplying by Mexp

Bs
to the

appropriate power. With this approach, the uncertainty on
the lattice scale enters only indirectly via the values of the
RHQ parameters.
We use the Chroma software library for lattice QCD to

compute our numerical data for the lattice 2-point and
3-point correlation functions [40].

A. Two-point correlator fits

To obtain the lattice BðsÞ → P amplitude, we first
calculate the following two-point correlation functions:

CPðt; ~pPÞ ¼
X
~x

ei~pP·~xhO†
Pð~x; tÞOPð~0; 0Þi; ð19Þ

CBðsÞ ðtÞ ¼
X
~x

hO†
BðsÞ ð~x; tÞ ~OBðsÞ ð~0; 0Þi; ð20Þ

~CBðsÞ ðtÞ ¼
X
~x

h ~O†
BðsÞ ð~x; tÞ ~OBðsÞ ð~0; 0Þi; ð21Þ

where OP ¼ q̄γ5q and OBðsÞ ¼ Q̄γ5q are interpolating
operators for the light pseudoscalar and BðsÞ-meson,
respectively. Both pions and kaons are simulated with a
point source and point sink, whereas b-quark propagators

TABLE III. Operator renormalization factors and improvement coefficients. The flavor-conserving Z factors were obtained
nonperturbatively [14,16]. The ρ factors and improvement coefficients cni were computed at one loop in mean-field improved lattice

perturbation theory and are evaluated at αMS
s ða−1Þ [21].

Zll
V Zbb

V αMS
s ða−1Þ ρV0

ρVi c3t c4t c1s c2s c3s c4s

a ≈ 0.11 fm 0.71689(51) 10.039(25) 0.23 1.02658 0.99723 0.0558 −0.0099 −0.00079 0.0018 0.0485 −0.0033
a ≈ 0.086 fm 0.74469(13) 5.256(8) 0.22 1.01661 0.99398 0.0547 −0.0095 −0.0012 0.00047 0.0480 −0.0020
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are generated with a gauge-invariant Gaussian smeared
source [41,42] to reduce excited state contamination. We
employ the same smearing parameters optimized in
Ref. [18] and denote a smeared source in Eqs. (19)–(21)
with a tilde above the operator.
We obtain the pion or kaon energy and BðsÞ-meson mass

from the exponential decay of the correlators in Eqs. (19)
and (20). The correlator in Eq. (21) is used to normalize the
BðsÞ → P three-point function. We work in the BðsÞ-meson
rest frame such that only pions or kaons carry nonzero
momentum. In our analysis we use data with discrete lattice
pion momenta through 2πð1; 1; 1Þ=L and kaon momenta
through 2πð2; 0; 0Þ=L. We average the results for all
equivalent momenta, i.e. with different spatial directions
but the same total j~pPj. We effectively double our statistics
by folding the two-point correlators at the temporal
midpoint of the lattice, thereby averaging forward- and
backward-propagating states.
At sufficiently large lattice times, the ground-statemasses

and energies can be determined from simple two-point
correlator ratios. We define the light pseudoscalar-meson
effective energy and BðsÞ-meson effective mass as

EPðt; ~pPÞ ¼ cosh−1
�
CPðt; ~pPÞ þ CPðtþ 2; ~pPÞ

CPðtþ 1; ~pPÞ
�
; ð22Þ

MBðsÞ ðtÞ ¼ cosh−1
�CBðsÞ ðtÞ þ CBðsÞ ðtþ 2Þ

CBðsÞ ðtþ 1Þ
�
: ð23Þ

We perform correlated, constant-in-time, fits to these
expressions, choosing fit ranges without visible excited-
state contamination that lead to acceptablepvalues. Figure 1
shows example meson-mass determinations on our fine
ensemble with aml ¼ 0.004. To minimize bias, we use the
same fit range for all ensembleswith the same lattice spacing
(although different for light and heavy-light mesons); these
fit ranges are given in Table IV. The resulting pion/kaon and
BðsÞ-meson masses on all ensembles are given in Tables XV
and XVI, respectively.
In the continuum limit, the pion and kaon energies

should satisfy the dispersion relation E2
P ¼ M2

P þ ~p2
P and

the amplitudes of the two-point functions ZP ¼ jh0jOPjπij
should be independent of the momentum ~pP. We obtain the
amplitudes from correlated plateau fits to

ZPðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EPCPðt; ~pPÞ

e−EPt

r
ð24Þ

using the same fit ranges as for the masses. Figure 2
compares the measured pion and kaon energies and ampli-
tudes with continuum expectations on the a ≈ 0.086 fm,
aml ¼ 0.004 ensemble. The measured kaon energies and
amplitudes agree remarkably well with the predictions
from the continuum dispersion relation, to within 5%
even at the largest momentum a~pK ¼ 2πð2; 0; 0Þ=L.
Although the pion data is not precise enough to draw
strong quantitative conclusions, the measured energies
and amplitudes still agree with continuum expectations

0.11

0.12

0.13

0.14

0.15

 0  5  10  15  20  25  30

aM
π

(t
)

time slice

aMπ = 0.12611(51), p = 37%

2.28

2.30

2.32

2.34

2.36

 0  5  10  15  20  25  30

aM
B

(t
)

time slice

aMB = 2.3203(14) , p = 11%

0.22

0.23

0.24

0.25

 0  5  10  15  20  25  30

aM
K

(t
)

time slice

aMπ = 0.23249(42), p = 17%

2.30

2.32

2.34

2.36

2.38

 0  5  10  15  20  25  30

aM
B

s
(t

)

time slice

aMBs
 = 2.3509(11) , p =  7%

FIG. 1 (color online). Effective masses of the pion (upper left), kaon (bottom left), Bmeson (upper right) and Bs meson (bottom right)
on the a ≈ 0.086 fm ensemble with aml ¼ 0.004. Shaded bands show the correlated fit results with jackknife statistical errors over the fit
ranges used. All results are shown in lattice units.
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within the large statistical uncertainties for all momenta.
Dispersion-relation plots for the other ensembles show
similar behavior.
The kaon data, for which both the energies and ampli-

tudes are statistically well resolved, provides an accurate
measure of momentum-dependent discretization effects,
while the pion data provides only a rough cross-check. On
all ensembles, the measured pion and kaon energies both
agree within statistical errors with the predictions from the
continuum dispersion relation, and the measured pion and
kaon amplitudes agree with the zero-momentum result.
Thus, in our determinations of the lattice form factors f∥
and f⊥ in the next section, we use pion and kaon energies
calculated from the continuum dispersion relation (rather
than the measured values) to reduce the statistical uncer-
tainties. Although we do not use the amplitudes obtained

from Eq. (24) in our subsequent form-factor determina-
tions, the observed momentum independence of ZP pro-
vides further support for this strategy.

B. Three-point correlator fits

To extract the desired BðsÞ → P hadronic amplitudes, we
calculate the following three point correlation functions:

Cimp
3;μ ðt; tsnk; ~pPÞ
¼
X
~x;~y

ei~pP·~yh ~O†
BðsÞ ð~x; tsnkÞV

imp
μ ð~y; tÞOPð~0; 0Þi; ð25Þ

where the improved lattice temporal and spatial lattice
vector currents V imp

μ are defined in Eqs. (17) and (18). As

TABLE IV. Time ranges used in two-point and three-point fits to determine the lattice meson masses and form
factors. For the three-point fits, we use the same range for all operators and momenta.

[tmin, tmax]

2-point fits 3-point fits

Mπ MK MB MBs
fBπ∥ fBπ⊥ fBsK

∥ fBsK⊥
a ≈ 0.11 fm [12,23] [12,23] [7,30] [10,30] [6,10] [6,10] [6,10] [6,10]
a ≈ 0.086 fm [16,30] [16,30] [9,30] [13,30] [8,13] [8,13] [8,13] [8,13]
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FIG. 2 (color online). Comparison of pion (top) and kaon (bottom) energies (left) and amplitudes (right) with continuum-limit
expectations on the a ≈ 0.086 fm ensemble with aml ¼ 0.004. The dashed lines show a power-counting estimate of the leading
Oðða~pÞ2Þ momentum-dependent discretization errors.
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shown in Fig. 3, we fix the location of the pion or kaon at
the temporal origin and the location of the BðsÞ meson at
time tsnk, and vary the location of the current operator over
all time slices in between. In our calculations, the mass of
the light daughter quark (l) is always equal to the light sea-
quark mass. For B → π decay, the spectator-quark mass (l0)
also equals the light sea-quark mass. For Bs → K decay, the
spectator-quark mass is close to that of the physical strange
quark. We use a Gaussian-smeared sequential source for the
b quark in the BðsÞ meson to reduce excited-state contami-
nation. We insert discrete nonzero momentum at the local
current operator through ~pπ ¼ 2πð1; 1; 1Þ=L for B → π and
~pK ¼ 2πð2; 0; 0Þ=L for Bs → K (recall that the BðsÞ meson
is at rest). To improve statistics, we compute the three-point
correlators with both positive and negative source-sink
separations (�tsnk); we also average over equivalent spatial
momenta.
The lattice form factors flat∥ and flat⊥ are obtained from the

following ratios of correlation functions far away from both
the pion/kaon source and the BðsÞ-meson sink:

flat∥ ð~pPÞ ¼ lim
0≪t≪tsnk

R3;0ðt; tsnk; ~pPÞ; ð26Þ

flat⊥ ð~pPÞ ¼ lim
0≪t≪tsnk

1

pi
π
R3;iðt; tsnk; ~pPÞ; ð27Þ

with

R3;μðt; tsnk; ~pPÞ

¼ Cimp
3;μ ðt; tsnk; ~pPÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CP
2 ðt; ~pPÞ ~CBðsÞ

2 ðtsnk − tÞ
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EP

e−EPte−MBðtsnk−tÞ

r
; ð28Þ

where we use the continuum dispersion relation and
measured light pseudoscalar-meson mass MP to construct
the energy EP. To determine the optimal source-sink
separation for C3;μðt; tsnk; ~pPÞ, we carried out a dedicated
study. We computed the unimproved ratio R0

3;μ for several

values of the source-sink separation on one a ≈ 0.086 fm
and one a ≈ 0.11 fm ensemble, choosing those with the
lightest sea-quark mass because they are most sensitive to
excited-state contamination. Figure 4 shows the ratio R0

3;0

for B → π with ~pπ ¼ 0 for several source-sink separations
on the a ≈ 0.086 fm ensemble. All plateaus overlap within
statistical uncertainties in the region far from both the
source and the sink. The results for the ratios R0

3;0 and R0
3;i

at nonzero momenta and on the a ≈ 0.11 fm ensemble look
similar. Because the statistical errors increase with larger
source-sink separation, we chose tsnk ¼ 26 (20) on the
a ≈ 0.086 fm (a ≈ 0.11 fm) ensembles. This corresponds
to approximately the same physical distance for the two
lattice spacings.
Figure 5 shows the OðαsaÞ-improved ratios R3;0 and

R3;i=pi
P for different momenta on the a ≈ 0.086 fm ensem-

ble with aml ¼ 0.004. Results for other ensembles look
similar. We perform correlated, constant-in-time, fits to
these ratios using fit ranges without visible excited-state
contamination that lead to acceptable p values. To mini-
mize bias, we use the same fit range for all momenta and
ensembles with the same lattice spacing; these fit ranges
are given in Table IV. The complete fit results for the
three-point ratios are given in Tables XVII and XVIII.
Finally, we obtain the renormalized BðsÞ → Plν form

factors f∥ and f⊥ in the continuum after multiplying by the
heavy-light renormalization factors Zbl

Vμ
given in Table III:

f∥ð~pPÞ ¼ Zbl
V0
flat∥ ð~pPÞ; ð29Þ

f⊥ð~pPÞ ¼ Zbl
Vi
flat⊥ ð~pPÞ: ð30Þ

C. Chiral-continuum extrapolation

We extrapolate the renormalized lattice form factors
to the physical light-quark mass, and interpolate in the
pion or kaon energy using next-to-leading order (NLO)
SU(2) chiral perturbation theory for heavy-light mesons

FIG. 3. Three-point correlation function used to obtain the
B → P form factors. The single and double lines correspond to
light- and b-quark propagators, respectively. For B → πlν, the
spectator-quark mass (ml0 ) is the same as the light sea-quark
mass, while for Bs → Klν, the spectator-quark mass is close to
the physical ms. The light daughter-quark mass (ml) is always
equal to the light sea-quark mass. Black and grey circles denote
local and smeared operators, respectively.
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FIG. 4 (color online). Unimproved three-point ratio R0
3;0 for

~pπ ¼ 0 with several source-sink separations tsnk on the a ≈
0.086 fm ensemble with aml ¼ 0.004.
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(HMχPT) in the hard-pion limit. In the SU(2) theory, the
strange-quark mass is integrated out, and only the light-
quarks’ degrees-of-freedom are included. Therefore the
chiral logarithms for B → πlν (Bs → Klν) depend on the
pion mass and the pion (kaon) energy. The SU(2) low-
energy constants depend upon the value of the strange-
quark mass, as well as on the value of the b-quark mass for
B-meson form factors. Hard-pion χPT, which was intro-
duced by Flynn and Sachrajda for the light-pseudoscalar-
meson decay K → πlν in Ref. [43] and later extended to
heavy-light-meson decays by Bijnens and Jemos in
Ref. [23], applies in the kinematic regime where the pion
or kaon energy is large compared to its rest mass. Almost
all of our lattice simulation data is in this hard-pion
(or kaon) regime. We can obtain the expressions for the
B → πlν and Bs → Klν form factors in hard-pion/kaon
χPT by taking the limit of the continuum expressions from
Ref. [22] as Mπ=EP → 0, where P ¼ π; K denotes the
final-state pseudoscalar meson.
The NLO SU(2) χPT full-QCD expressions for the B →

πlν and Bs → Klν form factors in the hard-pion/kaon
limit are functions of the pion mass Mπ, pion or kaon
energy EP, and lattice spacing a. They have two general
forms:

f
BðsÞP
no poleðMπ; EP; a2Þ

¼ cð1Þnp

�
1þ

�
δf∥

ð4πfÞ2 þ cð2Þnp
M2

π

Λ2
þ cð3Þnp

EP

Λ

þ cð4Þnp
E2
P

Λ2
þ cð5Þnp

a2

Λ2a432

��
; ð31Þ

f
BðsÞP
pole ðMπ; EP; a2Þ

¼ 1

EP þ Δ
cð1Þp

�
1þ

�
δf⊥

ð4πfÞ2 þ cð2Þp
M2

π

Λ2
þ cð3Þp

EP

Λ

þ cð4Þp
E2
P

Λ2
þ cð5Þp

a2

Λ2a432

��
; ð32Þ

one with a pole at EP ¼ −Δ ¼ MB� −MBðsÞ and one
without. Here the B� resonance corresponds to a state with
flavor bu and quantum numbers JP ¼ 0þ for f∥ and 1− for
f⊥. The experimentally measured vector-meson mass is
MB� ¼ 5.3252ð4Þ GeV [10]. The scalar B� meson has not
been observed experimentally, but its value has been
estimated theoretically using heavy-quark and chiral-
symmetry arguments to be MB� ð0þÞ ¼ 5.63ð4Þ GeV
[44], while the 0þ-0− splitting has been estimated in
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FIG. 5 (color online). OðαsaÞ-improved ratios R3;i=pi
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(2þ 1)-flavor lattice QCD to be MB� ð0þÞ −MB ∼
400 MeV [45]. In our chiral-continuum extrapolations
we include the effects of resonances below the Bπ and
BsK production thresholds, i.e. q2 < ðMBðsÞ þMPÞ2. For
B → πlν, the B� meson lies below the Bπ production
threshold, so we include a pole in the fit for fBπ⊥ taking
ΔBπ⊥ ¼ 45.78 MeV from experiment [10]. The predicted
value of MB�ð0þÞ is well above MB þMπ, however, so we
do not include a pole in the fit of fBπ∥ . For Bs → K, both
MB� and MB� ð0þÞ are below MBs

þMK, so we include a

pole in the fits for both fBsK⊥ and fBsK
∥ , taking ΔBsK⊥ ¼

−41.6 MeV from experiment [10] and taking ΔBsK
∥ ¼

263 MeV from the model estimate in Ref. [44]. The precise
value of MB� ð0þÞ has little impact on the fit because the
pole location is so far outside the semileptonic region, but
we vary its value by a generous amount when estimating
the chiral-continuum extrapolation error in Sec. IVA.
The one-loop chiral logarithms are the same for f∥ and

f⊥, but differ for B → πlν and Bs → Klν:

δfBπ ¼ −
3

4
ð3g2b þ 1ÞM2

π log

�
M2

π

Λ2

�
; ð33Þ

δfBsK ¼ −
3

4
M2

π log

�
M2

π

Λ2

�
; ð34Þ

where gb is the B�Bπ coupling constant. At tree level, the
mass of a pion composed of two domain-wall quarks is
given in terms of the light-quark mass by

M2
π ¼ 2μðml þmresÞ; ð35Þ

where μ is a leading-order low-energy constant.
We include a term proportional to a2 in the chiral fit

functions Eqs. (31) and (32) to account for the dominant
lattice-spacing dependence. To make the a2 analytic term
dimensionless with an expected coefficient ofOð1Þ in χPT,
we normalize it using the lattice spacing on the finer 323

ensembles a32. Discretization errors from the domain-wall
and Iwasaki actions are of OðaΛQCDÞ2; using ΛQCD ¼
500 MeV,1 we estimate these to be about 5% on the 323

ensembles. The remaining discretization errors—light-
quark and gluon discretization errors in the heavy-light
current, and heavy-quark discretization errors from
both the action and current—are expected from power
counting to be much smaller. In Secs. IV E and IV F, we

estimate their sizes to be below 2%. We therefore expect
light-quark and gluon discretization errors from the action
to dominate the scaling behavior of the form factors, such
that including an a2 term in the fit will largely remove these
contributions. We will add the remaining subdominant
discretization errors a posteriori to the systematic error
budget after the chiral fit.
In addition to the pion masses and pion/kaon energies,

several parameters enter the expressions in Eqs. (31) and
(32). For completeness, we compile the values of the fixed
parameters in our chiral fits in Table V. We use the lattice
spacings and low-energy constant μ obtained in Ref. [16]
from the RBC/UKQCD analysis of light pseudoscalar
meson masses and decay constants. We use the PDG value
of fπ ¼ 130.4ð2Þ MeV [10], and take Λχ ¼ 1 GeV for the
scale in the chiral logarithms. We use the B�Bπ coupling
constant gb ¼ 0.57ð8Þ obtained in our companion analysis
also using the RBC/UKQCD domain-wallþ Iwasaki
ensembles and the RHQ action for the b-quarks [51].
We perform correlated chiral-continuum fits to the data

calculated on all five sea-quark ensembles listed in Table I
using the full-QCD NLO SU(2) hard-pion/kaon HMχPT
expressions. For B → πlν, we include discrete lattice
momenta up to ~pπ ¼ 2πð1; 1; 1Þ=L, which corresponds
to ≈0.78 GeV on the coarser ensembles. For Bs → Klν,
where the statistical errors are smaller, we include momenta
up to ~pK ¼ 2πð2; 0; 0Þ=L, or ≈0.91 GeV on the coarser
ensembles. For the pion masses in Eqs. (31) and (32), we
use the tree-level expression in Eq. (35). We obtain the
physical form factors after the chiral-continuum fit by
setting the light quark mass to the physical average u=d-
quark mass a32mud ¼ 0.00102ð5Þ [16] and the lattice
spacing to zero.
Figure 6 shows the resulting fits, which all have good

χ2=d:o:f: and p-values. We do not observe any statistically-
significant lattice-spacing dependence for any of the form
factors, and cannot resolve the coefficients of the a2 terms
in the four fits. Dropping the a2 term altogether does not
reduce the fit quality, and we consider this alternate fit as
one of many possibilities when estimating the systematic
uncertainty due to the chiral-continuum extrapolation in
Sec. IVA. We observe a mild sea-quark mass dependence
for fBsK

∥ , and cannot resolve any sea-quark mass depend-
ence in the other form factors. Dropping the term

TABLE V. Constants used in the chiral and continuum extrap-
olations of the B → πlν and Bs → Klν form factors [10,16,51].

a ≈ 0.11 fm ≈ 0.086 fm

a−1 1.729 GeV 2.281 GeV
aμ 2.348 1.826
fπ 130.4 MeV
gb 0.57
Λχ 1 GeV

1Recent three- and four-flavor lattice-QCD calculations typ-
ically give values for ΛMS in the range of about 300–400 MeV
[46–50]. The 2013 Flavor Lattice Averaging Group (FLAG)
review quotes the range Λð3Þ

MS
ð3Þ ¼ 339ð17Þ MeV for three active

flavors [11]. To be conservative, we take a slightly larger value
ΛQCD ¼ 500 MeV for the power-counting estimates throughout
this paper.
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proportional toM2
π reduces the p-value of the f

BsK
∥ to ∼5%,

which is still acceptable, and does not impact the quality of
the other fits. Again, we consider this alternative when
estimating the chiral-continuum extrapolation error.
Finally, we do not see any evidence for the onset of chiral
logarithms given that our lightest pion Mπ ≈ 290 MeV is
still quite heavy, and consider fits without the logarithms in
Eqs. (31) and (32) among the alternate fits for assessing the
systematic uncertainty.
As a consistency check of our chiral-continuum extrapo-

lation, we can use our B → πlν form-factor fit results to
obtain a rough estimate for the B�Bπ coupling at lowest
order in the 1=mb expansion of HMχPT. From our
preferred fits of f∥ and f⊥, we find that the ratio of
leading-order coefficients gives

gb ≈ cð1Þp =cð1Þnp ¼ 0.35ð15Þ; ð36Þ

where the error is statistical only (and does not include
omitted higher-order corrections in the chiral and 1=mb
expansions). The value for gb in Eq. (36) is consistent with
our independent determination of the B�Bπ coupling in
Ref. [51], and mostly independent of the input value of gb
in the chiral logarithms.
We also considered chiral-continuum extrapolations of

the B → πlν form factors using NLO SU(3) HMχPT, in
which the logarithms have explicit strange-quark mass
dependence, but were unable to obtain good fits for fBπ∥ .
Fits of fBπ∥ to NLO SU(2) “soft-pion” χPT, in which the
logarithms have explicit dependence on the pion energy,
also failed to describe the data. All fits tried led to
acceptable p-values for the case of fBπ⊥ due to the fact
that the shape is largely dictated by the B� pole term in the
denominator. Finally, we tried supplementing the NLO
expressions for the B → πlν form factors with NNLO
analytic terms. The resulting partly NNLO fits yielded
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FIG. 6 (color online). Chiral-continuum extrapolation of the B → πlν (upper plots) and Bs → Klν (lower plots) form factors from
correlated fits using NLO SU(2) hard-pion/kaon HMχPT. Fits of f⊥ are on the left and of f∥ are on the right. In each plot, the colors
distinguish between data points on the five different ensembles: circles and squares correspond to the a ≈ 0.11 fm data and triangles and
diamonds to a ≈ 0.086 fm data. The colored fit curves show the interpolation/extrapolation in pion/kaon energy: the fit function is
evaluated at the unphysical sea-quark masses and nonzero lattice spacings on the different ensembles, such that the curves should go
through the data points of the same color. The continuum, physical-quark-mass form factors are shown as a function of pion/kaon energy
by the black lines with gray error band. The vertical dashed line on the left-hand side of each plot shows the physical pion or kaon mass.
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form-factor results consistent with those from our pre-
ferred fits, but with significantly larger uncertainties
due to the fact our data could not resolve any of the
higher-order terms.

IV. ESTIMATION OF SYSTEMATIC ERRORS

We now discuss the sources of systematic uncertainty in
our determinations of the B → πlν and Bs → Klν form
factors. Each uncertainty is discussed in a separate sub-
section. We visually summarize the error budgets for the
form factors versus q2 in Fig. 7, and provide a detailed
numerical error budget for the form factors at three
representative q2 values within the range of simulated
lattice momenta in Table VI. The form factors at these three
points will be used later in Sec. V for the extrapolation to
q2 ¼ 0 via the z expansion.
In cases where the estimation of a systematic uncertainty

requires the explicit variation of simulation parameters, we

use the a ≈ 0.11 fm ensemble with aml ¼ 0.005, and take
the dependence of that ensemble to be representative of all
ensembles. We choose this ensemble because it has very
high statistics, and therefore allows us to most reliably
measure the dependence of the form factors on the input
parameters. We expect the behavior of the form factors on
this ensemble to provide conservative bounds on the errors
since it has the largest lattice spacing and heaviest kaons.

A. Chiral-continuum extrapolation

We estimate the systematic uncertainty due to the chiral-
continuum extrapolation of the B → π and Bs → K form
factors by varying the chiral-continuum fit Ansätze. We
consider the following fit alternatives:

(i) standard HMχPT including explicit EP dependence
in the chiral logarithms

(ii) omitting the term proportional to a2 in Eqs. (31)
and (32)
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FIG. 7 (color online). Visualization of the error budgets for the B → πlν (upper plots) and Bs → Klν (lower plots) form factors. Error
budgets for f⊥ are on the left and of f∥ are on the right. The curves from bottom-to-top show the increase in the total percentage error as
we add each individual source of error in quadrature. In each plot, the left y-axis label shows the squared error, while the right y-axis
label shows the error in the form factor. For readability, we have combined all of the sources of uncertainty that we estimate to be below
∼1% into a single entry labeled “other systematics.” The three vertical lines in each plot show the location of the synthetic data points
used in the subsequent extrapolation to q2 ¼ 0. Detailed error budgets at these q2 values are given in Table VI.
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(iii) omitting the term proportional to M2
π in Eqs. (31)

and (32)
(iv) omitting terms proportional to a2 andM2

π in Eqs. (31)
and (32)

(v) analytic fits omitting the chiral logarithms in
Eqs. (31) and (32)

(vi) analytic fits omitting the chiral logarithms and the
term proportional to a2 in Eqs. (31) and (32)

(vii) varying the value of fπ in the coefficients of the
chiral logarithms from f0 ¼ 112ð2Þ MeV [16] in the
chiral limit to fK ¼ 156.1ð8Þ MeV [10]

(viii) varying the B�Bπ coupling in the coefficients of the
chiral logarithms gb ¼ 0.57ð8Þ by plus/minus one
standard deviation [51]

(ix) varying the scalar pole mass MB� ð0þÞ ¼ 5.63 GeV
in fBsK

0 by plus/minus 100 MeV
(x) omitting the data point at zero momentum
(xi) omitting the data point at the highest momentum

~p ¼ 2π=Lð2; 0; 0Þ for fBsK
þ=0

(xii) excluding ensembles with pion masses
Mπ ≳ 400 MeV.

Figure 8 shows the relative changes of the form-factor
central values under each fit variation

Δfi ¼ jfprefi − falti j=fprefi ; ð37Þ

where i ¼ f0;þg. We take the largest difference between
our preferred fit and any of the alternate fits as systematic
uncertainty due to the chiral-continuum extrapolation. We
do not use fits with p-values below 1% or those that cannot
resolve the coefficients within statistical uncertainties for
our error estimate. Thus we exclude the fit omitting

ensembles with pion masses Mπ ≳ 400 MeV and the fit
using standard soft-pion HMχPT.
For each form factor, we obtain the largest difference

from our preferred fit using the following variation:

fBπþ ∶ analytic for 18.7 GeV2 ≤ q2 ≤ 22.7 GeV2

and omitting theMπ term elsewhere;

fBπ0 ∶ analytic;

fBsKþ ∶ analytic;

fBsK
0 ∶ omitting the a2 andMπ terms:

We therefore use these fits to obtain the q2-dependent
chiral-continuum extrapolation errors quoted in Table VI
and shown in Fig. 7.

B. Lattice-scale uncertainty

We tuned the parameters of the b-quark action to
reproduce the experimental value of the Bs meson mass,
and carry out our analysis in terms of dimensionless ratios
over MBs

to remove all explicit dependence on the lattice
scale. We then obtain the form factors and momentum
transfers in physical units by multiplying by the appropriate
power of MBs

¼ 5.367ð4Þ GeV. The uncertainties in the
form factors due to the experimental error on MBs

are
negligible.
We do, however, still need to consider the implicit

dependence on the lattice spacing through the parameters
of the b-quark action. We estimate the size of this
dependence, by computing the form factors f⊥ and f∥
for seven sets of RHQ parameters. We then calculate the
slopes with respect to the parameters—Δf=Δm0a,

TABLE VI. Error budgets for the B → πlν and Bs → Klν form factors at three representative q2 values in the range of simulated
lattice momenta. For convenience, we also show the corresponding pion or kaon energy, EP. Errors are given in %. The total error is
obtained by adding the individual errors in quadrature.

fBπþ fBπ0 fBsKþ fBsK
0

EP [GeV] 0.85 0.50 0.27 0.85 0.50 0.27 1.07 0.77 0.53 1.07 0.77 0.53
q2 [GeV2] 19.0 22.6 25.1 19.0 22.6 25.1 17.6 20.8 23.4 17.6 20.8 23.4

fðq2Þ 1.21 2.27 4.11 0.46 0.68 0.92 0.99 1.64 2.77 0.48 0.63 0.81

Statistics 7.9 5.9 12.4 7.3 4.6 3.3 4.1 3.4 3.2 3.4 2.7 2.6
Chiral-continuum extrapolation 6.3 5.0 6.2 10.9 7.6 5.8 3.2 2.8 2.5 5.0 4.9 5.1
Light-quark mass mud 0.3 0.2 0.2 0.4 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.1
Strange-quark mass ms 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0
Lattice-scale uncertainty 2.0 2.0 2.0 2.2 2.2 2.2 2.0 2.0 2.0 2.2 2.2 2.2
RHQ parameter tuning 0.9 0.9 0.8 1.0 1.0 1.0 0.9 0.9 0.9 1.0 1.0 1.0
Renormalization factor 0.8 0.8 0.7 1.6 1.6 1.7 0.9 0.8 0.8 1.6 1.6 1.7
Finite volume 0.5 0.4 0.3 0.7 0.5 0.4 0.2 0.2 0.2 0.2 0.1 0.1
Heavy-quark discretization errors 1.8 1.8 1.8 1.7 1.7 1.7 1.8 1.8 1.8 1.7 1.7 1.7
Light-quark and gluon discretization errors 1.1 1.1 1.1 1.1 1.1 1.1 1.3 1.3 1.3 1.3 1.3 1.3
Isospin breaking 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

Total (%) 10.6 8.4 14.3 13.6 9.6 7.6 6.2 5.5 5.3 7.1 6.7 6.8
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Δf=ΔcP and Δf=Δξ—for all momenta used in the analy-
sis. Next we multiply each slope by the uncertainty in the
corresponding RHQ parameter due to the lattice spacing
from Table II, e.g. Δf=Δm0 × σam0a. Finally, we add the
individual contributions from the three RHQ parameters in
quadrature to obtain the total systematic error due the lattice
spacing.
We examined the slopes with respect to the RHQ

parameters for both B → π and Bs → K, and found them
to be consistent. We therefore base our estimates for the
systematic uncertainty due to the lattice spacing on
the slopes obtained for the Bs → K form factors because
the smaller statistical errors in Bs → K enable the slopes to
be resolved more precisely. Figure 9 shows the slopes of the
Bs → Klν form factors with respect to the fm0a; cP; ζg on
the a ≈ 0.11 fm ensemble with aml ¼ 0.005. For this slope
estimate, we use the unimproved heavy-light vector current
from Eq. (10). We find the largest slopes at ~p ¼ 2πð2; 0; 0Þ
for f⊥ and ~p ¼ 2πð1; 1; 0Þ for f∥. Following the procedure
outlined above, we estimate lattice-spacing errors in f⊥ and
f∥ of 1.9% and 2.2%, respectively. In the continuum this
corresponds to errors on fþ (f0) of 2.0% (2.2%) which we
take for both Bs → K and B → π.

C. Light- and strange-quark mass uncertainties

Here we estimate the error in the form factors due to the
uncertainty in the light-quark mass and the mistuning of the
strange sea quark. For clarity we discuss separately each
place where the light- or strange-quark mass enters the
analysis.

1. u=d-quark mass uncertainty

We obtain the physical form factors f⊥ and f∥ after the
chiral-continuum fit by evaluating Eqs. (31) and (32) at the
physical average u=d-quark mass a32 ~m

phys
ud ¼ 0.00102ð5Þ.

We estimate the error in the form factors due to the light-
quark mass uncertainty by varying ~mphys

ud by plus/minus one
sigma. For B → π the central value shifts by 0.2%–0.3%
for fBπþ and 0.2%–0.4% for fBπ0 , while for Bs → K both
fBsKþ and fBsK

0 change by 0.1%.

2. Strange sea-quark mistuning

Our preferred chiral-continuum fit employs SUð2Þ chiral
perturbation theory, in which the strange quark mass is
integrated out, so our fit function has no explicit
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dependence on ms. Further, at each lattice spacing, results
for the form factors are only available at a single value of
the strange sea-quark mass, so we cannot directly compute
the strange sea-quark mass dependence of f∥ and f⊥. We
therefore study the light sea-quark mass dependence and
use it to bound the strange sea-quark mass dependence. We
cannot resolve any light sea-quark mass dependence within
statistical uncertainties, and expect the strange sea-quark
mass dependence to be even smaller. Thus we take the error
due to mistuning the strange sea-quark mass to be
negligible.

3. Valence strange-quark mass uncertainty

The Bs → K form factors have explicit strange valence-
quark mass dependence. The strange-quark masses

employed in our simulations differ slightly from the
physical, tuned values a24 ~m

phys
s ¼ 0.0379ð11Þ and

a32 ~m
phys
s ¼ 0.0280ð7Þ [16]. To study the valence strange-

quark mass dependence, we calculated the Bs → K form
factors on the a ≈ 0.11 fm, aml ¼ 0.005, ensemble with
two additional spectator-quark masses of a24 ~ms ¼ 0.033
and 0.043. Figure 10 shows the valence-quark mass
dependence of the Bs → K form factors; we observe the
largest slopes for f∥ at p ¼ ð0; 0; 0Þ and for f⊥ at
p ¼ ð1; 0; 0Þ. Multiplication of these measured slopes by
the discrepancy between the simulated and tuned strange-
quark masses, ΔðmsÞ≡ ð ~ms − ~mphys

s Þ ¼ 0.004, leads to
estimates for the error due to mistuning the valence
strange-quark mass of about 0.1% for fþ and below this
for f0 (which we consider as negligible).
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FIG. 9 (color online). RHQ parameter dependence of the Bs → K form factors f⊥ (left) and f∥ (right) on the 243 ensembles with
aml ¼ 0.005 using the unimproved heavy-light vector current in Eq. (10). The slopes are normalized using the form factors obtained at
the central set of RHQ parameters. From left to right, the plots show the dependence on m0a, cP, and ζ. The colored lines show the
results of a linear fit to the three data points at each momentum. The black vertical lines indicate the tuned values of the RHQ parameters.
The shaded vertical bands indicate the systematic errors in the RHQ parameters due to the lattice-scale uncertainty. For clarity, data
points at equal RHQ parameter values are plotted with a slight horizontal offset.
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D. RHQ parameter uncertainty

We compute the semileptonic form factors using the
nonperturbatively tuned RHQ parameters obtained in
Ref. [18] and given in Table II. The RHQ parameters have
four significant sources of uncertainty: statistics, heavy-
quark discretization errors, lattice scale, and the experi-
mental inputs. We already discussed the uncertainty due to
the lattice scale in Sec. IV B. We follow the same approach
for propagating the uncertainty in the RHQ parameters due
to heavy-quark discretization errors and experimental
inputs. We multiply the estimated slopes of the form factors
with respect to changes in m0, cP, and ζ (shown in Fig. 9)
by the uncertainties in the corresponding parameters due to
heavy-quark discretization errors and experimental inputs.
Adding the contributions from the three RHQ parameters
and the two uncertainty sources in quadrature, we obtain

error estimates for fBπþ of 0.8%–0.9%, fBπ0 of 1.0%, fBsKþ of
0.9%, and fBsK

0 of 1.0%.
We neglect the statistical uncertainties in the RHQ

parameters in our final analysis, after checking that they
have a negligible impact on the form factors. On the
a ≈ 0.11 fm, aml ¼ 0.005 ensemble, we computed the
form factors with seven sets of RHQ parameter values.
We then used the approach detailed in Refs. [14,18] to
interpolate to the tuned RHQ parameters. This procedure
automatically propagates the statistical errors in the RHQ
parameters via the jackknife. Indeed we find that the
statistical errors obtained from the two procedures are
identical. Thus we do not need to perform the more
complicated and computationally expensive procedure of
interpolating to the tuned RHQ parameters in our analysis.

E. Heavy-quark discretization errors

The RHQ action gives rise to nontrivial lattice-spacing
dependence in the form factors in the region m0a ∼ 1. To
estimate the size of the resulting discretization errors, we
use the same power-counting approach as in our
companion papers on bottomonium masses and splittings
[18] and BðsÞ-meson decay constants [14].
We tune the parameters of the operators in the

dimension-5 RHQ action nonperturbatively, such that the
leading heavy-quark discretization errors from the action
are of Oða2Þ. We use an OðαsaÞ-improved vector current
and calculate the improvement coefficient to 1-loop; there-
fore the leading heavy-quark discretization errors from the
current are ofOðα2sa; a2Þ. Because we use the same actions
and simulation parameters as in our earlier calculation of
the BðsÞ-meson leptonic decay constants [14], the numerical
error estimates are almost identical in the two works. The
same operators contribute in both cases, but enter a
different number of times for the spatial and temporal
vector currents. Table VII quotes the estimate of heavy-
quark discretization errors from the five different operators
in the action and current on the 243 and 323 ensembles, and
we refer the reader to Sec. V. E and Appendix B of Ref. [14]
for details. We take the size of heavy-quark discretization
errors in our calculation of the B → πlν and Bs → Klν
semileptonic form factors to be the estimate on our finer
a−1 ¼ 2.281 GeV lattices, which is ∼1.7% for the lattice
form factors f∥ and ∼1.8% for f⊥. These lead to errors in
the continuum form factors fþ and f0 of ∼1.8% and
∼1.7%, respectively.

F. Light-quark discretization errors

The dominant discretization errors from the light-quark
and gluon sectors are of OððaΛQCDÞ2Þ from the action, and
is about 5% using ΛQCD ¼ 500 MeV. We remove this
OððaΛQCDÞ2Þ error by including a term proportional to a2

in the chiral-continuum extrapolation [see Eqs. (31) and
(32)]. Then the leading light-quark and gluon discretization
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FIG. 10 (color online). Valence strange-quark mass dependence
of the Bs → K form factors f⊥ (top) and f∥ (bottom) on the
a ≈ 0.11 fm ensemble with aml ¼ 0.005. The slopes are nor-
malized by the form factors obtained with the strange-quark mass
used in our production simulations. The colored lines show the
results of a linear fit to the three data points at each momentum.
The black vertical line with error band shows the total (statistical
plus systematic) uncertainty in the physical strange-quark mass
[16]. For clarity, data points at equal strange-quark masses are
plotted with a slight horizontal offset.
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errors in the heavy-light vector current are of
Oðαsa ~mq; ða ~mqÞ2; α2saΛQCD; ðapÞ2Þ where ~mq denotes
the bare lattice mass. The first entry of Oðαsa ~mqÞ leads
to estimated errors of ∼0.1% in B → π and ∼0.6% in
Bs → K form factors on the 323 ensembles. The second is
negligible (<0.1%) and the third is estimated to be ∼1.1%
in both B → π and Bs → K form factors. Adding these
contributions in quadrature, we estimate the total uncer-
tainty from light-quark and gluon discretization errors in
the heavy-light current to be 1.1% in B → π and 1.3%
in Bs → K.
We do not observe any evidence of sizable momentum-

dependent discretization errors in our data. Figure 2 shows
that the pion and kaon energies and amplitudes are
consistent with continuum expectations, and smaller than
power-counting estimates of OððapÞ2Þ. Thus we do not
include a systematic error due to momentum-dependent
discretization errors.

G. Renormalization factor

We renormalize the lattice form factors using a mostly
nonperturbative approach in which we separate Zbl

Vμ
into

three components. We consider the uncertainties from these
three multiplicative factors separately, and then add them in
quadrature to obtain the total error on the form factors.
For Zll

V, we use the nonperturbatively determined value
of the axial-current renormalization factor ZA in the chiral
limit from Ref. [16]. We can neglect the statistical uncer-
tainty in ZA (which is only 0.02% on the finer ensembles)
and the difference between Zll

V and ZA [which is about
OðamresÞ ∼ 7 × 10−4 at a ≈ 0.086 fm]. For Zbb

V , we use the
nonperturbative determination from [14]. The statistical
uncertainty in Zbb

V on the finer ensemble is 0.15%. We
conservatively estimate the perturbative truncation error in
ρblV to be the full size of the 1-loop correction at the finer
a ≈ 0.086 fm lattice spacing, which leads to 1.7% for ρV0

and 0.6% for ρVi
. These are significantly larger than what

we would estimate for two-loop contributions from
naive power counting. Taking αs ∼ 0.23 on the
coarser lattice spacing and a coefficient of 1=ð4πÞ2 from

two loop-suppression factors, we would obtain an estimate
of 0.03%. Even with a coefficient of 1=π2, we would obtain
an estimate of 0.5%, which is slightly smaller than the
perturbative uncertainty that we assign to ρVi

and 3 times
smaller than the error we assign to ρV0

. Because we use the
values of ρVμ

and Zll
V in the chiral limit, we must consider

the errors due to the nonzero physical up, down, and
strange-quark masses. The leading quark-mass dependent
errors in ρVμ

and Zll
V are Oðαsa ~mqÞ and Oðða ~mqÞ2Þ,

respectively, but these are already accounted for in our
estimate of light-quark and gluon discretization errors (see
Sec. IV F). Thus we do not count them again here.
Perturbative truncation errors are by far the dominant

source of uncertainty in the renormalization factor, and the
quadrature sum of the three error contributions is 1.7% for
f∥ and 0.6% for f⊥.

H. Finite-volume errors

We compute the form factors on a finite-sized lattice. We
estimate the effect of the finite spatial volume using one-
loop finite-volume SU(2) hard-pion χPT, in which loop
integrals are replaced by a sum over lattice sites. Only a
single integral enters the NLO SU(2) hard-pion ChPT
expression. The correction to Eqs. (33) and (34) to account
for the finite spatial volume is given by a sum over
modified Bessel functions [52,53]:

M2
π log

�
M2

π

Λ2

�
→ M2

π log

�
M2

π

Λ2

�
þ 4Mπ

L

XL3

~r≠0

K1ðj~rjMπLÞ
j~rj :

ð38Þ

From Eq. (38), the ensemble with the lightest quark
mass receives the largest correction. For B → π we
find corrections to f⊥ (f∥) of 0.3%–0.4% (0.6%–0.8%),
while for Bs → K corrections to f⊥ðf∥Þ of 0.2%–0.3%
(0.4%–0.5%). These result in the following errors on the
continuum form factors: 0.3%–0.5% for fBπþ , 0.4%–0.7%
for fBπ0 , 0.2% for fBsKþ , and 0.1%–0.2% for fBsK

0 .

TABLE VII. Percentage errors from mismatches in the action and current for the bottom quark on the 243 and 323

ensembles. For this estimate, we calculate the mismatch functions for the nonperturbatively tuned parameters of the
RHQ action from Table II. We estimate the size of operators using HQET power counting with ΛQCD ¼ 500 MeV

and the coupling constant αMS
s ð1=aÞ ¼ 1=3 on the 243 ensemble and 0.22 on the 323 ensembles. To obtain the total,

we add the individual errors in quadrature, including each contribution the number of times that operator occurs.
Contribution E is counted twice, and 3 is counted twice for f∥ and four times for f⊥. The definitions of operators
“E,” “X1,” “X2,” “Y,” and “3” and expressions for the mismatch functions are given in Appendix B of Ref. [14].

Oða2Þ error from action Oða2Þ errors from current Oðα2saÞ error from current Total (%)

E X1 X2 Y 3 f∥ f⊥
a ≈ 0.11 fm 0.55 0.67 1.27 1.34 1.48 2.97 3.64
a ≈ 0.086 fm 0.42 0.46 0.85 0.91 0.55 1.65 1.82

B → πlν AND … PHYSICAL REVIEW D 91, 074510 (2015)

074510-17



I. Isospin breaking

Our B → πlν and Bs → Klν form factors are calculated
in the isospin limit. The form factors of the charged
and neutral B (Bs)-mesons, however, differ due to both
the masses and the charges of the constituent light
u and d quarks. The leading quark-mass contribution to
the isospin breaking from the valence-quark masses
is of Oððmd −muÞ=ΛQCDÞ ∼ 0.5%, which is obtained
using the determination of the quark masses ðmd −muÞ ¼
2.35ð8Þð24Þ MeV from FLAG [11] andΛQCD ¼ 500 MeV.
The difference between the u- and d-quark masses in the
sea sector should have a negligible effect on the B → πlν
(Bs → Klν) form factor because the sea quarks couple
to the valence quarks through I ¼ 0 gluon exchange, and
they give only the uncertainty of Oðððmd −muÞ=
ΛQCDÞ2Þ ∼ 0.003%. The electromagnetic contribution to
the isospin breaking is expected to be OðαsÞ ∼ 1=137 ∼
0.7% which is the typical size of 1-loop QED corrections.
We therefore take 0.7% as the uncertainties due to the
isospin breaking and electromagnetism effects.

J. Correlation matrices

In the next section we fit synthetic lattice data generated
at three values of q2 to the z-expansion to extend it to the
full kinematic range. Thus, in addition to the systematic
uncertainties on the individual q2-bins, we also need the
correlations between q2 values. Although it is straightfor-
ward to obtain the statistical correlations further explan-
ation is needed for the systematic error correlations.

The chiral-continuum extrapolation error is estimated by
varying the fit function and parametric inputs. This pro-
cedure does not provide any information on correlations of
the resulting systematic error between different q2-bins.
Alternate chiral-continuum fits to our data with different fit
functions do, however, exhibit highly similar statistical
correlations between q2-bins. Hence we take the (normal-
ized) statistical correlation matrix from our preferred fit and
multiply it by the estimated chiral-continuum extrapolation
error at each q2 value. (For off-diagonal elements of the
correlation matrix we use the product σq2i σq2j .) We follow

the same procedure to estimate the correlations between the
q2-dependent systematic error due to the light-quark mass
uncertainty. We take the remaining systematic errors for
which we do not assume any q2 dependence to be 100%
correlated.
Tables VIII and IX present the normalized statistical and

systematic correlation matrices, which enable the full
reconstruction of the total covariance matrices using the
values for B → πlν and Bs → Klν form factors and their
errors from Table VI.

V. FORM-FACTOR RESULTS

In this section we extrapolate our B → π (Bs → K) form-
factor results from large q2, where we have our (synthetic)
data, to q2 ¼ 0 using a model-independent parametrization
based on the general properties of analyticity, unitarity, and
crossing symmetry. We first give the expressions for the
z-parametrizations used in our analysis in Sec. VA; we use

TABLE VIII. Normalized statistical (upper) and systematic
(lower) correlation matrices for the B → πlν form factors at
three representative q2 values.

fBπþ fBπ0

q2 [GeV2] 19.0 22.6 25.1 19.0 22.6 25.1

19.0 1.000 0.868 0.045 0.663 0.586 0.541
fBπþ 22.6 0.868 1.000 0.239 0.591 0.654 0.616

25.1 0.045 0.239 1.000 0.176 0.188 0.283

19.0 0.663 0.591 0.176 1.000 0.822 0.836
fBπ0 22.6 0.586 0.654 0.188 0.822 1.000 0.941

25.1 0.541 0.616 0.283 0.836 0.941 1.000

fBπþ fBπ0

q2 [GeV2] 19.0 22.6 25.1 19.0 22.6 25.1

19.0 1.000 0.897 0.245 0.702 0.663 0.645
fBπþ 22.6 0.897 1.000 0.427 0.639 0.725 0.719

25.1 0.245 0.427 1.000 0.289 0.342 0.448

19.0 0.702 0.639 0.289 1.000 0.840 0.840
fBπ0 22.6 0.663 0.725 0.342 0.840 1.000 0.948

25.1 0.645 0.719 0.448 0.840 0.948 1.000

TABLE IX. Normalized statistical (upper) and systematic
(lower) correlation matrices for the Bs → Klν form factors at
three representative q2 values.

fBsKþ fBsK
0

q2 [GeV2] 17.6 20.8 23.4 17.6 20.8 23.4

17.6 1.000 0.868 0.828 0.799 0.754 0.702
fBsKþ 20.8 0.868 1.000 0.783 0.677 0.799 0.764

23.4 0.828 0.783 1.000 0.615 0.703 0.708

17.6 0.799 0.677 0.615 1.000 0.828 0.755
fBsK
0

20.8 0.754 0.799 0.703 0.828 1.000 0.974
23.4 0.702 0.764 0.708 0.755 0.974 1.000

fBsKþ fBsK
0

q2 [GeV2] 17.6 20.8 23.4 17.6 20.8 23.4

17.6 1.000 0.939 0.921 0.865 0.843 0.808
fBsKþ 20.8 0.939 1.000 0.913 0.794 0.860 0.835

23.4 0.921 0.914 1.000 0.760 0.806 0.801

17.6 0.865 0.794 0.760 1.000 0.889 0.840
fBsK
0

20.8 0.843 0.860 0.806 0.889 1.000 0.983
23.4 0.808 0.835 0.801 0.840 0.983 1.000
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the parametrization of Bourrely, Caprini, and Lellouch
(BCL) for our preferred results, but also consider the
parametrization of Boyd, Grinstein, and Lebed (BGL) as
a cross-check. Next, in Sec. V B we extrapolate our
synthetic lattice data to q2 ¼ 0; we present our preferred
results for fþ and f0 in Tables XI and XII as coefficients of
the z-expansion and the matrix of correlations
between them.
Use of the z-parametrization to describe semileptonic

form factors has several advantages over other functional
forms used in the literature [54,55]. Because the absolute
value of jzj is small in the semileptonic region, and the
z-coefficients are constrained to be small by unitarity and
heavy-quark symmetry, one needs only the first few terms
in the expansion to accurately describe the form factor
shape with a negligible truncation error. Moreover, as the
precisions of both the lattice calculations and experimental
measurements improve, one may easily include higher-
order terms in z as needed. Finally, comparisons of the
z-expansion parameters resulting from fits to different
theoretical or experimental data sets enable a meaningful
quantitative comparison of the shapes, while a combined fit
to lattice and experimental data enables a clean determi-
nation of jVubj. The z-expansion has therefore been
adopted as the preferred method for obtaining exclusive
jVubj by experimentalists on BABAR and Belle, the Heavy
Flavor Averaging Group, and the Particle Data Group
[2–5,10,56].

A. z-expansions of semileptonic form factors

The B → πlν and Bs → Klν form factors are analytic
functions of q2 except at physical poles and branch cuts
above the production threshold. Therefore, given a suitable
change of variables, they can be expressed as a convergent
power series (see, e.g., [24,25,57–60]). Unitarity and
heavy-quark power counting bound the size of the series
coefficients. In the literature, the new variable is called z,
and the class of functions are called z-parametrizations.

Two such parametrizations commonly used to extrapolate
the B → πlν form factor are by Boyd, Grinstein, and
Lebed (BGL) [24] and Bourrely, Caprini, and Lellouch
(BCL) [25].
The change of variables from q2 to z is given by

zðq2; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q2=tþ

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t0=tþ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q2=tþ

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − t0=tþ
p ; ð39Þ

where tþ ≡ ðMBðsÞ þMπÞ2 and t− ≡ ðMBðsÞ −MπÞ2. This
transformation maps the semileptonic region 0 < q2 < t−
onto a unit circle in the complex z plane. The B → πlν and
Bs → Klν form factors can then be expanded as a simple
power series in z:

Piðq2Þϕiðq2; t0Þfiðq2Þ ¼
X∞
k¼0

aðkÞi ðt0Þzðq2; t0Þk; ð40Þ

where i ¼ f0;þg for the scalar and vector form factors,
respectively. The free parameter t0 in Eq. (39) determines
the range of jzj in the semileptonic region, and hence can be
chosen to accelerate the series convergence. The “Blaschke
factor” Piðq2Þmust be chosen to vanish at any subthreshold
poles to preserve the correct analytic structure of fiðq2Þ.
For fþ, the relevant state is the JP ¼ 1− meson, while for
f0, the relevant state is the JP ¼ 0þ meson. As discussed
earlier in Sec. III C, the scalar B� meson has not been
observed experimentally, but is predicted to have a mass
well above the Bπ production threshold [44,45]. Thus the
functions Pi for B → πlν are typically taken in the
literature to be

PBπþ ðq2Þ ¼ zðq2;MB�Þ; PBπ
0 ðq2Þ ¼ 1: ð41Þ

Finally, the outer function ϕiðq2; t0Þ can be any analytic
function of q2; different choices for ϕi correspond to
different z-parametrizations.
The form factors that describe B → πlν (Bs → Klν) in

the range 0 < q2 < t−, when analytically continued, also
describe Bπ (BK) production for q2 > tþ. The coefficients
of the z-expansion are therefore bounded by the fact that the
rate of production of Bπ (BK) states is less than the
production rate of all states coupling to the b → u current.
In Ref. [24], Boyd, Grinstein, and Lebed choose the outer
function ϕi so that the unitarity constraint on the series
coefficients takes a particularly simple form:

XN
k¼0

�
aðkÞi

�
2 ≲ 1; ð42Þ

where this holds for any value of N. The explicit functions
for ϕBGLþ and ϕBGL

0 and their numerical values can be found
in Ref. [60]. When using the BGL parametrization for

TABLE X. Matrix elements Bjkðt0Þ that enter the unitarity
bound on the BCL series coefficients for the choice t0 ¼ topt. The
remaining coefficients can be obtained from the relations
BjðjþkÞ ¼ B0k and the symmetry property Bjk ¼ Bkj. To derive
these results we use the outer functions ϕþ and ϕ0 in Eq. (7) of

Ref. [60] with inputs from Ref. [25], giving χð0Þþ ¼ 5.03 × 10−4

and χð0Þ0 ¼ 1.46 × 10−2.

B00 B01 B02 B03 B04 B05

fBπþ 0.0197 0.0042 −0.0109 −0.0059 −0.0002 0.0012

fBπ0 0.1062 0.0420 −0.0368 −0.0406 −0.0201 −0.0057

fBsKþ 0.0115 0.0004 −0.0076 −0.0007 0.0018 0.0004

fBsK
0

0.0926 0.0137 −0.0484 −0.0174 −0.0003 0.0024
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subsequent z-fits, we use t0 ¼ 0.65t− as in Ref. [60],
such that −0.341 < z < 0.216 (−0.144 < z < 0.148) for
B → πlν (Bs → Klν) decay.
In Ref. [25], Bourrely, Caprini, and Lellouch (who only

discuss fþ) choose a simpler outer function ϕBCL
0 ¼ 1.

They also point out that the BGL form-factor parametriza-
tion does not obey the known asymptotic behavior near the
Bπ production threshold Imfþðq2Þ ∼ ðq2 − tþÞ3=2 (which
is due to angular momentum conservation). Therefore, at
q2 ¼ tþ (z ¼ −1), the derivative of the form factor must
satisfy

�
dfþ
dz

�				
z¼−1

¼ 0: ð43Þ

BCL use this constraint on the derivative of the form factor
to remove an independent degree of freedom from the
series expansion in z. Thus they arrive at the following
parametrization for the vector form factor:

fþðq2Þ ¼
1

1 − q2=m2
B�

XK−1
k¼0

bðkÞþ

�
zk − ð−1Þk−K k

K
zK
�
;

ð44Þ

where we label the BCL series coefficients bk to distinguish
them from the BGL coefficients ak. There is no analogous
constraint to Eq. (44) on the value or derivative of f0 at any
z, so one cannot remove a further degree of freedom in the
series expansion for the scalar form factor. We therefore use
the following functional forms for the scalar form factors:

fBπ0 ðq2Þ ¼
XK−1
k¼0

bðkÞ0 zk; ð45Þ

fBsK
0 ðq2Þ ¼ 1

1 − q2=m2
B�

XK−1
k¼0

bðkÞ0 zk; ð46Þ

where we include a pole at the theoretically predicted value
MB� ð0þÞ ¼ 5.63 GeV for Bs → Klν [44]. Equation (45)
has been called the “simplified series expansion” in the
literature [61]. To minimize the error from truncating the
z-expansion for the B → πlν form factor, BCL choose
t0 ¼ topt ≡ ðMB þMπÞð

ffiffiffiffiffiffiffi
MB

p
−

ffiffiffiffiffiffiffi
Mπ

p Þ2, such that the
magnitude of jzj ≤ 0.280 is minimized in the semileptonic
range. With the analogous choice for Bs → Klν, jzj ≤
0.146 for the semileptonic range.
Although the functional form of the BCL parametriza-

tion is simpler than that of BGL, the unitarity constraint on
the coefficients is more complicated [25]:

XK
j;k¼0

Bjkðt0ÞbðjÞi ðt0ÞbðkÞi ðt0Þ≲ 1; ð47Þ

Bjkðt0Þ ¼
X∞
n¼0

ηnðt0Þηnþjj−kjðt0Þ; ð48Þ

where ηi is the Taylor coefficients in the expansion of the
outer function

ΨðzÞ ¼ M2
B�

4ðtþ − t0Þ
ϕiðq2ðzÞ; t0Þ

ð1 − zÞ2ð1 − z�Þ2
ð1 − zz�Þ2

; ð49Þ

z� ¼ zðM2
B; t0Þ; ð50Þ

around z ¼ 0. The values of Bjk for the B → πlν and
Bs → Klν form factors with the choice t0 ¼ topt are given
in Table X.
For the B → πlν vector form factor, Becher and Hill [62]

use heavy-quark power counting to provide an estimate for
the sum of the coefficients:

XN
k¼0

ðaðkÞþ Þ2 ∼
�
Λ
mb

�
3

; ð51Þ

where Λ is a typical hadronic scale. Taking Λ ∼ 1000 MeV,
this would imply

P
a2k ∼ 0.01, which is well below the

bound from unitarity. Experimental measurements [2–5]
and previous lattice calculations [27] confirm this expect-
ation. This argument also applies to the Bs → Klν vector
form factor, where we emphasize that Eq. (51) is only a
rough constraint due to the imprecise scale Λ and omitted
higher-order corrections in the OPE and 1=mb.

B. Extrapolation of lattice form factors to q2 ¼ 0

We now extrapolate our results for the B → πlν and
Bs → Klν form factors to q2 ¼ 0 using the z-expansion.
We first generate synthetic data points in the range of
simulated data from the output of the chiral-continuum
extrapolation. Recall that the continuum, physical quark-
mass form factors are obtained from fits to Eqs. (31) and
(32) by fixing M2

π to the physical value and a2 → 0. After
these replacements, the physical form factors depend upon
three independent functions of the pion or kaon energy EP.
We therefore generate three synthetic data points each for
f0 and fþ in order to ensure that the covariance matrix is
not singular. In anticipation of the z-fit, we choose the
points to be evenly spaced in z (rather than q2). The q2

values and error budgets for the synthetic lattice data are
given in Table VI.
We fit our synthetic lattice data for the B → πlν and

Bs → Klν form factors including statistical and systematic
correlations between q2 values. For our preferred fit we use
the BCL parametrization with the kinematic constraint
fþð0Þ ¼ f0ð0Þ and use the theoretical estimate from heavy-
quark power counting to constrain the sum of the coef-
ficients of the vector form factor via Bayesian priors. We
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study the central values and errors of the series coefficients
as a function of the truncation K such that our final form-
factor results include the truncation error. The complete
z-fit results are given in Appendix B. We also compare to
results using the BGL parametrization as a check.
We first perform separate fits of fþ and f0 without

imposing any constraints on the sum of coefficients. The
results for B → πlν are given in the top two panels of
Table XIX, and for Bs → Klν in the upper two panels of
Table XX. The separate fits of fþ and f0 for K ¼ 2; 3 are
shown in the left-hand plots of Fig. 11 for B → πlν (upper)
and Bs → Klν (lower). The synthetic lattice data points are
correlated, and one must include a term quadratic in z to
obtain a good fit (recall that for fþ the expression with
K ¼ 2 includes a term proportional to z2 that is related to

the z0 and z1 terms). The normalizations bð0Þi are well
determined by the lattice data, with central values that are
stable within errors when going from K ¼ 2 to K ¼ 3. This
is important because the normalization of the vector form
factor plays a key role in the determination of jVubj

(see Sec. VI A). We cannot go beyond K ¼ 3 because
we have only three synthetic data points.
In the separate fits to fþ and f0 with K ¼ 3, the

kinematic constraint fþð0Þ ¼ f0ð0Þ is automatically sat-
isfied within uncertainties, but with large errors. We can
therefore impose the kinematic constraint fþð0Þ ¼ f0ð0Þ.
The results of the combined fits are given in the third panels
of Tables XIX and XX. As expected, the constrained fits
with K ¼ 2 for both fþ and f0 have poor p-values, but the
remaining fits tried are all of good quality. Adding the
kinematic constraint (and only considering the good fits)
has little impact on the results for the normalizations and

even on the slopes (bð1Þi =bð0Þi ). It reduces the error on the

curvatures (bð2Þi =bð0Þi ) as compared to the separate fits with
K ¼ 3, however, and consequently improves the determi-
nation of fþðq2 ¼ 0Þ.
Even with the kinematic constraint, however, the slopes

and curvatures of the form factors are still not well
determined by the lattice data, with errors ranging from
25% to as much as 300%. For all fits considered, the sum of
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FIG. 11 (color online). Fits of the B → πlν (upper plots) and Bs → Klν (lower plots) lattice form factors to the z-expansion versus
truncation K without constraints (left) and with the kinematic and heavy-quark constraints (right). The black open symbols show the
synthetic data points with statistical (inner) and statistical ⊕ systematic (outer) error bars. The curves with colored bands show the fit
results with errors for different truncations K. We do not show unconstrained fits with K ¼ 4 in the left-hand plot because we only have
three synthetic data points; the inclusion of the kinematic and heavy-quark constraints allows us to perform the K ¼ 4 fit shown in the
right-hand plot. In the right-hand plot, we do not show the K ¼ 2 combined fit because of the poor fit quality.
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the coefficients
P

Bjkbjbk satisfy the unitarity constraint.
Further, for fþ, the sum

P
Bjkbjbk is also consistent with

expectations from heavy-quark power counting, Eq. (51),
but with large uncertainties. We can therefore use theo-
retical guidance from heavy-quark power counting to
further improve our lattice form-factor determination.
Keeping the kinematic constraint, we also constrain the
sum of the coefficients of the B → πlν and Bs → Klν
vector form factors with Bayesian priors based on their
estimated size from heavy-quark power counting. For the
hadronic scale in the heavy-quark estimate we take
1000 MeV, with a generous uncertainty of �500 MeV.
Thus for the prior central value we use B̄ ¼ 0.01, and for
the Gaussian prior width we use σB ¼ 0.03. We implement
the Bayesian fit by minimizing the augmented χ2 [63],

χ2aug ¼ χ2 þ χ2prior; ð52Þ

where

χ2prior ¼
�
B̄ −

X
Bjkbjbk

�
2
=σ2B: ð53Þ

The results for different truncations K are given in the
bottom panels of Tables XIX and XX. The inclusion of
the heavy-quark constraint improves the determinations of
the slopes and curvatures, and leads to a reduction in the
absolute error on fBπþ ð0Þ by about a factor of 2 for B → πlν
for K ¼ 3. The improvement in the error on fBsKþ ð0Þ is
smaller but non-negligible, about 25%.
After implementing the heavy-quark constraint, we are

able to include an additional parameter in our fits and can
consider expansions with K ¼ 4. This enables us to study
the stability of the central values and errors of the
parameters with truncation K, and thus assess the system-
atic uncertainty associated with truncating the z-expansion.
The central values and errors for the normalizations and
slopes are stable when increasing the truncation from
K ¼ 3 to K ¼ 4, in most cases changing only in the last
decimal place [except for the slope of fBsK

0 ðq2Þ, for which
the results are still consistent within uncertainties]. The
combined fits of fþ and f0 imposing the kinematic and
heavy-quark constraints are shown versus the truncation K
in the right-hand plots of Fig. 11 for B → πlν (upper) and
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FIG. 12. Preferred K ¼ 3 fit of the B → πlν (upper plots) and Bs → Klν (lower plots) lattice form factors to the z-expansion
including the kinematic and heavy-quark constraints versus z (left) and versus q2 (right). The black open symbols show the synthetic
data points with statistical (inner) and statistical⊕ systematic (outer) error bars. The solid curves with error bands show the fit results for
fþðq2Þ and f0ðq2Þ.
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Bs → Klν (lower). The central fit curves for K ¼ 3 and
K ¼ 4 lie almost on top of each other, while the widths of
the error bands and the uncertainties in fþð0Þ increase only
slightly in going to K ¼ 4. Thus we conclude that the
K ¼ 3 constrained fit includes the systematic uncertainty
due to truncating the series in z.
We therefore take as our preferred fits for B → πlν and

Bs → Klν the results from the fit with K ¼ 3 for both fþ
and f0 including the kinematic and heavy-quark con-
straints. This is the highest truncation K for which we
still have more data points than fit parameters, and the
uncertainties are comparable to the K ¼ 4 fits. Figure 12
shows our preferred fits for B → πlν (upper plots) and
Bs → Klν (lower plots) plotted versus z (left) and versus
q2 right.
As a cross-check, we compare our preferred fit using the

BCL parametrization to the analogous fit (also imposing
the kinematic and heavy-quark constraints, and to the same

order in z) using the BGL parametrization. Figure 13
overlays the results of the BCL and BGL fits for B → πlν
(left) and Bs → Klν (right). The fits to the different series
expansions are consistent, indicating that our quoted form-
factor uncertainties encompass the error due to truncating
the z-expansion. The error bands from the BCL fits are
narrower because the BCL form for fþ relates the coef-
ficient of highest-order term in z to the coefficients of the
lower-order terms.
Tables XI and XII present our final results for the B →

πlν and Bs → Klν form factors as coefficients of the
z-expansion and the matrix of correlations between them.
These results are model independent and valid over the
entire semileptonic region of q2. As we illustrate in the next
section, they can be used in combined fits with exper-
imental data to obtain the CKM matrix element jVubj, or to
make predictions for Standard-Model observables for these
decay processes.
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TABLE XI. Central values, errors, and correlation matrix for
the parameters of our preferred fit to the B → πlν form factors
fþ and f0 to the BCL z-parametrization in Eqs. (44) and (45)
using t0 ¼ topt ≡ ðMB þMπÞð

ffiffiffiffiffiffiffi
MB

p
−

ffiffiffiffiffiffiffi
Mπ

p Þ2 in Eq. (39) and
pole mass MB� ¼ 5.3252ð4Þ GeV in fþðq2Þ.

Correlation matrix

Value bð0Þþ bð1Þþ bð2Þþ bð0Þ0 bð1Þ0 bð2Þ0

bð0Þþ 0.412(39) 1.000 0.337 −0.076 0.679 0.045 0.100

bð1Þþ −0.511ð184Þ 0.337 1.000 0.150 0.222 0.698 0.581

bð2Þþ −0.524ð612Þ −0.076 0.150 1.000 0.029 0.436 0.659

bð0Þ0
0.520(60) 0.679 0.222 0.029 1.000 −0.258 −0.224

bð1Þ0
−1.657ð182Þ 0.045 0.698 0.436 −0.258 1.000 0.564

bð2Þ0
2.146(682) 0.100 0.581 0.659 −0.224 0.564 1.000

TABLE XII. Central values, errors, and correlation matrix for
the parameters of our preferred fit to the Bs → Klν form factors
fþ and f0 to the BCL z-parametrization in Eqs. (44) and (46)
using t0 ¼ topt ≡ ðMBs

þMKÞð
ffiffiffiffiffiffiffiffiffi
MBs

p
−

ffiffiffiffiffiffiffiffi
MK

p Þ2 in Eq. (39) and
pole masses MB� ¼ 5.3252ð4Þ GeV and MB� ð0þÞ ¼ 5.63 GeV
in fþðq2Þ and f0ðq2Þ, respectively.

Correlation matrix

Value bð0Þþ bð1Þþ bð2Þþ bð0Þ0 bð1Þ0 bð2Þ0

bð0Þþ 0.338(24) 1.000 0.255 0.146 0.873 0.603 0.423

bð1Þþ −1.161ð192Þ 0.255 1.000 0.823 0.311 0.954 0.770

bð2Þþ −0.458ð1.009Þ 0.146 0.823 1.000 0.346 1.060 0.901

bð0Þ0
0.210(17) 0.873 0.311 0.346 1.000 0.556 0.479

bð1Þ0
− 0.169ð202Þ 0.603 0.954 1.060 0.556 1.000 0.965

bð2Þ0
−1.235ð880Þ 0.423 0.770 0.901 0.479 0.965 1.000
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It is interesting to compare ratios of these form factors
to predictions from approximate symmetries of QCD. In
the SU(3) limit (md ¼ ms), the form factors for B → πlν
and Bs → Klν should be identical. Thus the ratios
Riðq2Þ ¼ fBKi ðq2Þ=fBπi ðq2Þ − 1, for i ¼ fþ; 0g, provide a
measure of SU(3)-breaking in B → light semileptonic form
factors. Figure 14, left, plots these ratios for the full
kinematic range. The results for fþ and f0 are similar.
The deviations from unity are consistent with expectations
from simple power counting of ðms −mdÞ=ΛQCD ∼ 20%,
but with large uncertainties.
At large recoil (low q2) and in the heavy-quark symmetry

limit (mb=ΛQCD → ∞), the B → πlν and Bs → Klν proc-
esses are each described by a single independent form
factor as follows [64]:

f0ðq2Þ ¼
m2

BðsÞ − q2

m2
BðsÞ

fþðq2Þ: ð54Þ

This expression reduces to the kinematic constraint
fþðq2 ¼ 0Þ ¼ f0ðq2 ¼ 0Þ at q2 ¼ 0. Figure 14, right, plots
the ratio f0ðq2Þ=fþðq2Þ for the full kinematic range. The
results are similar for B → πlν and Bs → Klν. They agree
exactly with the prediction from Eq. (54) at q2 ¼ 0 by
construction because we imposed the kinematic constraint
in our preferred z-fit, but are consistent with heavy-quark-
symmetry expectations throughout the low q2 region.

VI. PHENOMENOLOGICAL APPLICATIONS

In this section we present two phenomenological appli-
cations of our form-factor results.

First, in Sec. VI A, we use our results for the B → πlν
form factors to determine the CKM matrix element jVubj.
We fit recent experimental measurements of the B → πlν
differential branching fraction to the z-parametrization to

obtain the slope bð1Þþ =bð0Þþ and curvature bð2Þþ =bð0Þþ .
Confirming that the lattice and experimental shapes are
indeed consistent, we then perform a combined z-fit of our
numerical B → πlν form-factor data with the experimental
measurements to obtain a model-independent determina-
tion of jVubj. This method can also be applied to the decay
Bs → Klν, once it has been observed experimentally, to
provide an alternate determination of jVubj.
Next, in Sec. VI B, we make predictions for Standard-

Model observables for the decay processes B → πlν and
Bs → Klν for both l ¼ μ; τ final-state charged leptons.
(Here we use μ to indicate both muon and electron final
states, for which the Standard-Model predictions are
indistinguishable at the current level of precision.) We
show results for the differential branching fractions, for-
ward-backward asymmetries, and μ=τ ratios (which are
independent of jVubj). We only calculate observables that
depend upon jVubj for Bs → Klν decays, using the value
determined previously in Sec. VI A. Once the experimental
error on the branching fraction is commensurate with the
theoretical form-factor uncertainties, our Bs → Klν form-
factor results will enable a sufficiently precise determina-
tion of jVubj to illuminate the discrepancy between jVubj
from inclusive B → Xulν and exclusive B → πlν semi-
leptonic decays.

A. Determination of jVubj from B → πlν

For the determination of jVubj, we include the two most
recent experimental measurements from BABAR, which are
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the untagged 6-bin (“BABAR 2010”) and 12-bin (“BABAR
2012”) analyses in Refs. [2,4]. Because the 12-bin analysis
uses more data and different candidate selections and cuts
than the 6-bin analysis, the statistical correlations between
the two data sets are quite small, and we treat the two data
sets as statistically uncorrelated. There are some correla-
tions between the systematic uncertainties in the two
analyses, but these are estimated to be sufficiently small
that they have a tiny impact on jVubj [65]. We therefore
treat the two BABAR analyses as fully independent. We also
include the two most recent experimental measurements
from Belle, which are the untagged analysis in Ref. [3]
(“Belle 2010”) and the full-reconstruction tagged analysis
in Ref. [5] (“Belle 2013”). The tagged and untagged data
sets have little overlap. Further, the dominant systematic
error in the tagged analysis is from the uncertainty in the
tagging calibration, which is not present for the untagged
analysis. Thus we treat the Belle tagged and untagged
analyses as independent. The BABAR and Belle data sets
are statistically independent. The only commonality to the
BABAR and Belle analyses is the use of the same event
generation [65]. Because the event generation is not a
significant source of uncertainty in the analyses, we treat
the systematic uncertainties as uncorrelated between the
BABAR and Belle data sets.
We first fit the experimental measurements to the BCL z-

parametrization to obtain the shape parameters (bðiÞþ =bð0Þþ ).
For these fits, we do not impose any constraint on the sum
of the coefficients

P
Bmnbmbn. Fits with truncation K ¼ 2

are sufficient to obtain good χ2=d:o:f: for three of the four
data sets, but we perform fits with K ¼ 3 in order to enable
comparison of both the slopes and curvatures with those of
the form factor fBπþ ðq2Þ obtained in the previous section.
The numerical results for the K ¼ 3 fits to the individual
experimental data sets, as well from a combined fit to all
experiments, are given in Table XXI. The fit to the BABAR
2010 data set has a somewhat large χ2=d:o:f: that stems
from the highest q2 bin, for which the error on the measured
differential branching fraction is small but the central value
is low with respect to the other points. The inconsistency of
the BABAR 2010 data leads the fit to all four experimental
measurements to have a somewhat low, but still reasonable,
p-value of 5%. Figure 15 shows the constraints on the slope

(bð1Þþ =bð0Þþ ) versus curvature (bð2Þþ =bð0Þþ ) from the different
experimental measurements, as well as from the combined
fit to all four measurements. The three most recent
measurements agree at the 2σ level, but display some
tension with the BABAR 2010 result. Combining the
information from all four experimental analyses improves
the determination of the shape parameters significantly.
Because we do not impose any constraint on the sum of

the coefficients
P

Bmnbmbn, we can check to see whether
the experimental data is compatible with expectations from
heavy-quark power counting for the size of the series

coefficients. Taking the determination of jVubj ¼
3.63ð12Þ × 10−3 from CKM unitarity [7], we find a value
for
P

Bmnbmbn ∼ 0.02 from the fit to all experimental data.
This is consistent with the prediction from Eq. (51) taking a
reasonable value for the heavy-quark scale Λ ∼ 1.1 GeV,
and validates the prior central value and width that we used
to constrain

P
Bmnbmbn in our preferred z-fit of the lattice

form factors in the previous section.
Finally, before we fit the experimental and lattice data

together to obtain jVubj, it is important to check that their
shapes are consistent. Figure 15 also shows the determi-
nation of the slope and curvature from our calculation of
fBπþ ðq2Þ (see Table XI). The shapes of the lattice form
factors and the experimental data are in good agreement,
but the shape (as well as the overall normalization) is
determined more precisely by experiment. This suggests
that the error on jVubj can be minimized by performing a
combined fit to the lattice and experimental data, as we
now show.
Table XXII shows the results for the BCL coefficients

and jVubj obtained from a combined fit of the experimental
measurements for the B → πlν differential branching
fraction and the lattice determination of the form factor
fBπþ ðq2Þ, leaving the relative normalization jVubj as a free
parameter to be determined in the fit. As in the experiment-
only z-fits above, we do not constrain the sum of the
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FIG. 15 (color online). Shape parameters bð1Þþ =bð0Þþ and

bð2Þþ =bð0Þþ from K ¼ 3 BCL fits to the B → πlν form factor
fBπþ ðq2Þ (filled ellipse) and from experimental measurements of
the B → πlν branching fraction [2–5] (patterned and empty
ellipses). The colored ellipses show the constraints from the
individual experiments, while the black ellipse shows the con-
straint from all experiments. For each determination, the inner
and outer contours show the 68% and 95% allowed confidence
limits, respectively.
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coefficients
P

Bmnbmbn. We present results from separate
fits to each experimental data set, as well as from a fit
including all experimental data. The results for jVubj from
fits to the different experimental data sets agree within
about 1σ, and the p-value of the K ¼ 3 fit to all data is 6%.
We also show results for truncations K ¼ 3; 4; 5 to study
the uncertainty due to truncating the expansion in z. The
errors on jVubj remain the same size as the number of fit
parameters increase, and the central value for the fit
including all experimental data is unchanged. We take
our final result

jVubj ¼ 3.61ð32Þ × 10−3 ð55Þ

from the fit to all experimental data withK ¼ 3. The quoted
error on jVubj is the total uncertainty, and includes both the
theoretical error from the form factor and the experimental
error (as well as the uncertainty from truncating the
z-expansion). Figure 16 shows the preferred K ¼ 3 BCL
z-fit used to obtain jVubj plotted as ð1 − q2=m2

B�Þfþðq2Þ
versus z (left) and as ΔB=Δq2 versus q2 (right).
Although we cannot precisely disentangle the error

contributions, we can estimate the contribution to the error
on jVubj from the lattice form-factor determination. Our
most precise synthetic data point has a total statistical plus
systematic uncertainty of 8.4%. If we assume that this is
the lattice contribution to the 8.9% error jVubj in Eq. (55),
this suggests that the experimental error contribution is
approximately 2.8%.
The combined z-fit optimally combines the available

information from lattice and experiment in a model-
independent manner, thereby providing a determination
of jVubj that is both reliable and precise. We can quantify

this statement by comparing the error on jVubj from the
simultaneous fit to the error obtained from the previously
standard approach. One can determine jVubj by relating the
measured partial branching fraction in an interval
½q2min; q

2
max� to the normalized partial decay rate calculated

from the form factor as follows:

ΔBðq2min; q
2
maxÞ=jVubj2 ¼ τ0Δζðq2min; q

2
maxÞ; ð56Þ

where

Δζðq2min; q
2
maxÞ≡ G2

F

24π3

Z
q2max

q2min

dq2 ~p3
πjfþðq2Þj2: ð57Þ

The momentum range q2 > 16 GeV2 is typically used for
comparison with lattice-QCD calculations because it is
directly accessible in simulations and avoids (or at least
minimizes) the need for an extrapolation. From our
preferred BCL parametrization (cf. Table XI) we obtain

ΔζBπð16 GeV2; q2maxÞ ¼ 1.77ð34Þ ps−1: ð58Þ

Table XIII shows the determinations of jVubj obtained from
combining Δζð16 GeV2; q2maxÞ above with the different
experimental measurements of ΔBð16 GeV2; q2maxÞ, and
with their average, via Eq. (56). The results agree with
those from the simultaneous z-fits, but with larger errors. In
particular, the error on jVubj obtained using the average
ΔBð16 GeV2; q2maxÞ from all experiments is 10.0%, to be
compared with the 8.5% error from our combined z-fit.
Separate z-fits to the lattice and experimental data lead to a
similar error on jVubj. The error on the normalization of the
form factor b0 in Table XI is 9.4%, while the error on the
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normalization of the experimental branching fraction
from the K ¼ 3 fit to all experimental data b0jVubj is
2.2%. Adding these in quadrature leads to a total error of
9.7%. Thus we conclude that the combined z-fit of all
lattice and experimental data is indeed the best approach for
minimizing the uncertainty on jVubj.

B. Standard-Model predictions for B → πlν
and Bs → Klν observables

The Standard-Model differential decay rate for BðsÞ →
Plν is given in Eq. (1). Using the experimentally measured
lepton and meson masses [10], we obtain predictions for
the differential decay rate divided by jVubj2. These are
plotted for the muon and τ-lepton final states in Fig. 17,
where we use “muon” to denote decays to either of the light
charged leptons (l ¼ μ; e) throughout this section.
Integrating the differential decay rates over the kinemati-
cally allowed q2 range gives2

ΓðB → πμνÞ=jVubj2 ¼ 6.2ð2.5Þ ps−1; ð59Þ

ΓðB → πτνÞ=jVubj2 ¼ 4.3ð1.2Þ ps−1; ð60Þ

ΓðBs → KμνÞ=jVubj2 ¼ 4.55ð1.08Þ ps−1; ð61Þ

ΓðBs → KτνÞ=jVubj2 ¼ 3.52ð0.60Þ ps−1; ð62Þ

with errors of about 25%–40% and 15%–30% for the μ and
τ final states, respectively. We also use the determination of
jVubj from our calculation of the B → πlν form factors
[Eq. (55)] to make predictions for the Bs → Klν differ-
ential branching fractions for l ¼ μ; τ. These are plotted in
Fig. 18. For comparison, we also show the prediction for
dB=dq2 using the determination of jVubj from inclusive
B → Xulν decay [66]. The form-factor uncertainties are
sufficiently small for q2 ≳ 13 GeV2 that, given an exper-
imental measurement of the branching fraction in this

region with commensurate precision, one can distinguish
between the curves corresponding to jVubjexcl and jVubjincl.
Thus we anticipate that Bs → Klν semileptonic decay will
eventually play an important role in addressing the current
“jVubj puzzle.”
Semileptonic decays to τ leptons may be particularly

sensitive to new physics associated with electroweak
symmetry breaking due to the large τ mass, or more
generally sensitive to any Standard-Model extensions with
new scalar currents. Moreover, the ratio of μ=τ differential
decay rates [69]

Rτ=μ
P ðq2Þ≡ dΓðBðsÞ → PτνÞ=dq2

dΓðBðsÞ → PμνÞ=dq2 ð63Þ

provides a precise test of the Standard Model that is
independent of the CKM matrix element jVubj.
Figure 19 shows the predictions for the ratios of differential
branching fractions using our determinations of the B →
πlν and Bs → Klν form factors in Tables XI and XII.
Integrating over the kinematically allowed ranges, we
obtain the following Standard-Model predictions for
Rτ=μ
P ≡ ΓðBðsÞ → PτνÞ=ΓðBðsÞ → PμνÞ:

Rτ=μ
π ¼ 0.69ð19Þ; ð64Þ

Rτ=μ
K ¼ 0.77ð12Þ: ð65Þ

The three-body final state in BðsÞ → Plν decay also
enables one to construct and study observables that depend
on the kinematics of the decay products. Such angular
observables are particularly sensitive to possible right-
handed currents. An example is the forward-backward
difference3

A
BðsÞ→Plν
FB ðq2Þ≡

�Z
1

0

−
Z

0

−1

�
d cos θl

d2ΓðB̄ðsÞ → PlνÞ
dq2d cos θl

ð66Þ

where θl is the angle between the charged-lepton and BðsÞ-
meson momenta in the q2 rest frame. In the Standard
Model, the forward-backward difference is given by [69]

A
BðsÞ→Plν
FB ðq2Þ ¼ G2

FjVubj2
32π3MBs

�
1 −

m2
l

q2

�
2

j~pKj2

×
m2

l

q2
ðM2

Bs
−M2

KÞfþðq2Þf0ðq2Þ: ð67Þ

TABLE XIII. Determinations of jVubj from a comparison of the
measured B → πlν partial branching fractions with the normal-
ized partial decay rate ΔζBπð16 GeV2; q2maxÞ ¼ 1.77ð34Þ calcu-
lated from our preferred BCL parametrization of the vector form
factor fBπþ ðq2Þ.

ΔBð16 GeV2; q2maxÞ × 107 jVubj × 103

All 368(19) 3.69(37)

BABAR 2010 [2] 319(34) 3.44(38)
BABAR 2012 [4] 369(32) 3.70(39)
Belle 2010 [3] 398(30) 3.84(40)
Belle 2013 [5] 386(51) 3.78(44)

2In practice, the full kinematic range may not be accessible
experimentally, in which case the limits of integration here and
throughout this section will need to be changed accordingly.

3This quantity is sometimes referred to as an “asymmetry” in
the literature, but does not satisfy the convention that its
magnitude is bounded by unity.
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Figure 20 shows the Standard-Model predictions for
ABs→Klν

FB ðq2Þ with l ¼ μ; τ using our determination of
jVubj from B → πlν decay [Eq. (55)] and the inclusive
determination of jVubj from B → Xulν decay [66]. Again,
the theoretical errors are sufficiently small at large q2 that
an experimental measurement with commensurate preci-
sion could distinguish between the two predictions.
Integrating over the full kinematic ranges we obtain

Z
q2max

m2
μ

dq2AB→πμν
FB ðq2Þ=jVubj2 ¼ 0.028ð19Þ ps−1; ð68Þ

Z
q2max

m2
τ

dq2AB→πτν
FB ðq2Þ=jVubj2 ¼ 1.08ð35Þ ps−1; ð69Þ

Z
q2max

m2
μ

dq2ABs→Kμν
FB ðq2Þ=jVubj2 ¼ 0.0175ð87Þ ps−1; ð70Þ

Z
q2max

m2
τ

dq2ABs→Kτν
FB ðq2Þ=jVubj2 ¼ 0.93ð18Þ ps−1; ð71Þ

where the μ results are much smaller than the τ results due
to helicity suppression from the small muon mass.
The normalized forward-backward asymmetry is par-

ticularly interesting because it removes the ambiguity from
jVubj, and the theoretical form-factor uncertainties cancel to
some degree:
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Ā
BðsÞ→Plν
FB ≡

R q2max

m2
l

dq2A
BðsÞ→Plν
FB ðq2ÞR q2max

m2
l

dq2dΓðBðsÞ → PlνÞ=dq2
: ð72Þ

The Standard-Model predictions for Ā
BðsÞ→Plν
FB ðq2Þ with

l ¼ μ; τ are given in Fig. 21. The percentage uncertainty in

Ā
BðsÞ→Plν
FB ðq2Þ is indeed smaller than in A

BðsÞ→Plν
FB ðq2Þ.

Integrating Ā
BðsÞ→Plν
FB ðq2Þ over the full kinematic range

we obtain

ĀB→πμν
FB ¼ 0.0044ð13Þ; ð73Þ

ĀB→πτν
FB ¼ 0.252ð12Þ; ð74Þ

ĀBs→Kμν
FB ¼ 0.0039ð11Þ ð75Þ

ĀBs→Kτν
FB ¼ 0.2650ð79Þ; ð76Þ

with errors of about 30% and 3%–5% for the μ and τ final
states, respectively.

VII. RESULTS AND CONCLUSIONS

We have calculated the form factors for B → πlν and
Bs → Klν semileptonic decay in dynamical lattice QCD
using (2þ 1) flavors of domain-wall light quarks and
relativistic b quarks. We then extended our results from
the simulated range of lattice momenta to q2 ¼ 0 using the
model-independent z-expansion based on analyticity and
unitarity.We obtain our preferred results for the form factors
fþðq2Þ and f0ðq2Þ using the BCL form of the z-expansion
[25] and imposing the kinematic constraint fþð0Þ ¼ f0ð0Þ
and a constraint on the sum of the coefficients for fþðq2Þ
based on heavy-quark power counting [62]. The resulting
BCL z-coefficients for fþðq2Þ and f0ðq2Þ for B → πlν are
given, along with their correlationmatrix, in Table XI, while
theBCL z-coefficients forBs → Klν are inTableXII. These
results can be combined with current and future experi-
mental measurements of the B → πlν and Bs → Klν
branching fractions to obtain theCKMmatrix element jVubj.
Figure 23, top, compares our B → πlν form-factor

determinations with other theoretical calculations from
light-cone sum rules (LCSR) [70,71], NLO perturbative
QCD (pQCD) [72], and (2þ 1)-flavor lattice QCD
(LQCD) [26,27]. Both of the earlier lattice calculations
use staggered light quarks. The HPQCD collaboration uses
NRQCD b quarks, while the Fermilab Lattice and MILC
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FIG. 19 (color online). Standard-Model ratio of differential
branching fractions Rτ=μ

P ðq2Þ using our determinations of the
B → πlν and Bs → Klν form factors in Tables XI and XII.
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FIG. 20 (color online). Standard-Model predictions for the forward-backward asymmetry for Bs → Kμν (left) and Bs → Kτν (right)
using our determinations of the Bs → Klν form factors in Table XII. The plots show predictions for AFB using our determination of
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collaborations use relativistic b quarks with the Fermilab
interpretation. Our result for the form factor fBπþ agrees with
earlier determinations, and is slightly more precise. Our
scalar form factor fBπ0 is lower than the HPQCD result
(although by less than 2σ), but we note that their calculation
used only a single lattice spacing. We also agree with the
most recent light-cone-sum-rule prediction for the B →
πlν form factor from Imsong et al. [71], who present the
first extrapolation of LCSR results from low q2 to q2max
using the z expansion.
We fit our results for the B → πlν form factors together

with the experimentally measured decay rates from BABAR
[2,4] and Belle [3,5], leaving the relative normalization as a
free parameter, to determine the CKM matrix element
jVubj. We obtain

jVubj ¼ 3.61ð32Þ × 10−3; ð77Þ
where the error includes both theoretical and experimental
uncertainties. Table XIV and Fig. 22 compare the deter-
mination of jVubj using our lattice form-factor result with
determinations using other theoretical calculations of the
B → πlν form factor, as well as with determinations from
inclusive B → Xulν decay, B → τν leptonic decay, and
predictions from CKM unitarity. Our jVubj result agrees
with other lattice determinations, as well as with the less
precise determination from B → τν decay, and with the
more precise predictions from CKM unitarity. The central
value is higher, however, than the one obtained from the
FNAL/MILC calculation so the tension between our result
and the determination from inclusive B → Xulν decay is
less, only about 2σ.
Figure 23, bottom, compares our Bs → Klν form-factor

determinations with the theoretical calculation by the
HPQCD collaboration using (2þ 1)-flavor lattice QCDwith
staggered light quarks and NRQCD b quarks [30], as well as
with predictions atq2 ¼ 0 from the light-cone sum rules [73],

NLO perturbative QCD [74] and the relativistic quark model
(RQM) [75]. The lattice results agree in the range of simulated
lattice data, and have similar precision, but diverge slightly
when extrapolated to lower q2. Even at q2 ¼ 0, however, the
predicted form factors fBsKþ ð0Þ differ by only 1.9σ.
The semileptonic decay Bs → Klν has not yet been

observed experimentally. We can therefore make predic-
tions for Standard-Model observables for the decay proc-
esses Bs → Kμν and Bs → Kτν. Using our results for the
Bs → Klν form factors in Table XII and our determination
of jVubj from B → πlν given above, we calculate the
differential branching fractions and forward-backward
asymmetries. Our lattice form-factor determinations at q2 ≳
13 GeV2 are sufficiently precise that future experimental
measurements of the Bs → Klν differential branching
fraction in this range with similar uncertainties will be able
to distinguish between Standard-Model predictions using
jVubj from inclusive B → Xulν and exclusive B → πlν
semileptonic decays, and thereby weigh in on the current
∼3σ disagreement between the two determinations.
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FIG. 21 (color online). Standard-Model predictions for the normalized forward-backward asymmetry ĀFB for decays to muon (left)
and τ-lepton (right) final states using our form-factor determinations in Tables XI and XII.
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We also calculate the ratio of μ-to-τ differential decay
rates, and the normalized forward-backward asymmetries,
for both B → πlν and Bs → Klν. Because these quantities
are independent of jVubj, they potentially provide more
stringent tests of Standard-Model extensions such as ones
that give rise to new scalar or right-handed currents. In
practice, it will likely be difficult for LHCb to measure Bs
decays with τ leptons in the final state, so the Bs → Kμν
predictions in Sec. VI B may be most useful for the
foreseeable future. Belle II, however, should observe the
decay B → πlν with both l ¼ μ; τ final states, and we
anticipate that they will measure the forward-backward
asymmetries and eventually the μ=τ ratio for this decay.
Future measurements of these observables will be espe-
cially important given the current ≳3σ discrepancy
observed in RðDÞ and RðD�Þ for the similar decays
B → Dð�Þlν [76,77].
Our results for the B → πlν and Bs → Klν provide

important independent checks of existing calculations
using staggered light quarks. Such confirmation is espe-
cially important given the present approximately 3σ tension
between jVubj obtained from inclusive and exclusive

semileptonic B decays. Currently the precision of our
determination of the form factors is limited by statistics
and by the relatively large chiral extrapolation to the
physical light-quark mass. To address the chiral-extrapo-
lation error, we are presently analyzing the RBC/UKQCD
Möbius domain-wallþ Iwasaki ensemble [78–80] with a
lattice spacing close to the coarser value a ≈ 0.11 fm used
in our current analysis, but with Mπ ≈ 140 MeV. We are
also using all-mode averaging [81,82] to reduce the
statistical errors on the individual numerical data points,
and expect some reduction in the statistical errors. With
these improvements we anticipate a reduction in the current
form-factor errors. Further, our future physical-mass results
will also include a determination of the tensor form factor,
which will enable a calculation of the Standard-Model rate
for the rare decay B → πlþl− and similar processes.
Because we present our results for the B → πlν

and Bs → Klν form factor as coefficients of the BCL
z-parametrization and the matrix of correlations between
them, our form factors can be combined with new exper-
imental measurements (and even with other lattice form-
factor calculations) to further improve jVubj in the future. In

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-0.3 -0.2 -0.1  0  0.1  0.2  0.3

( 1
- 

q2 / m
B

*
2  )

 f +
an

d 
 f 0

 z 

This work
Imsong 14 (LCSR)
Li 12 (pQCD)
Bharucha 12 (LCSR)
FNAL/MILC 08 (LQCD)
HPQCD 06 (LQCD)

0.0

2.5

5.0

7.5

 0  5  10  15  20  25

q2
max

f +
/0

q2 [GeV2]

This work
Imsong 14 (LCSR)
Li 12 (pQCD)
Bharucha 12 (LCSR)
FNAL/MILC 08 (LQCD)
HPQCD 06 (LQCD)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-0.15 -0.1 -0.05  0  0.05  0.1  0.15

( 1
- 

q2 /m
B

* /B
* (

0+
)

2
) f

+
/0

 z 

This work
Faustov 13 (RQM)
Wang 12 (pQCD)
Duplancic 08 (LCSR)
HPQCD 14 (LQCD)

0.0

1.0

2.0

3.0

 0  5  10  15  20  25

q2
max

f +
/0

q2 [GeV2]

This work
Faustov 13 (RQM)
Wang 12 (pQCD)
Duplancic 08 (LCSR)
HPQCD 14 (LQCD)
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particular, our Bs → Klν form-factor results will enable an
alternate determination of jVubj once the process has been
observed in experiment. More generally, our form-factor
results in Tables XI and XII can be used to compute all
possible Standard-Model observables for these decays
whenever they are needed for comparison with experiment.
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APPENDIX A: CORRELATOR FIT RESULTS

Here we summarize the results for pion, kaon, B and Bs
meson masses and three-point ratios from the correlator fits
described in Secs. III A and III B.

TABLE XIV. Determinations of jVubj. Top panel: results from inclusive B → Xulν decay [66] and B → τν
leptonic decay [11]. Middle panel: predictions from CKM unitarity [67,68]. Bottom panel: results from exclusive
B → πlν decay using form factors from (2þ 1)-flavor lattice QCD [26,27,66]. Errors shown are either the total
uncertainty or the experimental and theoretical uncertainties, respectively.

From jVubj × 103

HFAG inclusive average [56] B → Xulν 4.40(15)(20)
FLAG (Nf ¼ 2þ 1) [11] B → τν 4.18(52)(9)

CKMfitter Group [67] CKM unitarity 3.435ðþ250
−84 Þ

UTfit collaboration [68] CKM unitarity 3.63(12)

HPQCD (HFAG q2 > 16 GeV2) [26,66] B → πlν 3.52ð8Þðþ61
−40Þ

FNAL/MILC (HFAG BCL z-fit) [27,66] B → πlν 3.28(29)
This work B → πlν 3.61(32)

TABLE XV. Pion and kaon masses on all ensembles. See Sec. III A for details.

Pion Kaon

ml [tmin, tmax] aMπ χ2=d:o:f: p [tmin, tmax] aMK χ2=d:o:f: p

0.005 [12:23] 0.18959(53) 0.83 61% [12:23] 0.31287(45) 1.31 21%
0.01 [12:23] 0.24305(48) 0.76 68% [12:23] 0.33352(44) 0.82 62%
0.004 [16:30] 0.12611(51) 1.08 37% [16:30] 0.23249(42) 1.35 17%
0.006 [16:30] 0.15207(36) 0.41 97% [16:30] 0.24189(33) 0.58 88%
0.008 [16:30] 0.17265(42) 1.05 40% [16:30] 0.24854(39) 1.06 39%

TABLE XVI. B- and Bs-meson masses on all ensembles. See Sec. III A for details.

B meson Bs meson

ml [tmin, tmax] aMB χ2=d:o:f: p [tmin, tmax] aMB χ2=d:o:f: p

0.005 [7:30] 3.0638(13) 0.92 57% [10:30] 3.1020(12) 0.46 98%
0.01 [7:30] 3.0727(13) 0.74 80% [10:30] 3.1028(13) 1.13 31%
0.004 [9:30] 2.3203(14) 1.40 11% [13:30] 2.3509(11) 1.53 7%
0.006 [9:30] 2.3241(10) 0.78 74% [13:30] 2.3520(09) 0.57 92%
0.008 [9:30] 2.3274(12) 0.85 66% [13:30] 2.3533(12) 0.95 51%
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TABLE XVII. Three-point correlator ratios RBπ
3;μ on all ensembles. Results are shown for pion momenta ~p2

π ¼ ð2π~n=LÞ2 through
n2 ¼ 3.

ml n2 [tmin, tmax] M1=2
Bs

RBπ
3;i =p

i
π χ2=d:o:f: p [tmin, tmax] M−1=2

Bs
RBπ
3;0

χ2=d:o:f: p

0.005 0 [6:10] 0.2523(36) 1.49 20%
1 [6:10] 1.086(31) 1.19 31% [6:10] 0.2034(52) 0.16 96%
2 [6:10] 0.827(46) 1.71 15% [6:10] 0.1819(93) 0.38 82%
3 [6:10] 0.755(78) 0.60 66% [6:10] 0.154(17) 0.62 65%

0.01 0 [6:10] 0.2513(35) 2.03 9%
1 [6:10] 1.049(23) 1.07 37% [6:10] 0.2060(43) 1.17 32%
2 [6:10] 0.798(30) 0.53 72% [6:10] 0.1837(73) 0.55 70%
3 [6:10] 0.706(47) 0.88 47% [6:10] 0.180(13) 0.04 100%

0.004 0 [8:13] 0.3679(79) 1.25 28%
1 [8:13] 1.546(71) 0.88 50% [8:13] 0.288(12) 1.58 16%
2 [8:13] 1.100(92) 0.40 85% [8:13] 0.256(18) 1.93 9%

3 [8:13] 0.96(20) 0.33 89% [8:13] 0.186(32) 0.70 63%

0.006 0 [8:13] 0.3528(51) 1.19 31%
1 [8:13] 1.529(42) 1.01 41% [8:13] 0.2739(63) 0.30 91%
2 [8:13] 1.219(58) 0.41 84% [8:13] 0.240(11) 0.76 58%
3 [8:13] 0.921(91) 0.46 80% [8:13] 0.224(21) 1.14 34%

0.008 0 [8:13] 0.3432(58) 1.45 20%
1 [8:13] 1.483(38) 1.43 21% [8:13] 0.2829(67) 1.02 40%
2 [8:13] 1.183(53) 0.63 68% [8:13] 0.2349(98) 1.01 41%
3 [8:13] 0.888(89) 0.52 76% [8:13] 0.211(18) 0.20 96%

TABLE XVIII. Three-point correlator ratios RBsK
3;μ on all ensembles. Results are shown for kaon momenta ~p2

K ¼ ð2π~n=LÞ2 through
n2 ¼ 4.

ml n2 [tmin, tmax] M1=2
Bs

RBsK
3;i =pi

K
χ2=d:o:f: p [tmin, tmax] M−1=2

Bs
RBsK
3;0

χ2=d:o:f: p

0.005 0 [6:10] 0.2394(27) 0.99 41%
1 [6:10] 0.984(16) 2.17 7% [6:10] 0.2036(27) 0.60 66%
2 [6:10] 0.763(16) 2.53 4% [6:10] 0.1791(36) 0.46 77%
3 [6:10] 0.623(22) 1.60 17% [6:10] 0.1609(57) 0.52 72%
4 [6:10] 0.543(31) 0.98 42% [6:10] 0.1568(88) 0.68 61%

0.01 0 [6:10] 0.2421(28) 2.35 5%
1 [6:10] 0.963(15) 0.95 44% [6:10] 0.2060(30) 1.00 40%
2 [6:10] 0.749(16) 0.13 97% [6:10] 0.1847(40) 0.17 95%
3 [6:10] 0.634(21) 0.38 83% [6:10] 0.1737(61) 0.16 96%
4 [6:10] 0.573(30) 0.30 88% [6:10] 0.1664(81) 0.12 98%

0.004 0 [8:13] 0.3264(49) 1.14 34%
1 [8:13] 1.340(26) 0.57 72% [8:13] 0.2751(51) 1.25 28%
2 [8:13] 1.039(26) 1.14 33% [8:13] 0.2444(64) 1.84 10%
3 [8:13] 0.830(39) 1.65 14% [8:13] 0.2148(89) 1.80 11%
4 [8:13] 0.690(50) 0.88 49% [8:13] 0.195(13) 1.18 32%

0.006 0 [8:13] 0.3312(35) 1.12 34%
1 [8:13] 1.336(20) 1.02 40% [8:13] 0.2770(36) 1.19 31%
2 [8:13] 1.068(20) 0.71 61% [8:13] 0.2419(46) 0.60 70%
3 [8:13] 0.868(26) 1.49 19% [8:13] 0.2168(68) 0.53 75%
4 [8:13] 0.737(37) 0.57 72% [8:13] 0.206(10) 0.37 87%

0.008 0 [8:13] 0.3323(47) 1.28 27%
1 [8:13] 1.332(25) 1.21 30% [8:13] 0.2848(47) 1.16 32%
2 [8:13] 1.056(25) 0.86 51% [8:13] 0.2476(58) 1.23 29%
3 [8:13] 0.856(34) 1.17 32% [8:13] 0.2264(87) 0.80 55%
4 [8:13] 0.736(45) 0.83 52% [8:13] 0.200(13) 0.61 69%
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TABLE XIX. Results for z-fits of the B → πlν synthetic form-factor data to the BCL parametrization, Eqs. (44) and (45). The top panels show fits without constraints on the BCL
coefficients for (i) fþ only (first panel), (ii) f0 only (second panel), and (iii) fþ and f0 imposing the kinematic constraint fþðq2 ¼ 0Þ ¼ f0ðq2 ¼ 0Þ (third panel). The bottom panel
shows combined fits of fþ and f0 imposing both the kinematic constraint and the heavy-quark estimate for the sum of the vector-form-factor coefficients

P
Bmnbmbn, Eq. (51). We

show results for different truncations K ¼ ð1Þ; 2; 3. For fits that include the heavy-quark constraint, we quote the augmented χ2=d:o:f. as defined in Eq. (52). Note that we cannot
quote a goodness-of-fit for cases where the fits have the same number of free parameters as data points.

fBπþ fBπ0
K bð0Þ bð1Þ=bð0Þ bð2Þ=bð0Þ bð3Þ=bð0Þ

P
Bmnbmbn K bð0Þ bð1Þ=bð0Þ bð2Þ=bð0Þ bð3Þ=bð0Þ

P
Bmnbmbn fðq2 ¼ 0Þ χ2=d:o:f: p

1 0.447(36) 0.00394(63) 0.447(36) 4.02 2%

2 0.410(39) −1.30(52) 0.0120(59) 0.241(83) 0.30 58%

3 0.420(43) −1.46(59) −4.7(7.2) 0.15(42) 0.07(32)

1 0.460(61) 0.0225(60) 0.460(61) 90.1 0%

2 0.516(61) −4.09(55) 0.408(63) −0.074(73) 0.03 87%

3 0.516(61) −3.94(97) 0.7(3.8) 0.32(41) −0.02(28)

2 0.366(37) −2.79(54) 0.0337(85) 2 0.587(58) −3.33(38) 0.346(55) 0.040(65) 6.18 0%

3 0.427(40) −1.62(46) −7.7(1.5) 0.38(15) 2 0.521(60) −4.03(52) 0.404(62) −0.066(70) 0.10 91%

2 0.410(39) −1.24(51) 0.0113(56) 3 0.520(60) −3.12(42) 4.5(1.3) 0.41(17) 0.248(82) 0.58 56%

3 0.424(41) −1.50(57) −6.0(5.0) 0.24(38) 3 0.519(60) −3.81(81) 1.2(3.4) 0.27(25) 0.01(24) 0.07 79%

2 0.368(37) −2.70(51) 0.0320(79) 2 0.592(57) −3.27(36) 0.338(53) 0.051(63) 4.78 0%

3 0.384(38) −2.22(49) −3.18(74) 0.066(21) 2 0.579(57) −3.34(37) 0.339(52) 0.038(63) 4.60 0%

2 0.410(39) −1.24(51) 0.0112(54) 3 0.520(60) −3.12(41) 4.5(1.3) 0.41(17) 0.249(81) 0.39 76%

3 0.412(39) −1.24(50) −1.3(1.5) 0.019(24) 3 0.520(60) −3.19(44) 4.1(1.5) 0.36(18) 0.224(95) 0.51 60%

4 0.412(39) −1.25(50) −1.2(1.5) −0.8(2.7) 0.019(25) 3 0.520(60) −3.20(45) 4.1(1.5) 0.35(18) 0.220(97) 0.99 32%

3 0.411(39) −1.29(51) −0.9(2.0) 0.015(25) 4 0.510(61) −3.81(90) 3.8(1.7) 10(12) 4.6(8.6) 0.23(11) 0.29 59%

4 0.411(39) −1.29(51) −0.9(2.0) −0.3(4.2) 0.015(26) 4 0.510(61) −3.81(90) 3.7(1.8) 10(13) 4.6(8.8) 0.23(12)
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TABLE XX. Results for z-fits of the Bs → Klν synthetic form-factor data to the BCL parametrization. Entry meanings are the same as in Table XIX.

fBsKþ fBsK
0

K bð0Þ bð1Þ=bð0Þ bð2Þ=bð0Þ bð3Þ=bð0Þ
P

Bmnbmbn K bð0Þ bð1Þ=bð0Þ bð2Þ=bð0Þ bð3Þ=bð0Þ
P

Bmnbmbn fðq2 ¼ 0Þ χ2=d:o:f: p

1 0.393(23) 0.00178(21) 0.393(23) 48.8 0%

2 0.337(24) −3.52(48) 0.0249(44) 0.152(34) 0.52 47%

3 0.324(30) −5.1(2.3) −11(14) 0.21(47) −0.00(21)

1 0.209(14) 0.00406(54) 0.209(14) 2.88 6%

2 0.222(15) 0.49(23) 0.0064(18) 0.238(20) 1.48 22%

3 0.208(19) −1.1(1.4) −7.3(6.5) 0.26(41) 0.142(82)

2 0.376(20) −2.33(19) 0.0152(21) 2 0.225(15) 0.44(22) 0.0062(17) 0.239(20) 3.65 1%

3 0.347(22) −2.63(24) 2.7(1.4) 0.039(19) 2 0.222(15) 0.48(23) 0.0062(17) 0.237(20) 0.98 38%

2 0.338(24) −3.52(48) 0.0249(44) 3 0.209(16) −0.94(54) −6.5(2.2) 0.21(12) 0.151(34) 0.27 76%

3 0.337(24) −3.61(89) −2.3(4.5) 0.028(29) 3 0.208(19) −1.1(1.4) −7.2(6.5) 0.26(40) 0.143(82) 0.53 47%

2 0.376(20) −2.33(19) 0.0152(21) 2 0.225(15) 0.45(22) 0.0062(17) 0.239(20) 2.75 3%

3 0.351(22) −2.58(22) 2.2(1.2) 0.032(13) 2 0.222(15) 0.48(23) 0.0063(17) 0.238(20) 0.88 45%

2 0.338(24) −3.49(47) 0.0246(43) 3 0.209(16) −0.91(54) −6.4(2.2) 0.21(12) 0.153(33) 0.26 85%

3 0.338(24) −3.43(67) −1.4(3.0) 0.023(10) 3 0.210(17) −0.8(1.0) −5.9(4.4) 0.18(23) 0.159(59) 0.38 68%

4 0.338(24) −3.47(70) −1.7(3.3) −1.5(6.1) 0.016(18) 3 0.209(18) −0.9(1.1) −6.4(4.9) 0.20(27) 0.153(63) 0.63 43%

3 0.338(24) −3.46(73) −1.6(3.7) 0.024(14) 4 0.211(18) −0.8(1.0) −6.3(6.7) −3(35) 0.3(1.4) 0.156(68) 0.76 38%

4 0.337(24) −3.54(72) −2.2(3.6) −1.9(5.8) 0.018(22) 4 0.210(18) −0.9(1.0) −7.4(6.6) −7(35) 0.5(2.6) 0.145(67)
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APPENDIX B: z-FIT RESULTS

Here we present the complete results for the z-fits
described in Secs. V B and VI A. Tables XIX and XX

show the results of fits to only our lattice form factors,
while Tables XXI and XXII show the result of joint fits to
the lattice and experimental data.
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